
1. The complex plane and Riemann sphere
• ℂ∗ = ℂ − {0}
• 𝑧1𝑧2 = 0 ⟺ 𝑧1 = 0 or 𝑧2 = 0.
• |𝑧| =

√
𝑧
̲
𝑧.

• Re(𝑧) = (𝑧 +
̲
𝑧) / 2, Im(𝑧) = (𝑧 −

̲
𝑧) / 2𝑖.

• 𝑧−1 =
̲
𝑧 / |𝑧|2.

• Principal value of 𝐚𝐫𝐠(𝒛): in interval (−𝜋, 𝜋], written Arg(𝑧).
• arg(𝑧1𝑧2) ≡ arg(𝑧1) + arg(𝑧2) (mod 2𝜋).
• arg(1 / 𝑧) = − arg(𝑧) (mod 2𝜋).
• arg(

̲
𝑧) = − arg(𝑧) (mod 2𝜋).

• Multiplication by 𝑧1 = 𝑟1𝑒𝑖𝜃1 represents rotation by 𝜃1 followed by dilation by
factor 𝑟1.

• Addition represents translation.
• Conjugation represents reflection in the real axis.
• Taking the real (imaginary) part represents projection onto the real (imaginary)

axis.
• |𝑧1𝑧2| = |𝑧1||𝑧2|.
• De Moivre’s formula: (cos(𝜃) + 𝑖 sin(𝜃))𝑛 = cos(𝑛𝜃) + 𝑖 sin(𝑛𝜃).
• Triangle inequality: |𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2|.
• |𝑧| ≥ 0 and |𝑧| = 0 ⟺ 𝑧 = 0.
• max{|Re(𝑧)|, |Im(𝑧)|} ≤ |𝑧| ≤ |Re(𝑧)| + |Im(𝑧)|.
• Complex exponential function:

exp(𝑧) ≔ 𝑒𝑥(cos(𝑦) + 𝑖 sin(𝑦))

.
• ∀𝑧 ∈ ℂ, 𝑒𝑧 ≠ 0.
• 𝑒𝑧1+𝑧2 = 𝑒𝑧1𝑒𝑧2 .
• 𝑒𝑧 = 1 ⟺ 𝑧 = 2𝜋𝑖𝑘 for some 𝑘 ∈ ℤ.
• 𝑒−𝑧 = 1 / 𝑒𝑧.
• |𝑒𝑧| = 𝑒Re(𝑧).
• ∀𝑘 ∈ ℤ, exp(𝑧) = exp(𝑧 + 2𝑘𝜋𝑖).
•

sin(𝑧) ≔
1
2𝑖

(𝑒𝑖𝑧 − 𝑒−𝑖𝑧), cos(𝑧) ≔
1
2
(𝑒𝑖𝑧 + 𝑒−𝑖𝑧)

sinh(𝑧) ≔
1
2
(𝑒𝑧 − 𝑒−𝑧), cosh(𝑧) ≔

1
2
(𝑒𝑧 + 𝑒−𝑧)

• For every 𝑤 ∈ ℂ∗,

𝑒𝑧 = 𝑤 = |𝑤|𝑒𝑖𝜑

has solutions

𝑧 = log(|𝑤|) + 𝑖(𝜑 + 2𝑘𝜋), 𝑘 ∈ ℤ
• Let 𝜃2 − 𝜃1 = 2𝜋, let arg be the argument function in (𝜃1, 𝜃2]. Then

log(𝑧) ≔ log(|𝑧|) + 𝑖 arg(𝑧)
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is a branch of logarithm. Jump discontinuity on branch cut, the ray 𝑅𝜃1
= 𝑅𝜃2

.
• Principal branch of log: where arg(𝑧) = Arg(𝑧) ∈ (−𝜋, 𝜋].
• 𝑒log(𝑧) = 𝑧.
• Generally, log(𝑧𝑤) ≠ log(𝑧) + log(𝑤).
• Generally, log(𝑒𝑧) ≠ 𝑧.
• Given a branch of log, power function is

𝑧𝑤 ≔ exp(𝑤 log(𝑧))
• ℂ̂ = 𝐶 ∪ {∞}.
• Unit sphere: 𝑆2 = {(𝑥, 𝑦, 𝑠) ∈ ℝ3 : 𝑥2 + 𝑦2 + 𝑠2 = 1}, north pole: 𝑁 = (0, 0, 1) ∈ 𝑆2.

Stereographic projection: map that takes 𝑣 ∈ 𝑆2 − {𝑁} to 𝑥 + 𝑖𝑦 ∈ ℂ, where
(𝑥, 𝑦) is where the line from 𝑁  through 𝑣 intersects the (𝑥, 𝑦)-plane.

• Stereographic projection formula:

𝑃(𝑥, 𝑦, 𝑠) =
𝑥

1 − 𝑠
+

𝑖𝑦
1 − 𝑠

North pole is mapped to ∞.
• Inverse of stereographic projection found by intersection of line (from 𝑧 ∈ ℂ to 𝑁)

and 𝑆2.
• Riemann sphere: unit sphere 𝑆2 with stereographic projections from north and

south pole.

2. Metric spaces
• Metric space: set 𝑋 and metric function 𝑑 : 𝑋 × 𝑋 → ℝ≥0, for every 𝑥, 𝑦, 𝑧 ∈ 𝑋

• positivity: 𝑑(𝑥, 𝑦) ≥ 0 and 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦
• symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
• triangle inequality: 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)

• norm on vector space 𝑉 :
• ‖𝑣‖ ≥ 0 and ‖𝑣‖ = 0 ⟺ 𝑣 = 0
• ‖𝜆𝑣‖ = |𝜆| ⋅ ‖𝑣‖
• ‖𝑣 + 𝑤‖ ≤ ‖𝑣‖ + ‖𝑤‖

• 𝑑(𝑣, 𝑤) = ‖𝑣 − 𝑤‖ always defines a metric
• 𝑑(𝑣, 𝑤) = √⟨𝑣 − 𝑤, 𝑣 − 𝑤⟩
• 𝒍𝒑 norm:

‖𝑥‖𝑝 = 𝑝√∑
𝑛

𝑖=1
|𝑥𝑖|

𝑝

• Taxicab norm: 𝑙1 norm
• 𝒍∞ norm (sup-norm): ‖𝑥‖∞ ≔ max𝑖=1,…,𝑛|𝑥𝑖|
• Riemannian (chordal) metric on ℂ̂: 𝑑(𝑧, 𝑤) = ‖𝑓(𝑧) − 𝑓(𝑤)‖2 where

𝑓 : ℂ̂ → 𝑆2 is the inverse stereographic projection.
• Discrete metric:
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𝑑(𝑥, 𝑦) ≔ {
0 if 𝑥 = 𝑦
1 if 𝑥 ≠ 𝑦

• Open ball of radius 𝒓 centred at 𝒙: 𝐵𝑟(𝑥) ≔ {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) < 𝑟}
• Closed ball of radius 𝒓 centred at 𝒙: 

̲̲ ̲̲ ̲
𝐵𝑟(𝑥) ≔ {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≤ 𝑟}

• 𝑼 ⊆ 𝑿 open if ∀𝑥 ∈ 𝑈, ∃𝜀 > 0, 𝐵𝜀(𝑥) ⊂ 𝑈
• 𝑼 ⊆ 𝑿 closed if 𝑋 − 𝑈  open
• clopen: open and closed, e.g. empty set and 𝑋
• Open balls are open
• Closed balls are closed
• Arbitrary unions of open sets are open
• Finite intersections of open sets are open
• Finite unions of closed sets are closed
• Arbitrary intersections of closed sets are closed
• Interior of 𝑨: 𝐴0 ≔ {𝑥 ∈ 𝐴 : for some open 𝑈 ⊆ 𝐴, 𝑥 ∈ 𝑈}. It is the largest open

set in 𝐴.
• Closure of 𝑨: complement of interior of complement:̲̲ ̲̲ ̲

𝐴 ≔ {𝑥 ∈ 𝑋 : 𝑈 ∪ 𝐴 ≠ ∅ for every open set 𝑈 with 𝑥 ∈ 𝑈} = 𝑋 − (𝑋 − 𝐴)0. It is
the smallest closed set containing 𝐴.

