1. Introduction

- 29
- By Central Limit Theorem, if sample $(x_1, ..., x_n)$ with each $X_i \sim D(\mu, \sigma^2)$ (D is some distribution) then as $n \to \infty$,

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

So distribution of sample mean always tends to normal distribution, with standard deviation σ / \sqrt{n} .

• Unbiased estimate of standard deviation of sample mean:

$$s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

- Standard error of sample mean: estimate of standard deviation of sample mean: s / \sqrt{n} .
- If n too small then s is poor estimator and mean may not be normally distributed.
- If population distribution is normal and n small then sample mean is t-distributed:

$$\frac{X-\mu}{s \: / \: \sqrt{n}} \sim t_{n-1}$$

 $\frac{X-\mu}{s/\sqrt{n}}$ is **pivotal quantity** as distribution doesn't depend on parameters of X.

- Hypothesis test for <u>x</u>:
 - Define **null hypothesis** which identifies distribution believed to have generated each x_i .
 - Choose test statistic h (function of \underline{x}), extreme when null is false, not extreme when null is true.
 - Observed test statistic is $t = h(\underline{x})$.
 - Determine how extreme t is as a realisation of $T = h(X_1, ..., X_N)$ (so need to know distribution of T).
- One sided *p*-value:

$$\mathbb{P}(T \geq t \mid H_0 \text{ true}) \quad \text{or} \quad \mathbb{P}(T \leq t \mid H_0 \text{ true})$$

• Two sided *p*-value:

$$\mathbb{P}(T \ge |t| \cup T \le -|t| \mid H_0 \text{ true})$$

2. Monte Carlo testing

- Monte Carlo testing: given observed test stat $t = h(\underline{x})$, distribution $F(x \mid \theta)$, hypotheses $H_0: \theta = \theta_0, H_1: \theta > \theta_0$:
 - For $j \in \{1, ..., N\}$:
 - Simulate *n* observations $(z_1, ..., z_n)$ from $F(\cdot \mid \theta_0)$.
 - Compute $t_j = h(z_1, ..., z_n)$.
 - Estimate *p*-value by

$$P(T \geq t \mid H_0 \text{ true}) \approx \hat{p} = \frac{1}{N} \sum_{j=1}^N \mathbb{I}\big\{t_j \geq t\big\}$$

• Resampling risk: probability that Monte Carlo simulated *p*-value and true *p*-value are on different sides of significance threshold α (situation where Monte Carlo test is incorrect):

resampling risk =
$$\begin{cases} \mathbb{P}(\hat{p} > \alpha) \text{ if } p \leq \alpha \\ \mathbb{P}(\hat{p} \leq \alpha) \text{ if } p > \alpha \end{cases}$$

3. The bootstrap

• The non-parametric bootstrap estimate: given independent data $\underline{x} = (x_1, ..., x_n)$ and stat $S(\cdot)$, resample (draw samples of size *n* with replacement) $\underline{x} B$ times to give $\underline{x}^{*1}, ..., \underline{x}^{*B}$. To compute bootstrap estimate of standard error of S, compute

$$\widehat{\mathrm{Var}}(S(\underline{x})) = \frac{1}{B-1} \sum_{b=1}^{B} \left(S\big(\underline{x}^{*b}\big) - \overline{S}^{*} \big)^{2} \right)$$

where

$$\overline{S}^* = rac{1}{B} \sum_{b=1}^B S(\underline{x}^{*b})$$

The standard error estimate is then $\sqrt{\widehat{\operatorname{Var}}(S(\underline{x}))}$, i.e. the standard deviation of $S(x^{*1}), \dots, S(x^{*B})$ The **bootstrap estimate** of S is simply S(x).

