
1. Rings, subrings and fields
• Ring 𝑹: set with binary operations addition and subtraction, where (𝑅, +) is an

abelian group and:
• Identity: exists 1 ∈ 𝑅 such that ∀𝑥 ∈ 𝑅, 1 ⋅ 𝑥 = 𝑥 ⋅ 1 = 𝑥
• Associativity: for every 𝑥, 𝑦, 𝑧 ∈ 𝑅, 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧
• Distributivity: for every 𝑥, 𝑦, 𝑧 ∈ 𝑅, 𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 and

(𝑦 + 𝑧)𝑥 = 𝑦𝑥 + 𝑧𝑥
• Set of remainders modulo 𝒏 (residue classes): ℤ / 𝑛 = {

̲
0,

̲
1, …,

̲̲̲̲̲̲̲̲̲̲̲̲̲̲
𝑛 − 1}

• ℤ / 𝑛 is a ring: 
̲
𝑎 +

̲
𝑏 =

̲̲̲̲̲̲̲̲̲̲̲̲̲
𝑎 + 𝑏,

̲
𝑎 −

̲
𝑏 =

̲̲̲̲̲̲̲̲̲̲̲̲̲
𝑎 − 𝑏,

̲
𝑎 ⋅

̲
𝑏 =

̲̲̲̲̲̲̲̲̲̲
𝑎 ⋅ 𝑏

• Subring 𝑺 of ring 𝑅: a set 𝑆 ⊆ 𝑅 that contains 0 and 1 and is closed under
addition, multiplication and negation:
• 0 ∈ 𝑆, 1 ∈ 𝑆
• ∀𝑎, 𝑏 ∈ 𝑆, 𝑎 + 𝑏 ∈ 𝑆
• ∀𝑎, 𝑏 ∈ 𝑆, 𝑎𝑏 ∈ 𝑆
• ∀𝑎 ∈ 𝑆, −𝑎 ∈ 𝑆

• Field 𝑭  is a ring with:
• 𝐹  is commutative
• 0 ≠ 1 ∈ 𝐹  (𝐹  has at least two elements)
• ∀0 ≠ 𝑎 ∈ 𝑅, ∃𝑏 ∈ 𝑅, 𝑎𝑏 = 1. 𝑏 is the inverse of 𝑎

• 𝑎 is a zero divisor if 𝑎𝑏 = 0 for some 𝑏 ≠ 0

2. Integral domains
• Integral domain 𝑹: ring which is commutative, has at least two elements

(0 ≠ 1), and has no zero divisors apart from 0
• Any subring of a field is an integral domain
• If 𝑅 is an integral domain, then 𝑅[𝑥] = {𝑎0 + 𝑎1𝑥 + … + 𝑎𝑛𝑥𝑛 : 𝑎𝑖 ∈ 𝑅} is also an

integral domain.
• 𝑎 is a unit if 𝑎𝑏 = 𝑏𝑎 = 1 for some 𝑏 ∈ 𝑅. 𝑏 = 𝑎−1 is the inverse of 𝑎
• Inverses are unique
• 𝑅×, set of all units in 𝑅, is a group under multiplication of 𝑅
• For field 𝐹 , 𝐹× = 𝐹 − {0}
• 𝑎 ∈ ℤ / 𝑛 is a unit iff gcd(𝑎, 𝑛) = 1
• ℤ / 𝑝 is a field iff 𝑝 is prime
• ℤ / 𝑛 is an integral domain iff 𝑛 is prime (iff ℤ / 𝑛 is a field)

3. Polynomials over a field
• Degree of 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + … + 𝑎𝑛𝑥𝑛:

deg(𝑓) = {
max{𝑖 : 𝑎𝑖 ≠ 0} if 𝑓 ≠ 0
−∞ if 𝑓 = 0

• deg(𝑓𝑔) = deg(𝑓) + deg(𝑔)
• deg(𝑓 + 𝑔) ≤ max{deg(𝑓), deg(𝑔)}
• If deg(𝑓) ≠ deg(𝑔) then deg(𝑓 + 𝑔) = max{deg(𝑓), deg(𝑔)}
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• Let 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹 [𝑥], 𝑔(𝑥) ≠ 0, then ∃𝑞(𝑥), 𝑟(𝑥) ∈ 𝐹 [𝑥] with deg(𝑟) < deg(𝑔) such
that 𝑓(𝑥) = 𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥)

4. Divisibility and greatest common divisor in a ring
• 𝑎 divides 𝑏, 𝑎 | 𝑏, if ∃𝑟 ∈ 𝑅 such that 𝑏 = 𝑟𝑎
• 𝑑 is a greatest common divisor of 𝑎 and 𝑏, gcd(𝑎, 𝑏), if:

• 𝑑 | 𝑎 and 𝑑 | 𝑏 and
• If 𝑒 | 𝑎 and 𝑒 | 𝑏 then 𝑒 | 𝑑

• gcd(0, 0) = 0
• Euclidean algorithm example: find gcd of 𝑓(𝑥) = 𝑥2 + 7𝑥 + 6 and

𝑔(𝑥) = 𝑥2 − 5𝑥 − 6 in ℚ[𝑥]:

𝑓(𝑥) = 𝑔(𝑥) + 12(𝑥 + 1)

𝑔(𝑥) =
1
12

𝑥 ⋅ 12(𝑥 + 1) − 6(𝑥 + 1)

12(𝑥 + 1) = −2 ⋅ −6(𝑥 + 1) + 0

Remainder is now zero so stop. A gcd is given by the last non-zero remainder,
−6(𝑥 + 1). We can write −6(𝑥 + 1) as a combination of 𝑓(𝑥) and 𝑔(𝑥):

−6(𝑥 + 1) = 𝑔(𝑥) −
1
12

𝑥 ⋅ 12(𝑥 + 1)

= 𝑔(𝑥) −
1
12

𝑥 ⋅ (𝑓(𝑥) − 𝑔(𝑥))

= (1 +
1
12

𝑥)𝑔(𝑥) −
1
12

𝑥𝑓(𝑥)

• Let 𝑅 be integral domain, 𝑎, 𝑏 ∈ 𝑅 and 𝑑 = gcd(𝑎, 𝑏). Then ∀𝑢 ∈ 𝑅×, 𝑢𝑑 is also a
gcd(𝑎, 𝑏). Also, for 𝑑 and 𝑑′ gcds of 𝑎 and 𝑏, ∃𝑢 ∈ 𝑅× such that 𝑑 = 𝑢𝑑′ (so gcd is
unique up to units).

