1. Rings, subrings and fields

- Ring R: set with binary operations addition and subtraction, where (R, +) is an abelian group and:
 - Identity: exists $1 \in R$ such that $\forall x \in R, 1 \cdot x = x \cdot 1 = x$
 - Associativity: for every $x, y, z \in R, x(yz) = (xy)z$
 - Distributivity: for every $x, y, z \in R, x(y+z) = xy + xz$ and (y+z)x = yx + zx
- Set of remainders modulo n (residue classes): $\mathbb{Z} / n = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}$
- \mathbb{Z} / n is a ring: $\overline{a} + \overline{b} = \overline{a + b}, \overline{a} \overline{b} = \overline{a b}, \overline{a} \cdot \overline{b} = \overline{a \cdot b}$
- Subring S of ring R: a set $S \subseteq R$ that contains 0 and 1 and is closed under addition, multiplication and negation:
 - $\bullet \quad 0 \in S, \ 1 \in S$
 - $\forall a, b \in S, a + b \in S$
 - $\bullet \ \ \forall a,b\in S,ab\in S$
 - $\bullet \quad \forall a \in S, -a \in S$
- Field F is a ring with:
 - F is commutative
 - $0 \neq 1 \in F$ (*F* has at least two elements)
 - $\forall 0 \neq a \in R, \exists b \in R, ab = 1. b$ is the **inverse** of a
- a is a **zero divisor** if ab = 0 for some $b \neq 0$

2. Integral domains

- Integral domain R: ring which is commutative, has at least two elements $(0 \neq 1)$, and has no zero divisors apart from 0
- Any subring of a field is an integral domain
- If R is an integral domain, then $R[x] = \{a_0 + a_1x + ... + a_nx^n : a_i \in R\}$ is also an integral domain.
- a is a **unit** if ab = ba = 1 for some $b \in R$. $b = a^{-1}$ is the **inverse** of a
- Inverses are unique
- R^{\times} , set of all units in R, is a group under multiplication of R
- For field $F, F^{\times} = F \{0\}$
- $a \in \mathbb{Z} / n$ is a unit iff gcd(a, n) = 1
- \mathbb{Z} / p is a field iff p is prime
- \mathbb{Z} / n is an integral domain iff n is prime (iff \mathbb{Z} / n is a field)

3. Polynomials over a field

• **Degree** of $f(x) = a_0 + a_1 x + ... + a_n x^n$:

$$\deg(f) = \begin{cases} \max\{i : a_i \neq 0\} \text{ if } f \neq 0\\ -\infty & \text{ if } f = 0 \end{cases}$$

- $\deg(fg) = \deg(f) + \deg(g)$
- $\bullet \ \deg(f+g) \leq \max\{\deg(f), \deg(g)\}$
- If $\deg(f)\neq \deg(g)$ then $\deg(f+g)=\max\{\deg(f),\deg(g)\}$

• Let $f(x), g(x) \in F[x], g(x) \neq 0$, then $\exists q(x), r(x) \in F[x]$ with $\deg(r) < \deg(g)$ such that f(x) = q(x)g(x) + r(x)

4. Divisibility and greatest common divisor in a ring

- a divides $b, a \mid b$, if $\exists r \in R$ such that b = ra
- d is a greatest common divisor of a and b, gcd(a, b), if:
 - $d \mid a \text{ and } d \mid b \text{ and}$
 - If $e \mid a$ and $e \mid b$ then $e \mid d$
- gcd(0,0) = 0
- Euclidean algorithm example: find gcd of $f(x) = x^2 + 7x + 6$ and $g(x) = x^2 5x 6$ in $\mathbb{Q}[x]$:

$$f(x) = g(x) + 12(x+1)$$
$$g(x) = \frac{1}{12}x \cdot 12(x+1) - 6(x+1)$$
$$12(x+1) = -2 \cdot -6(x+1) + 0$$

Remainder is now zero so stop. A gcd is given by the last non-zero remainder, -6(x+1). We can write -6(x+1) as a combination of f(x) and g(x):

$$\begin{split} -6(x+1) &= g(x) - \frac{1}{12}x \cdot 12(x+1) \\ &= g(x) - \frac{1}{12}x \cdot (f(x) - g(x)) \\ &= \left(1 + \frac{1}{12}x\right)g(x) - \frac{1}{12}xf(x) \end{split}$$