For random variable X, (cumulative) distribution function (cdf)
 F : ℝ → [0, 1] is

$$F_X(x) = F(x) \coloneqq \mathbb{P}(X \le x)$$

- Properties of cdf:
 - $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$.
 - Monotonicity: $x' < x \Longrightarrow F(x') \le F(x)$.
 - Right-continuity: $\lim_{t\to x^+} F(t) = F(x)$.
- Given data $(x_1, ..., x_n)$ with each sample i.i.d. realisation of random variable X, empirical (cumulative) distribution function (ecdf) is

$$\hat{F}(x)\coloneqq \frac{1}{n}\sum_{i=1}^n \mathbb{I}\{x_i\leq x\}$$

• Glivenko-Cantelli theorem: Let $X_1, ..., X_n$ be random sample from distribution with cdf F. Then

$$\sup_{x \in \mathbb{R}} \left| \hat{F}(x) - F(x) \right| \to 0 \quad \text{as } n \to \infty$$

• Given data $(x_1, ..., x_n)$, sampling uniformly at random from \underline{x} is equivalent to sampling from distribution with cdf defined as ecdf constructed from \underline{x} .

• For mean of sample of *m* draws from ecdf constructed from *n* data points, expectation and variance are

$$\mathbb{E}[\overline{Y}] = \overline{x}, \quad \operatorname{Var}(\overline{Y}) = \frac{n-1}{n} \frac{s_x^2}{m}$$

- If S is the mean, Var(S(x) → n-1/n s²/n as B → ∞.
 If sampling fraction f = n/N where N population size, n sample size, is f ≥ 0.1, can't assume infinite population.
- Given finite population of size N, mean \overline{X} of sample drawn uniformly at random without replacement has variance

$$\operatorname{Var}\!\left(\overline{X}\right) = \frac{N-n}{N-1} \frac{\sigma^2}{n}$$

where σ^2 is true population variance.

• Given finite population of size N, sample of size n with variance S^2 drawn without replacement,

$$\mathbb{E}\left[\left(1-\frac{n}{N}\right)\frac{S^2}{n}\right] = \operatorname{Var}\left(\overline{X}\right)$$

so it is unbiased estimator of Var(X)

- Population bootstrap: given independent data $(x_1, ..., x_n)$ drawn from finite population of size N, assuming N / n = k is integer, construct new data set

$$\underline{\tilde{x}} = (x_1,...,x_n,x_1,...,x_n,...,x_1,...,x_n)$$

by repeating \underline{x} k times. Then construct B new samples $\underline{x}^{*1}, ..., \underline{x}^{*B}$ by sampling without replacement. Then compute

$$\widehat{\operatorname{Var}}(S(\underline{x})) = \frac{1}{B-1} \sum_{b=1}^{B} \left(S\big(\underline{x}^{*b}\big) - \overline{S}^{*} \big)^2 \right)$$

where

$$\overline{S}^* = \frac{1}{B} \sum_{b=1}^B S(\underline{x}^{*b})$$

If N / n not integer, N = kn + m for 0 < m < n, then before each of the B samples, append to \tilde{x} a sample without replacement of size m from x.

- If data believed to follow type of distribution, can use **parametric bootstrap**: given independent data $(x_1, ..., x_n)$, believed to be drawn from distribution $F(\cdot, \theta)$ with parameter θ :
 - Find maximum likelihood estimator $\hat{\theta}$.
 - Draw B new samples of size n from $F(\cdot, \hat{\theta})$ to give $\underline{x}^{*1}, ..., \underline{x}^{*B}$.
 - Compute

$$\widehat{\operatorname{Var}}(S(\underline{x})) = \frac{1}{B-1} \sum_{b=1}^{B} \left(S(\underline{x}^{*b}) - \overline{S}^{*} \right)^{2}$$

where

$$\overline{S}^* = \frac{1}{B} \sum_{b=1}^B S(\underline{x}^{*b})$$

• For parameter θ of distribution, estimated by statistic S, with $\hat{\theta} = S(\underline{x})$, bias is

$$\mathrm{bias}\!\left(\boldsymbol{\theta}, \boldsymbol{\hat{\theta}}\right) = \mathbb{E}\!\left[\boldsymbol{\hat{\theta}}\right] - \boldsymbol{\theta}$$