• Polynomial is monic if leading coefficient is 1
• There always exists a unique monic gcd of two polynomials in 𝐹[𝑥]
• Let 𝑅 = ℤ or 𝐹 [𝑥], 𝑎, 𝑏 ∈ 𝑅. Then

• A gcd(𝑎, 𝑏) always exists
• 𝑎 ≠ 0 or 𝑏 ≠ 0 then a gcd(𝑎, 𝑏) can be computed by Euclidean algorithm
• If 𝑑 is a gcd(𝑎, 𝑏) then ∃𝑥, 𝑦 ∈ 𝑅 such that 𝑎𝑥 + 𝑏𝑦 = 𝑑

5. Factorisations in rings
• 𝑟 ∈ 𝑅 irreducible if:

• 𝑟 ∉ 𝑅× and
• If 𝑟 = 𝑎𝑏 then 𝑎 ∈ 𝑅× or 𝑏 ∈ 𝑅×

• 𝑎 ∈ 𝐹  is root of 𝑓(𝑥) ∈ 𝐹 [𝑥] if 𝑓(𝑎) = 0
• Let 𝑓(𝑥) ∈ 𝐹 [𝑥].

• If deg(𝑓) = 1, 𝑓 is irreducible.
• If deg(𝑓) = 2 or 3 then 𝑓 is irreducible iff it has no roots in 𝐹 .
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• If deg(𝑓) = 4 then 𝑓 is irreducible iff it has no roots in 𝐹  and it is not the
product of two quadratic polynomials.

• Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + … + 𝑎𝑛𝑥𝑛 ∈ ℤ[𝑥], deg(𝑓) ≥ 1. If 𝑓(𝑝 / 𝑞) = 0, gcd(𝑝, 𝑞) = 1,
then 𝑝 | 𝑎0 and 𝑞 | 𝑎𝑛.

• Gauss’s lemma: let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + … + 𝑎𝑛𝑥𝑛 ∈ ℤ[𝑥], deg(𝑓) ≥ 1. Then 𝑓(𝑥) is
irreducible in ℤ[𝑥] iff it is irreducible in ℚ[𝑥] and gcd(𝑎0, 𝑎1, …, 𝑎𝑛) = 1.

• If monic polynomial in ℤ[𝑥] factors in ℚ[𝑥] then it factors into integer monic
polynomials.

• Let 𝑅 be commutative, 𝑥 ∈ 𝑅 be irreducible and 𝑢 ∈ 𝑅×. Then 𝑢𝑥 is also
irreducible.

• Eisenstein’s criterion: let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + … + 𝑎𝑛𝑥𝑛 ∈ ℤ[𝑥], 𝑝 be prime with
𝑝 ∣ 𝑎0, 𝑝 ∣ 𝑎1, …, 𝑝 ∣ 𝑎𝑛−1, 𝑝 ∤ 𝑎𝑛, 𝑝2 ∤ 𝑎0. Then 𝑓(𝑥) is irreducible in ℚ[𝑥]

• Let 𝑓(𝑥) ∈ 𝐹 [𝑥], then 𝑓 can be uniquely factorised into a product of irreducible
elements, up to order of factors and multiplication by units.

• Let 𝑅 be commutative. 𝑥 ∈ 𝑅 is prime if:
• 𝑥 ≠ 0 and 𝑥 ∉ 𝑅× and
• If 𝑥 ∣ 𝑎𝑏 then 𝑥 ∣ 𝑎 or 𝑥 ∣ 𝑏

• If 𝑅 = ℤ or 𝐹 [𝑥] then 𝑎 ∈ 𝑅 is prime iff it is irreducible.
• Let 𝑅 be an integral domain and 𝑥 ∈ 𝑅 prime. Then 𝑥 is irreducible.
• Integral domain 𝑅 is unique factorisation domain (UFD) if every non-zero

non-unit element in 𝑅 can be written as a unique product of irreducible elements,
up to order of factors and multiplication by units.

6. Ring homomorphisms
• For 𝑅, 𝑆 rings, 𝑓 : 𝑅 → 𝑆 is homomorphism if:

• 𝑓(1) = 1 and
• 𝑓(𝑎 + 𝑏) = 𝑓(𝑎) + 𝑓(𝑏) and
• 𝑓(𝑎𝑏) = 𝑓(𝑎)𝑓(𝑏)

• Let 𝑓 : 𝑅 → 𝑆 homomorphism, then
• 𝑓(0) = 0 and
• 𝑓(−𝑎) = −𝑓(𝑎)

• Kernel:

ker(𝑓) ≔ {𝑎 ∈ 𝑅 : 𝑓(𝑎) = 0}
• Image:

Im(𝑓) ≔ {𝑓(𝑎) : 𝑎 ∈ 𝑅}
• Isomorphism: bĳective homomorphism.
• 𝑅 and 𝑆 isomorphic, 𝑅 ≅ 𝑆 if there exists isomorphism between them.
• Homomorphism 𝑓 injective iff ker(𝑓) = {0}.
• Direct product of 𝑅 and 𝑆, 𝑅 × 𝑆:

