
1. Introduction
• 29
• By Central Limit Theorem, if sample (𝑥1, …, 𝑥𝑛) with each 𝑋𝑖 ∼ 𝐷(𝜇, 𝜎2) (𝐷 is

some distribution) then as 𝑛 → ∞,

̲̲ ̲̲ ̲̲
𝑋 ∼ 𝑁(𝜇,

𝜎2

𝑛
)

So distribution of sample mean always tends to normal distribution, with standard
deviation 𝜎 /

√
𝑛.

• Unbiased estimate of standard deviation of sample mean:

𝑠 = √
1

𝑛 − 1
∑

𝑛

𝑖=1
(𝑥𝑖 −

̲̲̲̲
𝑥)2

• Standard error of sample mean: estimate of standard deviation of sample
mean: 𝑠 /

√
𝑛.

• If 𝑛 too small then 𝑠 is poor estimator and mean may not be normally distributed.
• If population distribution is normal and 𝑛 small then sample mean is 𝑡-distributed:

𝑋 − 𝜇
𝑠 /

√
𝑛

∼ 𝑡𝑛−1

𝑋−𝜇
𝑠/

√
𝑛  is pivotal quantity as distribution doesn’t depend on parameters of 𝑋.

• Hypothesis test for 𝑥
̅̅̅̅
:

• Define null hypothesis which identifies distribution believed to have generated
each 𝑥𝑖.

• Choose test statistic ℎ (function of 𝑥
̅̅̅̅
), extreme when null is false, not extreme

when null is true.
• Observed test statistic is 𝑡 = ℎ(𝑥

̅̅̅̅
).

• Determine how extreme 𝑡 is as a realisation of 𝑇 = ℎ(𝑋1, …, 𝑋𝑁 ) (so need to
know distribution of 𝑇 ).

• One sided 𝒑-value:

ℙ(𝑇 ≥ 𝑡 | 𝐻0 true) or ℙ(𝑇 ≤ 𝑡 | 𝐻0 true)
• Two sided 𝒑-value:

ℙ(𝑇 ≥ |𝑡| ∪ 𝑇 ≤ −|𝑡| | 𝐻0 true)

2. Monte Carlo testing
• Monte Carlo testing: given observed test stat 𝑡 = ℎ(𝑥

̅̅̅̅
), distribution 𝐹(𝑥 | 𝜃),

hypotheses 𝐻0 : 𝜃 = 𝜃0, 𝐻1 : 𝜃 > 𝜃0:
• For 𝑗 ∈ {1, …, 𝑁}:

• Simulate 𝑛 observations (𝑧1, …, 𝑧𝑛) from 𝐹(⋅ | 𝜃0).
• Compute 𝑡𝑗 = ℎ(𝑧1, …, 𝑧𝑛).

• Estimate 𝑝-value by
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𝑃(𝑇 ≥ 𝑡 | 𝐻0 true) ≈ ̂𝑝 =
1
𝑁

∑
𝑁

𝑗=1
𝕀{𝑡𝑗 ≥ 𝑡}

• Resampling risk: probability that Monte Carlo simulated 𝑝-value and true 𝑝-
value are on different sides of significance threshold 𝛼 (situation where Monte
Carlo test is incorrect):

resampling risk = {
ℙ( ̂𝑝 > 𝛼) if 𝑝 ≤ 𝛼
ℙ( ̂𝑝 ≤ 𝛼) if 𝑝 > 𝛼

3. The bootstrap
• The non-parametric bootstrap estimate: given independent data

𝑥
̅̅̅̅

= (𝑥1, …, 𝑥𝑛) and stat 𝑆(⋅), resample (draw samples of size 𝑛 with replacement)
𝑥
̅̅̅̅
 𝐵 times to give 𝑥

̅̅̅̅
∗1, …, 𝑥

̅̅̅̅
∗𝐵. To compute bootstrap estimate of standard

error of 𝑺, compute

V̂ar(𝑆(𝑥
̅̅̅̅
)) =

1
𝐵 − 1

∑
𝐵

𝑏=1
(𝑆(𝑥

̅̅̅̅
∗𝑏) −

̲̲̲ ̲
𝑆∗)

2

where

̲̲̲ ̲
𝑆∗ =

1
𝐵

∑
𝐵

𝑏=1
𝑆(𝑥

̅̅̅̅
∗𝑏)

The standard error estimate is then √V̂ar(𝑆(𝑥
̅̅̅̅
)), i.e. the standard deviation of

𝑆(𝑥
̅̅̅̅

∗1), …, 𝑆(𝑥
̅̅̅̅

∗𝐵) The bootstrap estimate of 𝑆 is simply 𝑆(𝑥
̅̅̅̅
).