• Boundary of 𝑨: closure without interior: 𝜕𝐴 ≔
̲̲ ̲̲ ̲
𝐴 − 𝐴0

• Exterior of 𝑨: complement of closure: 𝐴𝑒 ≔ 𝑋 −
̲̲ ̲̲ ̲
𝐴 = (𝑋 − 𝐴)0

• 𝐴 is open ⟺ 𝜕𝐴 ∩ 𝐴 = ∅ ⟺ 𝐴 = 𝐴0

• 𝐴 is closed ⟺ 𝜕𝐴 ⊆ 𝐴 ⟺ 𝐴 =
̲̲ ̲̲ ̲
𝐴

• For simple sets in ℝ𝑛 or ℂ𝑛, closure (or interior) is obtained by replacing by
replacing strict inequality with equality (or vice versa).

• Sequence {𝑥𝑛} converges to 𝑥 ∈ 𝑋 if lim𝑛→∞ 𝑑(𝑥𝑛, 𝑥) = 0 or equivalently,

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 > 𝑁, 𝑑(𝑥𝑛, 𝑥) < 𝜀
• Limits in the complex plane follow COLT rules
• {𝑧𝑛} converges iff {Re(𝑧𝑛)} and {Im(𝑧𝑛)} converge.
• lim𝑛→∞ 𝑥𝑛 = 𝑥 ⟺ ∀ open 𝑈 with 𝑥 ∈ 𝑈, ∃𝑁 ∈ ℕ, ∀𝑛 > 𝑁, 𝑥𝑛 ∈ 𝑈
• 𝑓 : (𝑋1, 𝑑1) → (𝑋2, 𝑑2) is continuous at 𝒙𝟎 ∈ 𝑿𝟏 if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑥 ∈ 𝑋1, 𝑑1(𝑥, 𝑥0) < 𝛿 ⟹ 𝑑2(𝑓(𝑥), 𝑓(𝑥0)) < 𝜀
• 𝑓 is continuous on 𝑿𝟏 if continuous at every 𝑥0 ∈ 𝑋1
• Products, sums and quotients of real/complex continuous functions are continuous
• Compositions of continuous functions are continuous
• Preimage: 𝑓−1(𝑈) ≔ {𝑥 ∈ 𝑋1 : 𝑓(𝑥) ∈ 𝑈}
• Properties of preimage:

• 𝑓−1(𝐴 ∪ 𝐵) = 𝑓−1(𝐴) ∪ 𝑓−1(𝐵)
• 𝑓−1(𝐴 ∩ 𝐵) = 𝑓−1(𝐴) ∩ 𝑓−1(𝐵)
• 𝑓−1(𝐴 − 𝐵) = 𝑓−1(𝐴) − 𝑓−1(𝐵)

• 𝑓 : 𝑋1 → 𝑋2 continuous ⟺ 𝑓−1(𝑈) open in 𝑋1∀ open 𝑈 ⊆ 𝑋2

⟺ 𝑓−1(𝐹) closed in 𝑋1∀ closed 𝐹 ⊆ 𝑋2
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• 𝑓 : 𝑋1 → 𝑋2 continuous at 𝑥 ∈ 𝑋1 ⟺ 𝑓−1(𝑈) open in 𝑋1∀ open 𝑈 ⊆ 𝑋2 containing 𝑓(𝑥)
• Non-empty 𝐾 ⊆ 𝑋 compact if for every sequence {𝑥𝑘} in 𝐾, there exists a

convergent subsequence {𝑥𝑛𝑘
} with limit in 𝐾.

• If {𝑥𝑘} is a convergent sequence in 𝑋 then every subsequence {𝑥𝑛𝑘
} converges to

the same limit.
• 𝐹 ⊆ 𝑋 is closed iff every sequence in 𝐹  converging in 𝑋 also converges in 𝐹 .
• Compact sets are closed
• Every closed subset of a compact set is compact
• 𝐴 ⊆ 𝑋 bounded if for some 𝑅 > 0, 𝑥 ∈ 𝑋, 𝐴 ⊆ 𝐵𝑅(𝑥)
• Compact sets are bounded
• Heine-Borel for ℂ: 𝐾 ⊆ ℂ is compact iff 𝐾 is closed and bounded.
• 𝑓 : 𝑋 → 𝑌  is continuous at 𝑥 ∈ 𝑋 iff

lim
𝑛→∞

𝑓(𝑥𝑛) = 𝑓(𝑥)

for every convergent sequence {𝑥𝑛} in 𝑋 with 𝑥𝑛 → 𝑥.
• If 𝐾 ⊆ 𝑋 is compact and 𝑓 : 𝑋 → 𝑌  is continuous, then 𝑓(𝐾) is compact in 𝑌 . So

for 𝑌 = ℝ, any continuous real-valued function attains maxima and minima on
compact sets.

3. Complex differentiation
• 𝑓 : 𝑈 → ℂ for open 𝑈  is complex differentiable at 𝒛𝟎 ∈ 𝑼  if

lim
𝑧→𝑧0

𝑓(𝑧) − 𝑓(𝑧0)
𝑧 − 𝑧0

exists. Limit is the derivative of 𝒇 at 𝒛𝟎:

𝑓′(𝑧0) = lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)
ℎ

. ℎ ∈ ℂ so limit must exist from every direction.
• Complex differentiability at 𝑧0 implies continuity at 𝑧0.
• Sums, products and quotients of complex differentiable functions are complex

differentiable.
• Compositions of complex differentiable functions are complex differentiable.
• The product, quotient and chain rules hold for complex differentiable functions.
• Most non-constant purely real/imaginary functions are not complex differentiable.
• If 𝑓 = 𝑢 + 𝑖𝑣 is complex differentiable at 𝑧0 then 𝑢𝑥, 𝑢𝑦, 𝑣𝑥, 𝑣𝑦 exist at 𝑧0 and

satisfy Cauchy-Riemann equations:

𝑢𝑥(𝑧0) = 𝑣𝑦(𝑧0), 𝑢𝑦(𝑧0) = −𝑣𝑥(𝑧0)

. Also,

𝑓′(𝑧0) = 𝑢𝑥(𝑧0) + 𝑖𝑣𝑥(𝑧0)
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• Let 𝑓 : 𝑈 → ℂ, 𝑈  open, 𝑓 = 𝑢 + 𝑖𝑣. If 𝑢𝑥, 𝑢𝑦, 𝑣𝑥, 𝑣𝑦 exist and are continuous at 𝑧0
and satisfy the Cauchy-Riemann equations at 𝑧0, then 𝑓 is complex differentiable
at 𝑧0.

• Let 𝑈 ⊆ 𝐶 open, 𝑓 : 𝑈 → ℂ. 𝑓 is holomorphic on 𝑼  if 𝑓 is complex
differentiable at every 𝑧0 ∈ 𝑈 .

• 𝑓 is holomorphic at 𝒛𝟎 ∈ 𝑼  if 𝑓 is complex differentiable on some 𝐵𝜀(𝑧0).
• Affine linear maps 𝑧 → 𝑎𝑧 + 𝑏, 𝑎 ≠ 0 are holomorphic.
• Path (curve) from 𝒂 to 𝒃: continuous function 𝛾 : [0, 1] → ℂ with 𝛾(0) = 𝑎 and

𝛾(1) = 𝑏. Path closed if 𝑎 = 𝑏.
• Smooth path: continuously differentiable.
• 𝑈 ⊆ ℂ path-connected if for every 𝑎, 𝑏 ∈ 𝑈 , there exists a path 𝛾 from 𝑎 to 𝑏

with 𝛾(𝑡) ∈ 𝑈  for every 𝑡 ∈ [0, 1].
• Domain (region): open and path-connected.
• Chain rule: Let 𝑈 ⊆ ℂ open, 𝑓 : 𝑈 → ℂ holomoprhic, 𝛾 : [0, 1] → 𝑈  smooth path.

Then

(𝑓 ∘ 𝛾)′(𝑡0) = 𝑓′(𝛾(𝑡0))𝛾′(𝑡0)
• Let 𝐷 domain, 𝑓 : 𝐷 → ℂ holomorphic on 𝐷. If ∀𝑧 ∈ 𝐷, 𝑓′(𝑧) = 0, or 𝑓 is purely

real/imaginary, or 𝑓 has constant real/imaginary part, or 𝑓 has constant modulus,
then 𝑓 is constant on 𝐷.

• Let 𝐷 domain, 𝑓 : 𝐷 → ℂ conformal at 𝒛𝟎 if 𝑓 preserves angle and orientation of
any two tangent vectors at 𝑧0. Equivalently, 𝑓 preserves angle and orientation of
any two smooth paths through 𝑧0. 𝑓 conformal if conformal at every 𝑧0 ∈ 𝐷.

