
1. Introduction, the natural numbers
• ℕ = {1, 2, 3,…}
• ℕ0 = {0, 1, 2, 3,…} = ℕ ∪ {0}
• Peano’s axioms: three primitive terms: ℕ0, 0 and successor function, 𝑆.

• 0 ∈ ℕ0.
• ∀𝑎 ∈ ℕ0, 𝑆(𝑎) ≠ 0.
• 𝑆(𝑎) = 𝑆(𝑏) ⇒ 𝑎 = 𝑏.
• If 𝑋 ⊆ ℕ0 and

• 0 ∈ 𝑋 and
• ∀𝑎 ∈ 𝑋,𝑆(𝑎) ∈ 𝑋

then 𝑋 = ℕ0.
• Last axiom applied to 𝑋 = {𝑛 ∈ ℕ0 : 𝑃 (𝑛) true} gives Principle of

Mathematical Induction (PMI): for statement 𝑃(𝑛), if 𝑃(0) true and
∀𝑛 ∈ ℕ0, 𝑃 (𝑛) ⇒ 𝑃(𝑛 + 1) then 𝑃(𝑛) true for every 𝑛 ∈ ℕ0.

• PMI variants:
• If 𝑃(0) true and if for every 𝑛 ∈ ℕ0, 𝑃(𝑥) for every 𝑥 < 𝑛 implies 𝑃(𝑛), then

𝑃(𝑛) true for every 𝑛 ∈ ℕ0.
• Same as two variants above but with base case 𝑃(1) true leading to 𝑃(𝑛) true

for every 𝑛 ∈ ℕ.
• Addition of natural numbers: let 𝑎 ∈ ℕ0.

• 𝑎 + 0 = 𝑎.
• 𝑎 + 𝑆(𝑏) = 𝑆(𝑎 + 𝑏)

• Well ordering principle (WOP): let 𝑆 ⊆ ℕ0, 𝑆 ≠ ∅, then 𝑆 has a smallest
element.

2. Divisibility
• 𝑎 divides 𝑏, 𝑎 | 𝑏 if ∃𝑑 ∈ ℤ, 𝑏 = 𝑎𝑑. If not, write 𝑎 ∤ 𝑏.
• Properties of divisibility:

• 𝑎 | 0.
• If 𝑎 ≠ 0, 0 ∤ 𝑎.
• 1 | 𝑎 and 𝑎 | 𝑎.
• 𝑎 ∣ 𝑏 ⟹ 𝑎 ∣ 𝑏𝑐.
• 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑐 ⟹ 𝑎 ∣ 𝑐.
• 𝑎 ∣ 𝑏 and 𝑎 ∣ 𝑐 ⟹ 𝑎 ∣ (𝑏𝑥 + 𝑐𝑦) for any 𝑥, 𝑦 ∈ ℤ.
• 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎⟹ 𝑎 = ±𝑏.
• 𝑎 | 𝑏, 𝑎 > 0, 𝑏 > 0⟹ 𝑎 ≤ 𝑏.
• 𝑎 ∣ 𝑏 ⟹ 𝑎𝑐 ∣ 𝑏𝑐.

• Division algorithm: let 𝑎 ∈ ℤ, 𝑏 ∈ ℕ. Then exist unique 𝑞 and 𝑟 such that

𝑎 = 𝑞𝑏 + 𝑟, 0 ≤ 𝑟 < 𝑏
• Common divisor 𝑑 of 𝑎 and 𝑏 is such that 𝑑 | 𝑎 and 𝑑 | 𝑏.
• Greatest common divisor (𝐠𝐜𝐝) of 𝑎 and 𝑏 is maximal common divisor.
• Properties of 𝐠𝐜𝐝:
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• gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎).
• If 𝑎 > 0, gcd(𝑎, 0) = 𝑎.
• gcd(𝑎, 𝑏) = gcd(−𝑎, 𝑏).
• If 𝑎 > 0, 𝑏 > 0, gcd(𝑎, 𝑏) ≤ min{𝑎, 𝑏}.