• (𝑟, 𝑠) + (𝑟′, 𝑠′) = (𝑟 + 𝑟′, 𝑠 + 𝑠′).
• (𝑟, 𝑠)(𝑟′, 𝑠′) = (𝑟𝑟′, 𝑠𝑠′).
• Identity is (1, 1).
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• For 𝑝1(𝑟, 𝑠) = 𝑟 and 𝑝2(𝑟, 𝑠) = 𝑠, ker(𝑝1) = {(0, 𝑠) : 𝑠 ∈ 𝑆} and
ker(𝑝2) = {(𝑟, 0) : 𝑟 ∈ 𝑅}. These are both rings, with ker(𝑝1) ≅ 𝑆 (via (0, 𝑠) → 𝑠)
and ker(𝑝2) ≅ 𝑅 (via (𝑟, 0) → 𝑟). (ker(𝑝1) and ker(𝑝2) are not subrings of 𝑅 × 𝑆
though). So

ker(𝑝1) × ker(𝑝2) ≅ 𝑅 × 𝑆

7. Ideals and quotient rings
• 𝐼 ⊆ 𝑅 is an ideal if 𝐼 closed under addition and if 𝑥 ∈ 𝐼 , 𝑟 ∈ 𝑅 then 𝑟𝑥 ∈ 𝐼 and

𝑥𝑟 ∈ 𝐼 .
• Left ideal: 𝐼 closed under addition and if 𝑥 ∈ 𝐼 , 𝑟 ∈ 𝑅 then 𝑟𝑥 ∈ 𝐼 .
• Right ideal: 𝐼 closed under addition and if 𝑥 ∈ 𝐼 , 𝑟 ∈ 𝑅 then 𝑥𝑟 ∈ 𝐼 .
• If 𝑥 ∈ 𝐼 , then (−1)𝑥 = 𝑥(−1) = −𝑥 ∈ 𝐼 so 𝐼 closed under negation.
• For 𝑓 : 𝑅 → 𝑆 homomorphism, ker(𝑓) is ideal of 𝑅.
• For 𝑅 commutative ring and 𝑎 ∈ 𝑅, principal ideal generated by 𝒂 is

(𝑎) ≔ {𝑟𝑎 : 𝑟 ∈ 𝑅}
• For 𝑅 commutative and 𝑎1, …𝑎𝑛 ∈ 𝑅,

(𝑎1, …, 𝑎𝑛) ≔ {𝑟1𝑎1 + ⋯ +𝑟𝑛𝑎𝑛 : 𝑟1, …, 𝑟𝑛 ∈ 𝑅}

is an ideal. (𝑎1, …, 𝑎𝑛) is generated by 𝑎1, …, 𝑎𝑛. 𝑎𝑖 ∈ (𝑎1, …, 𝑎𝑛) for all 𝑖.
• If ideal 𝐼 contains unit 𝑢, then 𝑢−1𝑢 = 1 ∈ 𝐼 so ∀𝑟 ∈ 𝑅, 𝑟 ⋅ 1 = 𝑟 ∈ 𝐼 . So 𝑅 ⊆ 𝐼 so

𝑅 = 𝐼 .
• For field 𝐹 , any ideal is either {0} or 𝐹 .
• Let 𝐼1 = (𝑎1, …, 𝑎𝑚), 𝐼2 = (𝑏1, …, 𝑏𝑛) then 𝐼1 = 𝐼2 iff 𝑎1, …, 𝑎𝑚 ∈ 𝐼2 and

𝑏1, …, 𝑏𝑛 ∈ 𝐼1.
• 𝑎, 𝑏 ∈ 𝑅 equivalent modulo 𝑰 if 𝑎 − 𝑏 ∈ 𝐼 . Write 

̲
𝑎 =

̲
𝑏 or 𝑎 ≡ 𝑏 (mod 𝐼).

• Let 𝑎(𝑥) ∈ ℚ[𝑥], then 𝑝(𝑥) = 𝑞(𝑥)𝑎(𝑥) + 𝑟(𝑥) with deg(𝑟) < deg(𝑎).
𝑝(𝑥) − 𝑟(𝑥) = 𝑞(𝑥)𝑎(𝑥) ∈ (𝑎(𝑥)) so 

̲̲̲̲̲̲̲̲̲̲̲
𝑝(𝑥) =

̲̲̲̲̲̲̲̲̲̲̲
𝑟(𝑥). 𝑟(𝑥) is representative of the class̲̲̲̲̲̲̲̲̲̲̲

𝑝(𝑥).
• Let 𝐼 ⊆ 𝑅 ideal. Coset of 𝐼 generated by 𝑥 ∈ 𝐼 is

̲̲ ̲̲
𝑥 ≔ 𝑥 + 𝐼 = {𝑥 + 𝑟 : 𝑟 ∈ 𝐼} ⊆ 𝑅

𝑥 is a representative of 𝑥 + 𝐼 .
• For 𝑥, 𝑦 ∈ 𝑅,

𝑥 + 𝐼 = 𝑦 + 𝐼 ⟺ 𝑥 + 𝐼 ∩ 𝑦 + 𝐼 ≠ ∅ ⟺ 𝑥 − 𝑦 ∈ 𝐼
• If 𝑥 is a representative of 𝑥 + 𝐼 , so is 𝑥 + 𝑟 for every 𝑟 ∈ 𝐼 .
• Quotient of 𝑅 by 𝐼 (“𝑅 mod 𝐼”): set of all cosets of 𝑅 by 𝐼 :

𝑅 / 𝐼 ≔ {
̲̲̲̲
𝑥 : 𝑥 ∈ 𝑅} = {𝑥 + 𝐼 : 𝑥 ∈ 𝑅}

with
• (𝑥 + 𝐼) + (𝑦 + 𝐼) = (𝑥 + 𝑦) + 𝐼 .
• (𝑥 + 𝐼)(𝑦 + 𝐼) = 𝑥𝑦 + 𝐼 .
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• 𝑅 / 𝐼 is a ring, with zero element 0 + 𝐼 = 𝐼 and identity 1 + 𝐼 ∈ 𝑅 / 𝐼 .
• Quotient map (canonical map/homomorphism): 𝑅 → 𝑅 / 𝐼 , 𝑟 →

̲
𝑟 = 𝑟 + 𝐼 .