- Let R be integral domain, $a, b \in R$ and d = gcd(a, b). Then $\forall u \in R^{\times}$, ud is also a gcd(a, b). Also, for d and d' gcds of a and b, $\exists u \in R^{\times}$ such that d = ud' (so gcd is unique up to units).
- Polynomial is **monic** if leading coefficient is 1
- There always exists a unique monic gcd of two polynomials in F[x]
- Let $R = \mathbb{Z}$ or $F[x], a, b \in R$. Then
 - A gcd(a, b) always exists
 - $a \neq 0$ or $b \neq 0$ then a gcd(a, b) can be computed by Euclidean algorithm
 - If d is a gcd(a, b) then $\exists x, y \in R$ such that ax + by = d

5. Factorisations in rings

- $r \in R$ irreducible if:
 - $r \notin R^{\times}$ and
 - If r = ab then $a \in R^{\times}$ or $b \in R^{\times}$
- $a \in F$ is **root** of $f(x) \in F[x]$ if f(a) = 0
- Let $f(x) \in F[x]$.
 - If $\deg(f) = 1$, f is irreducible.
 - If $\deg(f) = 2$ or 3 then f is irreducible iff it has no roots in F.

- If $\deg(f) = 4$ then f is irreducible iff it has no roots in F and it is not the product of two quadratic polynomials.
- Let $f(x) = a_0 + a_1 x + ... + a_n x^n \in \mathbb{Z}[x]$, $\deg(f) \ge 1$. If $f(p \mid q) = 0$, $\gcd(p, q) = 1$, then $p \mid a_0$ and $q \mid a_n$.
- Gauss's lemma: let $f(x) = a_0 + a_1x + ... + a_nx^n \in \mathbb{Z}[x]$, $\deg(f) \ge 1$. Then f(x) is irreducible in $\mathbb{Z}[x]$ iff it is irreducible in $\mathbb{Q}[x]$ and $\gcd(a_0, a_1, ..., a_n) = 1$.
- If monic polynomial in $\mathbb{Z}[x]$ factors in $\mathbb{Q}[x]$ then it factors into integer monic polynomials.
- Let R be commutative, $x\in R$ be irreducible and $u\in R^{\times}.$ Then ux is also irreducible.
- Eisenstein's criterion: let $f(x) = a_0 + a_1x + ... + a_nx^n \in \mathbb{Z}[x]$, p be prime with $p \mid a_0, p \mid a_1, ..., p \mid a_{n-1}, p \nmid a_n, p^2 \nmid a_0$. Then f(x) is irreducible in $\mathbb{Q}[x]$
- Let $f(x) \in F[x]$, then f can be uniquely factorised into a product of irreducible elements, up to order of factors and multiplication by units.
- Let R be commutative. $x \in R$ is **prime** if:
 - $x \neq 0$ and $x \notin R^{\times}$ and
 - If $x \mid ab$ then $x \mid a$ or $x \mid b$
- If $R = \mathbb{Z}$ or F[x] then $a \in R$ is prime iff it is irreducible.
- Let R be an integral domain and $x \in R$ prime. Then x is irreducible.
- Integral domain R is unique factorisation domain (UFD) if every non-zero non-unit element in R can be written as a unique product of irreducible elements, up to order of factors and multiplication by units.

6. Ring homomorphisms

- For R, S rings, $f : R \to S$ is homomorphism if:
 - f(1) = 1 and
 - f(a+b) = f(a) + f(b) and
 - f(ab) = f(a)f(b)
- Let $f: R \to S$ homomorphism, then
 - f(0) = 0 and
 - f(-a) = -f(a)
- Kernel:

$$\ker(f)\coloneqq \{a\in R: f(a)=0\}$$

• Image:

$$\mathrm{Im}(f)\coloneqq \{f(a):a\in R\}$$

- Isomorphism: bijective homomorphism.
- R and S isomorphic, $R \cong S$ if there exists isomorphism between them.
- Homomorphism f injective iff $ker(f) = \{0\}$.
- **Direct product** of R and S, $R \times S$:
 - (r,s) + (r',s') = (r+r',s+s').
 - (r,s)(r',s') = (rr',ss').
 - Identity is (1, 1).