• For every 𝑎, 𝑏, 𝑞 ∈ ℤ,

gcd(𝑎, 𝑏) = gcd(𝑎, 𝑏 − 𝑎) =⋯= gcd(𝑎, 𝑏 − 𝑞𝑎)
• Euclidean algorithm: let 𝑎, 𝑏 ∈ ℕ. Repeating the division algorithm:

𝑎 = 𝑞1𝑏 + 𝑟1
𝑏 = 𝑞2𝑟1 + 𝑟2
𝑟1 = 𝑞3𝑟2 + 𝑟3
⋮

𝑟𝑛−2 = 𝑞𝑛𝑟𝑛−1 + 𝑟𝑛

Then exists smallest 𝑛 such that 𝑟𝑛 = 0. Then if 𝑛 = 1, gcd(𝑎, 𝑏) = 𝑏, else
gcd(𝑎, 𝑏) = 𝑟𝑛−1. Also, exists 𝑥, 𝑦 ∈ ℤ such that

gcd(𝑎, 𝑏) = 𝑎𝑥 + 𝑏𝑦

3. Primes, composite numbers, and the FTA
• 𝑛 ∈ ℕ prime if 𝑛 > 1 and if 𝑑 | 𝑛 then 𝑑 = 𝑛 or 𝑑 = 1. If 𝑛 > 1 not prime, 𝑛

composite.
• There are infinitely many primes.
• There are infinitely many primes of form 4𝑛 − 1.
• Dirichlet’s theorem: Let 𝑎, 𝑏 coprime. Then exist infinitely many primes of form

𝑎𝑛 + 𝑏.
• Euclid’s lemma: Let 𝑝 > 1. 𝑝 prime iff for every 𝑎, 𝑏 ∈ ℤ, 𝑝 ∣ 𝑎𝑏 ⟹ 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏.
• Let 𝑝 prime. If 𝑝 | 𝑎1 ⋯ 𝑎𝑛 then 𝑝 | 𝑎𝑖 for some 𝑖.
• Fundamental theorem of arithmetic (FTA): let 𝑛 > 1, then 𝑛 can be written

as product of primes, unique up to reordering. So exist distinct primes 𝑝1,…, 𝑝𝑟
and 𝑒1,…, 𝑒𝑟 ∈ ℕ such that

𝑛 = 𝑝𝑒11 ⋯ 𝑝𝑒𝑟𝑟

and if 𝑛 = 𝑞𝑓11 ⋯ 𝑞𝑓𝑠𝑠  for distinct primes 𝑞𝑖, then 𝑟 = 𝑠 and up to reordering, 𝑝𝑖 = 𝑞𝑖
and 𝑒𝑖 = 𝑓𝑖 for every 𝑖.

4. Classical equations and integer solutions
• Pythagorean triple (𝑥, 𝑦, 𝑧) ∈ ℕ3: solution to 𝑥2 + 𝑦2 = 𝑧2. Primitive if

gcd(𝑥, 𝑦, 𝑧) = 1.
• Every primitive Pythagorean triple (𝑥, 𝑦, 𝑧), with 2 ∣ 𝑥, given by

⎩{
⎨
{⎧𝑥 = 2𝑠𝑡
𝑦 = 𝑠2 − 𝑡2

𝑧 = 𝑠2 + 𝑡2
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with 𝑠 > 𝑡 ≥ 1, gcd(𝑠, 𝑡) = 1 and 𝑠 ≢ 𝑡 (mod 2).
• Fermat’s theorem: no integer solutions exist to 𝑥4 + 𝑦4 = 𝑧2.
• Diophantine equation: equation where integer or rational solutions are sought.

