
1. Maps between real vector spaces
• Scalar field: maps ℝ𝑛 → ℝ.
• Vector field: maps ℝ𝑛 → ℝ𝑛.
• Curve: maps ℝ → ℝ𝑛.
• A tangent to a curve 𝑥

̅̅̅̅
(𝑡) is given by 𝑑𝑥

̅̅̅̅𝑑𝑡 .
• The arc-length parameterisation of a curve 𝑥

̅̅̅̅
 is such that

|
𝑑𝑥
̅̅̅̅
(𝑠)

𝑑𝑠
| = 1 ∀𝑠

• Partial derivatives:

𝜕𝑓(𝑥
̅̅̅̅
)

𝜕𝑥𝑎
= lim

ℎ→0

𝑓(𝑥
̅̅̅̅

+ ℎ𝑒
̅𝑎) − 𝑓(𝑥

̅̅̅̅
)

ℎ
• Chain rule: for a scalar field 𝑓(𝑥

̅̅̅̅
) and curve 𝑥

̅̅̅̅
(𝑡) = 𝑥1(𝑡)𝑒̅1 + … + 𝑥𝑛(𝑡)𝑒

̅𝑛,

𝑑𝑓(𝑥
̅̅̅̅
(𝑡))

𝑑𝑡
= ∑

𝑛

𝑖=1

𝜕𝑓(𝑥
̅̅̅̅
)

𝜕𝑥𝑖

𝑑𝑥𝑖
𝑑𝑡

Here 𝐹(𝑡) ≔ 𝑓(𝑥
̅̅̅̅
(𝑡)) is the restriction of 𝑓(𝑥

̅̅̅̅
) to the curve 𝑥

̅̅̅̅
(𝑡).

2. The gradient of a scalar field
• Differential operator: maps functions to functions, e.g.

𝑑
𝑑𝑡

= ∑
𝑛

𝑖=1

𝜕
𝜕𝑥𝑖

𝑑𝑥𝑖
𝑑𝑡

• Let 𝑓, 𝑔 : ℝ → ℝ, then
• 𝑓(𝑥) 𝑑

𝑑𝑥  is a differential operator. It acts on 𝑔(𝑥) to give 𝑓(𝑥)𝑑𝑔(𝑥)
𝑑𝑥 .

• 𝑑
𝑑𝑥𝑓(𝑥) is a differential operator. It acts on 𝑔(𝑥) to give 𝑑

𝑑𝑥(𝑓(𝑥)𝑔(𝑥)).
• ( 𝑑

𝑑𝑥𝑓(𝑥)) is an differential operator. It acts on 𝑔(𝑥) to give 𝑑𝑓(𝑥)
𝑑𝑥 𝑔(𝑥).

• del (or nabla): ∇
̅̅̅ ̅̅

= ∑𝑛
𝑖=1

𝜕
𝜕𝑥𝑖

𝑒
̅𝑖 so 𝑑

𝑑𝑡 = ∇
̅̅̅ ̅̅

. 𝑑𝑥
̅̅̅̅
(𝑡)

𝑑𝑡 .
• gradient of a scalar field 𝑓 : ℝ𝑛 → ℝ:

∇
̅̅̅ ̅̅

𝑓 ≡ grad(𝑓) = ∑
𝑛

𝑖=1

𝜕𝑓
𝜕𝑥𝑖

𝑒
̅𝑖

• Directional derivative of 𝑓 : ℝ𝑛 → ℝ in direction of a unit tangent �̂�
̅̅ ̅̅

= 𝑑𝑥
̅̅̅̅
(𝑠)

𝑑𝑠  to a
curve 𝑥 : ℝ → ℝ𝑛:

𝑑𝑓(𝑥
̅̅̅̅
(𝑠))

𝑑𝑠
= �̂�

̅̅ ̅̅
. ∇
̅̅̅ ̅̅

𝑓 ≡
𝑑𝑓
𝑑�̂�
̅̅ ̅̅

where 𝑥
̅̅̅̅
 is parameterised in terms of arc-length 𝑠.

• ∇
̅̅̅ ̅̅

𝑓 at a point 𝑝
̅
 is orthogonal to curves contained in level set of 𝑓 at 𝑝

̅
.

• ∇
̅̅̅ ̅̅

𝑓 points in the direction where 𝑓 increases fastest.
• Properties of the gradient: let 𝑓, 𝑔 : ℝ𝑛 → ℝ, 𝑎, 𝑏 ∈ ℝ, 𝜑 : ℝ → ℝ, then

• ∇
̅̅̅ ̅̅

(𝑎𝑓 + 𝑏𝑔) = 𝑎∇
̅̅̅ ̅̅

𝑓 + 𝑏∇
̅̅̅ ̅̅

𝑔
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• ∇
̅̅̅ ̅̅

(𝑓𝑔) = 𝑓∇
̅̅̅ ̅̅

𝑔 + 𝑔∇
̅̅̅ ̅̅

𝑓
• ∇

̅̅̅ ̅̅
𝜑(𝑓) = (∇

̅̅̅ ̅̅
𝑓)𝑑𝜑

𝑑𝑓

3. ∇
̅̅̅ ̅̅

 acting on vector fields
• Divergence of a vector field 𝑣

̅
(𝑥
̅̅̅̅
) = ∑𝑛

𝑖=1 𝑣𝑖(𝑥̅̅̅̅
)𝑒
̅𝑖:

∇
̅̅̅ ̅̅

. 𝑣
̅

≡ div(𝑣
̅
) = ∑

𝑛

𝑖=1

𝜕𝑣𝑖
𝜕𝑥𝑖

Note that the formula will be different in other coordinates systems. Also
∇
̅̅̅ ̅̅

. 𝑣
̅

≠ ∇
̅̅̅ ̅̅

⋅ 𝑣
̅
.

• Considering a vector field as a fluid, if the divergence at a point is positive the
vector field acts as a source at that point (more fluid leaving than entering), if
the divergence is negative the vector field acts as a sink at that point (more fluid
entering than leaving). The magnitude of vector at point is the rate of flow at that
point and direction of vector is direction of flow.

• Properties of div: for 𝑓 : ℝ𝑛 → ℝ, 𝑣
̅
, 𝑤
̅̅ ̅̅ ̅

: ℝ𝑛 → ℝ𝑛, 𝑎, 𝑏 ∈ ℝ,
• ∇

̅̅̅ ̅̅
. (𝑎𝑣

̅
+ 𝑏𝑤

̅̅ ̅̅ ̅
) = 𝑎∇

̅̅̅ ̅̅
. 𝑣
̅

+ 𝑏∇
̅̅̅ ̅̅

. 𝑤
̅̅ ̅̅ ̅• ∇

̅̅̅ ̅̅
. (𝑓𝑣

̅
) = (∇

̅̅̅ ̅̅
𝑓). 𝑣

̅
+ 𝑓∇

̅̅̅ ̅̅
. 𝑣
̅• Curl of 𝑣

̅
: ℝ𝑛 → ℝ𝑛:

∇
̅̅̅ ̅̅

× 𝑣
̅

≡ curl(𝑣
̅
) =

|
|
|
|𝑒̅1

𝜕
𝜕𝑥
𝑣1

𝑒
̅2
𝜕
𝜕𝑦
𝑣2

𝑒
̅3
𝜕
𝜕𝑧
𝑣3 |

|
|
|
= 𝑒

̅1(
𝜕𝑣3
𝜕𝑦

−
𝜕𝑣2
𝜕𝑧

) − 𝑒
̅2(

𝜕𝑣3
𝜕𝑥

−
𝜕𝑣1
𝜕𝑧

) + 𝑒
̅3(

𝜕𝑣2
𝜕𝑥

−
𝜕𝑣1
𝜕𝑦

)

• Considering a vector field as a fluid, the magnitude of the curl at a point
corresponds to the rotational speed of the fluid, and the direction of the curl
corresponds to which axis the fluid is rotating around, determined using the right-
hand rule (fingers represent rotation of the fluid, thumb points in direction of
curl).

• Properties of curl: for 𝑓 : ℝ3 → ℝ, 𝑣
̅
, 𝑤
̅̅ ̅̅ ̅

: ℝ3 → ℝ3, 𝑎, 𝑏 ∈ ℝ,
• ∇

̅̅̅ ̅̅
× (𝑎𝑣

̅
+ 𝑏𝑤

̅̅ ̅̅ ̅
) = 𝑎∇

̅̅̅ ̅̅
× 𝑣

̅
+ 𝑏∇

̅̅̅ ̅̅
× 𝑤

̅̅ ̅̅ ̅• ∇
̅̅̅ ̅̅

× (𝑓𝑣
̅
) = (∇

̅̅̅ ̅̅
𝑓) × 𝑣

̅
+ 𝑓∇

̅̅̅ ̅̅
× 𝑣

̅• Laplacian of 𝑓 : ℝ𝑛 → ℝ:

Δ𝑓 ≡ ∇
̅̅̅ ̅̅

2𝑓 ≔ ∇
̅̅̅ ̅̅

. (∇
̅̅̅ ̅̅

𝑓) = div(grad(𝑓)) = ∑
𝑛

𝑖=1

𝜕2𝑓
𝜕𝑥2

𝑖

Note this formula is only valid for cartesian coordinates.

4. Index notation
• Einstein summation convention: in an expression involving a summation, then

index of summation always appears twice. The convention is that the summation
sign is removed, and whenever an index appears twice, it is summed over.

• Dummy indices: repeated indices. They can be renamed without changing the
expression.
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• Free indices: non-repeated indices. They must match on both sides of an
equation.

• An index can’t be repeated more than twice in the same term, so
(𝑢
̅̅̅̅
. 𝑣
̅
)2 = 𝑢𝑖𝑣𝑖𝑢𝑗𝑣𝑗 ≠ 𝑢𝑖𝑣𝑖𝑢𝑖𝑣𝑖.

• Kronecker delta:

𝛿𝑖𝑗 ≔ {
1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

=
𝜕𝑥𝑖
𝜕𝑥𝑗

• If 𝛿𝑖𝑗 has a dummy index 𝑖, then remove the 𝛿𝑖𝑗 and replace the dummy index 𝑖 by
𝑗 in the rest of the expression.

• Levi-Cevita symbol:

𝜀𝑖𝑗𝑘 = −𝜀𝑗𝑖𝑘 = −𝜀𝑖𝑘𝑗 (antisymmetry) 𝜀123 = 1

• Properties of 𝜺𝒊𝒋𝒌:
• 𝜀𝑖𝑗𝑘 = −𝜀𝑘𝑗𝑖
• 𝜀𝑖𝑗𝑘 = 0 if 𝑖 = 𝑗 or 𝑗 = 𝑘 or 𝑘 = 𝑖
• If 𝜀𝑖𝑗𝑘 ≠ 0 then (𝑖 𝑗 𝑘) is a permutation of (1 2 3).
• 𝜀𝑖𝑗𝑘 = 1 if (𝑖 𝑗 𝑘) is an even permutation of (1 2 3) (even number of swaps).
• 𝜀𝑖𝑗𝑘 = −1 if (𝑖 𝑗 𝑘) is an odd permutation of (1 2 3) (odd number of swaps).
• 𝜀𝑖𝑗𝑘 = 𝜀𝑗𝑘𝑖 = 𝜀𝑘𝑖𝑗 (cyclic permutation).