• For $p_1(r,s) = r$ and $p_2(r,s) = s$, $\ker(p_1) = \{(0,s) : s \in S\}$ and $\ker(p_2) = \{(r,0) : r \in R\}$. These are both rings, with $\ker(p_1) \cong S$ (via $(0,s) \to s$) and $\ker(p_2) \cong R$ (via $(r,0) \to r$). $(\ker(p_1)$ and $\ker(p_2)$ are not subrings of $R \times S$ though). So

$$\ker(p_1)\times \ker(p_2)\cong R\times S$$

7. Ideals and quotient rings

- $I \subseteq R$ is an **ideal** if I closed under addition and if $x \in I$, $r \in R$ then $rx \in I$ and $xr \in I$.
- Left ideal: I closed under addition and if $x \in I$, $r \in R$ then $rx \in I$.
- **Right ideal**: *I* closed under addition and if $x \in I$, $r \in R$ then $xr \in I$.
- If $x \in I$, then $(-1)x = x(-1) = -x \in I$ so I closed under negation.
- For $f: R \to S$ homomorphism, $\ker(f)$ is ideal of R.
- For R commutative ring and $a \in R$, principal ideal generated by a is

$$(a) \coloneqq \{ra : r \in R\}$$

• For R commutative and $a_1, \dots a_n \in R$,

$$(a_1,...,a_n)\coloneqq \{r_1a_1+\cdots+r_na_n:r_1,...,r_n\in R\}$$

is an ideal. $(a_1, ..., a_n)$ is **generated** by $a_1, ..., a_n$. $a_i \in (a_1, ..., a_n)$ for all i.

- If ideal I contains unit u, then $u^{-1}u = 1 \in I$ so $\forall r \in R, r \cdot 1 = r \in I$. So $R \subseteq I$ so R = I.
- For field F, any ideal is either $\{0\}$ or F.
- Let $I_1 = (a_1, ..., a_m)$, $I_2 = (b_1, ..., b_n)$ then $I_1 = I_2$ iff $a_1, ..., a_m \in I_2$ and $b_1, ..., b_n \in I_1$.
- $a, b \in R$ equivalent modulo I if $a b \in I$. Write $\overline{a} = \overline{b}$ or $a \equiv b \pmod{I}$.
- Let $a(x) \in \mathbb{Q}[x]$, then p(x) = q(x)a(x) + r(x) with $\deg(r) < \deg(a)$. $\frac{p(x) - r(x) = q(x)a(x) \in (a(x))$ so $\overline{p(x)} = \overline{r(x)}$. r(x) is **representative** of the class $\overline{p(x)}$.
- Let $I \subseteq R$ ideal. Coset of I generated by $x \in I$ is

$$\overline{x} \coloneqq x + I = \{x + r : r \in I\} \subseteq R$$

x is a **representative** of x + I.

• For $x, y \in R$,

$$x+I=y+I \Longleftrightarrow x+I\cap y+I \neq \emptyset \Longleftrightarrow x-y \in I$$

- If x is a representative of x + I, so is x + r for every $r \in I$.
- Quotient of R by I (" $R \mod I$ "): set of all cosets of R by I:

$$R / I \coloneqq \{\overline{x} : x \in R\} = \{x + I : x \in R\}$$

with

- (x+I) + (y+I) = (x+y) + I.
- (x+I)(y+I) = xy+I.

- R / I is a ring, with zero element 0 + I = I and identity $1 + I \in R / I$.
- Quotient map (canonical map/homomorphism): $R \to R / I, r \to \overline{r} = r + I$.
- Kernel of quotient map is I and image is R / I. Hence every ideal is a kernel.
- First isomorphism theorem (FIT): Let $\varphi : R \to S$ be homomorphism. Then

 $\overline{\varphi}: R \ / \ \mathrm{ker}(\varphi) \to \mathrm{Im}(\varphi), \overline{\varphi}(\overline{x}) = \varphi(x)$

is an isomorphism: $R / \ker(\varphi) \cong \operatorname{Im}(\varphi)$.