• Kernel of quotient map is 𝐼 and image is 𝑅 / 𝐼 . Hence every ideal is a kernel.
• First isomorphism theorem (FIT): Let 𝜑 : 𝑅 → 𝑆 be homomorphism. Then

̲̲ ̲̲
𝜑 : 𝑅 / ker(𝜑) → Im(𝜑),

̲̲ ̲̲
𝜑(

̲̲ ̲̲
𝑥) = 𝜑(𝑥)

is an isomorphism: 𝑅 / ker(𝜑) ≅ Im(𝜑).

8. Prime and maximal ideals
• Ideal 𝐼 ⊆ 𝑅 prime ideal if 𝐼 ≠ 𝑅 and 𝑎𝑏 ∈ 𝐼 ⟹ 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼 .
• 𝐼 ⊆ 𝑅 maximal if only ideals containing 𝐼 are 𝐼 and 𝑅 (so no ideals strictly

between 𝐼 and 𝑅).
• 𝑥 ∈ 𝑅 is prime iff (𝑥) is prime ideal.
• To contain is to divide:

𝑎 ∈ (𝑥) ⟺ (𝑎) ⊆ (𝑥) ⟺ 𝑥 | 𝑎
• For 𝑅 commutative and 𝐼 ideal:

• 𝐼 prime iff 𝑅 / 𝐼 integral domain.
• 𝐼 maximal iff 𝑅 / 𝐼 field.

• (𝐼, 𝑥) is ideal generated by 𝐼 and 𝑥:

(𝐼, 𝑥) : {𝑟𝑥 + 𝑥′ : 𝑟 ∈ 𝑅, 𝑥′ ∈ 𝐼}
• If 𝐼 is maximal ideal, then it is prime.

9. Principal ideal domains
• Principal ideal domain (PID): integral domain where every ideal is principal.
• ℤ, 𝐹[𝑥], ℤ[𝑖] and ℤ[

√
±2] are PIDs.

• Every PID is a UFD.
• Let 𝑅 be PID and 𝑎, 𝑏 ∈ 𝑅. Then 𝑑 = gcd(𝑎, 𝑏) exists and (𝑑) = (𝑎, 𝑏).

10. Fields as quotients
• Let 𝑅 be PID, 𝑎 ∈ 𝑅 irreducible. Then (𝑎) is maximal.
• Let 𝑓(𝑥) ∈ 𝐹 [𝑥] irreducible. Then 𝐹[𝑥] / (𝑓(𝑥)) is field and 𝐹[𝑥] / (𝑓(𝑥)) is a vector

space over 𝐹  with basis {
̲
1,

̲̲ ̲̲
𝑥, …,

̲̲̲̲
𝑥𝑛−1} where 𝑛 = deg(𝑓). So every element in

𝐹[𝑥] / 𝑓(𝑥) can be uniquely written as 
̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲
𝑎0 + 𝑎1𝑥 + ⋯ +𝑎𝑛−1𝑥𝑛−1, 𝑎𝑖 ∈ 𝐹 .

• Let 𝑝 prime and 𝑛 ∈ ℕ, then there exists irreducible 𝑓(𝑥) ∈ (ℤ / 𝑝)[𝑥] with
deg(𝑓) = 𝑛 and (ℤ / 𝑝)[𝑥] / (𝑓(𝑥)) is a field with 𝑝𝑛 elements. Any two such fields
are isomorphic so unique (up to isomorphism) field with 𝑝𝑛 elements is written 𝔽𝑝𝑛 .

11. The Chinese remainder theorem
• 𝑎, 𝑏 ∈ 𝑅 coprime if no irreducible element divides 𝑎 and 𝑏.
• Let 𝑅 be PID, 𝑎, 𝑏 ∈ 𝑅 coprime. Then (𝑎, 𝑏) = (1) = 𝑅 so 𝑎𝑥 + 𝑏𝑦 = 1 for some

𝑥, 𝑦 ∈ 𝑅. So any gcd(𝑎, 𝑏) is a unit.
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• Chinese remainder theorem (CRT): Let 𝑅 be PID, 𝑎1, …, 𝑎𝑘 pairwise coprime.
Then

𝜑 : 𝑅 / (𝑎1 ⋯ 𝑎𝑘) → 𝑅 / (𝑎1) × ⋯ × 𝑅 / (𝑎𝑘)
𝜑(𝑟 + (𝑎1 ⋯ 𝑎𝑘)) = (𝑟 + (𝑎1), …, 𝑟 + (𝑎𝑘))

is an isomorphism.

12. Basics of groups
• Group (𝐺, ∘): set 𝐺 with binary operation ∘ : 𝐺 × 𝐺 → 𝐺 satisfying:

• Closure: 𝑔 ∘ ℎ ∈ 𝐺, ℎ ∘ 𝑔 ∈ 𝐺.
• Associativity: 𝑎 ∘ (𝑏 ∘ 𝑐) = (𝑎 ∘ 𝑏) ∘ 𝑐.
• Identity: 𝑔 ∘ 𝑒 = 𝑔 and 𝑒 ∘ 𝑔 = 𝑔 for some 𝑒 ∈ 𝐺.
• Inverse: 𝑔 ∘ ℎ = ℎ ∘ 𝑔 = 𝑒 for some ℎ = 𝑔−1 ∈ 𝐺.

