1. Introduction

e 29

« By Central Limit Theorem, if sample (z, ..., z,) with each X; ~ D(u,0?) (D is
some distribution) then as n — oo,
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So distribution of sample mean always tends to normal distribution, with standard
deviation o / /n.
e Unbiased estimate of standard deviation of sample mean:
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e Standard error of sample mean: estimate of standard deviation of sample

mean: s / /n.

e If n too small then s is poor estimator and mean may not be normally distributed.
e If population distribution is normal and n small then sample mean is t-distributed:
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jj;\/% is pivotal quantity as distribution doesn’t depend on parameters of X.
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e« Hypothesis test for z:
e Define null hypothesis which identifies distribution believed to have generated
each z;.
o Choose test statistic h (function of z), extreme when null is false, not extreme
when null is true.
o Observed test statistic is t = h(x).
o Determine how extreme t is as a realisation of T'= h(X, ..., X ) (so need to
know distribution of T').
¢ One sided p-value:

P(T >t | Hy true) or P(T <t| H, true)
e Two sided p-value:
P(T > |t|juT < —|t| | H, true)

2. Monte Carlo testing
o Monte Carlo testing: given observed test stat ¢ = h(z), distribution F(z | 0),
hypotheses Hy : 0 = 6,, H, : 6 > 0;:
e« Forje{l,.,N}:
o Simulate n observations (zy, ..., z,) from F(- | 6,).
o Compute t; = h(zy, ..., 2,).
o Estimate p-value by



N
P(T >t | H, true) ~ p = %Zﬂ{tj >t}
j=1

Resampling risk: probability that Monte Carlo simulated p-value and true p-
value are on different sides of significance threshold « (situation where Monte
Carlo test is incorrect):

Pp>a)ifp<a

resampling risk = {IP’@ <a)ifp>a

3. The bootstrap

The non-parametric bootstrap estimate: given independent data
z = (z4,...,x,) and stat S ( ) resample (draw samples of size n with replacement)
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z B times to give = . To compute bootstrap estimate of standard

error of S, Compute

Var(S(z =51 Z ( )2
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The standard error estimate is then 1/ Var(S(z)), i.e. the standard deviation of
S(z*'), ..., S(z*) The bootstrap estimate of S is simply S(z).
For random variable X, (cumulative) distribution function (cdf)
F:R—[0,1] is
Fy(z) = F(z) = P(X < )
Properties of cdf:
o lim,,  F(z)=0andlim, , F(z)=1.
o Monotonicity: 2’ < z = F(z’) < F(x).
o Right-continuity: lim, , . F(t) = F(x).
Given data (x, ..., z,) with each sample i.i.d. realisation of random variable X,

empirical (cumulative) distribution function (ecdf) is

n

F(z):= %2:]I{wZ <z}

i=1
Glivenko-Cantelli theorem: Let X, ..., X, be random sample from distribution
with cdf F. Then

E‘F ‘—)0 as n — oo

Given data (x4, ..., z,), sampling uniformly at random from z is equivalent to
sampling from distribution with cdf defined as ecdf constructed from z.



For mean of sample of m draws from ecdf constructed from n data points,
expectation and variance are

E[Y] =% Var(¥) ="
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If S is the mean, Var(S(z) — ”Tfls—n? as B — oo.
If sampling fraction f = 5 where N population size, n sample size, is f > 0.1,
can’t assume infinite population.
Given finite population of size N, mean X of sample drawn uniformly at random
without replacement has variance

N —no?

N—-1n

Var (Y) =

where ¢? is true population variance.
Given finite population of size N, sample of size n with variance $? drawn without
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N/ n

so it is unbiased estimator of Var (Y)

replacement,

E = Var (Y)

Population bootstrap: given independent data (z, ...,z,) drawn from finite
population of size N, assuming N / n = k is integer, construct new data set

T = (X ey Tpyy Ty eeey Ty ooy Ty ooy Tpy)
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by repeating x k times. Then construct B new samples z*!, ..., 2* by sampling

without replacement. Then compute

Var(S(@) = —— 3 (S@@?) - 5°)’
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If N / n not integer, N = kn + m for 0 < m < n, then before each of the B
samples, append to Z a sample without replacement of size m from z.
If data believed to follow type of distribution, can use parametric bootstrap:
given independent data (zy, ..., x,), believed to be drawn from distribution F'(-, )
with parameter 6:
o Find maximum likelihood estimator 6.
e Draw B new samples of size n from F(-, 5) to give z*!, ..., 2*P.

o Compute
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Tar(S(z)) = % > (5™ -5’

where
g _ 1 XB: Sz
B b=1 . )
e For parameter 6 of distribution, estimated by statistic S, with =35 (z), bias is
bias(@, é) = E[é] —0
e Basic bootstrap bias estimate:
bias(0,0) =S — 0 = 1 XB: S(z*) — S(z)
5 B z
e Bias correction: subtract bias from usual estimate:
0 tias(0,0) =20~ 5

But often 26 — S has higher variance as estimator than 9.
o Normal confidence interval for bootstrap estimate: 100(1 — «)% confidence

0+ 2,0/ Var(S(z))

where 2, is 100(cv / 2)% percentile of standard normal distribution. Note: only

interval is

valid if size of data large enough, need to check for normality of bootstrap samples
using quantile plot.