8. Prime and maximal ideals

- Ideal $I \subseteq R$ prime ideal if $I \neq R$ and $ab \in I \implies a \in I$ or $b \in I$.
- $I \subseteq R$ maximal if only ideals containing I are I and R (so no ideals strictly between I and R).
- $x \in R$ is prime iff (x) is prime ideal.
- To contain is to divide:

$$a\in (x) \Longleftrightarrow (a)\subseteq (x) \Longleftrightarrow x \mid a$$

- For R commutative and I ideal:
 - I prime iff R / I integral domain.
 - I maximal iff R / I field.
- (I, x) is ideal generated by I and x:

$$(I,x):\{rx+x':r\in R,x'\in I\}$$

• If I is maximal ideal, then it is prime.

9. Principal ideal domains

- Principal ideal domain (PID): integral domain where every ideal is principal.
- $\mathbb{Z}, F[x], \mathbb{Z}[i] \text{ and } \mathbb{Z}[\sqrt{\pm 2}] \text{ are PIDs.}$
- Every PID is a UFD.
- Let R be PID and $a, b \in R$. Then d = gcd(a, b) exists and (d) = (a, b).

10. Fields as quotients

- Let R be PID, $a \in R$ irreducible. Then (a) is maximal.
- Let $f(x) \in F[x]$ irreducible. Then F[x] / (f(x)) is field and F[x] / (f(x)) is a vector space over F with basis $\{\overline{1}, \overline{x}, ..., \overline{x}^{n-1}\}$ where $n = \deg(f)$. So every element in F[x] / f(x) can be uniquely written as $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, $a_i \in F$.
- Let p prime and $n \in \mathbb{N}$, then there exists irreducible $f(x) \in (\mathbb{Z} / p)[x]$ with $\deg(f) = n$ and $(\mathbb{Z} / p)[x] / (f(x))$ is a field with p^n elements. Any two such fields are isomorphic so unique (up to isomorphism) field with p^n elements is written \mathbb{F}_{p^n} .

11. The Chinese remainder theorem

- $a, b \in R$ coprime if no irreducible element divides a and b.
- Let R be PID, $a, b \in R$ coprime. Then (a, b) = (1) = R so ax + by = 1 for some $x, y \in R$. So any gcd(a, b) is a unit.

• Chinese remainder theorem (CRT): Let R be PID, $a_1, ..., a_k$ pairwise coprime. Then

$$\begin{split} \varphi : R \ / \ (a_1 \cdots a_k) \to R \ / \ (a_1) \times \cdots \times R \ / \ (a_k) \\ \varphi(r + (a_1 \cdots a_k)) = (r + (a_1), ..., r + (a_k)) \end{split}$$

is an isomorphism.

12. Basics of groups

- **Group** (G, \circ) : set G with binary operation $\circ : G \times G \to G$ satisfying:
 - Closure: $g \circ h \in G, h \circ g \in G$.
 - Associativity: $a \circ (b \circ c) = (a \circ b) \circ c$.
 - Identity: $g \circ e = g$ and $e \circ g = g$ for some $e \in G$.
 - Inverse: $g \circ h = h \circ g = e$ for some $h = g^{-1} \in G$.
- Group **abelian** if \circ commutative: $g \circ h = h \circ g$.
- $H \subseteq G$ is subgroup of (G, \circ) , H < G if H is group under same operation.
- Subgroup H proper if $H \neq \{e\}$ and $H \neq G$.
- Subgroup criterion: H < G iff:
 - *H* non-empty.

•
$$h_1, h_2 \in H \Longrightarrow h_1 \circ h_2 \in H$$
.