• If 𝑓 holomorphic, 𝑓′(𝑧0) ≠ 0 then 𝑓 conformal at 𝑧0.
• 𝑓 transforms the tangent vector 𝛾′(𝑡0) by multiplying it by 𝑓′(𝛾(𝑡0)).
• If 𝑓 is conformal at 𝑧0, then 𝑓 is complex differentiable at 𝑧0 and 𝑓′(𝑧0) ≠ 0.
• 𝑓 is conformal on domain 𝐷 iff 𝑓 is holomorphic on 𝐷 and ∀𝑧 ∈ 𝐷, 𝑓′(𝑧) ≠ 0.
• Conformal maps map orthogonal grids in the (𝑥, 𝑦)-plane to orthogonal grids.

(Grids can be made of arbitrary smooth curves, not necessarily straight lines).
• For 𝐷 and 𝐷′ domains, 𝑓 : 𝐷 → 𝐷′ is biholomorphic if 𝑓 holomorphic, bĳection

and 𝑓−1 : 𝐷′ → 𝐷 holomorphic. 𝑓 is a biholomorphism. 𝐷 and 𝐷′ are
biholomorphic if such an 𝑓 exists and write 𝑓 : 𝐷 ~→ 𝐷′

• Affine linear maps 𝑧 → 𝑎𝑧 + 𝑏, 𝑎 ≠ 0, are biholomorphic from ℂ to ℂ.
• For 𝐷 domain, set of all biholomorphic maps from 𝐷 to 𝐷 forms a group under

composition, called automorphism group of 𝑫, Aut(𝐷).

4. Mobius transformations
• GL2(ℂ) ≔ {𝐴 ∈ 𝑀2(ℂ) : det(𝐴) ≠ 0}.
• Let 𝑇 = [𝑎

𝑐
𝑏
𝑑
] ∈ GL2(ℂ), then Mobius transformation is 𝑀𝑇 (𝑧) = ∞ if

𝑐𝑧 + 𝑑 = 0, else

𝑀𝑇 (𝑧) =
𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

Also
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𝑀𝑇 (∞) = {
𝑎
𝑐 if 𝑐 ≠ 0
∞ if 𝑐 = 0

So 𝑀𝑇 : ℂ̂ → ℂ̂.
• Let 𝑘2 = det(𝑇 ) then

𝑀 1
𝑘𝑇 (𝑧) =

𝑎𝑧
𝑘 + 𝑏

𝑘
𝑐𝑧
𝑘 + 𝑑

𝑘
=

𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

= 𝑀𝑇 (𝑧)

so any 𝑇  can be scaled to 𝑇 ′ = 1
𝑘𝑇  so that det(𝑇 ′) = det( 1

𝑘𝑇) = 1
𝑘2 det(𝑇 ) = 1.

• Cayley map: 𝑀𝑇 (𝑧) = 𝑧−𝑖
𝑧+𝑖  where 𝑇 = [1

1
−𝑖
𝑖 ].

• Cayley map maps ℍ → 𝔻.
• Set of Mobius transformations forms group under composition:

• 𝑀𝑇1
∘ 𝑀𝑇2

= 𝑀𝑇1𝑇2
.

• (𝑀𝑇 )−1 = 𝑀𝑇 −1 .
• 𝑀𝑇 = Id ⟺ 𝑇 = 𝑡[1

0
0
1], 𝑡 ∈ ℂ∗.

• Let 𝑇 = [𝑎
𝑐

𝑏
𝑑
] ∈ GL2(ℂ). If 𝑐 = 0, 𝑀𝑇  is biholomorphic from ℂ̂ to ℂ̂. If 𝑐 ≠ 0, 𝑀𝑇

is biholomorphic from ℂ − {−𝑑
𝑐 } to ℂ − {𝑎

𝑐 }.
• 𝑀𝑇  conformal at every 𝑧 ∈ ℂ where 𝑀𝑇 (𝑧) ≠ ∞.
• 𝑀𝑇  is bĳection from ℂ̂ to ℂ̂.
• 𝑧 is fixed point of 𝑀𝑇  if 𝑀𝑇 (𝑧) = 𝑧.
• If 𝑀𝑇  is not identity map, then it has at most 2 fixed points in ℂ̂. So if 𝑀𝑇  has 3

fixed points in ℂ̂, it is identity map.
• Cross ratio of distinct 𝑧0, 𝑧1, 𝑧2, 𝑧3 ∈ ℂ:

(𝑧0, 𝑧1; 𝑧2, 𝑧3) ≔
(𝑧0 − 𝑧2)(𝑧1 − 𝑧3)
(𝑧0 − 𝑧3)(𝑧1 − 𝑧2)

If some 𝑧𝑖 = ∞ then same definition but remove all differences involving 𝑧𝑖, so

(∞, 𝑧1; 𝑧2, 𝑧3) ≔
(𝑧1 − 𝑧3)
(𝑧1 − 𝑧2)

• Three points theorem: Let {𝑧1, 𝑧2, 𝑧3}, {𝑤1, 𝑤2, 𝑤3} be sets of distinct ordered
points in ℂ̂. Then exists unique Mobius transformation 𝑓 such that 𝑓(𝑧𝑖) = 𝑤𝑖,
𝑖 = 1, 2, 3, given by 𝐹−1 ∘ 𝐺, where

𝐹(𝑧) = (𝑧, 𝑤1; 𝑤2, 𝑤3), 𝐺(𝑧) = (𝑧, 𝑧1; 𝑧2, 𝑧3)
• Mobius transformations preserve cross ratio: For Mobius transformation 𝑓 ,

(𝑓(𝑧0), 𝑓(𝑧1); 𝑓(𝑧2), 𝑓(𝑧3)) = (𝑧0, 𝑧1; 𝑧2, 𝑧3)
• Strategy to find Mobius transformation from how it acts on three

points: since cross-ratio preserved, rearrange the equation

(𝑓(𝑧), 𝑤1; 𝑤2, 𝑤3) = (𝑧, 𝑧1; 𝑧2, 𝑧3)
• Strategy to find image of domain 𝑫 under 𝑴𝑻 :

• Find image of boundary: 𝑀𝑇 (𝜕𝐷).
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• Find image of point 𝑧0 ∈ 𝐷 in interior: 𝑀𝑇 (𝑧0).
• Image 𝐷′ is domain bounded by 𝑀𝑇 (𝜕𝐷) and containing 𝑀𝑇 (𝑧0).

• Circline: circle or line.
• Mobius transformations map circlines in ℂ̂ to circlines in ℂ̂.
• Equations of circles and lines in ℂ:

𝛾𝑧
̲
𝑧 − 𝛼

̲
𝑧 −

̲̲ ̲̲
𝛼𝑧 + 𝛽 = 0

is equation of circle if 𝛾 = 1 and |𝛼|2 − 𝛽 > 0, and equation of line if 𝛾 = 0 and
𝛼 ≠ 0. Also, any circle or line can be described by this equation.

• Circle uniquely determined by three points, line determined by two points, so to
determine how Mobius transformation maps circle, check where three points on
circle are mapped.

• Circles through 𝑁  in 𝑆2 correspond to lines in ℂ̂. Circles not through 𝑁
correspond to circles in ℂ̂ (via stereographic projection).

• For domain 𝐷, Mob(𝐷) is set of Mobius transformations that map 𝐷 to 𝐷.
• H2H:

𝑓 ∈ Mob(ℍ) ⟺ 𝑓 = 𝑀𝑇 , 𝑇 ∈ SL2(ℝ) ≔ {𝐴 ∈ 𝑀2(ℝ) : det(𝐴) = 1}
• D2D:

𝑓 ∈ Mob(𝔻) ⟺ 𝑓 = 𝑀𝑇 , 𝑇 ∈ SU(1, 1) ≔ {𝐴 = [
𝛼̲̲̲̲
𝛽

𝛽
̲̲ ̲̲
𝛼
] : 𝛼, 𝛽 ∈ ℂ, det(𝐴) = 1}

• D2D*:
• Every 𝑓 ∈ Mob(𝔻) is of form

𝑓(𝑧) = 𝑒𝑖𝜃 𝑧 − 𝑧0̲̲ ̲̲ ̲̲
𝑧0𝑧 − 1

where 𝑧0 ∈ 𝔻 is unique point such that 𝑓(𝑧0) = 0.
• Every 𝑓 ∈ Mob(𝔻) where 𝑓(0) = 0 is a rotation about 0.

• Strategy to find biholomorphic map between two domains: build up
biholomorphic map from simpler known ones, e.g. Mobius transformations, Cayley
map, translations.