• For random variable 𝑋, (cumulative) distribution function (cdf)
𝐹 : ℝ → [0, 1] is

𝐹𝑋(𝑥) = 𝐹(𝑥) ≔ ℙ(𝑋 ≤ 𝑥)
• Properties of cdf:

• lim𝑥→−∞ 𝐹(𝑥) = 0 and lim𝑥→∞ 𝐹(𝑥) = 1.
• Monotonicity: 𝑥′ < 𝑥 ⟹ 𝐹(𝑥′) ≤ 𝐹(𝑥).
• Right-continuity: lim𝑡→𝑥+ 𝐹(𝑡) = 𝐹(𝑥).

• Given data (𝑥1, …, 𝑥𝑛) with each sample i.i.d. realisation of random variable 𝑋,
empirical (cumulative) distribution function (ecdf) is

̂𝐹 (𝑥) ≔
1
𝑛

∑
𝑛

𝑖=1
𝕀{𝑥𝑖 ≤ 𝑥}

• Glivenko-Cantelli theorem: Let 𝑋1, …, 𝑋𝑛 be random sample from distribution
with cdf 𝐹 . Then

sup
𝑥∈ℝ

| ̂𝐹 (𝑥) − 𝐹(𝑥)| → 0 as 𝑛 → ∞

• Given data (𝑥1, …, 𝑥𝑛), sampling uniformly at random from 𝑥
̅̅̅̅
 is equivalent to

sampling from distribution with cdf defined as ecdf constructed from 𝑥
̅̅̅̅
.
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• For mean of sample of 𝑚 draws from ecdf constructed from 𝑛 data points,
expectation and variance are

𝔼[
̲̲ ̲̲ ̲
𝑌 ] =

̲̲̲̲
𝑥, Var(

̲̲ ̲̲ ̲
𝑌 ) =

𝑛 − 1
𝑛

𝑠2
𝑥

𝑚
• If 𝑆 is the mean, V̂ar(𝑆(𝑥

̅̅̅̅
) → 𝑛−1

𝑛
𝑠2

𝑛  as 𝐵 → ∞.
• If sampling fraction 𝑓 = 𝑛

𝑁  where 𝑁  population size, 𝑛 sample size, is 𝑓 ≥ 0.1,
can’t assume infinite population.

• Given finite population of size 𝑁 , mean 
̲̲ ̲̲ ̲̲
𝑋 of sample drawn uniformly at random

without replacement has variance

Var(
̲̲ ̲̲ ̲̲
𝑋) =

𝑁 − 𝑛
𝑁 − 1

𝜎2

𝑛

where 𝜎2 is true population variance.
• Given finite population of size 𝑁 , sample of size 𝑛 with variance 𝑆2 drawn without

replacement,

𝔼[(1 −
𝑛
𝑁

)
𝑆2

𝑛
] = Var(

̲̲ ̲̲ ̲̲
𝑋)

so it is unbiased estimator of Var(
̲̲ ̲̲ ̲̲
𝑋)

• Population bootstrap: given independent data (𝑥1, …, 𝑥𝑛) drawn from finite
population of size 𝑁 , assuming 𝑁 / 𝑛 = 𝑘 is integer, construct new data set

𝑥̃
̅̅ ̅̅

= (𝑥1, …, 𝑥𝑛, 𝑥1, …, 𝑥𝑛, …, 𝑥1, …, 𝑥𝑛)

by repeating 𝑥
̅̅̅̅
 𝑘 times. Then construct 𝐵 new samples 𝑥

̅̅̅̅
∗1, …, 𝑥

̅̅̅̅
∗𝐵 by sampling

without replacement. Then compute

V̂ar(𝑆(𝑥
̅̅̅̅
)) =

1
𝐵 − 1

∑
𝐵

𝑏=1
(𝑆(𝑥

̅̅̅̅
∗𝑏) −

̲̲̲ ̲
𝑆∗)

2

where

̲̲̲ ̲
𝑆∗ =

1
𝐵

∑
𝐵

𝑏=1
𝑆(𝑥

̅̅̅̅
∗𝑏)

If 𝑁 / 𝑛 not integer, 𝑁 = 𝑘𝑛 + 𝑚 for 0 < 𝑚 < 𝑛, then before each of the 𝐵
samples, append to 𝑥̃

̅̅ ̅̅
 a sample without replacement of size 𝑚 from 𝑥

̅̅̅̅
.