- $h \in H \Longrightarrow h^{-1} \in H$.
- Order of group G is number of elements in it, |G|.
- Lagrange's theorem: Let G finite, H < G, then

#H | #G

• Let H < G, $g \in G$. Left coset of g with respect to H in G:

$$g \circ H \coloneqq \{g \circ h : h \in H\}$$

- All left cosets with respect to H have same cardinality as cardinality of H.
- **Right coset** of $g \in G$ with respect to H < G in G:

$$H \circ g := \{h \circ g : h \in H\}$$

- H < G normal, $H \triangleleft G$, if $\forall g \in G, gH = Hg$.
- *H* is normal iff $\forall g \in G$,

$$\forall h \in H, ghg^{-1} \in H \Longleftrightarrow gHg^{-1} \subset H$$

where $gHg^{-1} = \{ghg^{-1} : h \in H\}.$

- Every subgroup of abelian group is normal.
- Subgroup of *G* generated by *g*:

$$\langle g\rangle\coloneqq\{g^n:n\in\mathbb{Z}\}$$

• Subgroup of G generated by $S \subseteq G$:

 $\langle S \rangle := \{ \text{all finite products of elements in } S \text{ and their inverses} \}$

so if G abelian (doesn't hold for non-abelian), for $S = \{g_1, ..., g_n\}$,

$$\langle S \rangle = \left\{ g_1^{a_1} \cdots g_n^{a_n} : a_i \in \mathbb{Z} \right\}$$

• If G not abelian,

$$\langle g,h
angle = \left\{g^{a_1}h^{b_1}\cdots g^{a_m}h^{a_m}
ight\}$$

- Order of $g \in G$, $\operatorname{ord}_G(g)$ is smallest r > 0 such that $g^r = e$. If r doesn't exist, order is ∞ .
- Order of $\overline{m} \in \mathbb{Z} / n$ is $n / \operatorname{gcd}(m, n)$.

13. Specific families of groups

• Quaternion group:

$$Q_8 = \{\pm 1 \pm i, \pm j, \pm k\}, \quad i^2 = j^2 = k^2 = -1, ij = k = -ji$$

- Cyclic group: can be generated by single element.
- Example of cyclic group:

$$C_n = \left\{ e^{\frac{2\pi i}{n}k} : 0 \leq k < n \right\}$$

- Cyclic groups are abelian.
- If |G| is prime, G is cyclic and is generated by any $e \neq g \in G$.
- **Permutation** of $X \neq \emptyset$: bijection $X \rightarrow X$.
- $S_X := \{ \text{bijection } X \to X \}.$
- Notation: $S_n \coloneqq S_{\{1,\dots,n\}}$.
- (S_X, \circ) is group where \circ is composition of permutations.
- + (S_n, \circ) is symmetric group of degree n (or symmetric group on n letters).
- Notation: write $\sigma \in S_n$ as

$$\begin{bmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{bmatrix}$$

- $|S_n| = n!.$
- Cycle of length k (or k-cycle): permutation σ in S_n , with

$$\sigma(i_1)=i_2, \ \ \sigma(i_2)=i_3,...,\sigma(i_{k-1})=i_k, \ \ \sigma(i_k)=i_1$$

and leaves all other elements fixed. Write as $(i_1 \ i_2 \ \dots \ i_k)$ or

$$egin{bmatrix} i_1 & i_2 & \ldots & i_k \ i_2 & i_3 & \ldots & i_1 \end{bmatrix}$$

- 2-cycles are transpositions (or inversions).
- k-cycle has order k.
- There are k ways of writing k cycle.
- Cycles are **disjoint** if they don't have any common elements.
- Disjoint cycles commute.
- Every permutation is product of disjoint cycles, unique up to swapping cycles and k ways of writing a k-cycle.
- *k*-cycle can be written as product of transpositions:

$$(i_1 \ i_2 \ \dots \ i_k) = (i_1 \ i_2)(i_2 \ i_3) \ \cdots \ (i_{k-1} \ i_k)$$

- When composing cycles, work right to left.
- $g, g' \in G$ conjugate in G to each other if for some $h \in G$, $hgh^{-1} = g'$.
- Any conjugate of transposition in S_n is transposition.
- Every $\sigma \in S_n$ can be factored into product of transpositions.
- **Parity** of number of transpositions needed in any factorisation of σ is the same. So remainder of this number modulo 2 is well-defined.
- Element made of disjoint cycles of lengths $k_1, ..., k_m$ has order $lcm(k_1, ..., k_m)$.
- Sign of permutation σ :

$$\operatorname{sgn}(\sigma) \coloneqq (-1)^t = \begin{cases} 1 & \text{if } t \text{ is even} \\ -1 & \text{if } t \text{ is odd} \end{cases}$$

where t is number of transpositions needed in factorisation of σ . If t even, σ is **even**, else σ is **odd**.