5. Notions of convergence in complex analysis and
power series
• For 𝑋 and 𝑌  metric spaces, {𝑓𝑛}𝑛∈ℕ : 𝑋 → 𝑌  converges pointwise on 𝑿 to 𝒇

if

∀𝑥 ∈ 𝑋, ∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 > 𝑁, 𝑑𝑌 (𝑓𝑛(𝑥), 𝑓(𝑥)) < 𝜀

𝑓(𝑥) = lim𝑛→∞ 𝑓𝑛(𝑥) is limit function.
• {𝑓𝑛}𝑛∈ℕ converges uniformly on 𝑿 to 𝒇 if

∀𝜀 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 > 𝑁, ∀𝑥 ∈ 𝑋, 𝑑𝑌 (𝑓𝑛(𝑥), 𝑓(𝑥)) < 𝜀
• Uniform convergence implies pointwise convergence.
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• Uniform limits of continuous functions are continuous: let {𝑓𝑛}𝑛∈ℕ be all
continuous on 𝑋 and converge uniformly to 𝑓 on 𝑋. Then 𝑓 is continuous on 𝑋.

• Test for uniform convergence: let {𝑓𝑛} : 𝑋 → ℂ converge pointwise to 𝑓 .
• If ∀𝑥 ∈ 𝑋, |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ 𝑠𝑛, {𝑠𝑛} is sequence with lim𝑛→∞ 𝑠𝑛 = 0, then {𝑓𝑛}

converges uniformly to 𝑓 on 𝑋.
• If for some sequence {𝑥𝑛} ⊂ 𝑋, |𝑓𝑛(𝑥𝑛) − 𝑓(𝑥𝑛)| ≥ 𝑐 for some 𝑐 > 0, then 𝑓𝑛

does not converge uniformly to 𝑓 on 𝑋.
• Weierstrass M-test: Let {𝑓𝑛} : 𝑋 → ℂ satisfy

∀𝑥 ∈ 𝑋, |𝑓𝑛(𝑥)| ≤ 𝑀𝑛, ∑
∞

𝑛=1
𝑀𝑛 < ∞

Then ∑∞
𝑛=1 𝑓𝑛 converges uniformly to some 𝑓 on 𝑋.

• Let {𝑓𝑛} : [𝑎, 𝑏] → ℝ be continuous and converge uniformly to 𝑓 on [𝑎, 𝑏]. Then

∀𝑐 ∈ [𝑎, 𝑏], lim
𝑛→∞

∫
𝑐

𝑎
𝑓𝑛(𝑥) d𝑥 = ∫

𝑐

𝑎
𝑓(𝑥) d𝑥

• {𝑓𝑛} converges locally uniformly on 𝑿 to 𝒇 if ∀𝑥 ∈ 𝑋, exists open 𝑈 ⊂ 𝑋
containing 𝑥 such that {𝑓𝑛} converges uniformly to 𝑓 on 𝑈 .

• Let {𝑓𝑛} be continuous on 𝑋 and converge locally uniformly to 𝑓 on 𝑋. Then 𝑓 is
continuous on 𝑋.

• Local M-test: let {𝑓𝑛} : 𝑋 → ℂ be continuous, such that ∀𝑦 ∈ 𝑋, exists open
𝑈 ⊂ 𝑋 containing 𝑦 and 𝑀𝑛 > 0 with

∀𝑥 ∈ 𝑈, |𝑓𝑛(𝑥)| ≤ 𝑀𝑛, ∑
∞

𝑛=1
𝑀𝑛 < ∞

Then ∑∞
𝑛=1 𝑓𝑛 converges locally uniformly to continuous function on 𝑋.

• Complex power series:

∑
∞

𝑛=0
𝑎𝑛(𝑧 − 𝑐)𝑛, 𝑎𝑛, 𝑐 ∈ ℂ

• Either:
• Series converges only for 𝑧 = 𝑐 (𝑅 = 0).
• Series converges absolutely for |𝑧 − 𝑐| < 𝑅 ⟺ 𝑧 ∈ 𝐵𝑅(𝑐). 𝑅 is radius of

convergence, 𝐵𝑅(𝑐) is disc of convergence and diverges for |𝑧 − 𝑐| > 𝑅.
• Series converges absolutely for all 𝑧 (𝑅 = ∞).

• Power series with radius of convergence 𝑅 converges absolutely on 𝐵𝑟(𝑐) for every
0 < 𝑟 < 𝑅. So series is locally uniformly convergent (but not uniformly convergent)
on disc of convergence.

• Term-by-term differentiation and integration preserve radius of
convergence: let ∑∞

𝑛=0 𝑎𝑛(𝑧 − 𝑐)𝑛 have radius of convergence 𝑅. Then formal
derivative and antiderivative

∑
∞

𝑛=1
𝑛𝑎𝑛(𝑧 − 𝑐)𝑛−1, ∑

∞

𝑛=0

𝑎𝑛
𝑛 + 1

(𝑧 − 𝑐)𝑛+1

8



have radius of convergence 𝑅.
• Power series can be differentiated term-by-term in disc of convergence:

let ∑∞
𝑛=0 𝑎𝑛(𝑧 − 𝑐)𝑛 have radius of convergence 𝑅 and converge to 𝑓 : 𝐵𝑅(𝑐) → ℂ.

Then 𝑓 is holomorphic on 𝐵𝑅(𝑐) and

𝑓′(𝑧) = ∑
∞

𝑛=1
𝑛𝑎𝑛(𝑧 − 𝑐)𝑛−1

• Power series with 𝑅 > 0 can be differentiated infinitely many times and

𝑓 (𝑘)(𝑧) = ∑
∞

𝑛=𝑘
𝑘!(

𝑛
𝑘

)𝑎𝑛(𝑧 − 𝑐)𝑛−𝑘

So 𝑓 (𝑘)(𝑐) = 𝑘!𝑎𝑘.
• Power series can be integrated term-by-term in disc of convergence:

power series with 𝑅 > 0 has holomorphic antiderivative 𝐹 : 𝐵𝑅(𝑐) → ℂ given by

𝐹(𝑧) = ∑
∞

𝑛=0

𝑎𝑛
𝑛 + 1

(𝑧 − 𝑐)𝑛+1

6. Complex integration over contours
• Let 𝑓 : [𝑎, 𝑏] → ℂ, 𝑓 = 𝑢 + 𝑖𝑣, then

∫
𝑏

𝑎
𝑓(𝑡) d𝑡 = ∫

𝑏

𝑎
𝑢(𝑡) d𝑡 + 𝑖 ∫

𝑏

𝑎
𝑣(𝑡) d𝑡

• Let 𝑓1, 𝑓2 : [𝑎, 𝑏] → ℂ, 𝑐 ∈ ℂ, then

∫
𝑏

𝑎
(𝑓1(𝑡) + 𝑓2(𝑡)) d𝑡 = ∫

𝑏

𝑎
𝑓1(𝑡) d𝑡 + ∫

𝑏

𝑎
𝑓2(𝑡) d𝑡, ∫

𝑏

𝑎
𝑐𝑓1(𝑡) d𝑡 = 𝑐 ∫

𝑏

𝑎
𝑓1(𝑡) d𝑡

• Curve 𝛾 : [𝑎, 𝑏] → ℂ is 𝐶1 if continuously differentiable (derivative exists and is
continuous).

• Integral of continuous 𝒇 : 𝑼 → ℂ along curve 𝜸 : [𝒂, 𝒃] → 𝑼 , 𝜸 ∈ 𝑪𝟏:

∫
𝛾

𝑓(𝑧) d𝑧 ≔ ∫
𝑏

𝑎
𝑓(𝛾(𝑡))𝛾′(𝑡) d𝑡

• Let 𝑓1, 𝑓2 : [𝑎, 𝑏] → ℂ, 𝑐 ∈ ℂ, then

∫
𝛾
(𝑓1(𝑧) + 𝑓2(𝑧)) d𝑧 = ∫

𝛾
𝑓1(𝑧) d𝑧 + ∫

𝛾
𝑓2(𝑧) d𝑧, ∫

𝛾
𝑐𝑓1(𝑧) d𝑧 = 𝑐 ∫

𝛾
𝑓1(𝑧) d𝑧

• (−𝛾) : [−𝑏, −𝑎] → ℂ, (−𝛾)(𝑡) ≔ 𝛾(−𝑡), then

∫
−𝛾

𝑓(𝑧) d𝑧 = − ∫
𝛾

𝑓(𝑧) d𝑧

• Let 𝜑 : [𝑎′, 𝑏′] → [𝑎, 𝑏] be continuously differentiable, 𝜑(𝑎′) = 𝑎, 𝜑(𝑏′) = 𝑏,
𝛿 : [𝑎′, 𝑏′] → ℂ, 𝛿 = 𝛾 ∘ 𝜑. Then
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∫
𝛾

𝑓(𝑧) d𝑧 = ∫
𝛿

𝑓(𝑧) d𝑧

• Let 𝛾 : [𝑎, 𝑏] → ℂ, 𝑎 = 𝑎0 < 𝑎1 <⋯< 𝑎𝑛 = 𝑏, 𝛾𝑖 : [𝑎𝑖−1, 𝑎𝑖] → ℂ be 𝐶1, 𝛾𝑖(𝑡) ≔ 𝛾(𝑡)
for 𝑡 ∈ [𝑎𝑖−1, 𝑎𝑖]. Then 𝛾 is piecewise 𝑪𝟏 curve, or contour.