« Percentile confidence interval: use if F' close to true distribution. 100(1 — )%
confidence interval is

[Star2)8) S{—as2)B)

where SE"Z-) is ¢th largest value of S(g*b) for b =1,..., B. B must be chosen to make
(a/2)B and (1 — a /2)B integers. B must be > 2000 for this to be good estimate.
Note: inaccurate if bias or non-constant standard error or distribution of S(X) | 0
isn’t symmetric.

o BC (bias corrected) and BCa (bias corrected and accelerated) confidence
intervals make adjustments when bias is present or there is non-constant standard
error.

4. Monte Carlo integration

o Let random variable Y take values in sample space (2 with pdf fy-, then

p=E[Y] =/yfy(y) dy
Q

e 4 approximated by



for i.i.d. samples Y.
o IfY = g(X) with X random variable with pdf fy, then

N=MH=EMXH=/ﬂﬂh@Nx

o To estimate fab f(z)dz, use X~ Unif(a,b)
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p= [ o= [ 0-afe)do= [ (b a1 fx(e)ds = B[6 - a)f(X)

which can be estimated by

for i.i.d. samples X,.
o If Var(Y) = 0 < oo, Monte Carlo integration unbiased as E [ﬂn] = U.
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¢ Mean-square error: Var(ﬂn) = E[(ﬂn — M>2] =

a

2
Root mean-square error: RMSE = E[([Ln — ] =7

« RMSE is O(n71/2).
o For functions f, g, f(n) = O(g(n)) as n — oo if exist C,n, € R such that

vn 2 ny, |f(n)] < Cg(n)

e Midpoint Riemann integral estimate:
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where
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e For d dimensions, Riemann sum converges in O(n*Q/ d), Monte Carlo converges in
O(n_l/Q) regardless of d.
e 100(1 — @)% confidence interval for Monte Carlo integration:
- o
HE R, £ za/Z%

where o estimated with standard sample deviation of {y;} = {g(z;)}.
o If g(z) constant multiple of indicator function, g(z) = cI{A(z)} for condition A,
then

b= 3 HAw)



is estimator for p = P(A). Binomial confidence interval is

i p,(1-2,)
pE pn + za/2
n
so confidence interval for p is
: P, (1-P,)
IS /J’n + CZa/Q
n
(i, = cp,).
 Probability of no 1s in n Monte Carlo samples is (1 — p)" so one-sided
100(1 — a)% confidence interval has upper bound p <1 — al/m ~ —@ using

Taylor expansion.
e If p very small and non-zero,

p,(1-5,) P,
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so relative error is
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for relative error at most 9,
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so n grows inversely with p .
o To estimate probability of event P(X € E), Monte Carlo estimate E[I{X € E}].

5. Simulation
e Let F cdf, then generalised inverse cdf is

Fl(u) == inf{z : F(z) > u}
e Inverse transform sampling algorithm: let random variable X with cdf F,
with generalised inverse F'~1.
o Simulate U ~ Unif(0, 1).
o Compute X = F~}(U).

X is then distributed with cdf F. Only works for 1D distributions.
e Rejection sampling algorithm: given target density function f, proposal
density function f with Vz € R?, f(z) < cf(x) for some ¢ < o0,
e Set a = false
e While a = false:



o Simulate u ~ Unif(0, 1).
o Simulate z ~ f(-).

o Ifu< (z) , set a = true.
cf(z)

¢ Once while loop exited, return x, which is distributed with pdf f.

Note: f and f don’t need to be normalised.

When f, f normalised, expected number of iterations of rejection sampling
algorithm is c.

Important: when choosing value of ¢, always round up if inexact.

When checking if rejection sampling can be used, check if ratio f(x) / f (z) tends
to 0 as x — 400 and differentiate ratio with respect to x to find maximum.
Normalised importance sampling: given normalised density function f and
normalised proposal density function f , n importance samples produced by: for
ie{l,..,n}

o Simulate z; ~ f() }

« Compute w; = f(z;) / f(;).

This produces importance samples {(z;, wi)}?: - b =Ezg(X)] estimated by
importance sampling estimator

n

w;g(x;)
i=1

(Ef[p] = p, provided f(x) > 0 whenever f(z)g(z) # 0).
Variance of importance sampling estimator is

S|

i =

o
Var(i) = -

where

L)

and € is support of f .
Can estimate variance with

~ 2
Uf? = (w;g(z;) — f1)
i=1

S|

Distribution which minimises estimator variance is

@)l
Fon®) = T fle)

Self-normalised importance sampling: same as normalised importance

sampling, but compute



n
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Can use for unnormalised density functions f, f . i4 is not unbiased.
Approximate variance of self-normalised estimator:

~2
Var(fi) ~ —L
n
where
- 2
a-f? = wz/Q(g(mz) - ﬁ)
=1
and
w:
W' ==
Zj:l Wj

Effective sample size n,: size of sample for which variance of naive Monte Carlo
average <nL ZL L 9(z;) | with sample size n,, o? [/ n, (0? is variance of g(X)), is
equal to variance of importance sampling estimator f, Var(j):

where

2
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w- = —_ wz 5 w- = — w,L
N4 N4

Small n, means importance sampling is poor estimator.
Poor estimator if proposal distribution has much less probability in tails than
target distribution.
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