- Alternating group, A_n : subgroup of even permutations of S_n .
- $|A_n| = \frac{n!}{2}$.
- A_n normal in S_n .
- A_n generated by 3-cycles.
- Isometry: map from plane to itself which preserves distances between points.
- For $n \geq 3$, there are 2n isometries of the plane which preserve regular *n*-gon.
- Group of isometries of regular *n*-gon form group, the **dihedral group**, D_n .
- D_n alternative definition: group with two generators r (rotation) and s (reflection), with $srs^{-1} = r^{-1}$, $r^n = e$ and $s^2 = e$. So $D_n = \langle r, s \rangle$.
- Every element in D_n can be written $r^j s^k$, $0 \le j < n$, $0 \le k \le 1$.
- $|D_n| = 2n$.
- Rotations of plane which preserve regular *n*-gon form cyclic subgroup of D_n , which is normal in D_n .

14. Relating, identifying and distinguishing groups

• Group homomorphism: map $\varphi: G \to G'$ between groups, with

$$\varphi(g_1g_2)=\varphi(g_1)\varphi(g_2)$$

- Group isomorphism: bijective group homomorphism.
- G and G' isomorphic, $G \cong G'$ if exists isomorphism between them.
- **Kernel** of group homomorphism:

$$\ker(\varphi) \coloneqq \{g \in G : \varphi(g) = e\}$$

• Image of group homomorphism:

$$\operatorname{im}(\varphi)\coloneqq\{\varphi(g):g\in G\}$$

- $\ker(\varphi)$ is normal subgroup of G.
- $\operatorname{im}(\varphi)$ is subgroup of G'.
- Let N normal subgroup of G. Quotient group (factor group) of G with respect to N, is $G / N := \{gN : g \in G\}$, with group multiplication

$$(g_1N)(g_2N)=(g_1g_2)N$$

and inverse

$$(gN)^{-1} = (g^{-1})N$$

• First isomorphism theorem for groups (FIT): let $\varphi : G \to G'$ homomorphism, then

$$G / \ker(\varphi) \cong \operatorname{im}(\varphi)$$

- Let p prime, then every group of order p is isomorphic to $(\mathbb{Z} / p, +)$.
- Each cyclic group of order n isomorphic to $(\mathbb{Z} / n, +)$.
- Each infinite cyclic group isomorphic to $(\mathbb{Z}, +)$.
- For groups $G, H, G \times H$ also a group, with $e = (e_G, e_H)$, $(g, h) \circ (g', h') = (g \circ_G g', h \circ_H h')$, inverse $(g, h)^{-1} = (g^{-1}, h^{-1})$.
- $\mathbb{Z} / 2 \times \mathbb{Z} / 3 \cong \mathbb{Z} / 6.$
- $\mathbb{Z} / (mn) \cong \mathbb{Z} / m \times \mathbb{Z} / n \iff \gcd(m, n) = 1.$
- Group isomorphism preserves:
 - Order of group.
 - Set of orders of elements (with multiplicity i.e. count repeated occurrences of an order).
 - Size of its centre.
 - Property of being abelian/non-abelian.
 - Property of having proper (normal) subgroups and their sizes.
- Notation: for $E_1, E_2 \subseteq G$,

$$E_1 \circ E_2 \coloneqq \{e_1 \circ e_2 : e_1 \in E_1, e_2 \in E_2\}$$

- Let H, K subgroups of G with:
 - $H \circ K = G$,
 - $H \cap K = \{e\},$
 - $\forall h \in H, k \in K, hk = kh.$

Then $G \cong H \times K$.

- Group of symmetries of unit cube in \mathbb{R}^3 isomorphic to S_4 .
- Cayley's theorem: Every group (G, \cdot) is isomorphic to a subgroup of (S_G, \circ) where S_G is set of bijections of G by the isomorphism $\psi(g) = L_g$, where $L_g(h) = gh$.