∫
𝛾

𝑓(𝑧) d𝑧 = ∑
𝑛

𝑖=1
∫

𝛾𝑖

𝑓(𝑧) d𝑧

is a contour integral.
• Contour union: let 𝛾 : [𝑎, 𝑏] → ℂ, 𝛿 : [𝑐, 𝑑] → ℂ, then

(𝛾 ∪ 𝛿) : [𝑎, 𝑏 + 𝑑 − 𝑐] → ℂ, (𝛾 ∪ 𝛿)(𝑡) ≔ {
𝛾(𝑡) if 𝑡 ∈ [𝑎, 𝑏]
𝛿(𝑡 + 𝑐 − 𝑏) if 𝑡 ∈ [𝑏, 𝑏 + 𝑑 − 𝑐]

Then

∫
𝛾∪𝛿

𝑓(𝑧) d𝑧 = ∫
𝛾

𝑓(𝑧) d𝑧 + ∫
𝛿

𝑓(𝑧) d𝑧

• Complex Fundamental Theorem of Calculus (FTC) Let 𝑈 ⊆ ℂ open,
𝐹 : 𝑈 → ℂ holomorphic with derivative 𝑓 , 𝛾 : [𝑎, 𝑏] → 𝑈  contour. Then

∫
𝛾

𝑓(𝑧) d𝑧 = 𝐹(𝛾(𝑏)) − 𝐹(𝛾(𝑎))

So if 𝛾 closed, then ∫
𝛾
𝑓(𝑧) d𝑧 = 0. Also, if 𝛾1 and 𝛾2 have same endpoints, then

∫
𝛾1

𝑓(𝑧) d𝑧 = ∫
𝛾2

𝑓(𝑧) d𝑧

• If 𝐹′ = 𝑓 , 𝐹  is antiderivative or primitive of 𝑓 .
• Length of contour 𝛾:

𝐿(𝛾) ≔ ∫
𝑏

𝑎
|𝛾′(𝑡)| d𝑡

• Estimation lemma: Let 𝑓 : 𝑈 → ℂ continuous, 𝛾 : [𝑎, 𝑏] → 𝑈  contour. Then

|∫
𝛾

𝑓(𝑧) d𝑧| ≤ 𝐿(𝛾) ⋅ sup
𝛾

|𝑓|

where sup𝛾 |𝑓| ≔ sup{|𝑓(𝑧)| : 𝑧 ∈ 𝛾}
• Converse to FTC: Let 𝐷 domain, 𝑓 : 𝐷 → ℂ continuous, ∫

𝛾
𝑓(𝑧) d𝑧 = 0 for every

closed contour 𝛾 ∈ 𝐷. Then exists holomorphic antiderivative 𝐹 : 𝐷 → ℂ (unique
up to addition of constant) such that

𝐹′(𝑧) = 𝑓(𝑧)
• Domain 𝐷 starlike if for some 𝑎0 ∈ 𝐷, for every 𝑎0 ≠ 𝑏 ∈ 𝐷, straight line from 𝑎0

to 𝑏 contained in 𝐷.
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• Cauchy’s theorem for starlike domains: let 𝐷 starlike domain, 𝑓 : 𝐷 → ℂ
holomorphic, 𝛾 ∈ 𝐷 closed contour. Then

∫
𝛾

𝑓(𝑧) d𝑧 = 0

Same holds if 𝑓 holomorphic on 𝐷 − 𝑆, 𝑆 finite set of points, and 𝑓 continuous on
𝐷.

• Let 𝑈  open, 𝑓 : 𝑈 → 𝐶 holomorphic, Δ ∈ 𝑈  be triangle. Then

∫
𝜕Δ

𝑓(𝑧) d𝑧 = 0

Same holds if 𝑓 holomorphic on 𝑈 − 𝑆, 𝑆 finite set of points, and 𝑓 continuous on
𝑈 .

• By default, always use anti-clockwise parameterisation of contour.
• Let 𝐷 starlike domain, 𝑓 : 𝐷 → ℂ continuous, ∫

𝜕Δ
𝑓(𝑧) d𝑧 = 0 for every triangle

Δ ∈ 𝐷. Then exists holomorphic 𝐹 : 𝐷 → ℂ such that 𝐹′ = 𝑓 .
• Cauchy’s integral formula (CIF): let 𝐵 = 𝐵𝑟(𝑎), 𝑓 : 𝐵 → ℂ holomorphic. Then

for every 𝑤 ∈ 𝐵, 𝜌 such that |𝑤 − 𝑎| < 𝜌 < 𝑟,

𝑓(𝑤) =
1

2𝜋𝑖
∫

|𝑧−𝑎|=𝜌

𝑓(𝑧)
𝑧 − 𝑤

d𝑧

7. Features of holomorphic functions
• Cauchy-Taylor theorem: let 𝑈 ⊆ ℂ open, 𝑓 : 𝑈 → ℂ holomorphic, 𝑟 > 0,

𝐵𝑟(𝑎) ⊂ 𝑈 . Then 𝑓 is given by power series (Taylor series of 𝒇 around 𝒂) that
converges on 𝐵𝑟(𝑎):

𝑓(𝑧) = ∑
∞

𝑛=0
𝑐𝑛(𝑧 − 𝑎)𝑛, 𝑧 ∈ 𝐵𝑟(𝑎)

where

𝑐𝑛 =
1

2𝜋𝑖
∫

|𝑧−𝑎|=𝜌

𝑓(𝑧)
(𝑧 − 𝑎)𝑛+1 d𝑧

for any 0 < 𝜌 < 𝑟.
• Function with Taylor series expansion on 𝐵𝑟(𝑎), 𝑟 > 0, is analytic at 𝒂.
• Function analytic if analytic at every point in domain.
• Holomorphic ⟺ analytic.
• Cauchy’s integral formula (CIF) for derivatives: let 𝐵 = 𝐵𝑟(𝑎), 𝑓 : 𝐵 → ℂ

holomorphic. For every 0 < 𝜌 < 𝑟,

∫
|𝑧−𝑎|=𝜌

𝑓(𝑧)
(𝑧 − 𝑎)𝑛+1 d𝑧 =

2𝜋𝑖
𝑛!

𝑓 (𝑛)(𝑎)

• So 𝑓 has Taylor series expansion on 𝐵𝑟(𝑎):

11



𝑓(𝑧) = ∑
∞

𝑛=0

𝑓 (𝑛)(𝑎)
𝑛!

(𝑧 − 𝑎)𝑛

• Equivalent of Cauchy-Taylor doesn’t hold for real analysis, e.g.

𝑓(𝑥) = {𝑒− 1
𝑥 if 𝑥 > 0

0 if 𝑥 ≤ 0

has derivatives of all orders and 𝑓 (𝑛)(0) = 0. But Taylor series around 𝑥 = 0 would
be

𝑓(𝑥) = ∑
∞

𝑛=0
𝑐𝑛𝑥𝑛, 𝑥 ∈ (0 − 𝜀, 0 + 𝜀)

for some 𝜀 > 0. But then 𝑐𝑛 = 𝑓 (𝑛)

𝑛! = 0 but 𝑓 isn’t identically zero in any
neighbourhood of the origin. So 𝑓 doesn’t have a Taylor series.

• Holomorphic functions have infinitely many derivatives: let 𝑈 ⊆ ℂ open,
𝑓 : 𝑈 → ℂ holomorphic. Then 𝑓 has derivatives of all orders on 𝑈  which are all
holomorphic.

