1. Introduction, the natural numbers

N={1,2,3,...}
N, ={0,1,2,3,...} = NU{0}
Peano’s axioms: three primitive terms: Nj, 0 and successor function, S.
e 0€N,.
o YaeNy,S(a)+#0.
e S(a)=S8(b) =a=0.
o If X CN;and
e 0 € X and
e Vae X,S(a) e X

then X = Nj,.

Last axiom applied to X = {n € N, : P(n) true} gives Principle of

Mathematical Induction (PMI): for statement P(n), if P(0) true and

Vn € Ny, P(n) = P(n+ 1) then P(n) true for every n € N,,.

PMI variants:

o If P(0) true and if for every n € N, P(z) for every x < n implies P(n), then
P(n) true for every n € N,,.

o Same as two variants above but with base case P(1) true leading to P(n) true
for every n € N.

Addition of natural numbers: let a € Nj,.

e a+0=a.

e a+S(b)=S(a+b)

Well ordering principle (WOP): let S C N, S # 0, then S has a smallest

element.

2. Divisibility

a divides b, a | b if 3d € Z,b = ad. If not, write a { b.
Properties of divisibility:

e al0.

Ifa#0,0}a.

1| aandal|a.

a|b=a]bec.

albandb|c=a|ec.

a|banda|c= a| (bx+ cy) for any z,y € Z.
a|band b|a= a=4b.
al|b,a>0b>0=a<hb.

e a| b= ac]|bc.

Division algorithm: let a € Z, b € N. Then exist unique ¢ and r such that

a=qgb+r, 0<r<b
Common divisor d of a and b is such that d | a and d | b.
Greatest common divisor (gcd) of a and b is maximal common divisor.
Properties of gcd:



o ged(a,b) = ged(b, a).

e If a >0, gcd(a,0) = a.

o ged(a,b) = ged(—a,b).

e Ifa>0,b>0,gced(a,b) < min{a,b}.
e For every a,b,q € Z,

ged(a, b) = ged(a, b —a) == ged(a, b — qa)
e Euclidean algorithm: let a,b € N. Repeating the division algorithm:
a=qb+mr
b=gory+ 1y

Ty = (Q3Ty + T3

Th—o = 4Ty + Tn

Then exists smallest n such that r, = 0. Then if n = 1, ged(a,b) = b, else
ged(a,b) =7, ;. Also, exists z,y € Z such that

ged(a,b) = ax + by

3. Primes, composite numbers, and the FTA

e n€ Nprimeifn>1andifd|nthend=nord=1 If n > 1 not prime, n
composite.

e There are infinitely many primes.

e There are infinitely many primes of form 4n — 1.

e Dirichlet’s theorem: Let a,b coprime. Then exist infinitely many primes of form
an + b.

o Euclid’s lemma: Let p > 1. p prime iff for every a,b € Z, p|ab=p|a or p | b.

o Let p prime. If p | a; -+ a,, then p | a; for some 3.

o Fundamental theorem of arithmetic (FTA): let n > 1, then n can be written
as product of primes, unique up to reordering. So exist distinct primes py, ..., p,
and e, ...,e, € N such that

n = pil el
and if n = q{l qfs for distinct primes g;, then r = s and up to reordering, p;, = g;
and e; = f; for every i.

4. Classical equations and integer solutions

o Pythagorean triple (z,y, z) € N3: solution to x? + y? = 2%. Primitive if
ged(x,y,2) = 1.

o Every primitive Pythagorean triple (z,y, z), with 2 | z, given by

T = 2st
y=32—t2
z = 82 + 2



with s >t > 1, ged(s,t) =1 and s #t (mod2).
Fermat’s theorem: no integer solutions exist to z* + y* = 22.

Diophantine equation: equation where integer or rational solutions are sought.

5. Modular arithmetic and congruences

e a congruent to b modulo n,a=b (modn) ifn| (a—0»).

o Residue (congruence) class: set of integers congruent mod n.

e Ifa=b (modn)and a =b" (modn) then:
e a+a’'=b+b (modn) and
e aa’ =bb" (modn).

e There are n residue classes modn: 0,1,...,n — 1.

o If ged(e,n) =1, then ac =bc (modn) implies a =b (modn).

e Complete set of residues mod n: subset R C Z of size n whose remainders
mod n are distinct.

o Let R be complete set of residues mod n and let ged(a,n) = 1, then

aR:={az:z € R}

is also complete set of residues mod n.
o Linear congruence: ax =b (modn).
o If ged(a,n) = 1, linear congruence has solution, unique up to adding multiples of n
(solutions lie in same congruence class).
e Method for solving linear congruence (if gcd(a,n) = 1):
e Use Euclidean algorithm to find w, v such that 1 = au + nwv.
e au=1 (modn)so a(ub) =b (modn) so solutions are

x=ub (modn)
o Linear congruence solvable iff ged(a,n) | b.
o Chinese remainder theorem (CRT): let m,n € N coprime, a,b € Z. Then
exists solution to

z=a (modm)

x=b (modn)

Any solutions are congruent mod mn and exists unique solution x with
0<z<mn.
e Method to solve CRT problem:
e Use Euclidean algorithm to find r, s such that 1 = rm 4+ sn, so
rm=1 (modn)and sn =1 (modm).
e Sobrm=0b (modn)and asn =a (modm).
e Soasn+brm=b (modn) and asn+brm =a (modm).
e So z = brm + asn is solution.
e Euler p-function: ¢ : N — N:

o(n):=|{r e N:r <nandged(r,n) = 1}
e (p) =p—1 for prime p.