• Basic bootstrap bias estimate:

$$\widehat{\text{bias}}(\theta, \hat{\theta}) = \overline{S}^* - \hat{\theta} = \frac{1}{B} \sum_{b=1}^B S(\underline{x}^{*b}) - S(\underline{x})$$

• Bias correction: subtract bias from usual estimate:

$$\hat{\theta} - \widehat{\mathrm{bias}}(\theta, \hat{\theta}) = 2\hat{\theta} - \overline{S}^*$$

But often $2\hat{\theta} - \overline{S}^*$ has higher variance as estimator than $\hat{\theta}$.

• Normal confidence interval for bootstrap estimate: $100(1-\alpha)\%$ confidence interval is

$$\hat{\theta} \pm z_{\alpha/2} \sqrt{\widehat{\operatorname{Var}}(S(\underline{x}))}$$

where $z_{\alpha/2}$ is $100(\alpha / 2)\%$ percentile of standard normal distribution. Note: only valid if size of data large enough, need to check for normality of bootstrap samples using quantile plot.

• Percentile confidence interval: use if \hat{F} close to true distribution. $100(1-\alpha)\%$ confidence interval is

$$\left[S^*_{((lpha/2)B)},S^*_{((1-lpha/2)B)}
ight]$$

where $S_{(i)}^*$ is *i*th largest value of $S(\underline{x}^{*b})$ for b = 1, ..., B. *B* must be chosen to make $(\alpha / 2)B$ and $(1 - \alpha / 2)B$ integers. *B* must be > 2000 for this to be good estimate. **Note:** inaccurate if bias or non-constant standard error or distribution of $S(X) | \theta$ isn't symmetric.

• BC (bias corrected) and BCa (bias corrected and accelerated) confidence intervals make adjustments when bias is present or there is non-constant standard error.

4. Monte Carlo integration

• Let random variable Y take values in sample space Ω with pdf f_Y , then

$$\mu \coloneqq \mathbb{E}[Y] = \int_\Omega y f_Y(y) \,\mathrm{d} y$$

• μ approximated by

$$\hat{\boldsymbol{\mu}}_n = \frac{1}{n} \sum_{i=1}^n Y_i$$

for i.i.d. samples Y_i .

• If Y = g(X) with X random variable with pdf f_X , then

$$\mu = \mathbb{E}[Y] = \mathbb{E}[g(X)] = \int g(x) f_X(x) \, \mathrm{d}x$$

• To estimate $\int_a^b f(x) \, \mathrm{d}x$, use $X \sim \mathrm{Unif}(a, b)$

$$\mu = \int_{a}^{b} f(x) \, \mathrm{d}x = \int_{a}^{b} (b-a)f(x)\frac{1}{b-a} \, \mathrm{d}x = \int_{a}^{b} (b-a)f(x)f_{X}(x) \, \mathrm{d}x = \mathbb{E}[(b-a)f(X)]$$

which can be estimated by

$$\hat{\boldsymbol{\mu}}_n = (b-a) \frac{1}{n} \sum_{i=1}^n f(X_i)$$

for i.i.d. samples X_i .

- If $\operatorname{Var}(Y) = \sigma^2 < \infty$, Monte Carlo integration unbiased as $\mathbb{E}[\hat{\mu}_n] = \mu$. Mean-square error: $\operatorname{Var}(\hat{\mu}_n) = \mathbb{E}\left[\left(\hat{\mu}_n \mu\right)^2\right] = \frac{\sigma^2}{n}$. Root mean-square error: $\operatorname{RMSE} = \sqrt{\mathbb{E}\left[\left(\hat{\mu}_n \mu\right)^2\right]} = \frac{\sigma}{\sqrt{n}}$.
- RMSE is $O(n^{-1/2})$.
- For functions f, g, f(n) = O(g(n)) as $n \to \infty$ if exist $C, n_0 \in \mathbb{R}$ such that