15. Group actions

• Action of group G on non-empty set X: homomorphism

$$\varphi: G \to S_X$$

G acts on X.

- Let $\varphi: G \to S_X$ group action, $x \in X$. Orbit of x inside X is

$$G(x)\coloneqq \mathcal{O}(x)\coloneqq \{\varphi(g)(x):g\in G\}$$

• Let $\varphi: G \to S_X$ group action, $x \in X$. Stabiliser of x in G is

$$G_x\coloneqq \operatorname{Stab}_G(x)\coloneqq \{g\in G: \varphi(g)(x)=x\}$$

- For every $x \in X$, $\operatorname{Stab}_G(x)$ is subgroup of G.
- Notation: can write g(x) instead of $\varphi(g)(x)$.
- Let $\varphi: G \to S_X$ group action. Then all orbits $\mathcal{O}(x)$ partition X so:
 - Every orbit non-empty subset of X.
 - Union of all orbits is X.
 - Two orbits either disjoint or equal.
- Action of group on itself:
 - By left translation: g(h) = gh.
 - By conjugation: $g(h) = ghg^{-1}$.
- Conjugacy class of $g \in G$ is set of all elements conjugate to g:

$$\operatorname{ccl}_G(g)\coloneqq \left\{hgh^{-1}:h\in G\right\}$$

- Conjugacy class of g is orbit of conjugation action of g.
- Conjugacy classes of G all of size 1 iff G abelian.
- Orbit-stabiliser theorem: Let G act on X. Then $\forall x \in X$, exists bijection

 $\beta : \mathcal{O}(x) \to \{ \text{left cosets of } \text{Stab}_G(x) \text{ in } G \}$

$$\beta(g(x)) = g \mathrm{Stab}_G(x)$$

• Consequence of Orbit-Stabiliser theorem: if finite G acts on finite X, then $\forall x \in X$,

$$|\mathcal{O}(x)| \cdot |\mathrm{Stab}_G(x)| = |G|$$

- So size of each conjugacy class in G divides |G|.
- If $x \in \mathcal{O}(y)$, then $\operatorname{Stab}_G(x)$ and $\operatorname{Stab}_G(y)$ conjugate to each other:

$$\exists h \in G, \quad \operatorname{Stab}_G(x) = h \operatorname{Stab}_G(y) h^{-1}$$

(here h(y) = x).

16. Cauchy's theorem and classification of groups of order 2p

- Cauchy's theorem: let G finite group, p prime, $p \mid |G|$. Then exists subgroup of G of order p.
- Let p odd prime, then any group of order 2p is either cyclic or dihedral.

17. Classification of groups of order p^2

• **Centre** of group *G*:

$$Z(G)\coloneqq \{g\in G: \forall h\in G, gh=hg\}$$

- Z(G) is normal subgroup of G.
- Z(G) is union of all conjugacy classes of size 1. So every $z \in Z(G)$ has $|ccl_G(z)| = 1$.
- Z(G) = G iff G abelian.
- If G acts on itself via conjugation then for every $h \in G$, $Z(G) \subset \operatorname{Stab}_G(h)$.

- Let p prime, $|G| = p^r$, $r \ge 0$. Then Z(G) non-trivial $(Z(G) \ne \{e\})$.
- If $|G| = p^2$, p prime, then G abelian.
- Let p prime, $|G| = p^2$. Then $G \cong \mathbb{Z} / p^2$ or $G \cong \mathbb{Z} / p \times \mathbb{Z} / p$.
- Sylow's theorem: let G group, $|G| = p^r m$, gcd(p, m) = 1. Then G has subgroup of order p^r (and subgroup of order p^i for all $1 \le i \le r$).

18. Classification of finitely generated abelian groups

- G finitely generated if exists set $\{g_1, ..., g_r\}$ such that $G = \langle g_1, ..., g_r \rangle$.
- Any finitely generated abelian group can be written as

$$G \cong \mathbb{Z}^n / K$$

for some $n \ge 0$, K is subgroup of \mathbb{Z}^n , $K = \{\underline{a} \in \mathbb{Z}^n : a_1g_1 + \dots + a_ng_n = 0\}$. $\underline{a} \in K$ is **relation** and K is **relation subgroup** of G.