• The cross product 𝐶
̅̅ ̅̅ ̅

= 𝐴
̅̅ ̅̅ ̅

× 𝐵
̅̅ ̅̅ ̅

 can be written as 𝐶𝑖 = 𝜀𝑖𝑗𝑘𝐴𝑗𝐵𝑘.
• Very useful 𝜺𝒊𝒋𝒌 formula:

∑
3

𝑘=1
𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚 = 𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙

• Notation: 𝜕𝑖 ≔ 𝜕
𝜕𝑥𝑖

.
• ∇

̅̅̅ ̅̅
. 𝑣
̅

= 𝜕𝑣𝑖
𝜕𝑥𝑖

= 𝜕𝑖𝑣𝑖.
• (∇

̅̅̅ ̅̅
× 𝑣

̅
)𝑖 = 𝜀𝑖𝑗𝑘

𝜕
𝜕𝑥𝑗

𝑣𝑘 = 𝜀𝑖𝑗𝑘𝜕𝑗𝑣𝑘.

5. Differentiability of scalar fields
• 𝒇(𝒙

̅̅ ̅̅
) tends to 𝑳 as 𝒙 tends to 𝒂:

lim
𝑥
̅̅̅̅
→𝑎

̅
𝑓(𝑥

̅̅̅̅
) = 𝐿 ⟺ ∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥

̅̅̅̅
, 0 < |𝑥

̅̅̅̅
− 𝑎

̅
| < 𝛿 ⟹ |𝑓(𝑥

̅̅̅̅
) − 𝐿| < 𝜀

• Scalar field 𝑓 continuous at 𝑎
̅
 if lim𝑥

̅̅̅̅
→𝑎

̅
𝑓(𝑥

̅̅̅̅
) exists and is equal to 𝑓(𝑎

̅
)

• If 𝑓 and 𝑔 are continuous scalar fields at 𝑎
̅
 then so are:

• 𝑓 + 𝑔
• 𝑓𝑔
• 𝑓 / 𝑔 (if 𝑔(𝑎

̅
) ≠ 0)

• 𝑓(𝑥
̅̅̅̅
) = 𝑐 for a constant 𝑐 is continuous at every 𝑥

̅̅̅̅
∈ ℝ𝑛

• 𝑓(𝑥
̅̅̅̅
) = 𝑥𝑎, 𝑎 ∈ {1, …, 𝑛} is continuous at every 𝑥

̅̅̅̅
∈ ℝ𝑛

• Open ball, centre 𝒂
̅̅ ̅̅
, radius 𝜹 > 𝟎:

𝐵𝛿(𝑎̅
) ≔ {𝑥

̅̅̅̅
∈ ℝ𝑛 : |𝑥

̅̅ ̅̅
− 𝑎

̅
| < 𝛿}

• 𝑆 ⊆ ℝ𝑛 open if ∀𝑎
̅

∈ 𝑆, ∃𝛿 > 0 such that 𝐵𝛿(𝑎̅
) ⊆ 𝑆
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• Neighbourhood 𝑁 ⊆ ℝ𝑛 of 𝑎
̅

∈ ℝ𝑛: contains an open set containing 𝑎
̅• 𝑆 ⊆ ℝ𝑛 closed if its complement ℝ𝑛 − 𝑆 is open

• Every open ball is open
• Let 𝑈 ⊆ ℝ𝑛 be open and 𝑓 : 𝑈 → ℝ. 𝑓 is continuous on 𝑼  if it is continuous at

every 𝑎
̅

∈ 𝑈
• Let 𝑈 ⊆ ℝ𝑛 be open and 𝑓 : 𝑈 → ℝ. 𝑓 is differentiable at 𝑎

̅
∈ 𝑈  if for some

vector 𝑣
̅
(𝑎
̅
),

𝑓(𝑎
̅

+ ℎ
̅̅̅̅
) − 𝑓(𝑎

̅
) = ℎ

̅̅̅̅
. 𝑣
̅
(𝑎
̅
) + 𝑅(ℎ

̅̅̅̅
), lim

ℎ
̅̅̅̅
→0

̅

𝑅(ℎ
̅̅̅̅
)

|ℎ
̅̅ ̅̅
|

= 0

If 𝑣
̅
(𝑎
̅
) exists, 𝑣

̅
(𝑎
̅
) = ∇

̅̅̅ ̅̅
𝑓

• Warning: ∇
̅̅̅ ̅̅

𝑓 being defined at a point does not imply that 𝑓 is differentiable at
that point.

• Let 𝑈 ⊆ ℝ𝑛 be open and 𝑓 : 𝑈 → ℝ. Then 𝑓 is differentiable at 𝑎
̅
 if all partial

derivatives of 𝑓 exist and are continuous in a neighbourhood of 𝑎
̅• Function is continuously differentiable at 𝑎

̅
 if it and all its partial derivatives

exist and are continuous at 𝑎
̅
. It is continuously differentiable on an open 𝑈  if

it and all its partial derivatives exist and are continuous on 𝑈 .
• Continuous differentiability implies differentiability.
• Smooth function: partial derivatives of all orders exist.
• Let 𝑈 ⊆ ℝ𝑛 be open. If 𝑓, 𝑔 : 𝑈 → ℝ differentiable (or smooth) at 𝑎

̅
∈ ℝ𝑛 then so

are:
• 𝑓 + 𝑔
• 𝑓𝑔
• 𝑓 / 𝑔 (if 𝑔(𝑎

̅
) ≠ 0)

• Let 𝑈 ⊆ ℝ𝑛 be open, 𝑓 : 𝑈 → ℝ be differentiable, 𝑥
̅̅̅̅
 be a function of 𝑢1, …𝑢𝑚 where

all partial derivatives 𝜕𝑥𝑖
𝜕𝑢𝑗

 exist. Let 𝐹(𝑢1, …𝑢𝑚) = 𝑓(𝑥
̅̅̅̅
(𝑢1, …𝑢𝑚)), then

𝜕𝐹
𝜕𝑢𝑏

=
𝜕𝑥
̅̅̅̅𝜕𝑢𝑏

. ∇
̅̅̅ ̅̅

𝑓

• Level set of 𝑓 : 𝑈 → ℝ, 𝑈 ⊆ ℝ𝑛 open, is the set {𝑥
̅̅̅̅

∈ 𝑈 : 𝑓(𝑥
̅̅̅̅
) = 𝑐} for some

𝑐 ∈ ℝ. For 𝑛 = 2 it is called a level curve.
• Implicit function theorem for level curves: if 𝑓 : 𝑈 → ℝ is differentiable, and

(𝑥0, 𝑦0) ∈ 𝑈  is on the level curve 𝑓(𝑥, 𝑦) = 𝑐 where 𝜕𝑓
𝜕𝑦 (𝑥0, 𝑦0) ≠ 0, then there exists

a differentiable function 𝑔(𝑥) in a neighbourhood of 𝑥0 satisfying

𝑔(𝑥0) = 𝑦0

𝑓(𝑥, 𝑔(𝑥)) = 𝑐

𝑑𝑔
𝑑𝑥

= −
𝜕𝑓(𝑥,𝑔(𝑥))

𝜕𝑥
𝜕𝑓(𝑥,𝑔(𝑥))

𝜕𝑦

• Critical point: point of level curve 𝑓(𝑥, 𝑦) = 𝑐 where ∇
̅̅̅ ̅̅

𝑓 = 0
̅
. 𝑐 is a critical

value, otherwise it is a regular value.
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• At a critical point, the level curve can’t be written as either 𝑦 = 𝑔(𝑥) or as
𝑥 = ℎ(𝑦) in a neighbourhood of 𝑄, with 𝑔, ℎ differentiable.

• Implicit function theorem for level surfaces: Let 𝑓 : 𝑈 → ℝ be differentiable,
𝑈 ⊆ ℝ3 open, (𝑥0, 𝑦0, 𝑧0) ∈ 𝑈  be on the level set 𝑓(𝑥, 𝑦, 𝑧) = 𝑐. If 𝜕𝑓

𝜕𝑧 (𝑥0, 𝑦0, 𝑧0) ≠ 0
then 𝑓(𝑥, 𝑦, 𝑧) = 𝑐 defines a surface 𝑧 = 𝑔(𝑥, 𝑦) in a neighbourhood of (𝑥0, 𝑦0, 𝑧0),
where

𝑓(𝑥, 𝑦, 𝑔(𝑥, 𝑦)) = 𝑐
𝑔(𝑥0, 𝑦0) = 𝑧0

𝜕𝑔
𝜕𝑥

(𝑥0, 𝑦0) = −
𝜕𝑓
𝜕𝑥(𝑥0, 𝑦0, 𝑧0)
𝜕𝑓
𝜕𝑧 (𝑥0, 𝑦0, 𝑧0)

𝜕𝑔
𝜕𝑦

(𝑥0, 𝑦0) = −
𝜕𝑓
𝜕𝑦 (𝑥0, 𝑦0, 𝑧0)
𝜕𝑓
𝜕𝑧 (𝑥0, 𝑦0, 𝑧0)

• ∇
̅̅̅ ̅̅

𝑓(𝑥0, 𝑦0, 𝑧0) is normal to the tangent plane of the level set 𝑧 = 𝑔(𝑥, 𝑦) at (𝑥0, 𝑦0).
So the normal line is given by

𝑥
̅̅̅̅
(𝑡) = 𝑥0

̅̅̅ ̅̅ ̅
+ 𝑡∇

̅̅̅ ̅̅
𝑓

and the tangent plane is given by

(𝑥
̅̅̅̅

− 𝑥0
̅̅̅ ̅̅ ̅

). ∇
̅̅̅ ̅̅

𝑓 = 0

6. Differentiability of vector fields
• Jacobian matrix (differential) of 𝐹

̅̅ ̅̅ ̅
(𝑥
̅̅̅̅
) at 𝑥

̅̅̅̅
= 𝑎

̅
 (written 𝐷𝐹

̅̅ ̅̅ ̅
(𝑎
̅
) or 𝐷𝐹

̅̅ ̅̅ ̅𝑎̅
):

matrix with components 𝑎𝑖,𝑗 = 𝜕𝐹𝑖
𝜕𝑥𝑗

.
• For open 𝑈 ⊆ ℝ𝑛, 𝐹

̅̅ ̅̅ ̅
: 𝑈 → ℝ𝑛 differentiable at 𝑎

̅
∈ 𝑈  if for some linear function

𝐿
̅̅̅ ̅

: ℝ𝑛 → ℝ𝑛,

𝐹
̅̅ ̅̅ ̅

(𝑎
̅

+ ℎ
̅̅̅̅
) − 𝐹

̅̅ ̅̅ ̅
(𝑎
̅
) = 𝐿

̅̅̅ ̅
(ℎ
̅̅ ̅̅
) + 𝑅(ℎ

̅̅̅̅
)

where

lim
ℎ
̅̅̅̅
→0

̅

𝑅(ℎ
̅̅̅̅
)

|ℎ
̅̅ ̅̅
|

= 0
̅

Here, 𝐿
̅̅̅ ̅

(ℎ
̅̅ ̅̅
) = (𝐷𝐹

̅̅ ̅̅ ̅
(𝑎
̅
))ℎ

̅̅̅̅
.

• Jacobian, 𝑱(𝒗
̅
): determinant of differential: 𝐽(𝑣

̅
) = det(𝐷𝑣

̅
)

• Can think of vector fields as coordinate transformations on ℝ𝑛.
• Inverse function theorem: let 𝑈  open, 𝑣 : 𝑈 → ℝ𝑛 differentiable with

continuous partial derivatives. If 𝐽(𝑣
̅
(𝑎
̅
)) ≠ 0 then exists open ̃𝑈 ⊆ 𝑈  containing 𝑎

̅such that:
• 𝑣

̅
( ̃𝑈) is open and

• Mapping 𝑣
̅
 from ̃𝑈  to 𝑣

̅
( ̃𝑈) has differentiable inverse 𝑤

̅̅ ̅̅ ̅
: 𝑣
̅
( ̃𝑈) → ℝ𝑛 with

𝑣
̅
(𝑤
̅̅ ̅̅ ̅

(𝑥
̅̅̅̅
)) = 𝑥

̅̅̅̅
 and 𝑤

̅̅ ̅̅ ̅
(𝑣
̅
(𝑦
̅
)) = 𝑦

̅
.
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• Map 𝑣
̅

: ̃𝑈 → 𝑉 ⊆ ℝ𝑛 which satisfies above two properties is called
diffeomorphism of ̃𝑈  onto ̃𝑉 = 𝑣

̅
( ̃𝑈). ̃𝑈  and ̃𝑉  are diffeomorphic.