• Group abelian if ∘ commutative: 𝑔 ∘ ℎ = ℎ ∘ 𝑔.
• 𝐻 ⊆ 𝐺 is subgroup of (𝐺, ∘), 𝐻 < 𝐺 if 𝐻 is group under same operation.
• Subgroup 𝐻 proper if 𝐻 ≠ {𝑒} and 𝐻 ≠ 𝐺.
• Subgroup criterion: 𝐻 < 𝐺 iff:

• 𝐻 non-empty.
• ℎ1, ℎ2 ∈ 𝐻 ⟹ ℎ1 ∘ ℎ2 ∈ 𝐻.
• ℎ ∈ 𝐻 ⟹ ℎ−1 ∈ 𝐻.

• Order of group 𝐺 is number of elements in it, |𝐺|.
• Lagrange’s theorem: Let 𝐺 finite, 𝐻 < 𝐺, then

#𝐻 ∣ #𝐺
• Let 𝐻 < 𝐺, 𝑔 ∈ 𝐺. Left coset of 𝑔 with respect to 𝐻 in 𝐺:

𝑔 ∘ 𝐻 ≔ {𝑔 ∘ ℎ : ℎ ∈ 𝐻}
• All left cosets with respect to 𝐻 have same cardinality as cardinality of 𝐻.
• Right coset of 𝑔 ∈ 𝐺 with respect to 𝐻 < 𝐺 in 𝐺:

𝐻 ∘ 𝑔 ≔ {ℎ ∘ 𝑔 : ℎ ∈ 𝐻}
• 𝐻 < 𝐺 normal, 𝐻 ◃ 𝐺, if ∀𝑔 ∈ 𝐺, 𝑔𝐻 = 𝐻𝑔.
• 𝐻 is normal iff ∀𝑔 ∈ 𝐺,

∀ℎ ∈ 𝐻, 𝑔ℎ𝑔−1 ∈ 𝐻 ⟺ 𝑔𝐻𝑔−1 ⊂ 𝐻

where 𝑔𝐻𝑔−1 = {𝑔ℎ𝑔−1 : ℎ ∈ 𝐻}.
• Every subgroup of abelian group is normal.
• Subgroup of 𝑮 generated by 𝒈:

⟨𝑔⟩ ≔ {𝑔𝑛 : 𝑛 ∈ ℤ}
• Subgroup of 𝑮 generated by 𝑺 ⊆ 𝑮:

⟨𝑆⟩ ≔ {all finite products of elements in 𝑆 and their inverses}

so if 𝐺 abelian (doesn’t hold for non-abelian), for 𝑆 = {𝑔1, …, 𝑔𝑛},
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⟨𝑆⟩ = {𝑔𝑎1
1 ⋯ 𝑔𝑎𝑛𝑛 : 𝑎𝑖 ∈ ℤ}

• If 𝐺 not abelian,

⟨𝑔, ℎ⟩ = {𝑔𝑎1ℎ𝑏1 ⋯ 𝑔𝑎𝑚ℎ𝑎𝑚}
• Order of 𝑔 ∈ 𝐺, ord𝐺(𝑔) is smallest 𝑟 > 0 such that 𝑔𝑟 = 𝑒. If 𝑟 doesn’t exist,

order is ∞.
• Order of 

̲̲ ̲̲ ̲̲
𝑚 ∈ ℤ / 𝑛 is 𝑛 / gcd(𝑚, 𝑛).

13. Specific families of groups
• Quaternion group:

𝑄8 = {±1 ± 𝑖, ±𝑗, ±𝑘}, 𝑖2 = 𝑗2 = 𝑘2 = −1, 𝑖𝑗 = 𝑘 = −𝑗𝑖
• Cyclic group: can be generated by single element.
• Example of cyclic group:

𝐶𝑛 = {𝑒2𝜋𝑖
𝑛 𝑘 : 0 ≤ 𝑘 < 𝑛}

• Cyclic groups are abelian.
• If |𝐺| is prime, 𝐺 is cyclic and is generated by any 𝑒 ≠ 𝑔 ∈ 𝐺.
• Permutation of 𝑋 ≠ ∅: bĳection 𝑋 → 𝑋.
• 𝑆𝑋 ≔ {bijection 𝑋 → 𝑋}.
• Notation: 𝑆𝑛 ≔ 𝑆{1,…,𝑛}.
• (𝑆𝑋 , ∘) is group where ∘ is composition of permutations.
• (𝑆𝑛, ∘) is symmetric group of degree 𝒏 (or symmetric group on 𝒏 letters).
• Notation: write 𝜎 ∈ 𝑆𝑛 as

[ 1
𝜎(1)

2
𝜎(2)

…
…

𝑛
𝜎(𝑛)]

• |𝑆𝑛| = 𝑛!.
• Cycle of length 𝒌 (or 𝒌-cycle): permutation 𝜎 in 𝑆𝑛, with

𝜎(𝑖1) = 𝑖2, 𝜎(𝑖2) = 𝑖3, …, 𝜎(𝑖𝑘−1) = 𝑖𝑘, 𝜎(𝑖𝑘) = 𝑖1

and leaves all other elements fixed. Write as (𝑖1 𝑖2 … 𝑖𝑘) or

[
𝑖1
𝑖2

𝑖2
𝑖3

…
…

𝑖𝑘
𝑖1

]