• Morera’s theorem: let 𝐷 domain, 𝑓 : 𝐷 → ℂ continuous. If for every closed
contour 𝛾 in 𝐷,

∫
𝛾

𝑓(𝑧) d𝑧 = 0

then 𝑓 holomorphic.
• 𝑓 : ℂ → ℂ entire if holomorphic on ℂ.
• 𝑓 : ℂ → ℂ bounded if for some 𝑀 > 0, |𝑓(𝑧)| ≤ 𝑀  for every 𝑧 ∈ ℂ.
• Liouville’s theorem: every bounded entire function is constant.
• Fundamental theorem of algebra: every non-constant polynomial with

complex coefficients has complex root.
• Local maximum modulus principle: let 𝑓 : 𝐵𝑟(𝑎) → ℂ holomorphic. If

∀𝑧 ∈ 𝐵𝑟(𝑎), |𝑓(𝑧)| ≤ |𝑓(𝑎)|

then 𝑓 constant on 𝐵𝑟(𝑎).
• Maximum modulus principle: let 𝐷 domain, 𝑓 : 𝐷 → ℂ holomorphic. If for

some 𝑎 ∈ 𝐷,

∀𝑧 ∈ 𝐷, |𝑓(𝑧)| ≤ |𝑓(𝑎)|

then 𝑓 constant on 𝐷.
• If 𝑈 ⊂ ℂ path-connected and open, then not possible to write 𝑈 = 𝑈1 ∪ 𝑈2, where

𝑈1, 𝑈2 disjoint, open, non-empty. So domains are connected.
• 𝑓 : 𝐵𝑟(𝑎) → ℂ has zero of order 𝒎 at 𝒂 if for some 𝑚 > 0, exists holomorphic

ℎ : 𝐵𝑟(𝑎) → ℂ such that 𝑓(𝑧) = (𝑧 − 𝑎)𝑚ℎ(𝑧), ℎ(𝑎) ≠ 0.
• 𝑓 has zero of order 𝑚 at 𝑎 iff
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𝑓(𝑎) = 𝑓 (1)(𝑎) =⋯= 𝑓 (𝑚−1)(𝑎) = 0

and 𝑓 (𝑚)(𝑎) ≠ 0.
• Principle of isolated zeros: let 𝑓 : 𝐵𝑟(𝑎) → ℂ holomorphic, 𝑓 ≠ 0. Then for

some 0 < 𝜌 ≤ 𝑟,

∀𝑧 ∈ 𝐵𝜌(𝑎) − {𝑎}, 𝑓(𝑧) ≠ 0

Holds for 𝑓(𝑎) = 0, i.e. zeros of holomorphic functions are isolated.
• Uniqueness of analytic continuation theorem: let 𝐷′ ⊂ 𝐷 non-empty

domains, 𝑓 : 𝐷′ → ℂ holomorphic. Then exists at most one holomorphic 𝑔 : 𝐷 → ℂ
such that

∀𝑧 ∈ 𝐷′, 𝑓(𝑧) = 𝑔(𝑧)

If 𝑔 exists, it is analytic continuation of 𝒇 to 𝑫.
• Let 𝐷 domain, 𝑓, 𝑔 : 𝐷 → ℂ holomorphic, 𝐵𝑟(𝑎) ⊂ 𝐷. If 𝑓(𝑧) = 𝑔(𝑧) on 𝐵𝑟(𝑎) then

𝑓(𝑧) = 𝑔(𝑧) on 𝐷.
• Let 𝑆 ⊂ 𝐶, 𝑤 ∈ 𝑆.

• 𝑤 isolated point of 𝑺 if for some 𝜀 > 0, 𝐵𝜀(𝑤) ∩ 𝑆 = {𝑤}.
• 𝑤 non-isolated point of 𝑺 if ∀𝜀 > 0, exists 𝑤 ≠ 𝑧 ∈ 𝑆 such that 𝑧 ∈ 𝐵𝜀(𝑤).

• Identity theorem: Let 𝑓, 𝑔 : 𝐷 → ℂ holomorphic on domain 𝐷. If
𝑆 ≔ {𝑧 ∈ 𝐷 : 𝑓(𝑧) = 𝑔(𝑧)} contains non-isolated point, then 𝑓(𝑧) = 𝑔(𝑧) on 𝐷.

• Let 𝐷 ⊆ ℂ domain, 𝑢 : 𝐷 → ℝ harmonic if has continuous second order partial
derivatives and satisfies Laplace’s equation:

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0

• Let 𝑓 = 𝑢 + 𝑖𝑣 : 𝐷 → ℂ holomorphic on domain 𝐷. Then 𝑢 and 𝑣 harmonic.
• Existence of harmonic conjugates theorem: let 𝐷 starlike domain, 𝑢 : 𝐷 → ℝ

harmonic. Then exists harmonic 𝑣 : 𝐷 → ℝ such that 𝑓 = 𝑢 + 𝑖𝑣 holomorphic on
𝐷. 𝑣 is harmonic conjugate of 𝒖, unique up to addition of real constant. Note:
condition of 𝐷 being starlike is removed when Cauchy’s theorem is proved in
generality.

• Let 𝑓 : 𝐷 → ℂ holomorphic on domain 𝐷. Then 𝑓 has holomorphic antiderivative
on 𝐷.

• Dirichlet problem: let 𝐷 ⊆ ℂ domain with closure 
̲̲̲ ̲̲
𝐷, boundary 𝜕𝐷, 𝑔 : 𝜕𝐷 → ℝ

continuous. Find continuous 𝜇 :
̲̲̲ ̲̲
𝐷 → ℝ such that 𝜇 harmonic on 𝐷 and 𝜇 = 𝑔 on

𝜕𝐷.
• Let 𝑓 = 𝑢 + 𝑖𝑣 : 𝐷 → ℂ holomorphic on domain 𝐷, 𝜇 harmonic on 𝑓(𝐷). Then

̃𝜇 ≔ 𝜇 ∘ 𝑓 harmonic on 𝐷.
• So if 𝜇 harmonic on 𝐷′ and want to find a harmonic ̃𝜇 on 𝐷, find holomorphic 𝑓

mapping 𝐷 to 𝐷′ so 𝑓(𝐷) = 𝐷′. Then ̃𝜇 = 𝜇 ∘ 𝑓 is solution.

8. General form of Cauchy’s theorem and C.I.F.
• Let curve 𝛾 : [𝑎, 𝑏] → ℂ, 𝛾(𝑡) = 𝑤 + 𝑟(𝑡)𝑒𝑖𝜃(𝑡), 𝑤 ∈ ℂ, 𝑟, 𝜃 : [𝑎, 𝑏] → ℝ, piecewise 𝐶1,

𝑟(𝑡) > 0. Winding number (index) of 𝛾 around 𝑤 is
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𝐼(𝛾; 𝑤) ≔
𝜃(𝑏) − 𝜃(𝑎)

2𝜋
• Let contour 𝛾 : [𝑎, 𝑏] → ℂ, 𝑤 ∈ ℂ, 𝑤 ∉ 𝛾. Then exists 𝑟, 𝜃 : [𝑎, 𝑏] → ℝ piecewise 𝐶1,

𝑟(𝑡) > 0 such that

𝛾(𝑡) = 𝑤 + 𝑟(𝑡)𝑒𝑖𝜃(𝑡)

. Here, 𝑟(𝑡) = |𝛾(𝑡) − 𝑤|.
• Let 𝛾 : [𝑎, 𝑏] → ℂ closed contour, 𝑤 ∉ 𝛾. Then

𝐼(𝛾; 𝑤) =
1

2𝜋𝑖
∫

𝛾

1
𝑧 − 𝑤

d𝑧

• Let 𝐷 starlike domain, 𝛾 closed contour in 𝐷. If 𝑤 ∉ 𝐷, then 𝐼(𝛾; 𝑤) = 0.
• Let 𝑈 ⊆ ℂ open.

• Closed contour 𝛾 in 𝑈  homologous to zero in 𝑼  if 𝐼(𝛾; 𝑤) = 0 for every
𝑤 ∉ 𝑈 .

• 𝑈  is simply connected if every closed contour in 𝑈  homologous to zero in 𝑈 .
• Cycle: finite collection of closed contours in 𝑈 , denoted as formal sum

Γ ≔ 𝛾1 + ⋯ +𝛾𝑛

𝑤 does not lie in 𝚪 if 𝑤 ∉ 𝛾𝑖 for all 𝑖. Define

𝐼(Γ; 𝑤) ≔ ∑
𝑛

𝑖=1
𝐼(𝛾𝑖; 𝑤)

and

∫
Γ

𝑓(𝑧) d𝑧 ≔ ∑
𝑛

𝑖=1
∫

𝛾𝑖

𝑓(𝑧) d𝑧

Γ homologous to zero in 𝑼  if 𝐼(Γ; 𝑤) = 0 for every 𝑤 ∉ 𝑈 .
• Closed curve 𝛾 : [𝑎, 𝑏] → ℂ simple if for any 𝑡1 < 𝑡2,

𝛾(𝑡1) = 𝛾(𝑡2) ⟹ 𝑡1 = 𝑎 and 𝑡2 = 𝑏 (no self-crossing or backtracking).
• Jordan curve theorem: Let 𝛾 closed curve. Then ℂ − 𝛾 is disjoint union of two

domains, exactly one of which is bounded. Bounded domain is interior of 𝛾, 𝐷int
𝛾 .