• Local diffeomorphism: map 𝑣
̅

: 𝑈 → 𝑉  where ∀𝑎
̅

∈ 𝑈 , exists open ̃𝑈 ⊆ 𝑈
containing 𝑎

̅
 such that 𝑣

̅
: ̃𝑈 → 𝑣

̅
( ̃𝑈) is diffeomorphism.

• Chain rule for vector fields:

𝐷𝑤
̅̅̅̅ ̅

(𝑣
̅
(𝑥
̅̅̅̅
)) = 𝐷𝑤

̅̅ ̅̅ ̅
(𝑣
̅
)𝐷𝑣

̅
(𝑥
̅̅̅̅
)

• When 𝑣
̅
 is local diffeomorphism and 𝑤

̅̅ ̅̅ ̅
 is its inverse, then

(𝐷𝑣
̅
)−1 = 𝐷𝑤

̅̅̅̅ ̅
, 𝐽(𝑤

̅̅ ̅̅ ̅
) =

1
𝐽(𝑣

̅
)
, 𝐽(𝑣

̅
) ≠ 0

• 𝑣
̅
 is orientation preserving if 𝐽(𝑣

̅
) > 0.

• 𝑣
̅
 is orientation reversing if 𝐽(𝑣

̅
) < 0.

7. Volume, line and surface integrals
• One dimensional integral: calculates area under curve.

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = lim

𝑛→∞
∑
𝑛−1

𝑖=0
𝑓(𝑥∗

𝑖 )Δ𝑥𝑖

where [𝑎, 𝑏] partitioned as 𝑎 = 𝑥0 < 𝑥1 <⋯< 𝑥𝑛 = 𝑏, Δ𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖,
𝑥∗

𝑖 ∈ [𝑥𝑖, 𝑥𝑖+1] is arbitrary.
• Double integral: calculates volume under surface 𝑧 = 𝑓(𝑥, 𝑦) over region 𝑅.

∫
𝑅

𝑓(𝑥, 𝑦) d𝐴 = lim
𝑁→∞

∑
𝑁

𝑘=1
𝑓(𝑥∗

𝑘, 𝑦∗
𝑘)Δ𝐴𝑘

𝑅 is split into 𝑁  rectangle Δ𝐴𝑘. (𝑥∗
𝑘, 𝑦∗

𝑘) lies in base of 𝑘th prism.
• If rectangles chosen on rectangular grid, then Δ𝐴𝑘 = Δ𝑥𝑖Δ𝑦𝑗 where

Δ𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖, Δ𝑦𝑗 = 𝑦𝑗+1 − 𝑦𝑗, 𝑥 and 𝑦 partitioned as 𝑥0 < 𝑥1 <⋯< 𝑥𝑛 and
𝑦0 < 𝑦1 <⋯< 𝑦𝑚. As before 𝑥∗

𝑖 ∈ [𝑥𝑖, 𝑥𝑖+1] and 𝑦∗
𝑗 ∈ [𝑦𝑗, 𝑦𝑗+1]. Integral is

∫
𝑅

𝑓(𝑥, 𝑦) d𝐴 = lim
𝑛,𝑚→∞

∑
𝑛−1

𝑖=0
∑
𝑚−1

𝑗=0
𝑓(𝑥∗

𝑘, 𝑦∗
𝑘)Δ𝑥𝑖Δ𝑦𝑗 = ∫

𝑥
(∫

𝑦
𝑓(𝑥, 𝑦) d𝑦) d𝑥

• Fubini’s theorem: if 𝑓(𝑥, 𝑦) continuous over compact (bounded and closed)
region 𝐴, then double integral over 𝐴 can be written as iterated integral, with
integrals in either order:

∫
𝐴

𝑓(𝑥, 𝑦) d𝐴 = ∫
𝑦

∫
𝑥

𝑓(𝑥, 𝑦) d𝑥 d𝑥 = ∫
𝑥

∫
𝑦

𝑓(𝑥, 𝑦) d𝑦 d𝑥

• Important: Fubini’s theorem holds if region and/or function is unbounded,
provided double integral absolutely convergent (integral of |𝑓(𝑥, 𝑦)| over 𝐴 is
finite).

• To calculate area in plane (e.g. between two curves), set 𝑓(𝑥, 𝑦) = 1:
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Area of 𝑅 = ∫
𝑅

1 d𝐴

• Volume integral: partition volume 𝑉  into 𝑁  volumes Δ𝑉𝑖.

𝐼 = ∫
𝑉

𝑓(𝑥
̅̅̅̅
) d𝑉 = lim

𝑁→∞
∑
𝑁

𝑖=1
𝑓(𝑥𝑖)Δ𝑉𝑖

• If 𝑓(𝑥
̅̅̅̅
) is density of a quantity, then 𝐼 = ∫

𝑉
𝑓(𝑥

̅̅̅̅
) d𝑉  is amount of that quantity.

• To calculate volume inside surface, (𝑆 is surface which encloses 𝑉 ) set
𝑓(𝑥, 𝑦, 𝑧) = 1:

Volume inside 𝑆 = Volume of 𝑉 = ∫
𝑉

1 d𝑉

• As for double integrals, if 𝑉  partition parallel to coordinate planes than

𝐼 = ∫
𝑥

∫
𝑦

∫
𝑧

𝑓(𝑥, 𝑦, 𝑧) d𝑧 d𝑦 d𝑥

• Fubini’s theorem holds for triple integrals.
• Regular arc: curve 𝑥

̅̅̅̅
(𝑡) where 𝑥𝑎(𝑡) continuous with continuous first derivatives.

• Regular curve: finite number of regular arcs joined end to end.
• Line integral of 𝑣

̅
(𝑥
̅̅̅̅
) along arc 𝐶 : 𝑡 → 𝑥

̅̅̅̅
(𝑡), 𝑡 ∈ [𝛼, 𝛽]:

∫
𝐶

𝑣
̅

⋅ 𝑑𝑥
̅̅̅̅

= ∫
𝛽

𝛼
𝑣
̅
(𝑥
̅̅̅̅
(𝑡)) ⋅

𝑑𝑥
̅̅̅̅
(𝑡)

𝑑𝑡
d𝑡

• Line integral doesn’t depend on parameterisation of 𝐶.
• Line integral along regular curve 𝐶 is sum of line integrals of arcs of 𝐶. If 𝐶 is

closed, written ∮
𝐶

𝑣
̅

⋅ d𝑥
̅̅̅̅
.

• Length of curve:

∫
𝐶

d𝑠 = ∫
𝑏

𝑎
‖
𝑑𝑥
̅̅̅̅
(𝑡)

𝑑𝑡
‖ d𝑡

• If 𝑓 is density function, mass is

∫
𝐶

𝑓 d𝑠 = ∫
𝑏

𝑎
𝑓(𝑥

̅̅̅̅
(𝑡))‖

𝑑𝑥
̅̅̅̅
(𝑡)

𝑑𝑡
‖ d𝑡

• If 𝐹
̅̅ ̅̅ ̅

 is force, work done is

∫
𝐶

𝐹
̅̅ ̅̅ ̅

⋅ d𝑥
̅̅̅̅

• If curve is ellipse 𝑥2

𝑎2 + 𝑦2

𝑏2 = 1, can parameterise as 𝑥(𝑡) = 𝑎 cos(𝑡), 𝑦(𝑡) = 𝑏 sin(𝑡).
• If curve is 𝑦 = 𝑓(𝑥), can parameterise as 𝑥(𝑡) = 𝑡, 𝑦(𝑡) = 𝑓(𝑡).
• If curve is 𝑥 = 𝑔(𝑦), can parameterise as 𝑥 = 𝑔(𝑡), 𝑦(𝑡) = 𝑡.
• If curve is straight line segment from (𝑥0, 𝑦0) to (𝑥1, 𝑦1), can parameterise as

𝑥(𝑡) = (1 − 𝑡)𝑥0 + 𝑡𝑥1, 𝑦(𝑡) = (1 − 𝑡)𝑦0 + 𝑡𝑦1.
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• Surface can be given in parametric form as 𝑥
̅̅̅̅
(𝑢, 𝑣) where 𝑢, 𝑣 ∈ 𝑈  (𝑈  is

parameter domain).
• If curve is 𝑧 = 𝑓(𝑥, 𝑦), can parameterise as 𝑥 = 𝑢, 𝑦 = 𝑣, 𝑧 = 𝑓(𝑢, 𝑣). Similarly for

𝑦 = 𝑔(𝑥, 𝑧) and 𝑥 = ℎ(𝑦, 𝑧).
• For surface 𝑆 as 𝑥

̅̅̅̅
(𝑢, 𝑣), unit normal vector is

�̂�
̅̅ ̅̅

=
𝑎
̅|𝑎
̅
|
, 𝑎 = (

𝜕𝑥
̅̅̅̅
(𝑢, 𝑣)
𝜕𝑢

×
𝜕𝑥
̅̅̅̅
(𝑢, 𝑣)
𝜕𝑣

)

(negative of this is also).
• For surface given as level surface of scalar field 𝑓 , 𝑓(𝑥, 𝑦, 𝑧) = 𝑐, unit normal

vector is

�̂�
̅̅ ̅̅

=
∇
̅̅̅ ̅̅

𝑓
|∇
̅̅̅ ̅̅

𝑓|

(negative of this is also).
• Surface 𝑥

̅̅̅̅
(𝑢, 𝑣) orientable if partial derivatives of 𝑥

̅̅̅̅
 exist and are continuous, and

�̂�
̅̅ ̅̅
 is continuous.

• Surface integral defined as

∫
𝑆

𝐹
̅̅ ̅̅ ̅

⋅ d𝐴
̅̅ ̅̅ ̅

= lim
Δ𝐴𝑘→0

∑
𝑘

𝐹
̅̅ ̅̅ ̅

(𝑥
̅̅̅̅

∗
𝑘) ⋅ �̂�

̅̅ ̅̅ 𝑘
Δ𝐴𝑘

• For surface 𝑥
̅̅̅̅
(𝑢, 𝑣),

∫
𝑆

𝐹
̅̅ ̅̅ ̅

⋅ d𝐴
̅̅ ̅̅ ̅

= ∫
𝑈

𝐹
̅̅ ̅̅ ̅

(𝑥
̅̅̅̅
(𝑢, 𝑣)) ⋅ (

𝜕𝑥
̅̅̅̅𝜕𝑢

×
𝜕𝑥
̅̅̅̅𝜕𝑣

) d𝑢 d𝑣

since (𝜕𝑥
̅̅̅̅𝜕𝑢 × 𝜕𝑥

̅̅̅̅𝜕𝑣) is normal to surface.
• For surface 𝑓(𝑥, 𝑦, 𝑧) = 𝑐,

∫
𝑆

𝐹
̅̅ ̅̅ ̅

⋅ d𝐴
̅̅ ̅̅ ̅

= ∫
𝐴

𝐹
̅̅ ̅̅ ̅

⋅ ∇
̅̅̅ ̅̅

𝑓
𝑒3
̅̅ ̅̅ ̅̅

⋅ ∇
̅̅̅ ̅̅

𝑓
d𝑥 d𝑦

where (𝑥, 𝑦) range over 𝐴, 𝐴 is projection of 𝑆 onto 𝑥, 𝑦 plane.
• If unit normal to surface 𝑆, �̂�

̅̅ ̅̅
, is known and 𝐹

̅̅ ̅̅ ̅
⋅ �̂�
̅̅ ̅̅
 is constant, then

∫
𝑆

𝐹
̅̅ ̅̅ ̅

⋅ d𝐴
̅̅ ̅̅ ̅

= ∫
𝑆

𝐹
̅̅ ̅̅ ̅

⋅ �̂�
̅̅ ̅̅

d𝐴 = 𝐹
̅̅ ̅̅ ̅

⋅ �̂�
̅̅ ̅̅

∫
𝑆

d𝐴 = 𝐹
̅̅ ̅̅ ̅

⋅ �̂�
̅̅ ̅̅

× area of 𝑆

8. Green’s, Stoke’s and divergence theorems
• Green’s theorem: let 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) be continuously differentiable scalar

fields in 2 dimensions. Then

∮
𝐶
(𝑃 (𝑥, 𝑦) d𝑥 + 𝑄(𝑥, 𝑦) d𝑦) = ∫

𝐴
(

𝜕𝑄
𝜕𝑥

−
𝜕𝑃
𝜕𝑦

) d𝑥 d𝑦
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where 𝐶 is boundary of 𝐴 traversed in positive (anticlockwise) direction (imagine
walking around 𝐶 with 𝐴 to your left).