• 2-cycles are transpositions (or inversions).
• 𝑘-cycle has order 𝑘.
• There are 𝑘 ways of writing 𝑘 cycle.
• Cycles are disjoint if they don’t have any common elements.
• Disjoint cycles commute.
• Every permutation is product of disjoint cycles, unique up to swapping cycles and

𝑘 ways of writing a 𝑘-cycle.
• 𝑘-cycle can be written as product of transpositions:
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(𝑖1 𝑖2 … 𝑖𝑘) = (𝑖1 𝑖2)(𝑖2 𝑖3) ⋯ (𝑖𝑘−1 𝑖𝑘)
• When composing cycles, work right to left.
• 𝑔, 𝑔′ ∈ 𝐺 conjugate in 𝐺 to each other if for some ℎ ∈ 𝐺, ℎ𝑔ℎ−1 = 𝑔′.
• Any conjugate of transposition in 𝑆𝑛 is transposition.
• Every 𝜎 ∈ 𝑆𝑛 can be factored into product of transpositions.
• Parity of number of transpositions needed in any factorisation of 𝜎 is the same.

So remainder of this number modulo 2 is well-defined.
• Element made of disjoint cycles of lengths 𝑘1, …, 𝑘𝑚 has order lcm(𝑘1, …, 𝑘𝑚).
• Sign of permutation 𝝈:

sgn(𝜎) ≔ (−1)𝑡 = {1 if 𝑡 is even
−1 if 𝑡 is odd

where 𝑡 is number of transpositions needed in factorisation of 𝜎. If 𝑡 even, 𝜎 is
even, else 𝜎 is odd.

• Alternating group, 𝐴𝑛: subgroup of even permutations of 𝑆𝑛.
• |𝐴𝑛| = 𝑛!

2 .
• 𝐴𝑛 normal in 𝑆𝑛.
• 𝐴𝑛 generated by 3-cycles.
• Isometry: map from plane to itself which preserves distances between points.
• For 𝑛 ≥ 3, there are 2𝑛 isometries of the plane which preserve regular 𝑛-gon.
• Group of isometries of regular 𝑛-gon form group, the dihedral group, 𝐷𝑛.
• 𝐷𝑛 alternative definition: group with two generators 𝑟 (rotation) and 𝑠

(reflection), with 𝑠𝑟𝑠−1 = 𝑟−1, 𝑟𝑛 = 𝑒 and 𝑠2 = 𝑒. So 𝐷𝑛 = ⟨𝑟, 𝑠⟩.
• Every element in 𝐷𝑛 can be written 𝑟𝑗𝑠𝑘, 0 ≤ 𝑗 < 𝑛, 0 ≤ 𝑘 ≤ 1.
• |𝐷𝑛| = 2𝑛.
• Rotations of plane which preserve regular 𝑛-gon form cyclic subgroup of 𝐷𝑛, which

is normal in 𝐷𝑛.

14. Relating, identifying and distinguishing groups
• Group homomorphism: map 𝜑 : 𝐺 → 𝐺′ between groups, with

𝜑(𝑔1𝑔2) = 𝜑(𝑔1)𝜑(𝑔2)
• Group isomorphism: bĳective group homomorphism.
• 𝐺 and 𝐺′ isomorphic, 𝐺 ≅ 𝐺′ if exists isomorphism between them.
• Kernel of group homomorphism:

ker(𝜑) ≔ {𝑔 ∈ 𝐺 : 𝜑(𝑔) = 𝑒}
• Image of group homomorphism:

im(𝜑) ≔ {𝜑(𝑔) : 𝑔 ∈ 𝐺}
• ker(𝜑) is normal subgroup of 𝐺.
• im(𝜑) is subgroup of 𝐺′.
• Let 𝑁  normal subgroup of 𝐺. Quotient group (factor group) of 𝐺 with respect

to 𝑁 , is 𝐺 / 𝑁 ≔ {𝑔𝑁 : 𝑔 ∈ 𝐺}, with group multiplication
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(𝑔1𝑁)(𝑔2𝑁) = (𝑔1𝑔2)𝑁

and inverse

(𝑔𝑁)−1 = (𝑔−1)𝑁
• First isomorphism theorem for groups (FIT): let 𝜑 : 𝐺 → 𝐺′

homomorphism, then

𝐺 / ker(𝜑) ≅ im(𝜑)
• Let 𝑝 prime, then every group of order 𝑝 is isomorphic to (ℤ / 𝑝, +).
• Each cyclic group of order 𝑛 isomorphic to (ℤ / 𝑛, +).
• Each infinite cyclic group isomorphic to (ℤ, +).
• For groups 𝐺, 𝐻, 𝐺 × 𝐻 also a group, with 𝑒 = (𝑒𝐺, 𝑒𝐻),

(𝑔, ℎ) ∘ (𝑔′, ℎ′) = (𝑔 ∘𝐺 𝑔′, ℎ ∘𝐻 ℎ′), inverse (𝑔, ℎ)−1 = (𝑔−1, ℎ−1).
• ℤ / 2 × ℤ / 3 ≅ ℤ / 6.
• ℤ / (𝑚𝑛) ≅ ℤ / 𝑚 × ℤ / 𝑛 ⟺ gcd(𝑚, 𝑛) = 1.
• Group isomorphism preserves:

• Order of group.
• Set of orders of elements (with multiplicity - i.e. count repeated occurences of

an order).
• Size of its centre.
• Property of being abelian/non-abelian.
• Property of having proper (normal) subgroups and their sizes.