 $\forall n \ge n_0, \quad |f(n)| \le Cg(n)$

• Midpoint Riemann integral estimate:

$$\int_a^b f(x) \, \mathrm{d}x = \frac{b-a}{n} \sum_{i=1}^n f(x_i)$$

where

$$x_i = a + \frac{b-a}{n} \left(i - \frac{1}{2} \right)$$

- For d dimensions, Riemann sum converges in $O(n^{-2/d})$, Monte Carlo converges in $O(n^{-1/2})$ regardless of d.
- $100(1-\alpha)\%$ confidence interval for Monte Carlo integration:

$$\mu \in \hat{\mu}_n \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

where σ estimated with standard sample deviation of $\{y_i\} = \{g(x_i)\}$.

• If g(x) constant multiple of indicator function, $g(x) = c\mathbb{I}\{A(x)\}$ for condition A, then

$$\hat{\boldsymbol{p}}_n = \frac{1}{n}\sum_{i=1}^n \mathbb{I}\{\boldsymbol{A}(\boldsymbol{x}_i)\}$$

is estimator for $p = \mathbb{P}(A)$. Binomial confidence interval is

$$p\in \hat{\boldsymbol{p}}_n\pm \boldsymbol{z}_{\alpha/2}\sqrt{\frac{\hat{\boldsymbol{p}}_n\big(1-\hat{\boldsymbol{p}}_n\big)}{n}}$$

so confidence interval for μ is

$$\mu \in \hat{\boldsymbol{\mu}}_n \pm c \boldsymbol{z}_{\alpha/2} \sqrt{\frac{\hat{\boldsymbol{p}}_n \left(1-\hat{\boldsymbol{p}}_n\right)}{n}}$$

 $(\hat{\boldsymbol{\mu}}_n = c \hat{\boldsymbol{p}}_n).$

- Probability of no 1s in *n* Monte Carlo samples is $(1-p)^n$ so one-sided $100(1-\alpha)\%$ confidence interval has upper bound $p \leq 1 \alpha^{1/n} \approx -\frac{\log(\alpha)}{n}$ using Taylor expansion.
- If \hat{p} very small and non-zero,

$$c z_{\alpha/2} \sqrt{\frac{\hat{p}_n \left(1-\hat{p}_n\right)}{n}} \approx c z_{\alpha/2} \sqrt{\frac{\hat{p}_n}{n}}$$

so relative error is

$$\delta \coloneqq c z_{\alpha/2} \sqrt{\frac{\hat{p}_n}{n}} \ / \ \hat{p} = \frac{c z_{\alpha/2}}{\sqrt{\hat{p}_n n}}$$

for relative error at most δ ,

$$n \geq \frac{c^2 z_{\alpha/2}^2}{\hat{p}_n \delta^2}$$

so *n* grows inversely with \hat{p}_n .

• To estimate probability of event $\mathbb{P}(X \in E)$, Monte Carlo estimate $\mathbb{E}[\mathbb{I}\{X \in E\}]$.

5. Simulation

• Let F cdf, then generalised inverse cdf is

$$F^{-1}(u)\coloneqq \inf\{x:F(x)\geq u\}$$

- Inverse transform sampling algorithm: let random variable X with cdf F, with generalised inverse F^{-1} .
 - Simulate $U \sim \text{Unif}(0, 1)$.
 - Compute $X = F^{-1}(U)$.

X is then distributed with cdf F. Only works for 1D distributions.