• Green’s theorem in vector form: let 𝐹
̅̅ ̅̅ ̅

(𝑥, 𝑦, 𝑧) = (𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦), 𝑅), then

∮
𝐶

𝐹
̅̅ ̅̅ ̅

⋅ d𝑥
̅̅̅̅

= ∫
𝐴
(∇
̅̅̅ ̅̅

× 𝐹
̅̅ ̅̅ ̅

) ⋅ 𝑒
̅3 d𝐴

• Stokes’ theorem: let 𝐹
̅̅ ̅̅ ̅

(𝑥, 𝑦, 𝑧) be continuously differentiable vector field, 𝑆 in ℝ3

be surface with area elements d𝐴
̅̅ ̅̅ ̅

= �̂�
̅̅ ̅̅

d𝐴 and boundary curve 𝐶 = 𝜕𝑆, then

∮
𝐶

𝐹
̅̅ ̅̅ ̅

⋅ d𝑥
̅̅̅̅

= ∫
𝑆
(∇
̅̅̅ ̅̅

× 𝐹
̅̅ ̅̅ ̅

) ⋅ d𝐴
̅̅ ̅̅ ̅

Orientation of 𝐶 and choice of �̂�
̅̅ ̅̅
 or −�̂�

̅̅ ̅̅
 given by right hand rule: curl fingers of

right hand and extend thumb. When thumb points in direction of surface normal,
fingers point in direction of orientation of boundary, and vice versa. (Equivalently,
if you stood on boundary with head pointing in direction of normal, and walked
around boundary with surface on your left, direction of walking is direction of
orientation of boundary.)

• Divergence theorem: let 𝐹
̅̅ ̅̅ ̅

 be continuously differentiable vector field defined
over volume 𝑉  with bounding surface 𝑆, then

∫
𝑆

𝐹
̅̅ ̅̅ ̅

⋅ d𝐴
̅̅ ̅̅ ̅

= ∫
𝑉

∇
̅̅̅ ̅̅

⋅ 𝐹
̅̅ ̅̅ ̅

d𝑉

where d𝐴
̅̅ ̅̅ ̅

= �̂�
̅̅ ̅̅

d𝐴, �̂�
̅̅ ̅̅
 is outward unit normal.

• Vector field conservative if line integral is path independent.
• 𝐹

̅̅ ̅̅ ̅
 closed if ∇

̅̅̅ ̅̅
× 𝐹

̅̅ ̅̅ ̅
= 0

̅
.

• Region 𝐷 simply connected if any closed curve in 𝐷 can be continuously shrunk
to point in 𝐷.

• Every closed curve in 𝐷 is boundary of surface in 𝐷.
• Let 𝐹

̅̅ ̅̅ ̅
 vector field and ∇

̅̅̅ ̅̅
× 𝐹

̅̅ ̅̅ ̅
= 0

̅
 in simply connected region 𝐷. If 𝐶1 and 𝐶2 are

paths in 𝐷 joining 𝑎
̅
 to 𝑏

̅
 then

∫
𝐶1

𝐹
̅̅ ̅̅ ̅

⋅ d𝑥
̅̅̅̅

= ∫
𝐶2

𝐹
̅̅ ̅̅ ̅

⋅ d𝑥
̅̅̅̅

so line integral is path-independent and 𝐹
̅̅ ̅̅ ̅

 is conservative.
• If 𝐹

̅̅ ̅̅ ̅
= ∇

̅̅̅ ̅̅
𝜑 for scalar field 𝜑 (𝐹

̅̅ ̅̅ ̅
 is exact) then ∫

𝐶
𝐹
̅̅ ̅̅ ̅

⋅ d𝑥
̅̅̅̅
 is path-independent so 𝐹

̅̅ ̅̅ ̅is conservative. If 𝐶 goes from 𝑎
̅
 to 𝑏

̅
 then

∫
𝐶

𝐹
̅̅ ̅̅ ̅

⋅ d𝑥
̅̅̅̅

= 𝜑(𝑏
̅
) − 𝜑(𝑎

̅
)

• ∇
̅̅̅ ̅̅

× 𝐹
̅̅ ̅̅ ̅

= 0 ⟺ path indepence of integral ⟺ ∃𝜑, 𝐹
̅̅ ̅̅ ̅

= ∇
̅̅̅ ̅̅

𝜑

9. Non-Cartesian systems
• Polar, spherical polar and cylindrical polar coordinates are all curvilinear

coordinates.
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• Cartesian coordinates (𝑥, 𝑦, 𝑧) can be expressed as smooth functions of curvlinear
coordinates (𝑢, 𝑣, 𝑤):

𝑥 = 𝑔(𝑢, 𝑣, 𝑤), 𝑦 = ℎ(𝑢, 𝑣, 𝑤), 𝑧 = 𝑘(𝑢, 𝑣, 𝑤), 𝑔, ℎ, 𝑘 ∈ 𝐶∞(ℝ3)

𝑔, ℎ, 𝑘 can be inverted to give

𝑢 = ̃𝑔(𝑥, 𝑦, 𝑧), 𝑣 = ℎ̃(𝑥, 𝑦, 𝑧), 𝑤 = �̃�(𝑥, 𝑦, 𝑧), ̃𝑔, ℎ̃, �̃� ∈ 𝐶∞(ℝ3)
• Coordinate surfaces: planes with equations 𝑢 = constant, 𝑣 = constant or

𝑤 = constant.
• Coordiante curve: intersection of two coordinate surfaces.
• Orthogonal curvilinear system: where tangent vectors 𝑒

̅𝑢, 𝑒̅𝑣, 𝑒̅𝑤 are mutually
orthogonal at any point 𝑃 . Orientation of these vectors may depend on 𝑃 .

• Let 𝑔 invertible map from 𝑢-space to 𝑥-space, 𝑔(𝑢) = 𝑥. Distortion factor 𝑔′(𝑢) is
Jacobian of 𝑔. d𝑥 = 𝑔′(𝑢) d𝑢 so method of substitution is

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = ∫

𝑔−1(𝑏)

𝑔−1(𝑎)
𝑓(𝑔(𝑢))𝑔′(𝑢) d𝑢

• In two dimensions, Jacobian for maps ( ̃𝑔, ℎ̃) is

𝐽( ̃𝑔, ℎ̃) = |
𝜕𝑥 ̃𝑔

𝜕𝑥ℎ̃

𝜕𝑦 ̃𝑔

𝜕𝑦ℎ̃
| ≕

𝜕( ̃𝑔, ̃𝑔)
𝜕(𝑥, 𝑦)

=
𝜕(𝑢, 𝑣)
𝜕(𝑥, 𝑦)

Distortion factor is |𝐽( ̃𝑔, ℎ̃)|. So

d𝐴𝑢𝑣 = |𝐽( ̃𝑔, ℎ̃)| d𝐴𝑥𝑦

where d𝐴𝑥𝑦 = d𝑥 d𝑦 and

d𝐴𝑥𝑦 = |𝐽(𝑔, ℎ)| d𝐴𝑢𝑣 = |𝐽( ̃𝑔, ℎ̃)|
−1

d𝐴𝑢𝑣

So

∬
𝑅

𝑓(𝑥, 𝑦) d𝑥 d𝑦 = ∬
𝑅′

𝑓(𝑔(𝑢, 𝑣), ℎ(𝑢, 𝑣))|𝐽(𝑔, ℎ)| d𝑢 d𝑣

where 𝑅 mapped to 𝑅′ by ( ̃𝑔, ℎ̃).
• d𝐴𝑢𝑣 is parallelogram-shaped.
• In three dimensions,

∭
𝑅

𝑓(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧 = ∭
𝑅′

𝑓(𝑔(𝑢, 𝑣, 𝑤), ℎ(𝑢, 𝑣, 𝑤), 𝑘(𝑢, 𝑣, 𝑤))|
𝜕(𝑥, 𝑦, 𝑧)
𝜕(𝑢, 𝑣, 𝑤)

| d𝑢 d𝑣 d𝑤

where | 𝜕(𝑥,𝑦,𝑧)
𝜕(𝑢,𝑣,𝑤) | ≔ 𝐽(𝑔, ℎ, 𝑘).

• d𝑉𝑢𝑣𝑤 is parallelopiped-shaped.
• Gradient in Cartesian coordinates: ∇

̅̅̅ ̅̅
= 𝑒

̅1𝜕𝑥 + 𝑒
̅2𝜕𝑦 + 𝑒

̅3𝜕𝑧.
• Laplacian in Cartesian coordinates: ∇

̅̅̅ ̅̅
2 = 𝜕2

𝑥 + 𝜕2
𝑦 + 𝜕2

𝑧 .
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• For 2D polar coordinates, let 𝑟
̅

= 𝑟 cos(𝜃)𝑒
̅1 + 𝑟 sin(𝜃)𝑒

̅2, then

̃𝑒
̅𝑟 ≔ 𝜕𝑟𝑟̅

= cos(𝜃)𝑒
̅1 + sin(𝜃)𝑒

̅2,

̃𝑒
̅𝜃 ≔ 𝜕𝜃𝑟̅

= −𝑟 sin(𝜃)𝑒
̅1 + 𝑟 cos(𝜃)𝑒

̅2

• Let 𝑥 = 𝑔(𝑢, 𝑣), 𝑦 = ℎ(𝑢, 𝑣), then scale factors for mapping given by 𝒈 and 𝒉
are ℎ𝑢 ≔ ‖𝜕𝑢𝑟

̅
‖, ℎ𝑣 ≔ ‖𝜕𝑣𝑟̅

‖.
• Unit vectors corresponding to ̃𝑒

̅𝑟 and ̃𝑒
̅𝜃 are 𝑒

̅𝑟 = ̃𝑒
̅𝑟 and 𝑒

̅𝜃 = 1
𝑟 ̃𝑒
̅𝜃 which form

orthonormal basis.
• d𝑟

̅
= 𝜕𝑟𝑟̅

d𝑟 + 𝜕𝜃𝑟̅
d𝜃 = d𝑟𝑒

̅𝑟 + 𝑟 d𝜃𝑒
̅𝜃 by chain rule.