5. Modular arithmetic and congruences
• 𝑎 congruent to 𝑏 modulo 𝒏, 𝑎 ≡ 𝑏 (mod𝑛) if 𝑛 ∣ (𝑎 − 𝑏).
• Residue (congruence) class: set of integers congruent mod𝑛.
• If 𝑎 ≡ 𝑏 (mod𝑛) and 𝑎′ ≡ 𝑏′ (mod𝑛) then:

• 𝑎 + 𝑎′ ≡ 𝑏 + 𝑏′ (mod𝑛) and
• 𝑎𝑎′ ≡ 𝑏𝑏′ (mod𝑛).

• There are 𝑛 residue classes mod𝑛: 
̲
0,
̲
1,…,

̲̲̲̲̲̲̲̲̲̲̲̲̲̲
𝑛 − 1.

• If gcd(𝑐, 𝑛) = 1, then 𝑎𝑐 ≡ 𝑏𝑐 (mod𝑛) implies 𝑎 ≡ 𝑏 (mod𝑛).
• Complete set of residues mod 𝒏: subset 𝑅 ⊂ ℤ of size 𝑛 whose remainders

mod𝑛 are distinct.
• Let 𝑅 be complete set of residues mod 𝑛 and let gcd(𝑎, 𝑛) = 1, then

𝑎𝑅 ≔ {𝑎𝑥 : 𝑥 ∈ ℝ}

is also complete set of residues mod 𝑛.
• Linear congruence: 𝑎𝑥 ≡ 𝑏 (mod𝑛).
• If gcd(𝑎, 𝑛) = 1, linear congruence has solution, unique up to adding multiples of 𝑛

(solutions lie in same congruence class).
• Method for solving linear congruence (if gcd(𝑎, 𝑛) = 1):

• Use Euclidean algorithm to find 𝑢, 𝑣 such that 1 = 𝑎𝑢 + 𝑛𝑣.
• 𝑎𝑢 ≡ 1 (mod𝑛) so 𝑎(𝑢𝑏) ≡ 𝑏 (mod𝑛) so solutions are

𝑥 ≡ 𝑢𝑏 (mod𝑛)
• Linear congruence solvable iff gcd(𝑎, 𝑛) ∣ 𝑏.
• Chinese remainder theorem (CRT): let 𝑚,𝑛 ∈ ℕ coprime, 𝑎, 𝑏 ∈ ℤ. Then

exists solution to

𝑥 ≡ 𝑎 (mod𝑚)
𝑥 ≡ 𝑏 (mod𝑛)

Any solutions are congruent mod𝑚𝑛 and exists unique solution 𝑥 with
0 ≤ 𝑥 < 𝑚𝑛.

• Method to solve CRT problem:
• Use Euclidean algorithm to find 𝑟, 𝑠 such that 1 = 𝑟𝑚+ 𝑠𝑛, so

𝑟𝑚 ≡ 1 (mod𝑛) and 𝑠𝑛 ≡ 1 (mod𝑚).
• So 𝑏𝑟𝑚 ≡ 𝑏 (mod𝑛) and 𝑎𝑠𝑛 ≡ 𝑎 (mod𝑚).
• So 𝑎𝑠𝑛 + 𝑏𝑟𝑚 ≡ 𝑏 (mod𝑛) and 𝑎𝑠𝑛 + 𝑏𝑟𝑚 ≡ 𝑎 (mod𝑚).
• So 𝑥 = 𝑏𝑟𝑚 + 𝑎𝑠𝑛 is solution.

• Euler 𝝋-function: 𝜑 : ℕ → ℕ:

𝜑(𝑛) ≔ |{𝑟 ∈ ℕ : 𝑟 ≤ 𝑛 and gcd(𝑟, 𝑛) = 1}|
• 𝜑(𝑝) = 𝑝 − 1 for prime 𝑝.
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• For prime 𝑝, 𝜑(𝑝𝑛) = 𝑝𝑛 − 𝑝𝑛−1 = 𝑝𝑛−1(𝑝 − 1).
• If gcd(𝑚, 𝑛) = 1, then 𝜑(𝑚𝑛) = 𝜑(𝑚)𝜑(𝑛).
• Let 𝑛 have prime factorisation 𝑛 = ∏𝑟