• Notation: for 𝐸1, 𝐸2 ⊆ 𝐺,

𝐸1 ∘ 𝐸2 ≔ {𝑒1 ∘ 𝑒2 : 𝑒1 ∈ 𝐸1, 𝑒2 ∈ 𝐸2}
• Let 𝐻, 𝐾 subgroups of 𝐺 with:

• 𝐻 ∘ 𝐾 = 𝐺,
• 𝐻 ∩ 𝐾 = {𝑒},
• ∀ℎ ∈ 𝐻, 𝑘 ∈ 𝐾, ℎ𝑘 = 𝑘ℎ.

Then 𝐺 ≅ 𝐻 × 𝐾.
• Group of symmetries of unit cube in ℝ3 isomorphic to 𝑆4.
• Cayley’s theorem: Every group (𝐺, ⋅) is isomorphic to a subgroup of (𝑆𝐺, ∘)

where 𝑆𝐺 is set of bĳections of 𝐺 by the isomorphism 𝜓(𝑔) = 𝐿𝑔, where
𝐿𝑔(ℎ) = 𝑔ℎ.

15. Group actions
• Action of group 𝑮 on non-empty set 𝑿: homomorphism

𝜑 : 𝐺 → 𝑆𝑋

𝐺 acts on 𝑋.
• Let 𝜑 : 𝐺 → 𝑆𝑋 group action, 𝑥 ∈ 𝑋. Orbit of 𝑥 inside 𝑋 is

𝐺(𝑥) ≔ 𝒪(𝑥) ≔ {𝜑(𝑔)(𝑥) : 𝑔 ∈ 𝐺}
• Let 𝜑 : 𝐺 → 𝑆𝑋 group action, 𝑥 ∈ 𝑋. Stabiliser of 𝑥 in 𝐺 is
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𝐺𝑥 ≔ Stab𝐺(𝑥) ≔ {𝑔 ∈ 𝐺 : 𝜑(𝑔)(𝑥) = 𝑥}
• For every 𝑥 ∈ 𝑋, Stab𝐺(𝑥) is subgroup of 𝐺.
• Notation: can write 𝑔(𝑥) instead of 𝜑(𝑔)(𝑥).
• Let 𝜑 : 𝐺 → 𝑆𝑋 group action. Then all orbits 𝒪(𝑥) partition 𝑋 so:

• Every orbit non-empty subset of 𝑋.
• Union of all orbits is 𝑋.
• Two orbits either disjoint or equal.

• Action of group on itself:
• By left translation: 𝑔(ℎ) = 𝑔ℎ.
• By conjugation: 𝑔(ℎ) = 𝑔ℎ𝑔−1.

• Conjugacy class of 𝑔 ∈ 𝐺 is set of all elements conjugate to 𝑔:

ccl𝐺(𝑔) ≔ {ℎ𝑔ℎ−1 : ℎ ∈ 𝐺}
• Conjugacy class of 𝑔 is orbit of conjugation action of 𝑔.
• Conjugacy classes of 𝐺 all of size 1 iff 𝐺 abelian.
• Orbit-stabiliser theorem: Let 𝐺 act on 𝑋. Then ∀𝑥 ∈ 𝑋, exists bĳection

𝛽 : 𝒪(𝑥) → {left cosets of Stab𝐺(𝑥) in 𝐺}
𝛽(𝑔(𝑥)) = 𝑔Stab𝐺(𝑥)

• Consequence of Orbit-Stabiliser theorem: if finite 𝐺 acts on finite 𝑋, then
∀𝑥 ∈ 𝑋,

|𝒪(𝑥)| ⋅ |Stab𝐺(𝑥)| = |𝐺|
• So size of each conjugacy class in 𝐺 divides |𝐺|.
• If 𝑥 ∈ 𝒪(𝑦), then Stab𝐺(𝑥) and Stab𝐺(𝑦) conjugate to each other:

∃ℎ ∈ 𝐺, Stab𝐺(𝑥) = ℎStab𝐺(𝑦)ℎ−1

(here ℎ(𝑦) = 𝑥).

16. Cauchy’s theorem and classification of groups of
order 2𝑝
• Cauchy’s theorem: let 𝐺 finite group, 𝑝 prime, 𝑝 ∣ |𝐺|. Then exists subgroup of

𝐺 of order 𝑝.
• Let 𝑝 odd prime, then any group of order 2𝑝 is either cyclic or dihedral.

17. Classification of groups of order 𝑝2

• Centre of group 𝐺:

𝑍(𝐺) ≔ {𝑔 ∈ 𝐺 : ∀ℎ ∈ 𝐺, 𝑔ℎ = ℎ𝑔}
• 𝑍(𝐺) is normal subgroup of 𝐺.
• 𝑍(𝐺) is union of all conjugacy classes of size 1. So every 𝑧 ∈ 𝑍(𝐺) has

|ccl𝐺(𝑧)| = 1.
• 𝑍(𝐺) = 𝐺 iff 𝐺 abelian.
• If 𝐺 acts on itself via conjugation then for every ℎ ∈ 𝐺, 𝑍(𝐺) ⊂ Stab𝐺(ℎ).
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• Let 𝑝 prime, |𝐺| = 𝑝𝑟, 𝑟 ≥ 0. Then 𝑍(𝐺) non-trivial (𝑍(𝐺) ≠ {𝑒}).
• If |𝐺| = 𝑝2, 𝑝 prime, then 𝐺 abelian.
• Let 𝑝 prime, |𝐺| = 𝑝2. Then 𝐺 ≅ ℤ / 𝑝2 or 𝐺 ≅ ℤ / 𝑝 × ℤ / 𝑝.
• Sylow’s theorem: let 𝐺 group, |𝐺| = 𝑝𝑟𝑚, gcd(𝑝, 𝑚) = 1. Then 𝐺 has subgroup

of order 𝑝𝑟 (and subgroup of order 𝑝𝑖 for all 1 ≤ 𝑖 ≤ 𝑟).