• Gradient in polar coordinates: ∇
̅̅̅ ̅̅

= 𝑒
̅𝑟𝜕𝑟 + 𝑒

̅𝜃
1
𝑟𝜕𝜃, obtained by comparing

d𝑓 ≔ ∇
̅̅̅ ̅̅

𝑓 ⋅ d𝑟
̅

= 𝜕𝑟𝑓 d𝑟 + 𝜕𝜃𝑓 d𝜃 for function 𝑓(𝑟, 𝜃).
• Divergence in polar coordinates: for 𝐴

̅̅ ̅̅ ̅
(𝑟, 𝜃) = 𝐴𝑟𝑒̅𝑟 + 𝐴𝜃𝑒̅𝜃,

∇
̅̅̅ ̅̅

⋅ 𝐴
̅̅ ̅̅ ̅

=
1
𝑟
(𝜕𝑟(𝑟𝐴𝑟) + 𝜕𝜃𝐴𝜃)

• Laplacian in polar coordinates: ∇
̅̅̅ ̅̅

2 = 𝜕2
𝑟 + 1

𝑟𝜕𝑟 + 1
𝑟2 𝜕2

𝜃
• Spherical polar coordinates: 𝑥 = 𝑟 sin(𝜃)cos(𝜑), 𝑦 = 𝑟 sin(𝜃)sin(𝜑), 𝑧 = 𝑟 cos(𝜃),

𝑟 ≥ 0, 𝜃 ∈ [0, 𝜋], 𝜑 ∈ [0, 2𝜋).
• Cylindrical polar coordinates: 𝑥 = 𝑟 cos(𝜃), 𝑦 = 𝑟 sin(𝜃), 𝑧 = 𝑧, 𝑟 ≥ 0,

𝜃 ∈ [0, 2𝜋), 𝑧 ∈ ℝ.
• General formula for curl of vector in Cartesian coordinates: for

𝐴
̅̅ ̅̅ ̅

(𝑟, 𝜃, 𝜑) = 𝐴𝑟𝑒̅𝑟 + 𝐴𝜃𝑒̅𝜃 + 𝐴𝜑𝑒
̅𝜑,

∇
̅̅̅ ̅̅

× 𝐴
̅̅ ̅̅ ̅

= ℎ−1
𝑟 ℎ−1

𝜃 ℎ−1
𝜑

|
|
|
|
|ℎ𝑟𝑒̅𝑟

𝜕𝑟

𝐴𝑟ℎ𝑟

ℎ𝜃𝑒̅𝜃

𝜕𝜃

𝐴𝜃ℎ𝜃

ℎ𝜑𝑒
̅𝜑

𝜕𝜑

𝐴𝜑ℎ𝜑|
|
|
|
|

10. Generalised functions (distributions)
• Unit step function (Heaviside):

Θ(𝑡 − 𝑡0) ≔ {
0 if 𝑡 ≤ 𝑡0
1 if 𝑡 > 𝑡0

• Let Ω ⊆ ℝ𝑛 open. 𝜓 : Ω → ℂ is test function if:
• 𝜓 is smooth: 𝜓 ∈ 𝐶∞(Ω).
• Support of 𝜓,

supp(𝜓) ≔
̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲
{𝑥
̅̅̅̅

∈ Ω : 𝜓(𝑥
̅̅̅̅
) ≠ 0}

is compact (in this case, bounded).
• Space of test functions on Ω, 𝒟(Ω), is vector space.
• Let 𝜓 ∈ 𝒟(ℝ𝑛), 𝜉

̅
∈ ℝ𝑛, 𝑎 ∈ ℝ − {0}, 𝑔 ∈ 𝐶∞(ℝ𝑛). Then

• 𝜓(𝑥
̅̅̅̅

+ 𝜉
̅
), 𝜓(−𝑥

̅̅̅̅
), 𝜓(𝑎𝑥

̅̅̅̅
) ∈ 𝒟(ℝ𝑛).

• 𝑔(𝑥
̅̅̅̅
)𝜓(𝑥

̅̅̅̅
) ∈ 𝒟(ℝ𝑛).

• Let Ω ⊆ ℝ𝑛 open, then {𝜓𝑚}𝑚∈ℕ ⊆ 𝒟(Ω) converges to 𝜓 ∈ 𝒟(Ω) if:
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• Exists compact 𝐾 ⊆ Ω such that supp(𝜓), supp(𝜓𝑚) ⊆ 𝐾 for every 𝑚 ∈ ℕ and
• {𝜓𝑚} converges uniformly to 𝜓 in 𝒟(Ω) and
• sequence

𝐷𝑘𝜓𝑚 ≔ 𝜓(𝑘)
𝑚 ≔

𝜕𝑘1

𝜕𝑥𝑘1
1

⋯
𝜕𝑘𝑛

𝜕𝑥𝑘𝑛
1

converges uniformly to 𝐷𝑘𝜓 for every multi-index 𝑘 = (𝑘1, …, 𝑘𝑛), 𝑘𝑖 ∈ ℕ0,
|𝑘| = 𝑘1 + ⋯ +𝑘𝑛. (Write 𝜓𝑚 →𝒟 𝜓.)

• {𝜓𝑚} converges to 𝜓 if:
• Exists compact 𝐾 ⊆ Ω such that supp(𝜓𝑖) ⊆ 𝐾 for every 𝑖 and
• For every multi-index 𝑘 = (𝑘1, …, 𝑘𝑛) and |𝑘| = 𝑘1 + ⋯ +𝑘𝑛 (including |𝑘| = 0),

‖𝐷𝑘𝜓𝑚 − 𝐷𝑘𝜓‖
∞

→ 0 as 𝑚 → ∞ where ‖𝑓‖∞ ≔ sup{|𝑓(𝑥
̅̅̅̅
)| : 𝑥

̅̅ ̅̅
∈ ℝ𝑛}.

• Let Ω ⊆ ℝ𝑛 open. Distribution is continuous linear map 𝑇 : 𝒟(Ω) → ℝ.
• 𝑇  linear: 𝑇 [𝑎𝜓 + 𝑏𝜑] = 𝑎𝑇 [𝜓] + 𝑏𝑇 [𝜑].
• 𝑇  continuous:

∀𝜓 ∈ 𝒟(Ω), ∀{𝜓𝑚} ⊆ 𝐷(Ω), 𝜓𝑚 →𝒟 𝜓 ⟹ 𝑇[𝜓𝑚] → 𝑇 [𝜓] as 𝑚 → ∞
• Space of distibutions with test functions in 𝒟(Ω), written 𝒟′(Ω), is vector space.
• Dirac delta function 𝛿 : 𝒟(ℝ𝑛) → ℝ, is distribution

𝛿[𝜓] ≔ 𝜓(0
̅
)

• Let 𝑓 ∈ 𝐶0(ℝ𝑛). Then

𝑇𝑓 [𝜓] ≔ ∫
ℝ𝑛

𝑓(𝑥
̅̅̅̅
)𝜓(𝑥

̅̅̅̅
) d𝑥

̅̅̅̅

is a distribution.
• 𝑓 : ℝ𝑛 → ℝ locally integrable if for every compact 𝐾 ⊆ ℝ𝑛,

∫
𝐾

𝑓(𝑥
̅̅̅̅
) d𝑥

̅̅̅̅
< ∞

• 𝐿1
loc(ℝ𝑛) is set of locally integrable functions on ℝ𝑛.

• 𝑇 ∈ 𝒟′(ℝ𝑛) is regular distribution if for some 𝑓 ∈ 𝐿1
loc(ℝ𝑛), 𝑇 [𝜓] = 𝑇𝑓 [𝜓] for

𝜓 ∈ 𝒟(ℝ𝑛).
• Any two locally integrable functions that differ by finite amounts at

isolated points define the same regular distribution.
• Distribution 𝑇  is singular if no 𝑓 ∈ 𝐿1

loc(ℝ𝑛) such that 𝑇 = 𝑇𝑓 .
• Symbolically, in the sense of distributions, can write singular distribution as

𝑇 [𝜓] ≔ ∫
ℝ𝑛

𝑇 [𝑥
̅̅̅̅
]𝜓(𝑥

̅̅̅̅
) d𝑥

̅̅̅̅
≕ ⟨𝑇 , 𝜓⟩

Note 𝑇 [𝑥
̅̅̅̅
] not a function.

• 𝛿 is singular distribution.
• Sifting property of 𝛿:
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∫
ℝ𝑛

𝛿(𝑥
̅̅̅̅
)𝜓(𝑥

̅̅̅̅
) d𝑥

̅̅̅̅
= {𝜓(0

̅
) if 𝑥

̅̅̅̅
= 0

̅0 otherwise
• General sifting property of 𝛿:

∫
Ω

𝛿(𝑥
̅̅̅̅
)𝜓(𝑥

̅̅̅̅
) = {𝜓(0

̅
) if 0

̅
∈ Ω

0 otherwise
• Notation: if 𝑛 = 1, write 𝛿(𝑥

̅̅̅̅
) = 𝛿(𝑥), if 𝑛 = 2, write 𝛿(𝑥)𝛿(𝑦), etc.

• Distribution operation rules:
• Addition: (𝑇1 + 𝑇2)[𝜓] = 𝑇1[𝜓] + 𝑇2[𝜓].
• Multiplication by constant: (𝑐𝑇 )[𝜓] = 𝑐𝑇 [𝜓].
• Shifting of distribution by 𝜉

̅
∈ ℝ𝑛:

𝑇𝜉
̅
[𝜓(𝑥

̅̅̅̅
)] ≔ ∫

ℝ𝑛 𝑇(𝑥
̅̅̅̅

− 𝜉
̅
)𝜓(𝑥

̅̅̅̅
) d𝑥

̅̅̅̅
= ∫

ℝ𝑛 𝑇(𝑦
̅
)𝜓(𝑦

̅
+ 𝜉

̅
) d𝑦

̅
≕ 𝑇[𝜓(𝑥

̅̅̅̅
+ 𝜉

̅
)]

• Transposition:
𝑇 𝑡(𝜓(𝑥

̅̅̅̅
)) ≔ ∫

ℝ𝑛 𝑇 (−𝑥
̅̅̅̅
)𝜓(𝑥

̅̅̅̅
) d𝑥

̅̅̅̅
= ∫

ℝ𝑛 𝑇(𝑦
̅
)𝜓(−𝑦

̅
) d𝑦

̅
≕ 𝑇 [𝜓(−𝑥

̅̅̅̅
)]

• Dilation by 𝛼 ∈ ℝ:
𝑇(𝛼)[𝜓(𝑥

̅̅̅̅
)] ≔ ∫

ℝ𝑛 𝑇 (𝛼𝑥
̅̅̅̅
)𝜓(𝑥

̅̅̅̅
) d𝑥

̅̅̅̅
= 1

|𝑎|𝑛 ∫
ℝ𝑛 𝑇(𝑦

̅
)𝜓( 𝑦

�̅�) d𝑦
̅

≕ 1
|𝑎|𝑛 𝑇[𝜓( 𝑥

̅̅̅̅𝛼)]
• Multiplication by smooth function 𝝋:

(𝜑𝑇 )[𝜓] ≔ 𝑇 [𝜑𝜓]
• Delta distribution sifting property:

𝛿𝛼[𝜓] ≔ ∫
Ω

𝛿(𝑥 − 𝑎)𝜓(𝑥) d𝑥 = {𝜓(𝑎) if 𝑎 ∈ Ω
0 otherwise

• In sense of distributions, 𝜑(𝑥)𝛿(𝑥 − 𝜉) = 𝜑(𝜉)𝛿(𝑥 − 𝜉).
• Symbolically, 𝛿(𝛼𝑥) = 1

|𝑎|𝛿(𝑥).
• If 𝑓 ∈ 𝐶1(Ω) has simple (multiplicity one) zeros at {𝑥1, …, 𝑥𝑛} then

∫
Ω

𝛿(𝑓(𝑥))𝜓(𝑥) d𝑥 = ∑
𝑛

𝑖=1

𝜓(𝑥𝑖)
|𝑓′(𝑥𝑖)|

• Distributions 𝑇1 and 𝑇2 equal if

∀𝜓 ∈ 𝒟(Ω), ∫
Ω

𝑇1(𝑥)𝜓(𝑥) d𝑥 = ∫
Ω

𝑇2(𝑥)𝜓(𝑥) d𝑥

• 𝑛th derivative of distribution 𝑇 :

𝑇 (𝑛)[𝜓] = (−1)𝑛𝑇[𝜓(𝑛)]
• In the sense of distributions, Θ′(𝑡) = 𝛿(𝑡).
• Leibniz rule:

(𝜑𝑇 )′ = 𝜑′𝑇 + 𝜑𝑇 ′, (𝜑𝑇 )(𝑛) = ∑
𝑛

𝑘=0
(

𝑛
𝑘

)𝜑(𝑘)𝑇 (𝑛−𝑘)

• 𝑓 piecewise continuous on (𝑎, 𝑏) if (𝑎, 𝑏) can be divided into finite number of
sub-intervals such that:
• 𝑓 continuous on interior of each sub-interval and
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• 𝑓 tends to finite limit on boundary of each sub-interval as approached from
interior of that sub-interval.