• If data believed to follow type of distribution, can use parametric bootstrap:
given independent data (𝑥1, …, 𝑥𝑛), believed to be drawn from distribution 𝐹(⋅, 𝜃)
with parameter 𝜃:
• Find maximum likelihood estimator ̂𝜃.
• Draw 𝐵 new samples of size 𝑛 from 𝐹(⋅, ̂𝜃) to give 𝑥

̅̅̅̅
∗1, …, 𝑥

̅̅̅̅
∗𝐵.

• Compute
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V̂ar(𝑆(𝑥
̅̅̅̅
)) =

1
𝐵 − 1

∑
𝐵

𝑏=1
(𝑆(𝑥

̅̅̅̅
∗𝑏) −

̲̲̲ ̲
𝑆∗)

2

where

̲̲̲ ̲
𝑆∗ =

1
𝐵

∑
𝐵

𝑏=1
𝑆(𝑥

̅̅̅̅
∗𝑏)

• For parameter 𝜃 of distribution, estimated by statistic 𝑆, with ̂𝜃 = 𝑆(𝑥
̅̅̅̅
), bias is

bias(𝜃, ̂𝜃) = 𝔼[ ̂𝜃] − 𝜃

• Basic bootstrap bias estimate:

b̂ias(𝜃, ̂𝜃) =
̲̲̲ ̲
𝑆∗ − ̂𝜃 =

1
𝐵

∑
𝐵

𝑏=1
𝑆(𝑥

̅̅̅̅
∗𝑏) − 𝑆(𝑥

̅̅̅̅
)

• Bias correction: subtract bias from usual estimate:

̂𝜃 − b̂ias(𝜃, ̂𝜃) = 2 ̂𝜃 −
̲̲̲ ̲
𝑆∗

But often 2 ̂𝜃 −
̲̲̲ ̲
𝑆∗ has higher variance as estimator than ̂𝜃.

• Normal confidence interval for bootstrap estimate: 100(1 − 𝛼)% confidence
interval is

̂𝜃 ± 𝑧𝛼/2√V̂ar(𝑆(𝑥
̅̅̅̅
))

where 𝑧𝛼/2 is 100(𝛼 / 2)% percentile of standard normal distribution. Note: only
valid if size of data large enough, need to check for normality of bootstrap samples
using quantile plot.

• Percentile confidence interval: use if ̂𝐹  close to true distribution. 100(1 − 𝛼)%
confidence interval is

[𝑆∗
((𝛼/2)𝐵), 𝑆∗

((1−𝛼/2)𝐵)]

where 𝑆∗
(𝑖) is 𝑖th largest value of 𝑆(𝑥

̅̅̅̅
∗𝑏) for 𝑏 = 1, …, 𝐵. 𝐵 must be chosen to make

(𝛼 / 2)𝐵 and (1 − 𝛼 / 2)𝐵 integers. 𝐵 must be > 2000 for this to be good estimate.
Note: inaccurate if bias or non-constant standard error or distribution of 𝑆(𝑋) | 𝜃
isn’t symmetric.

• BC (bias corrected) and BCa (bias corrected and accelerated) confidence
intervals make adjustments when bias is present or there is non-constant standard
error.

4. Monte Carlo integration
• Let random variable 𝑌  take values in sample space Ω with pdf 𝑓𝑌 , then

𝜇 ≔ 𝔼[𝑌 ] = ∫
Ω

𝑦𝑓𝑌 (𝑦) d𝑦

• 𝜇 approximated by
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̂𝜇𝑛 =
1
𝑛

∑
𝑛

𝑖=1
𝑌𝑖

for i.i.d. samples 𝑌𝑖.
• If 𝑌 = 𝑔(𝑋) with 𝑋 random variable with pdf 𝑓𝑋 , then

𝜇 = 𝔼[𝑌 ] = 𝔼[𝑔(𝑋)] = ∫ 𝑔(𝑥)𝑓𝑋(𝑥) d𝑥

• To estimate ∫𝑏
𝑎

𝑓(𝑥) d𝑥, use 𝑋~ Unif(𝑎, 𝑏)

𝜇 = ∫
𝑏

𝑎
𝑓(𝑥) d𝑥 = ∫

𝑏

𝑎
(𝑏 − 𝑎)𝑓(𝑥)

1
𝑏 − 𝑎

d𝑥 = ∫
𝑏

𝑎
(𝑏 − 𝑎)𝑓(𝑥)𝑓𝑋(𝑥) d𝑥 = 𝔼[(𝑏 − 𝑎)𝑓(𝑋)]

which can be estimated by

̂𝜇𝑛 = (𝑏 − 𝑎)
1
𝑛

∑
𝑛

𝑖=1
𝑓(𝑋𝑖)

for i.i.d. samples 𝑋𝑖.
• If Var(𝑌 ) = 𝜎2 < ∞, Monte Carlo integration unbiased as 𝔼[ ̂𝜇𝑛] = 𝜇.
• Mean-square error: Var( ̂𝜇𝑛) = 𝔼[( ̂𝜇𝑛 − 𝜇)

2
] = 𝜎2

𝑛 .
• Root mean-square error: RMSE = √𝔼[( ̂𝜇𝑛 − 𝜇)

2
] = 𝜎√

𝑛 .