18. Classification of finitely generated abelian groups
• 𝐺 finitely generated if exists set {𝑔1, …, 𝑔𝑟} such that 𝐺 = ⟨𝑔1, …, 𝑔𝑟⟩.
• Any finitely generated abelian group can be written as

𝐺 ≅ ℤ𝑛 / 𝐾

for some 𝑛 ≥ 0, 𝐾 is subgroup of ℤ𝑛, 𝐾 = {𝑎
̅

∈ ℤ𝑛 : 𝑎1𝑔1 + ⋯ +𝑎𝑛𝑔𝑛 = 0}. 𝑎
̅

∈ 𝐾
is relation and 𝐾 is relation subgroup of 𝐺.

• 𝐺 is free abelian group of rank 𝒏 if no non-trivial solutions in 𝐾, i.e.
𝑎1𝑔1 + ⋯ +𝑎𝑟𝑔𝑟 = 0 ⟹ 𝑎1 =⋯= 𝑎𝑟 = 0. Here, 𝐾 = {0

̅
}.

• Every subgroup of ℤ𝑛 is free abelian group generated by 𝑟 ≤ 𝑛 elements, so rank
≤ 𝑛.

• Fundamental theorem of finitely generated abelian groups: let 𝐺 be
finitely generated abelian group. Then

𝐺 ≅ ℤ / 𝑑1 × ⋯ × ℤ / 𝑑𝑘 × ℤ𝑟

where 𝑟 ≥ 0, 𝑘 ≥ 0, 𝑑𝑗 ≥ 1. If 𝑑1 ∣ 𝑑2 ∣⋯∣ 𝑑𝑘 and 𝑑1 > 1, then this form is unique.
• 𝑟 is rank of 𝐺, 𝑑1, …, 𝑑𝑘 are torsion invariants (torsion coefficients). Torsion

coefficients are given with repetitions (multiplicities).
• To classify all groups of order 𝑛, use that 𝑑1 ⋯ 𝑑𝑘 = 𝑛 and 1 < 𝑑1 ∣ 𝑑2 ∣⋯∣ 𝑑𝑘.
• Let 𝑒 ≠ 𝑥 ∈ 𝑆𝑛 be written as product of disjoint cycles:

𝑥 = (𝑎1 𝑎2 … 𝑎𝑘1
)(𝑏1 𝑏2 … 𝑏𝑘2

) ⋯ (𝑡1 𝑡2 … 𝑡𝑘𝑟
)

where 𝑟 ≥ 1, 2 ≤ 𝑘1 ≤ 𝑘2 ≤⋯≤ 𝑘𝑟, 𝑛 ≥ 𝑘1 + ⋯ +𝑘𝑟. Then 𝑥 has cycle shape
[𝑘1, 𝑘2, …, 𝑘𝑟].

• Let 𝑥 = (𝑖1 𝑖2 … 𝑖𝑘) ∈ 𝑆𝑛, 𝑔 ∈ 𝑆𝑛. Then action of 𝑔 on 𝑥 by conjugation is

𝑔𝑥𝑔−1 = (𝑔(𝑖1) 𝑔(𝑖2) … 𝑔(𝑖𝑘))
• Let 𝑥 ∈ 𝑆𝑛, then ccl𝑆𝑛

(𝑥) consists of all permutations with same cycle shape as 𝑥.
• Conjugacy classes of 𝑆𝑛 have cycle shapes given by non-decreasing partitions of 𝑛,

without 1 (except for cycle shape [1]).
• Let 𝑥 = (𝑎1 𝑎2 … 𝑎𝑚) ∈ 𝑆𝑛, then

𝛾(𝑛; 𝑚) ≔ |ccl𝑆𝑛
(𝑥)| =

𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑚 + 1)
𝑚

• Let 𝑥 ∈ 𝑆𝑛 have cycle shape [𝑚1, …, 𝑚𝑟], 𝑚1 < 𝑚2 <⋯< 𝑚𝑟. Then

𝛾(𝑛; 𝑚1, …, 𝑚𝑟) ≔ |ccl𝑆𝑛
(𝑥)| = ∏

𝑟

𝑘=1
𝛾(𝑛 − ∑

𝑘−1

𝑖=1
𝑚𝑖; 𝑚𝑘)
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• Let 𝑥 ∈ 𝑆𝑛 has cycle shape [𝑚1, …, 𝑚1, 𝑚2, …, 𝑚2, …, 𝑚𝑟, …, 𝑚𝑟],
𝑚1 < 𝑚2 <⋯< 𝑚𝑟, 𝑚𝑖 repeated 𝑠𝑖 times, then number of elements of that cycle
shape is

|ccl𝑆𝑛
(𝑥)| =

𝛾(𝑛; 𝑚1, …, 𝑚1, 𝑚2, …, 𝑚2, …, 𝑚𝑟, …, 𝑚𝑟)
𝑠1!𝑠2! ⋯ 𝑠𝑟!

• Let 𝐻 subgroup of 𝐺. Then 𝐻 normal in 𝐺 iff 𝐻 is union of conjugacy classes of
𝐺.

• So if 𝐻 normal then sum of sizes of its conjugacy classes divides |𝐺|. But converse
doesn’t imply 𝐻 is subgroup.

• To find all normal subgroups 𝐻 of 𝑆𝑛, use that size of 𝐻 is sum of sizes of
conjugacy classes of 𝑆𝑛. Use formula above to work out all possible sizes of
conjugacy classes, and fact that 𝐻 must contain identity so must include 1 in its
sum (size of conjugacy class of 1 is 1). Then use Lagrange’s theorem to restrict the
possible sums of the sizes. Then check that each set formed by the union is a
group.
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