• 𝑓 piecewise smooth if piecewise continuous and has piecewise continuous first
derivatives.

• To calculate derivative in sense of distributions of piecewise-smooth 𝑓 ,
with branches 𝑓1, …, 𝑓𝑛 and discontinuities at 𝑥1, …, 𝑥𝑘−1:
• Let ̌𝑓(𝑥) = 𝑓1(𝑥) + (𝑓2(𝑥) − 𝑓1(𝑥))Θ(𝑥 − 𝑥1) + ⋯ +(𝑓𝑘 − 𝑓𝑘−1)Θ(𝑥 − 𝑥𝑘−1)
• Then differentiate ̌𝑓 .

• If Jacobian 𝐽  of changes of variables from 𝑥
̅̅̅̅
 to 𝜉

̅
, then

𝛿(𝑥
̅̅̅̅

− 𝑥0
̅̅̅ ̅̅ ̅

) =
1

|𝐽|
𝛿(𝜉

̅
− 𝜉0

̅̅̅̅̅
)

11. Sturm-Liouville Theory
• Let 𝑓 : [𝑎, 𝑏] → ℝ, 𝑎 = 𝑥0 < 𝑥1 <⋯< 𝑥𝑛 = 𝑏, 𝑥∗

𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖] Let
Δ = sup1≤𝑖≤𝑛(𝑥𝑖 − 𝑥𝑖−1), ℛ(𝑓) = ∑𝑛

𝑖=1 𝑓(𝑥∗
𝑖 )(𝑥𝑖 − 𝑥𝑖−1). 𝑓 Riemann integrable if

exists real number, written ∫𝑏
𝑎

𝑓(𝑥) d𝑥 such that

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = lim

Δ→0
ℛ(𝑓)

• Lebesgue integration: choose 𝑦0 ≤ min(𝑓), 𝑦𝑛 ≥ max(𝑓), 𝑦0 < 𝑦1 <⋯< 𝑦𝑛. Let

𝑠𝑛 ≔ ∑
𝑛

𝑖=1
𝑦𝑖−1 ⋅ 𝜇{𝑥 : 𝑦𝑖−1 ≤ 𝑓(𝑥) < 𝑦𝑖}

where 𝜇{𝑥 : 𝑦𝑖−1 ≤ 𝑓(𝑥) < 𝑦𝑖} is measure of set {𝑥 : 𝑦𝑖−1 ≤ 𝑓(𝑥) < 𝑦𝑖}, i.e. sum of
lengths of subintervals [𝑎, 𝑏] where 𝑦𝑖−1 ≤ 𝑓(𝑥) ≤ 𝑦𝑖. Lebesgue integral is limit of
𝑠𝑛 as 𝑛 → ∞.

• Riemann-Lebesgue theorem: let 𝑓 : [𝑎, 𝑏] → ℝ bounded. Then 𝑓 Riemann
integrable iff 𝑓 continuous everywhere except on set of measure zero (continuous
almost everywhere).

• Measure of set with countable number of elements is zero.
• Measure of [𝑎, 𝑏]: 𝜇([𝑎, 𝑏]) = 𝑏 − 𝑎. Also, 𝜇([𝑎, 𝑏] × [𝑐, 𝑑]) = (𝑏 − 𝑎)(𝑑 − 𝑐).
• If function Riemann integrable, then it is Lebesgue integrable.
• 𝐿1: space of Lebesgue measurable and absolutely integrable functions.
• 𝐿2: space of Lebesgue measurable functions with absolutely integrable squares.
• Hilbert space ℍ: real/complex vector space which:

• has Hermitian inner product ⟨⋅, ⋅⟩ : ℍ × ℍ → ℂ, with:
• Hermiticity: ⟨𝑢

̅̅̅̅
, 𝑣
̅
⟩ =

̲̲̲̲̲̲̲̲̲̲̲̲̲̲
⟨𝑣
̅
, 𝑢
̅̅̅̅
⟩.

• Anti-linearity in first entry: ⟨𝑎(𝑢
̅̅̅̅

+ 𝑣
̅
), 𝑤

̅̅ ̅̅ ̅
⟩ =

̲
𝑎⟨𝑢

̅̅̅̅
, 𝑤
̅̅ ̅̅ ̅

⟩ +
̲
𝑎⟨𝑣

̅
, 𝑤
̅̅ ̅̅ ̅

⟩, 𝑎 ∈ ℂ.
• Positivity: ⟨𝑢

̅̅̅̅
, 𝑢
̅̅ ̅̅
⟩ ≥ 0 and ⟨𝑢

̅̅̅̅
, 𝑢
̅̅ ̅̅
⟩ = 0 ⟺ 𝑢

̅̅̅̅
= 0.

• is complete for inner product-induced norm:

‖⋅‖ : ℍ → ℝ≥0, ‖𝑢
̅̅̅̅
‖ = (⟨𝑢

̅̅̅̅
, 𝑢
̅̅ ̅̅
⟩)1/2
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, with:
• Separation of points: ‖𝑢

̅̅̅̅
‖ = 0 ⟺ 𝑢 = 0.

• Absolute homogeneity: ‖𝑎𝑢
̅̅̅̅
‖ = |𝑎|‖𝑢

̅̅̅̅
‖, 𝑎 ∈ ℂ.

• Triangle inequality: ‖𝑢
̅̅̅̅

+ 𝑣
̅
‖ ≤ ‖𝑢

̅̅̅̅
‖ + ‖𝑣

̅
‖.

• Complex inner product sesquilinear as anti-linear in first entry, but linear in
second.

• Inner product space: vector space with inner product and induced norm.
• Metric on vector space 𝑉 : function 𝑑 : 𝑉 × 𝑉 → ℝ, with:

• 𝑑(𝑢
̅̅̅̅
, 𝑣
̅
) ≥ 0.

• 𝑑(𝑢
̅̅̅̅
, 𝑣
̅
) = 0 ⟺ 𝑢

̅̅̅̅
= 𝑣

̅
.

• 𝑑(𝑢
̅̅̅̅
, 𝑣
̅
) = 𝑑(𝑣

̅
, 𝑢
̅̅̅̅
).

• 𝑑(𝑢
̅̅̅̅
, 𝑣
̅
) + 𝑑(𝑣

̅
, 𝑤
̅̅ ̅̅ ̅

) ≥ 𝑑(𝑢
̅̅̅̅
, 𝑤
̅̅ ̅̅ ̅

).
• Metric space: pair (𝑉 , 𝑑).
• One metric given by 𝑑(𝑢

̅̅̅̅
, 𝑣
̅
) = ‖𝑢

̅̅̅̅
− 𝑣

̅
‖. Sequence {𝑣

̅𝑛} ⊆ 𝑉  converges to 𝒗
̅

∈ 𝑽
in the mean (in norm) if

lim
𝑛→∞

‖𝑣
̅𝑛 − 𝑣

̅
‖ = 0 ⟺ ∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ≥ 𝑁, ‖𝑣

̅𝑛 − 𝑣
̅
‖ < 𝜀

• {𝑣
̅𝑛} Cauchy sequence if

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑚, 𝑛 ≥ 𝑁, 𝑑(𝑣
̅𝑛, 𝑣

̅𝑚) < 𝜀

• Metric space complete if every Cauchy sequence in (𝑉 , 𝑑) converges in 𝑉 .
• Let space 𝑉  be function [𝑎, 𝑏] → ℂ. Let weight function 𝑤 : [𝑎, 𝑏] → ℝ≥0 with

finitely many zeros. Inner product with weight 𝒘:

⟨𝑢
̅̅̅̅
, 𝑣
̅
⟩𝑤 ≔ ∫

𝑏

𝑎

̲̲ ̲̲
𝑢(𝑥)𝑣(𝑥)𝑤(𝑥) d𝑥

Write ⟨𝑢
̅̅̅̅
, 𝑣
̅
⟩𝑤=1 as ⟨𝑢

̅̅̅̅
, 𝑣
̅
⟩.

• 𝑊 ⊆ 𝑉  dense in 𝑽  if

∀𝑣 ∈ 𝑉 , ∀𝜀 > 0, ∃𝑤 ∈ 𝑊, 𝑑(𝑣, 𝑤) < 𝜀
• Linear Operator: (𝐿, 𝐷(𝐿)), 𝐷(𝐿) is dense linear subspace of ℍ, 𝐿 : 𝐷(𝐿) → ℍ

linear:

𝐿(𝑎𝑢 + 𝑣𝑏) = 𝑎𝐿(𝑢) + 𝑏𝐿(𝑣)

𝐿 is the operator, 𝐷(𝐿) is domain of 𝐿.
• Linear operator 𝐿 : ℍ1 → ℍ2 bounded if for some 𝑀 ≥ 0,

∀𝑣 ∈ ℍ1, ‖𝐿𝑣‖ℍ2
≤ 𝑀‖𝑣‖ℍ1

If 𝑀  doesn’t exist, 𝐿 unbounded.
• Norm of 𝐿 is

‖𝐿‖ ≔ inf{𝑀 : ∀ℎ ∈ ℍ1, ‖𝐿𝑣‖ℍ2
≤ 𝑀‖𝑣‖ℍ1

}
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• To show 𝐿 unbounded, find sequence {𝑥𝑛} ⊂ 𝐷(𝐿) with ‖𝑥𝑛‖ℍ1
≤ 𝑀  for some 𝑀 ,

but ‖𝐿𝑥𝑛‖ℍ2
→ ∞ as 𝑛 → ∞.

• Adjoint of (𝐿, 𝐷(𝐿)) is (𝐿∗, 𝐷(𝐿∗)) where 𝐿 ∗ : 𝐷(𝐿 ∗) → ℍ1,

⟨𝐿𝑣1, 𝑣2⟩ℍ2 = ⟨𝑣1, 𝐿∗𝑣2⟩ℍ1 , 𝑣1 ∈ 𝐷(𝐿), 𝑣2 ∈ 𝐷(𝐿∗)

and

𝐷(𝐿∗) ≔ {𝑣2 ∈ ℍ2 : ∃𝑣∗
2 ∈ ℍ1, ∀𝑣1 ∈ 𝐷(𝐿), ⟨𝐿𝑣1, 𝑣2⟩ℍ2 = ⟨𝑣1, 𝑣∗

2⟩ℍ1}

For each 𝑣2 ∈ 𝐷(𝐿 ∗), 𝑣∗
2 = 𝐿∗𝑣2 is unique.