- Rejection sampling algorithm: given target density function f, proposal density function \tilde{f} with $\forall x \in \mathbb{R}^d$, $f(x) \leq c\tilde{f}(x)$ for some $c < \infty$,
 - Set a =false
 - While a =false:

- Simulate $u \sim \text{Unif}(0, 1)$.
- Simulate $x \sim \tilde{f}(\cdot)$.
- If $u \leq \frac{f(x)}{c\tilde{f}(x)}$, set a =true.
- Once while loop exited, return x, which is distributed with pdf f.
- Note: f and \tilde{f} don't need to be normalised.
- When f, \tilde{f} normalised, expected number of iterations of rejection sampling algorithm is c.
- Important: when choosing value of *c*, always round **up** if inexact.
- When checking if rejection sampling can be used, check if ratio $f(x) / \tilde{f}(x)$ tends to 0 as $x \to \pm \infty$ and differentiate ratio with respect to x to find maximum.
- Normalised importance sampling: given normalised density function f and normalised proposal density function \tilde{f} , n importance samples produced by: for $i \in \{1, ..., n\}$:
 - Simulate $x_i \sim \tilde{f}(\cdot)$.
 - Compute $w_i = f(x_i) / \tilde{f}(x_i)$.

This produces importance samples $\{(x_i, w_i)\}_{i=1}^n$. $\mu = \mathbb{E}_{\tilde{f}}[g(X)]$ estimated by importance sampling estimator

$$\hat{\mu} = \frac{1}{n}\sum_{i=1}^n w_i g(x_i)$$

 $(\mathbb{E}_{\tilde{f}}[\hat{\mu}] = \mu$, provided $\tilde{f}(x) > 0$ whenever $f(x)g(x) \neq 0$.

• Variance of importance sampling estimator is

$$\operatorname{Var}(\hat{\mu}) = \frac{\sigma_{\hat{f}}^2}{n}$$

where

$$\sigma_{\tilde{f}}^2 = \int_{\tilde{\Omega}} \frac{\left(g(x)f(x) - \mu \tilde{f}(x)\right)^2}{\tilde{f}(x)} \, \mathrm{d}x$$

and $\tilde{\Omega}$ is support of \tilde{f} .

• Can estimate variance with

$$\hat{\sigma}_{\tilde{f}}^2 = \frac{1}{n} \sum_{i=1}^n \left(w_i g(x_i) - \hat{\mu} \right)^2$$

• Distribution which minimises estimator variance is

$${\widetilde f}_{
m opt}(x) = rac{|g(x)|f(x)|}{\int_\Omega |g(x)|f(x)\,\mathrm{d}x|}$$

• Self-normalised importance sampling: same as normalised importance sampling, but compute

$$\hat{\mu} = \frac{1}{\sum_{i=1}^n w_i} \sum_{i=1}^n w_i g(x_i)$$

Can use for unnormalised density functions $f, \tilde{f}. \ \hat{\mu}$ is not unbiased.

• Approximate variance of self-normalised estimator:

$$\operatorname{Var}(\hat{\mu}) \approx \frac{\hat{\sigma}_{\hat{f}}^2}{n}$$

where

$$\hat{\sigma}_{\tilde{f}}^2 = \sum_{i=1}^n {w_i}'^2 (g(x_i) - \hat{\mu})^2$$

and

$$w_i{'}=\frac{w_i}{\sum_{j=1}^n w_j}$$

• Effective sample size n_e : size of sample for which variance of naive Monte Carlo average $\left(\frac{1}{n_e}\sum_{i=1}^{n_e} g(x_i)\right)$ with sample size n_e , σ^2 / n_e (σ^2 is variance of g(X)), is equal to variance of importance sampling estimator $\hat{\mu}$, $\operatorname{Var}(\hat{\mu})$:

$$n_e = \frac{n\overline{w}^2}{\overline{w^2}}$$

where

$$\overline{w}^2 = \left(\frac{1}{n}\sum_{i=1}^n w_i\right)^2, \quad \overline{w^2} = \frac{1}{n}\sum_{i=1}^n w_i^2$$

- Small n_e means importance sampling is poor estimator.
- Poor estimator if proposal distribution has much less probability in tails than target distribution.