- G is free abelian group of rank n if no non-trivial solutions in K, i.e. $a_1g_1 + \cdots + a_rg_r = 0 \Longrightarrow a_1 = \cdots = a_r = 0$. Here, $K = \{\underline{0}\}$.
- Every subgroup of \mathbb{Z}^n is free abelian group generated by $r \leq n$ elements, so rank $\leq n$.
- Fundamental theorem of finitely generated abelian groups: let G be finitely generated abelian group. Then

$$G\cong \mathbb{Z} \; / \; d_1 \times \cdots \times \mathbb{Z} \; / \; d_k \times \mathbb{Z}^r$$

where $r \ge 0$, $k \ge 0$, $d_i \ge 1$. If $d_1 \mid d_2 \mid \cdots \mid d_k$ and $d_1 > 1$, then this form is unique.

- r is rank of G, $d_1, ..., d_k$ are torsion invariants (torsion coefficients). Torsion coefficients are given with repetitions (multiplicities).
- To classify all groups of order n, use that $d_1 \cdots d_k = n$ and $1 < d_1 \mid d_2 \mid \cdots \mid d_k$.
- Let $e \neq x \in S_n$ be written as product of disjoint cycles:

$$x=ig(a_1 \ a_2 \ \ldots \ a_{k_1}ig)ig(b_1 \ b_2 \ \ldots \ b_{k_2}ig) \cdots ig(t_1 \ t_2 \ \ldots \ t_{k_r}ig)$$

where $r \ge 1, 2 \le k_1 \le k_2 \le \dots \le k_r, n \ge k_1 + \dots + k_r$. Then x has cycle shape $[k_1, k_2, \dots, k_r]$.

• Let $x = (i_1 \ i_2 \ \dots \ i_k) \in S_n$, $g \in S_n$. Then action of g on x by conjugation is

$$gxg^{-1} = (g(i_1) \ g(i_2) \ \dots \ g(i_k))$$

- Let $x \in S_n$, then $\operatorname{ccl}_{S_n}(x)$ consists of all permutations with same cycle shape as x.
- Conjugacy classes of S_n have cycle shapes given by non-decreasing partitions of n, without 1 (except for cycle shape [1]).
- Let $x = (a_1 \ a_2 \ \dots \ a_m) \in S_n$, then

$$\gamma(n;m)\coloneqq \left|\operatorname{ccl}_{S_n}(x)\right|=\frac{n(n-1)\cdots(n-m+1)}{m}$$

- Let $x \in S_n$ have cycle shape $[m_1, ..., m_r]$, $m_1 < m_2 < \cdots < m_r$. Then

$$\gamma(n;m_1,...,m_r)\coloneqq \left|\operatorname{ccl}_{S_n}(x)\right|=\prod_{k=1}^r\gamma\left(n-\sum_{i=1}^{k-1}m_i;m_k\right)$$

• Let $x \in S_n$ has cycle shape $[m_1, ..., m_1, m_2, ..., m_2, ..., m_r, ..., m_r]$, $m_1 < m_2 < \cdots < m_r$, m_i repeated s_i times, then number of elements of that cycle shape is

$$\left| \mathrm{ccl}_{S_n}(x) \right| = \frac{\gamma(n; m_1, ..., m_1, m_2, ..., m_2, ..., m_r, ..., m_r)}{s_1! s_2! \cdots s_r!}$$

- Let H subgroup of G. Then H normal in G iff H is union of conjugacy classes of G.
- So if H normal then sum of sizes of its conjugacy classes divides |G|. But converse doesn't imply H is subgroup.
- To find all normal subgroups H of S_n , use that size of H is sum of sizes of conjugacy classes of S_n . Use formula above to work out all possible sizes of conjugacy classes, and fact that H must contain identity so must include 1 in its sum (size of conjugacy class of 1 is 1). Then use Lagrange's theorem to restrict the possible sums of the sizes. Then check that each set formed by the union is a group.