• Boundary value problem (BVP) on [𝒂, 𝒃]:

𝐿𝑢(𝑥) = 𝑓(𝑥), 𝑎 < 𝑥 < 𝑏, 𝐵1(𝑢) = 𝐵2(𝑢) = 0
• Dirichlet boundary conditions: 𝐵1(𝑢) = 𝑢(𝑎) = 0, 𝐵2(𝑢) = 𝑢(𝑏) = 0.
• Neumann boundary conditions: 𝐵1(𝑢) = 𝑢′(𝑎) = 0, 𝐵2(𝑢) = 𝑢′(𝑏) = 0.
• Periodic boundary conditions:

𝐵1(𝑢) = 𝑢(𝑎) − 𝑢(𝑏) = 0, 𝐵2(𝑢) = 𝑢′(𝑎) − 𝑢′(𝑏) = 0.
• Mixed boundary conditions:

𝐵1(𝑢) = 𝛼1𝑢(𝑎) + 𝛽1𝑢′(𝑎) = 0, 𝐵2(𝑢) = 𝜂2𝑢(𝑏) + 𝜅2𝑢′(𝑏) = 0
• Initial value problem (IVP) on [𝒂, 𝒃]:

𝐿𝑢(𝑥) = 𝑓(𝑥), 𝑎 < 𝑥 < 𝑏, 𝑢(𝑎) = 0, 𝑢′(𝑎) = 0
• Formal adjoint of 𝐿 = 𝑝0(𝑥)𝑑2

𝑥 + 𝑝1(𝑥)𝑑𝑥 + 𝑝2(𝑥) is

𝐿∗ ≔
̲̲ ̲̲ ̲̲
𝑝0𝑑2

𝑥 + (2
̲̲ ̲̲ ̲̲
𝑝0′ −

̲̲ ̲̲ ̲̲
𝑝1)𝑑𝑥 +

̲̲ ̲̲ ̲̲
𝑝0′′ −

̲̲ ̲̲ ̲̲
𝑝1′ +

̲̲ ̲̲ ̲̲
𝑝2

• Domain of 𝐿 = 𝑝0(𝑥)𝑑2
𝑥 + 𝑝1(𝑥)𝑑𝑥 + 𝑝2(𝑥) is

𝐷(𝐿) ≔ {𝑢 ∈ 𝐶2([𝑎, 𝑏]) : 𝐵1(𝑢) = 𝐵2(𝑢) = 0}
• Green’s formula: let 𝐿 = 𝑝0(𝑥)𝑑2

𝑥 + 𝑝1(𝑥)𝑑𝑥 + 𝑝2(𝑥), 𝐿∗ be formal adjoint. Then

⟨𝐿𝑢, 𝑣⟩ − ⟨𝑢, 𝐿∗𝑣⟩ = [
̲̲ ̲̲ ̲̲
𝑝0(𝑣

̲̲̲̲
𝑢′ − 𝑣′

̲̲ ̲̲
𝑢) + (

̲̲ ̲̲ ̲̲
𝑝1 −

̲̲ ̲̲ ̲̲
𝑝0′)𝑣

̲̲ ̲̲
𝑢]𝑏𝑎

• For 𝐿 = 𝑝0(𝑥)𝑑2
𝑥 + 𝑝1(𝑥)𝑑𝑥 + 𝑝2(𝑥), 𝐷(𝐿∗) consists of all functions 𝑣 satisfying

adjoint boundary conditions:

[
̲̲ ̲̲ ̲̲
𝑝0(𝑣

̲̲̲̲
𝑢′ − 𝑣′

̲̲ ̲̲
𝑢) + (

̲̲ ̲̲ ̲̲
𝑝1 −

̲̲ ̲̲ ̲̲
𝑝0′)𝑣

̲̲ ̲̲
𝑢]𝑏𝑎 = 0 ∀𝑢 ∈ 𝐶2([𝑎, 𝑏]) with 𝐵1(𝑢) = 𝐵2(𝑢) = 0

• (𝐿, 𝐷(𝐿)) self-adjoint if ⟨𝐿𝑢, 𝑣⟩ = ⟨𝑢, 𝐿∗𝑣⟩ (boundary terms vanish).
• BVP 𝐿𝑢(𝑥) = 𝑓(𝑥), 𝐵1(𝑢) = 𝐵2(𝑢) = 0 self-adjoint if 𝐿 = 𝐿∗ and 𝐷(𝐿) = 𝐷(𝐿∗)

(so adjoint boundary conditions equal original boundary conditions) ((𝐿, 𝐷(𝐿)) is
self-adjoint).

• If 𝐿 = 𝑝0(𝑥)𝑑2
𝑥 + 𝑝1(𝑥)𝑑𝑥 + 𝑝2(𝑥) with real-valued coefficients and 𝑝1 = 𝑝0′, then

𝐿∗ = 𝑑𝑥(𝑝0𝑑𝑥) + 𝑝2 = 𝐿

𝐿 is formally self-adjoint with respect to inner product. 𝐿 is Sturm-Liouville
operator. 𝐿 Sturm-Liouville iff 𝑝0′ = 𝑝1.

• Let 𝐿 = 𝑝0(𝑥)𝑑2
𝑥 + 𝑝1(𝑥)𝑑𝑥 + 𝑝2(𝑥), then
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𝔏 ≔ 𝜌𝐿 = 𝑑𝑥(𝜌𝑝0𝑑𝑥) + 𝜌𝑝2, 𝜌 =
1
𝑝0

exp(∫
𝑝1
𝑝0

d𝑥)

is Sturm-Liouville.
• Eigenfunction 𝑢𝑛 with eigenvalue 𝜆𝑛 with respect to weight function 𝑤(𝑥)

satisfies 𝐿𝑢𝑛(𝑥) = 𝜆𝑛𝑤(𝑥)𝑢𝑛(𝑥).
• Method of separation of variables: write 𝑈(𝑥, 𝑡) = 𝑇 (𝑡)𝑢(𝑥) when solving

PDE.
• [𝑎, 𝑏] natural interval if 𝑝0(𝑎) = 𝑝0(𝑏) = 0 and 𝑝0(𝑥) > 0 for 𝑥 ∈ (𝑎, 𝑏).
• Sturm-Liouville eigenvalue problem: 𝔏𝑢𝑛(𝑥) + 𝜆𝑛𝑤(𝑥)𝑢𝑛(𝑥) = 0.
• For Sturm-Liouville eigenvalue problem:

• Eigenvalues real.
• Eigenfunctions corresponding to distinct eigenvalues are orthogonal with

respect to inner product ⟨𝑢, 𝑣⟩𝑤.
• Eigenfunctions can be chosen to be real.
• Eigenvalues of regular Sturm-Liouville eigenfunction problem

(|𝛼1| + |𝛽1| > 0, |𝜂2| + |𝜅2| > 0) are simple (multiplicity one).
• Set of eigenvalues is countably infinite and monotonically increasing sequence:

𝜆1 < 𝜆2 <⋯ and lim𝑛→∞ 𝜆𝑛 = ∞.
• For regular SL problem, can write generalised Fourier expansion

(eigenfunction expansion) of 𝑢 as

𝑢 = ∑
∞

𝑛=0
⟨�̂�𝑛, 𝑢⟩𝑤�̂�𝑛

for normalised eigenfunctions �̂�𝑛.
• If 𝔏𝑢𝑛(𝑥) + 𝜆𝑛𝑤(𝑥)𝑢𝑛(𝑥) = 𝑓(𝑥), then 𝑓(𝑥) = ∑∞

𝑛=0⟨�̂�𝑛, 𝑓⟩𝑤�̂�𝑛. Equate
eigenfunction of 𝑓 with eigenfunction expansion of 𝑢 in 𝔏𝑢𝑛(𝑥) + 𝜆𝑛𝑤(𝑥)𝑢𝑛(𝑥)
and take inner product with �̂�𝑚 to determine 𝑐𝑚 = ⟨�̂�𝑚, 𝑢⟩

• If 𝑓 piecewise smooth on [𝑎, 𝑏], for all 𝑥 ∈ (𝑎, 𝑏),

1
2
(𝑓(𝑥+) + 𝑓(𝑥−)) ≔

1
2
(lim

𝜀→0
𝑓(𝑥 + 𝜀) + lim

𝜀→0
𝑓(𝑥 − 𝜀)) = ∑

∞

𝑛=0
⟨�̂�𝑛, 𝑢⟩𝑤�̂�𝑛(𝑥)

• Completeness of eigenfunctions:

∑
∞

𝑛=0
�̂�𝑛(𝑦)�̂�𝑛(𝑥)𝑤(𝑦) = 𝛿(𝑥 − 𝑦) = 𝛿(𝑦 − 𝑥) = ∑

∞

𝑛=0
�̂�𝑛(𝑥)�̂�𝑛(𝑦)𝑤(𝑥)

12. Green’s functions
• IN/IN IVP: 𝐿𝑢(𝑡) = 𝑓(𝑡), 𝑢(𝑎) = 𝛾1 ≠ 0, 𝑢′(𝑎) = 𝛾2 ≠ 0.
• IN/HOM IVP: 𝐿𝑢(𝑡) = 𝑓(𝑡), 𝑢(𝑎) = 𝑢′(𝑎) = 0.
• HOM/IN IVP: 𝐿𝑢(𝑡) = 0, 𝑢(𝑎) = 𝛾1 ≠ 0, 𝑢′(𝑎) = 𝛾2 ≠ 0.
• Similarly for BVP.
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• BVP boundary conditions: 𝐵1(𝑢) = 𝛼1𝑢(𝑎) + 𝛽1𝑢′(𝑎) + 𝜂1𝑢(𝑏) + 𝜅1𝑢′(𝑏) = 𝛾1,
𝐵2(𝑢) = 𝛼2𝑢(𝑎) + 𝛽2𝑢′(𝑎) + 𝜂2𝑢(𝑏) + 𝜅2𝑢′(𝑏) = 𝛾2. If 𝛾1 = 𝛾2 = 0, conditions are
homogeneous. If 𝜂1 = 𝜅1 = 𝛼2 = 𝛽2 = 0, conditions are separate.

• 𝑢1, 𝑢2 linearly independent if 𝑐1𝑢1(𝑥) + 𝑐2𝑢2(𝑥) = 0 only satisfied by
𝑐1 = 𝑐2 = 0.

• Wronskian of 𝑢1, 𝑢2:

𝑊(𝑢1, 𝑢2) ≔ |
𝑢1

𝑢1′
𝑢2

𝑢2′
| = 𝑢1𝑢2′ − 𝑢1′𝑢2

• If 𝑢1, 𝑢2 ∈ 𝐶1([𝑎, 𝑏]) and 𝑊(𝑢1, 𝑢2)(𝑥0) ≠ 0 for some 𝑥0 ∈ [𝑎, 𝑏] then 𝑢1, 𝑢2 linearly
independent on [𝑎, 𝑏].

• If 𝑢1, 𝑢2 solutions of 𝐿𝑢 = 0, Wronskian either identically zero or never zero on
[𝑎, 𝑏]. 𝑢1, 𝑢2 linearly dependent iff Wronskian identically zero.