• RMSE is 𝑂(𝑛−1/2).
• For functions 𝑓, 𝑔, 𝑓(𝑛) = 𝑂(𝑔(𝑛)) as 𝑛 → ∞ if exist 𝐶, 𝑛0 ∈ ℝ such that

∀𝑛 ≥ 𝑛0, |𝑓(𝑛)| ≤ 𝐶𝑔(𝑛)
• Midpoint Riemann integral estimate:

∫
𝑏

𝑎
𝑓(𝑥) d𝑥 =

𝑏 − 𝑎
𝑛

∑
𝑛

𝑖=1
𝑓(𝑥𝑖)

where

𝑥𝑖 = 𝑎 +
𝑏 − 𝑎

𝑛
(𝑖 −

1
2
)

• For 𝑑 dimensions, Riemann sum converges in 𝑂(𝑛−2/𝑑), Monte Carlo converges in
𝑂(𝑛−1/2) regardless of 𝑑.

• 100(1 − 𝛼)% confidence interval for Monte Carlo integration:

𝜇 ∈ ̂𝜇𝑛 ± 𝑧𝛼/2
𝜎√
𝑛

where 𝜎 estimated with standard sample deviation of {𝑦𝑖} = {𝑔(𝑥𝑖)}.
• If 𝑔(𝑥) constant multiple of indicator function, 𝑔(𝑥) = 𝑐𝕀{𝐴(𝑥)} for condition 𝐴,

then

̂𝑝𝑛 =
1
𝑛

∑
𝑛

𝑖=1
𝕀{𝐴(𝑥𝑖)}
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is estimator for 𝑝 = ℙ(𝐴). Binomial confidence interval is

𝑝 ∈ ̂𝑝𝑛 ± 𝑧𝛼/2
√ ̂𝑝𝑛(1 − ̂𝑝𝑛)

𝑛

so confidence interval for 𝜇 is

𝜇 ∈ ̂𝜇𝑛 ± 𝑐𝑧𝛼/2
√ ̂𝑝𝑛(1 − ̂𝑝𝑛)

𝑛

( ̂𝜇𝑛 = 𝑐 ̂𝑝𝑛).
• Probability of no 1s in 𝑛 Monte Carlo samples is (1 − 𝑝)𝑛 so one-sided

100(1 − 𝛼)% confidence interval has upper bound 𝑝 ≤ 1 − 𝛼1/𝑛 ≈ − log(𝛼)
𝑛  using

Taylor expansion.
• If ̂𝑝 very small and non-zero,

𝑐𝑧𝛼/2
√ ̂𝑝𝑛(1 − ̂𝑝𝑛)

𝑛
≈ 𝑐𝑧𝛼/2

√ ̂𝑝𝑛
𝑛

so relative error is

𝛿 ≔ 𝑐𝑧𝛼/2
√ ̂𝑝𝑛

𝑛
/ ̂𝑝 =

𝑐𝑧𝛼/2

√ ̂𝑝𝑛𝑛

for relative error at most 𝛿,

𝑛 ≥
𝑐2𝑧2

𝛼/2

̂𝑝𝑛𝛿2

so 𝑛 grows inversely with ̂𝑝𝑛.
• To estimate probability of event ℙ(𝑋 ∈ 𝐸), Monte Carlo estimate 𝔼[𝕀{𝑋 ∈ 𝐸}].

5. Simulation
• Let 𝐹  cdf, then generalised inverse cdf is

𝐹−1(𝑢) ≔ inf{𝑥 : 𝐹(𝑥) ≥ 𝑢}
• Inverse transform sampling algorithm: let random variable 𝑋 with cdf 𝐹 ,

with generalised inverse 𝐹−1.
• Simulate 𝑈 ∼ Unif(0, 1).
• Compute 𝑋 = 𝐹−1(𝑈).