𝑖=1 𝑝
𝑒𝑖
𝑖 . Then

𝜑(𝑛) = 𝑛∏
𝑟

𝑖=1
(1 −

1
𝑝𝑖
)

• Let 𝑛 ∈ ℕ, then

∑
𝑑∣𝑛

𝜑(𝑑) = 𝑛

where sum is over positive divisors of 𝑛.
• Euler’s theorem: For 𝑎 ∈ ℤ, 𝑛 ∈ ℕ, gcd(𝑎, 𝑛) = 1,

𝑎𝜑(𝑛) ≡ 1 (mod𝑛)
• Fermat’s little theorem: let 𝑝 prime, 𝑎 ∈ ℤ, 𝑝 ∤ 𝑎. Then

𝑎𝑝−1 ≡ 1 (mod 𝑝)

6. Primitive roots
• Let 𝑛 ∈ ℕ, 𝑎 ∈ ℤ, gcd(𝑎, 𝑛) = 1. (Multiplicative) order of 𝑎mod𝑛,

ord𝑛(𝑎) = ord(𝑎), is smallest 𝑑 ∈ ℕ such that

𝑎𝑑 ≡ 1 (mod𝑛)
• If 𝑎𝑑 ≡ 1 (mod𝑛) for some 𝑑, then ord(𝑎) ∣ 𝑑. So ord(𝑎) ∣ 𝜑(𝑛).
• Let gcd(𝑎, 𝑛) = 1, 𝑎 is primitive root 𝐦𝐨𝐝𝒏 if ord𝑛(𝑎) = 𝜑(𝑛).
• Let 𝑝 prime, 𝑓(𝑥) polynomial with integer coefficients of degree 𝑛. Then 𝑓 has at

most 𝑛 roots mod𝑝, so 𝑓(𝑥) ≡ 0 (mod 𝑝) has at most 𝑛 solutions mod𝑝.
• Let 𝑝 prime, 𝑑 ∣ 𝑝 − 1. Then 𝑥𝑑 − 1 ≡ 0 (mod 𝑝) has exactly 𝑑 solutions mod𝑝.
• Let 𝑝 prime, then there are 𝜑(𝑝 − 1) primitive roots mod𝑝.
• Let 𝑔 primitive root mod𝑝, gcd(𝑎, 𝑝) = 1. Then for some 𝑟 ∈ ℕ,

𝑎 ≡ 𝑔𝑟 (mod 𝑝)

(𝑔, 𝑔2,…, 𝑔𝑝−1 are distinct and form complete set of residues mod𝑝).
• Primitive roots mod𝑛 exist iff 𝑛 = 2, 4, 𝑝𝑘 or 2𝑝𝑘 for odd prime 𝑝, 𝑘 ∈ ℕ.

7. Quadratic residues
• Let 𝑝 prime, 𝑎 ∈ ℤ, gcd(𝑎, 𝑝) = 1. 𝑎 is quadratic residue (QR) 𝐦𝐨𝐝𝒑 if for

some 𝑥 ∈ ℤ, 𝑥2 ≡ 𝑎 (mod 𝑝). If not, 𝑎 is quadratic non-residue (NQR)
𝐦𝐨𝐝𝒑.