For prime p, p(p") = p" —p" ' =p" ' (p — 1).
If gcd(m,n) = 1, then p(mn) = p(m)p(n).
Let n have prime factorisation n = H:: ) pfl Then

9"(”):”@.13(1‘%)

Let n € N, then

> pld)=n

dn

where sum is over positive divisors of n.
Euler’s theorem: For a € Z, n € N, ged(a,n) =1,

a?™ =1 (modn)

Fermat’s little theorem: let p prime, a € Z, p } a. Then

a>!'=1 (modp)

6. Primitive roots

Let n € N, a € Z, ged(a,n) = 1. (Multiplicative) order of amodn,
ord, (a) = ord(a), is smallest d € N such that

a® = (modn)
If e =1 (modn) for some d, then ord(a) | d. So ord(a) | ¢(n).
Let ged(a,n) = 1, a is primitive root modn if ord, (a) = ¢(n).
Let p prime, f(z) polynomial with integer coefficients of degree n. Then f has at
most n roots modp, so f(z) =0 (modp) has at most n solutions mod p.
Let p prime, d | p— 1. Then ¥ —1 =0 (mod p) has exactly d solutions mod p.
Let p prime, then there are ¢(p — 1) primitive roots mod p.
Let g primitive root mod p, gcd(a,p) = 1. Then for some r € N,

r

a=g" (modp)

(g,6%, ...,g° ! are distinct and form complete set of residues mod p).
Primitive roots mod n exist iff n = 2,4, p* or 2p* for odd prime p, k € N.

7. Quadratic residues

Let p prime, a € Z, ged(a,p) = 1. a is quadratic residue (QR) mod p if for
some x € Z, x> =a (modp). If not, a is quadratic non-residue (NQR)
mod p.

For p odd prime, there are p%l QR’s and ’%1 QNR’s mod p.

Products of QR’s and NQR’s satisfy:



QR x QR =QR

QR x NR=NR

NRx NR=QR
e Let p prime, a € Z, Legendre symbol is

a 1 ifa QR
(—) =< —1if a NQR
0 ifpla

' 5)-G)G)
p b b
. (%) = (Zl;) ifa=b (modp).
o Euler’s criterion: Let p odd prime, a € Z, gcd(a,p) = 1, then

-1/2 = (2) (mod p)

p
e —1isQRifp=1 (mod4) and is NQR if p=3 (mod4).
e Quadratic reciprocity law (QRL): let p # ¢ odd primes, then

(B

If p=2,

e Algorithm for computing Legendre symbol (%):

e Divide a by p to get a = tp + r so (%) = (I—T))

If r=0, % = 0 so stop.

e If r=1, (1) =1 so stop.
b . . . e e r k q; \ €
o If r# 0,1 factorise into primes r = ¢;" -+ ;" so (5> = Hi:l (;’) .

r < p so g; <p, so calculate (&) for each 1.

. _ 2\ — ()™
If ¢, =2, use (p) = (—1) (Zf{)@fl)
e If ¢, > 2, use (%) =(—1) ¢ (f) and go to step 1 to calculate (5).

T

e« Note: to evaluate (_71), easier to use Euler’s criterion.
e There are infinitely many primes of form 4n + 1.

8. Sums of two squares

e If m and n are sums of two squares, then so is mn since
(a® + %) (2 + d?) = (ac + bd)* + (ad — be)’.

o Let p odd prime. Then p sum of two squares iff p =1 (mod4) (and if
p=1 (mod4), this sum of two squares is unique).

e Let n>1,n=pp, - p,N% p; distinct primes, N € N. Then n sum of two squares
iff p, =2o0rp,=1 (mod4) for all i.



9. Continued fractions

o Finite continued fraction (CF):

1

1
a, + —+
1 1

[ag; ay, ..., a,] = ay +
o Simple CF: q, € Z, a4, ...,a, € N.
e Any rational number can be written as finite simple continued fraction.
o kth convergent of CF [ay; ay, ..., a,]:

Ck = [ao; al, ceey ak]

[Pk pkl] _ [ao 1] {al 1] [ak 1]

qr dx—1 1 0/[1 O 10

so p; = aga; + 1, pg = ag, ¢ = ay, qo = 1 and p, = ayp;,_1 + Py_o,
qr = arqx_1 + Q2

o If [ag;ay,...,a,] is simple CF, then ¢, ; < ¢, and ¢;,_; < q;, if k& > 1.
k+1

« C,=p,/4q,, where

Prdr_1 — QP = (_1)

 ged(pp, i) = 1.
o Let a =[ay;ay,...,a,], k=0,...,n—1, then even numbered convergents increasing:

Cy < C, << C,,,, odd numbered convergents decreasing C,,,,; << C3 < C;
and for every k with 2k 4+ 1 < n,

Doy <a< Dog+1
Qox D2k+1
and
1
Qx Tk 9k+1
o Infinite CF [ay; ay,...] is limit of convergents C,, = [ay; a4, ..., a,]-

o For simple infinite CF, limit always exists.

e Pell’s equation: 2 — dy? = 1, d € N not square.
« Negative Pell’s equation: z? — dy? = —1.

e Infinite CF periodic if of form

(@03 @1y wovy Qs s 1 <oy Qonis Bt s -3 Qo =)

Ag; Gy, ..., @y, is initial part, a,, 1, .., Qi Qrgts ooy Qs --- 18 periodic part. In

periodic part, a; = a; if i = j (mod n). Write as
(@05 Qs v Qs B 15 o3 G

n is period.
o If d not square, CF of v/d is periodic with initial part only ag.



o Let p; / q; be convergents of simple CF expansion of v/d with period n, then for
all k > 1,

k
pl%nfl - dql%nfl = (_1) "

o Soif n even or k even, (,y) = (Ppn_1,din_1) are solution to Pell’s equation. Else
(z,Y) = (Pgn_19kn_1) are solution to negative Pell’s equation. All positive
solutions to (negative) Pell equation given by above.
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