Unbounded domain is exterior, 𝐷ext
𝛾 . 𝑤 lies inside 𝛾 if 𝑤 ∈ 𝐷int

𝛾  and outside 𝛾 if
𝑤 ∈ 𝐷ext

𝛾 .
• Let 𝛾 simple closed contour. Then possible to put orientation on 𝛾 such that

∀𝑤 ∈ ℂ − 𝛾,

𝐼(𝛾; 𝑤) =
⎩{
⎨
{⎧1 if 𝑤 ∈ 𝐷int

𝛾

0 if 𝑤 ∈ 𝐷ext
𝛾

Then 𝛾 is positively oriented (interior always on left of curve - anticlockwise).
• Let 𝐷 domain, 𝑓 : 𝐷 → ℂ holomorphic, Γ cycle in 𝐷, homologous to zero in 𝐷.

• General form of Cauchy’s theorem:
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∫
Γ

𝑓(𝑧) d𝑧 = 0

• General form of CIF:

∀𝑤 ∈ 𝐷 − Γ, ∫
Γ

𝑓(𝑧)
𝑧 − 𝑤

d𝑧 = 2𝜋𝑖𝐼(Γ; 𝑤)𝑓(𝑤)

• For simple closed curve 𝛾, 𝑓 holomorphic on 𝐷int
𝛾 ∪ 𝛾 if exists domain 𝐷 such that

𝐷int
𝛾 ∪ 𝛾 ⊂ 𝐷 and 𝑓 holomorphic on 𝐷.

• Let 𝛾 simple closed, positively oriented contour and 𝑓 holomorphic on 𝐷int
𝛾 ∪ 𝛾.

• Cauchy’s theorem for simple closed contours:

∫
𝛾

𝑓(𝑧) d𝑧 = 0

• CIF for simple closed contours:

∀𝑤 ∈ 𝐷int
𝛾 , ∫

𝛾

𝑓(𝑧)
𝑧 − 𝑤

d𝑧 = 2𝜋𝑖𝑓(𝑤)

9. Holomorphic functions on punctured domains
• Laurent series:

∑
∞

𝑛=−∞
𝑐𝑛(𝑧 − 𝑎)𝑛

Principal part: ∑−1
𝑛=−∞ 𝑐𝑛(𝑧 − 𝑎)𝑛. Analytic part: ∑∞

𝑛=0 𝑐𝑛(𝑧 − 𝑎)𝑛.
• Laurent series converges at 𝑧 iff principal and analytic parts converge at 𝑧.
• Annulus centre 𝒂, internal/external radii 𝒓 and 𝑹:

𝐴𝑟,𝑅(𝑎) ≔ {𝑧 ∈ ℂ : 𝑟 < |𝑧 − 𝑎| < 𝑅}

• If Laurent series isn’t power series (𝑐𝑛 ≠ 0 for some 𝑛 < 0) then either:
• It never converges or
• Exists 0 ≤ 𝑟 < 𝑅 ≤ ∞ such that it converges on 𝐴𝑟,𝑅(𝑎) and diverges for

|𝑧 − 𝑎| < 𝑟 or |𝑧 − 𝑎| > 𝑅. 𝐴𝑟,𝑅(𝑎) is annulus of convergence.
• If Laurent series has annulus of convergence 𝐴𝑟,𝑅(𝑎) then it converges uniformly on

any 𝐴𝜌1,𝜌2
 with 𝑟 < 𝜌1 < 𝜌2 < 𝑅. So it converges locally uniformly on 𝐴𝑟,𝑅(𝑎) so

represents holomorphic function on 𝐴𝑟,𝑅(𝑎).
• If Laurent series has annulus of convergence containing 𝐴𝑟,𝑅(𝑎), then 𝑐𝑛 are unique

and given by, for any 𝜌 ∈ (𝑟, 𝑅)

𝑐𝑛 =
1

2𝜋𝑖
∫

|𝑧−𝑎|=𝜌

𝑓(𝑧)
(𝑧 − 𝑎)𝑛+1 d𝑧

So Laurent series in 𝐴𝑟,𝑅(𝑎) unique.
• Holomorphic functions on annuli have Laurent series: let 𝑓 : 𝐴𝑟,𝑅(𝑎) → ℂ

holomorphic, then exist unique 𝑐𝑛 ∈ ℂ such that
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∀𝑧 ∈ 𝐴𝑟,𝑅(𝑎), 𝑓(𝑧) = ∑
∞

𝑛=−∞
𝑐𝑛(𝑧 − 𝑎)𝑛

and annulus of convergence of Laurent series contains 𝐴𝑟,𝑅(𝑎). Series is Laurent
series of 𝒇 on 𝑨.

• Punctured ball: 𝐵∗
𝑅(𝑎) ≔ 𝐵𝑅(𝑎) − {𝑎} = 𝐴0,𝑅(𝑎).

• If 𝑓 holomorphic on 𝐵∗
𝑅(𝑎), 𝑓 has isolated singularity at 𝑎.

• Types of isolated singularity:
• 𝑓 has removable singularity at 𝑧 = 𝑎 if 𝑐𝑛 = 0 for all 𝑛 ≤ −1 (principal part

is zero).
• 𝑓 has pole of order 𝒌 at 𝑧 = 𝑎 if 𝑐−𝑘 ≠ 0 and 𝑐𝑛 = 0 for all 𝑛 < −𝑘.
• 𝑓 has essential singularity at 𝑧 = 𝑎 if exist infinitely many 𝑛 < 0 such that

𝑐𝑛 ≠ 0.
• 𝑓 : 𝐵∗

𝑅(𝑎) → ℂ has removable singularity at 𝑧 = 𝑎 iff 𝑓 extends to holomorphic
function on 𝐵𝑅(𝑎) (𝑓 has analytic continuation to 𝐵𝑅(𝑎)).

• Let 𝑓 : 𝐵∗
𝑅(𝑎) → ℂ holomorphic, 𝑅 > 0. Then 𝑓 has removable singularity at 𝑧 = 𝑎

iff

lim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧) = 0

• Riemann extension theorem: Let 𝑓 : 𝐵∗
𝑅(𝑎) → ℂ holomorphic and bounded,

then 𝑓 has removable singularity at 𝑧 = 𝑎.
• Let 𝑓 : 𝐵∗

𝑅(𝑎) → ℂ holomorphic. The following are equivalent:
• 𝑓 has pole of order 𝑘 at 𝑧 = 𝑎.
• 𝑓(𝑧) = (𝑧 − 𝑎)−𝑘𝑔(𝑧), 𝑔 : 𝐵𝑅(𝑎) → ℂ holomorphic, 𝑔(𝑎) ≠ 0.
• Exists 0 < 𝑟 ≤ 𝑅 and ℎ : 𝐵𝑟(𝑎) → ℂ holomorphic with zero of order 𝑘 at 𝑧 = 𝑎

such that 𝑓(𝑧) = 1 / ℎ(𝑧) for 𝑧 ∈ 𝐵∗
𝑟(𝑎).

• Let 𝑓 : 𝐵∗
𝑅(𝑎) → ℂ holomorphic. Then 𝑓 has pole at 𝑧 = 𝑎 iff

lim
𝑧→𝑎

|𝑓(𝑧)| = ∞

• Casorati-Weierstrass theorem: let 𝑓 : 𝐵∗
𝑅(𝑎) → ℂ holomorphic with essential

singularity at 𝑧 = 𝑎. Then

∀𝑤 ∈ ℂ, ∀0 < 𝑟 < 𝑅, ∀𝜀 > 0, ∃𝑧 ∈ 𝐵∗
𝑟(𝑎), 𝑓(𝑧) ∈ 𝐵𝜀(𝑤)

• Big Picard theorem: let 𝑓 : 𝐵∗
𝑅(𝑎) → ℂ holomorphic with essential singularity at

𝑧 = 𝑎. Then for some 𝑏 ∈ ℂ,

∀0 < 𝑟 < 𝑅, ℂ − {𝑏} ⊆ 𝑓(𝐵∗
𝑟(𝑎))

10. Cauchy’s residue theorem
• 𝑓 meromorphic on domain 𝐷 if 𝑓 holomorphic on 𝐷 − 𝑆, 𝑆 ⊂ 𝐷 has no non-

isolated points and 𝑓 has pole at every 𝑠 ∈ 𝑆.
• 𝑓 meromorphic on 𝐷int

𝛾 ∪ 𝛾 if exists domain 𝐷 containing 𝐷in
𝛾 ∪ 𝛾 and 𝑓

meromorphic on 𝐷.
• Let 𝑓 meromorphic on domain 𝐷 with pole at 𝑎, with Laurent series
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𝑓(𝑧) = ∑
∞