• To solve IN/IN IVP 𝐿𝑢(𝑡) = 𝑓(𝑡), 𝑢(0) = 𝑢0, 𝑢′(0) = 𝑣0:
• Solve HOM/IN IVP:

𝐿𝑢hom(𝑡) = 0, 𝑢hom(0) = 𝑢0, 𝑢hom′(0) = 𝑣0

𝑢hom(𝑡) = 𝑐1�̃�1(𝑡) + 𝑐2�̃�2(𝑡) where �̃�1, �̃�2 linearly independent solutions.
• Solve IN/HOM IVP:

𝐿𝑢𝑝(𝑡) = 𝑓(𝑡), 𝑢𝑝(0) = 0, 𝑢𝑝′(0) = 0

.
• General solution: 𝑢(𝑡) = 𝑢hom(𝑡) + 𝑢𝑝(𝑡).

• To solve IN/HOM IVP:
• Let 𝑓(𝑡) = ∫∞

0
𝛿(𝑡 − 𝜏)𝑓(𝜏) d𝜏 .

• 𝐿𝑡𝐺(𝑡, 𝜏) = 𝛿(𝑡 − 𝜏), 𝐺(0, 𝜏) = 0 = 𝜕𝑡𝐺(0, 𝜏).
• 𝐺(0, 𝜏) = 0 = 𝜕𝑡𝐺(0, 𝜏).
• 𝐺 continuous at 𝑡 = 𝜏 :

lim
𝜀→0+

𝐺(𝜏 + 𝜀, 𝜏) = lim
𝜀→0+

𝐺(𝜏 − 𝜀, 𝜏)

• Jump discontinuity of 𝜕𝑡𝐺 at 𝑡 = 𝜏 :

lim
𝜀→0+

(
𝜕𝐺
𝜕𝑡

(𝜏 + 𝜀, 𝜏) −
𝜕𝐺
𝜕𝑡

(𝜏 − 𝜀, 𝜏)) =
1

𝑝0(𝜏)
• Define ansatz:

𝐺(𝑡, 𝜏) = 𝐴1(𝜏)𝑢1(𝑡) + 𝐵1(𝜏)𝑢2(𝑡) for 𝑡 < 𝜏
𝐺(𝑡, 𝜏) = 𝐴2(𝜏)𝑢1(𝑡) + 𝐵2(𝜏)𝑢2(𝑡) for 𝜏 < 𝑡

where 𝑢1, 𝑢2 linearly independent solutions of 𝐿𝑢 = 0.
• For 𝑡 < 𝜏 , 𝐺(0, 𝜏) = 0 = 𝜕𝑡𝐺(0, 𝜏) which should give 𝐴1(𝜏) = 𝐵1(𝜏) = 0 so

𝐺(𝑡, 𝜏) = 0 for 𝑡 < 𝜏 .
• For 𝑡 > 𝜏 , use jump discontinuity of 𝜕𝑡𝐺 and continuity of 𝐺 to find 𝐴2(𝜏) and

𝐵2(𝜏).
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•
𝐺(𝑡, 𝜏) =

⎩{
⎨
{⎧0 if 𝑡 < 𝜏

𝑢1(𝜏)𝑢2(𝑡)−𝑢2(𝜏)𝑢1(𝑡)
𝑝0(𝜏)𝑊(𝑢1,𝑢2)(𝜏) if 𝑡 > 𝜏

• Final solution:

𝑢𝑝(𝑡) = ∫
∞

0
𝐺(𝑡, 𝜏)𝑓(𝜏) d𝜏

𝐺(𝑡, 𝜏) is Green’s function encoding response of system at time 𝑡 to unit
impulse at time 𝜏 .

• To solve IN/IN BVP 𝐿𝑢(𝑥) = 𝑓(𝑥), 𝑢(𝑎) = 𝑢𝑎, 𝑢(𝑏) = 𝑢𝑏:
• Solve HOM/IN BVP:

𝐿𝑢hom(𝑥) = 0, 𝑢hom(𝑎) = 𝑢𝑎, 𝑢hom(𝑏) = 𝑢𝑏

𝑢hom(𝑥) = 𝑐1�̃�1(𝑥) + 𝑐2�̃�2(𝑥) where �̃�1, �̃�2 linearly independent solutions.
• Solve IN/HOM BVP:

𝐿𝑢𝑝(𝑥) = 𝑓(𝑥), 𝑢𝑝(𝑎) = 0, 𝑢𝑝(𝑏) = 0

• General solution: 𝑢(𝑥) = 𝑢hom(𝑥) + 𝑢𝑝(𝑥).
• To solve IN/HOM BVP:

• 𝐿𝑥𝐺(𝑥, 𝜉) = 𝛿(𝑥 − 𝜉), 𝐺(𝑎, 𝜉) = 0 for 𝑥 < 𝜉, 𝐺(𝑏, 𝜉) = 0 for 𝜉 < 𝑥.
• Define ansatz:

𝐺(𝑥, 𝜉) = 𝐴1(𝜉)𝑢1(𝑥) + 𝐵1(𝜉)𝑢2(𝑥) for 𝑥 < 𝜉
𝐺(𝑥, 𝜉) = 𝐴2(𝜉)𝑢1(𝑥) + 𝐵2(𝜉)𝑢2(𝑥) for 𝜉 < 𝑥

where 𝑢1, 𝑢2 linearly independent solutions of 𝐿𝑢 = 0.
• 𝐺 continuous at 𝑥 = 𝜉:

lim
𝜀→0+

𝐺(𝜉 + 𝜀, 𝜉) = lim
𝜀→0+

𝐺(𝜉 − 𝜀, 𝜉)

• Jump discontinuity of 𝜕𝑥𝐺 at 𝑥 = 𝜉:

lim
𝜀→0+

(
𝜕𝐺
𝜕𝑥

(𝜉 + 𝜀, 𝜉) −
𝜕𝐺
𝜕𝑥

(𝜉 − 𝜀, 𝜉)) =
1

𝑝0(𝜉)
• Use continuity, jump discontinuity and boundary conditions to find

𝐴1, 𝐵1, 𝐴2, 𝐵2.
• Final solution:

𝑢𝑝(𝑥) = ∫
𝑏

𝑎
𝐺(𝑥, 𝜉)𝑓(𝜉) d𝜉

• Note: if boundary conditions are 𝐵1(𝑢) = 𝛾1, 𝐵2(𝑢) = 𝛾2, 𝐺 must satisfy
𝐵1(𝐺) = 0, 𝐵2(𝐺) = 0.

• Laplace equation: ∇
̅̅̅ ̅̅

2𝑢 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0
• Poisson’s equation: ∇

̅̅̅ ̅̅
2𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦).

• Fundamental solution of Laplace’s equation:
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𝐺2(𝑥̅̅̅̅
) ≔

1
2𝜋

ln(𝑟), 𝑟 = |𝑥
̅̅̅̅
|

• Fundamental solution of Laplace’s equation in plane with pole at 𝒙 = 𝝃:

𝐺2(𝑥̅̅̅̅
, 𝜉
̅
) ≔ 𝐺2(𝑥̅̅̅̅

− 𝜉
̅
) =

1
2𝜋

ln|𝑥
̅̅̅̅

− 𝜉
̅
|

• Green’s first identity: let 𝐹
̅̅ ̅̅ ̅

= ∇
̅̅̅ ̅̅

𝑢 in Divergence theorem:

∫
Ω

∇
̅̅̅ ̅̅

2𝑢 d𝑥 d𝑦 = ∫
𝜕Ω

∇
̅̅̅ ̅̅

𝑢 ⋅ 𝑛
̅̅ ̅̅

d𝑠 = ∫
𝜕Ω

𝑛
̅̅ ̅̅

⋅ ∇
̅̅̅ ̅̅

𝑢 d𝑠 = ∫
𝜕Ω

𝜕𝑛𝑢 d𝑠

• Green’s second identity: let 𝐹 = 𝑢∇
̅̅̅ ̅̅

𝑣 in Divergence theorem:

∫
Ω

∇
̅̅̅ ̅̅

⋅ (𝑢∇
̅̅̅ ̅̅

𝑣) = ∫
Ω
(𝑢∇

̅̅̅ ̅̅
2𝑣 + ∇

̅̅̅ ̅̅
𝑢 ⋅ ∇

̅̅̅ ̅̅
𝑣) d𝑥 d𝑦 = ∫

𝜕Ω
𝑢∇
̅̅̅ ̅̅

𝑣 ⋅ 𝑛
̅̅ ̅̅

d𝑠 = ∫
𝜕Ω

𝑢𝜕𝑛𝑣 d𝑠

• Green’s third identity: interchange 𝑢 and 𝑣 in second identity, subtract one
from other:

∫
Ω
(𝑢∇

̅̅̅ ̅̅
2𝑣 − 𝑣∇

̅̅̅ ̅̅
2𝑢) d𝑥 d𝑦 = ∫

𝜕Ω
(𝑢𝜕𝑛𝑣 − 𝑣𝜕𝑛𝑢) d𝑠

• Dirichlet problem: IN/IN BVP

∇
̅̅̅ ̅̅

2𝑢(𝑥
̅̅̅̅
) = 𝑓(𝑥

̅̅̅̅
), 𝑢(𝑥

̅̅̅̅
)𝜕Ω = 𝑔(𝑥

̅̅̅̅
)

To solve:
• Subtract function 𝐺reg from 𝐺2 so that 𝐺 ≔ 𝐺2 − 𝐺reg satisfies

∇
̅̅̅ ̅̅

2𝐺(𝑥
̅̅̅̅
, 𝜉
̅
) = 𝛿(𝑥

̅̅̅̅
− 𝜉

̅
), 𝐺(𝑥

̅̅̅̅
, 𝜉
̅
) = 0 ⟺ 𝐺2 = 𝐺reg for 𝑥 ∈ 𝜕Ω. 𝐺 is Green’s

function for Dirichlet problem on domain 𝛀. 𝐺reg must satisfy Laplace
equation on Ω.

• Full solution:

𝑢(𝜉
̅
) = ∫

Ω
𝐺(𝑥

̅̅̅̅
, 𝜉
̅
)𝑓(𝑥

̅̅̅̅
) d𝑥 + ∫

𝜕Ω
𝑔(𝑥

̅̅̅̅
)𝜕𝑛𝐺(𝑥

̅̅̅̅
, 𝜉
̅
) d𝑠

𝑛
̅̅ ̅̅
 is unit normal to Ω at 𝑥

̅̅̅̅
 pointing outwards.

• To find 𝐺reg, use method of images:
• Fix point 𝑃 ∈ Ω with position vector 𝜉

̅0
, let 𝑄 ∈ Ω have position vector 𝑥

̅̅̅̅
. Then

𝐺2(𝑥
̅̅̅̅
, 𝜉
̅0

) = 1
2𝜋 ln|𝑃𝑄|.

• Let 𝑃1, …, 𝑃𝑛 be reflection of 𝑃  in boundary lines of 𝜕Ω (repeat reflection until
back to 𝑃 ). Label 𝑃1, …, 𝑃𝑛 with alternating − and +. Then

−𝐺reg = −
1
2𝜋

ln|𝑄𝑃1| +
1
2𝜋

ln|𝑄𝑃2| − ⋯ − ln|𝑄𝑃𝑛|

• Note: if 𝜕Ω is circle radius 𝑅, 𝑂𝑃1 must satisfy |𝑂𝑃 | ⋅ |𝑂𝑃1| = 𝑅2 so

̃𝜉
̅0

≔ 𝑂𝑃1 =
𝑅2

|𝜉
̅0

|
2 𝜉
̅0
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• Check if 𝐺reg satisfies ∇𝑥
̅̅̅ ̅̅ ̅̅ ̅

2𝐺reg(𝑥
̅̅̅̅
, 𝜉
̅0

) = 0 and 𝐺reg = 𝐺2 on 𝜕Ω. If 𝐺reg ≠ 𝐺2,
add constant 𝑐 to 𝐺reg so that 𝐺reg = 𝐺2.
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