𝑋 is then distributed with cdf 𝐹 . Only works for 1D distributions.
• Rejection sampling algorithm: given target density function 𝑓 , proposal

density function ̃𝑓 with ∀𝑥 ∈ ℝ𝑑, 𝑓(𝑥) ≤ 𝑐 ̃𝑓(𝑥) for some 𝑐 < ∞,
• Set 𝑎 = false
• While 𝑎 = false:
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• Simulate 𝑢 ∼ Unif(0, 1).
• Simulate 𝑥 ∼ ̃𝑓(⋅).
• If 𝑢 ≤ 𝑓(𝑥)

𝑐 ̃𝑓(𝑥)
, set 𝑎 = true.

• Once while loop exited, return 𝑥, which is distributed with pdf 𝑓 .
• Note: 𝑓 and ̃𝑓 don’t need to be normalised.
• When 𝑓, ̃𝑓 normalised, expected number of iterations of rejection sampling

algorithm is 𝑐.
• Important: when choosing value of 𝑐, always round up if inexact.
• When checking if rejection sampling can be used, check if ratio 𝑓(𝑥) / ̃𝑓(𝑥) tends

to 0 as 𝑥 → ±∞ and differentiate ratio with respect to 𝑥 to find maximum.
• Normalised importance sampling: given normalised density function 𝑓 and

normalised proposal density function ̃𝑓 , 𝑛 importance samples produced by: for
𝑖 ∈ {1, …, 𝑛}:
• Simulate 𝑥𝑖 ∼ ̃𝑓(⋅).
• Compute 𝑤𝑖 = 𝑓(𝑥𝑖) / ̃𝑓(𝑥𝑖).

This produces importance samples {(𝑥𝑖, 𝑤𝑖)}
𝑛
𝑖=1. 𝜇 = 𝔼 ̃𝑓 [𝑔(𝑋)] estimated by

importance sampling estimator

̂𝜇 =
1
𝑛

∑
𝑛

𝑖=1
𝑤𝑖𝑔(𝑥𝑖)

(𝔼 ̃𝑓 [ ̂𝜇] = 𝜇, provided ̃𝑓(𝑥) > 0 whenever 𝑓(𝑥)𝑔(𝑥) ≠ 0).
• Variance of importance sampling estimator is

Var( ̂𝜇) =
𝜎2

̃𝑓

𝑛

where

𝜎2
̃𝑓 = ∫

Ω̃

(𝑔(𝑥)𝑓(𝑥) − 𝜇 ̃𝑓(𝑥))
2

̃𝑓(𝑥)
d𝑥

and Ω̃ is support of ̃𝑓 .
• Can estimate variance with

𝜎̂2
̃𝑓 =

1
𝑛

∑
𝑛

𝑖=1
(𝑤𝑖𝑔(𝑥𝑖) − ̂𝜇)2

• Distribution which minimises estimator variance is

̃𝑓opt(𝑥) =
|𝑔(𝑥)|𝑓(𝑥)

∫
Ω
|𝑔(𝑥)|𝑓(𝑥) d𝑥

• Self-normalised importance sampling: same as normalised importance
sampling, but compute
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̂𝜇 =
1

∑𝑛
𝑖=1 𝑤𝑖

∑
𝑛

𝑖=1
𝑤𝑖𝑔(𝑥𝑖)

Can use for unnormalised density functions 𝑓, ̃𝑓 . ̂𝜇 is not unbiased.
• Approximate variance of self-normalised estimator:

Var( ̂𝜇) ≈
𝜎̂2

̃𝑓

𝑛

where

𝜎̂2
̃𝑓 = ∑

𝑛

𝑖=1
𝑤𝑖′2(𝑔(𝑥𝑖) − ̂𝜇)2

and

𝑤𝑖′ =
𝑤𝑖

∑𝑛
𝑗=1 𝑤𝑗

• Effective sample size 𝒏𝒆: size of sample for which variance of naive Monte Carlo
average ( 1

𝑛𝑒
∑𝑛𝑒

𝑖=1 𝑔(𝑥𝑖)) with sample size 𝑛𝑒, 𝜎2 / 𝑛𝑒 (𝜎2 is variance of 𝑔(𝑋)), is
equal to variance of importance sampling estimator ̂𝜇, Var( ̂𝜇):

𝑛𝑒 =
𝑛
̲̲ ̲̲ ̲
𝑤2
̲̲̲ ̲̲ ̲̲
𝑤2

where

̲̲ ̲̲ ̲
𝑤2 = (

1
𝑛

∑
𝑛

𝑖=1
𝑤𝑖)

2

,
̲̲̲ ̲̲ ̲̲
𝑤2 =

1
𝑛

∑
𝑛

𝑖=1
𝑤2

𝑖

• Small 𝑛𝑒 means importance sampling is poor estimator.
• Poor estimator if proposal distribution has much less probability in tails than

target distribution.
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