𝑛=−𝑘
𝑐𝑛(𝑧 − 𝑎)𝑛

Residue of 𝒇 at 𝒂 is

Res𝑧=𝑎(𝑓) ≔ 𝑐−1

• Cauchy’s residue theorem: Let 𝑓 meromorphic on 𝐷int
𝛾 ∪ 𝛾, 𝛾 positively

oriented simple closed contour, 𝑓 has no poles on 𝛾 and finite number of poles
inside 𝛾, {𝑎1, …, 𝑎𝑚}. Then

∫
𝛾

𝑓(𝑧) d𝑧 = 2𝜋𝑖 ∑
𝑚

𝑗=1
Res𝑧=𝑎𝑗

(𝑓)

• Simple pole: pole of order 1.
• Rules for calculating residues:

• Linear combinations: Res𝑧=𝑎(𝐴𝑓 + 𝐵𝑔) = 𝐴Res𝑧=𝑎(𝑓) + 𝐵Res𝑧=𝑎(𝑔).
• Cover up rule for poles of order 𝟏: if 𝑧 = 𝑎 is pole of order 1,

Res𝑧=𝑎(𝑓) = lim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧)

• Simple zero on denominator: if 𝑓(𝑧) = 𝑔(𝑧) / ℎ(𝑧), 𝑔, ℎ holomorphic at 𝑎,
𝑔(𝑎) ≠ 0, 𝑧 = 𝑎 is zero of order 1 of ℎ, then

Res𝑧=𝑎(𝑓) =
𝑔(𝑎)
ℎ′(𝑎)

• Poles of higher orders: if 𝑓(𝑧) = 𝑔(𝑧) / (𝑧 − 𝑎)𝑘, 𝑘 > 0, 𝑔 holomorphic at 𝑎,
then

Res𝑧=𝑎(𝑓) =
𝑔(𝑘−1)(𝑎)
(𝑘 − 1)!

• To calculate

∫
2𝜋

0
𝐹(sin(𝜃), cos(𝜃)) d𝜃

where 𝐹  is rational function, use change of variable 𝑧 = 𝑒𝑖𝜃, and use

∫
2𝜋

0
𝐹(sin(𝜃), cos(𝜃)) d𝜃 = ∫

|𝑧|=1
𝐹(

𝑧 − 𝑧−1

2𝑖
,
𝑧 + 𝑧−1

2
)

d𝑧
𝑖𝑧

• To calculate

lim
𝑅→∞

∫
𝑅

−𝑅

𝑝(𝑥)
𝑞(𝑥)

d𝑥

where deg(𝑞) ≥ deg(𝑝) + 2 and 𝑞 has no real roots, integrate 𝑓(𝑧) = 𝑝(𝑧) / 𝑞(𝑧)
over 𝛾𝑅 = 𝐿𝑅 ∪ 𝐶𝑅 where 𝑅 greater than maximum modulus of roots of 𝑞. Use e.g.
Estimation Lemma or Jordan’s lemma to show lim𝑅→∞ ∫

𝐶𝑅
𝑓(𝑧) d𝑧 = 0.
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•
∫

∞

−∞
𝑓(𝑥) d𝑥 = lim

𝑟→∞
∫

𝑟

0
𝑓(𝑥) d𝑥 + lim

𝑠→∞
∫

0

−𝑠
𝑓(𝑥) d𝑥

• Cauchy principal value of ∫∞
−∞

𝑓(𝑥) d𝑥:

𝑃 . 𝑉 . ∫
∞

−∞
𝑓(𝑥) d𝑥 = lim

𝑟→∞
∫

𝑟

−𝑟
𝑓(𝑥) d𝑥

• If 𝑓 even, 𝑃 . 𝑉 . ∫∞
−∞

𝑓(𝑥) d𝑥 = ∫∞
−∞

𝑓(𝑥) d𝑥
• Jordan’s lemma: let 𝑓 holomorphic on 𝐷 = {𝑧 ∈ ℂ : |𝑧| > 𝑟} for some 𝑟 > 0,

𝑧𝑓(𝑧) bounded on 𝐷. Then for every 𝛼 > 0,

lim
𝑅→∞

∫
𝐶𝑅

𝑓(𝑧)𝑒𝑖𝛼𝑧 d𝑧 = 0

where 𝐶𝑅 = 𝑅𝑒𝑖𝜃, 𝜃 ∈ [0, 𝜋].
• To calculate

𝑃 . 𝑉 . ∫
∞

−∞
𝑓(𝑥)sin(𝛼𝑥) d𝑥 or 𝑃 . 𝑉 . ∫

∞

−∞
𝑓(𝑥)cos(𝛼𝑥) d𝑥

where 𝑓 meromorphic in ℂ with no real poles and 𝑓 satisfies Jordan’s lemma,
calculate integral

∫
𝛾𝑅

𝑓(𝑧)𝑒𝑖𝛼𝑧 d𝑧

with CRT, where 𝛾𝑅 = 𝐿𝑅 ∪ 𝐶𝑅. Then use

∫
𝐿𝑅

𝑓(𝑧)𝑒𝑖𝛼𝑧 d𝑧 = ∫
𝑅

−𝑅
𝑓(𝑥)cos(𝛼𝑥) d𝑥 + 𝑖 ∫

𝑅

−𝑅
𝑓(𝑥)sin(𝛼𝑥) d𝑥

and equate real/imaginary parts. Use Jordan’s lemma to show
lim𝑅→∞ ∫

𝐶𝑅
𝑓(𝑧)𝑒𝑖𝛼𝑧 d𝑧 = 0.

• Indentation lemma: Let 𝑔 meromorphic on ℂ with simple pole at 0,
𝐶𝜀(𝜃) = 𝜀𝑒𝑖𝜃, 𝜃 ∈ [0, 𝜋]. Then

lim
𝜀→0

∫
𝐶𝜀

𝑔(𝑧) d𝑧 = 𝜋𝑖Res𝑧=0(𝑔)

• To calculate

∫
∞

−∞
𝑓(𝑥) d𝑥

where 𝑓 has simple pole at 𝑧 = 0, let 𝛾𝜌,𝑅 = 𝐿2 ∪ (−𝐶𝜌) ∪ 𝐿1 ∪ 𝐶𝑅 where 𝐿2 is line
from −𝑅 to −𝜌, 𝐿1 is line from 𝜌 to 𝑅. Take 𝜌 → 0 and 𝑅 → ∞, use indentation
lemma and Jordan’s lemma. Note: may have to choose appropriate branch cut so
that 𝑓 holomorphic on 𝐷.
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• Let 𝑓 meromorphic with zero or pole order 𝑘 > 0 at 𝑎. Then 𝑓′ / 𝑓 has simple pole
at 𝑎 and

Res𝑧=𝑎(𝑓′ / 𝑓) = {𝑘 if f has zero at 𝑧 = 𝑎
−𝑘 if f has pole at 𝑧 = 𝑎

• Argument principle: let 𝛾 positively oriented simple closed contour, 𝑓
meromorphic on 𝐷int

𝛾 ∪ 𝛾, 𝑓 has no zeros or poles on 𝛾, 𝑍𝑓  be number of zeros of 𝑓
in 𝐷int

𝛾  (counted with multiplicity), 𝑃𝑓  be number of poles of 𝑓 in 𝐷int
𝛾  (counted

with multiplicity). Then

1
2𝜋𝑖

∫
𝛾

𝑓′(𝑧)
𝑓(𝑧)

d𝑧 = 𝑍𝑓 − 𝑃𝑓 = 𝐼(Γ𝑓 ; 0), Γ𝑓 = 𝑓 ∘ 𝛾

(Counted with multiplicity means zero/pole of order 𝑘 counts 𝑘 times).
• Rouche’s theorem: let 𝛾 simple closed contour, 𝑓, 𝑔 holomorphic on 𝐷int

𝛾 ∪ 𝛾,
with

∀𝑧 ∈ 𝛾, |𝑓(𝑧) − 𝑔(𝑧)| < |𝑔(𝑧)|

Then 𝑓 and 𝑔 have same number of zeros (counted with multiplcity) inside 𝛾.
• Open mapping theorem: let 𝑓 holomorphic, non-constant on domain 𝐷. Then if

𝑈 ⊂ 𝐷 open, 𝑓(𝑈) is open.
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