• For 𝑝 odd prime, there are 𝑝−12  QR’s and 𝑝−12  QNR’s mod𝑝.
• Products of QR’s and NQR’s satisfy:
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𝑄𝑅 ×𝑄𝑅 = 𝑄𝑅
𝑄𝑅 ×𝑁𝑅 = 𝑁𝑅
𝑁𝑅 ×𝑁𝑅 = 𝑄𝑅

• Let 𝑝 prime, 𝑎 ∈ ℤ, Legendre symbol is

(
𝑎
𝑝
) ≔

⎩{
⎨
{⎧1 if 𝑎 QR
−1 if 𝑎 NQR
0 if 𝑝 ∣ 𝑎

•
(
𝑎𝑏
𝑝
) = (

𝑎
𝑝
)(

𝑏
𝑝
)

• (𝑎𝑝) = ( 𝑏𝑝) if 𝑎 ≡ 𝑏 (mod 𝑝).
• Euler’s criterion: Let 𝑝 odd prime, 𝑎 ∈ ℤ, gcd(𝑎, 𝑝) = 1, then

𝑎(𝑝−1)/2 ≡ (
𝑎
𝑝
) (mod 𝑝)

• −1 is QR if 𝑝 ≡ 1 (mod 4) and is NQR if 𝑝 ≡ 3 (mod 4).
• Quadratic reciprocity law (QRL): let 𝑝 ≠ 𝑞 odd primes, then

(
𝑝
𝑞
)(

𝑞
𝑝
) = (−1)

𝑝−1
2

𝑞−1
2

If 𝑝 = 2,

(
2
𝑞
) = (−1)

𝑞2−1
8

• Algorithm for computing Legendre symbol (𝑎𝑝):
• Divide 𝑎 by 𝑝 to get 𝑎 = 𝑡𝑝 + 𝑟 so (𝑎𝑝) = ( 𝑟𝑝).
• If 𝑟 = 0, ( 𝑟𝑝) = 0 so stop.
• If 𝑟 = 1, ( 𝑟𝑝) = 1 so stop.
• If 𝑟 ≠ 0, 1 factorise into primes 𝑟 = 𝑞𝑒11 ⋯ 𝑞𝑒𝑘𝑘  so ( 𝑟𝑝) = ∏𝑘

𝑖=1 (
𝑞𝑖
𝑝 )

𝑒𝑖 .
• 𝑟 < 𝑝 so 𝑞𝑖 < 𝑝, so calculate ( 𝑞𝑖𝑝 ) for each 𝑖.

• If 𝑞𝑖 = 2, use ( 2𝑝) = (−1)
𝑝2−1
8 .

• If 𝑞𝑖 > 2, use ( 𝑞𝑖𝑝 ) = (−1)
(𝑞𝑖−1)(𝑝−1)

4 ( 𝑝
𝑞𝑖
) and go to step 1 to calculate ( 𝑝

𝑞𝑖
).

• Note: to evaluate (−1𝑝 ), easier to use Euler’s criterion.
• There are infinitely many primes of form 4𝑛 + 1.

8. Sums of two squares
• If 𝑚 and 𝑛 are sums of two squares, then so is 𝑚𝑛 since

(𝑎2 + 𝑏2)(𝑐2 + 𝑑2) = (𝑎𝑐 + 𝑏𝑑)2 + (𝑎𝑑 − 𝑏𝑐)2.
• Let 𝑝 odd prime. Then 𝑝 sum of two squares iff 𝑝 ≡ 1 (mod 4) (and if

𝑝 ≡ 1 (mod 4), this sum of two squares is unique).
• Let 𝑛 > 1, 𝑛 = 𝑝1𝑝2 ⋯ 𝑝𝑘𝑁 2, 𝑝𝑖 distinct primes, 𝑁 ∈ ℕ. Then 𝑛 sum of two squares

iff 𝑝𝑖 = 2 or 𝑝𝑖 ≡ 1 (mod 4) for all 𝑖.
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9. Continued fractions
• Finite continued fraction (CF):

[𝑎0; 𝑎1,…, 𝑎𝑛] = 𝑎0 +
1

𝑎1 + 1
⋱+ 1

𝑎𝑛

• Simple CF: 𝑎0 ∈ ℤ, 𝑎1,…, 𝑎𝑛 ∈ ℕ.
• Any rational number can be written as finite simple continued fraction.
• 𝒌th convergent of CF [𝑎0; 𝑎1,…, 𝑎𝑛]:

𝐶𝑘 ≔ [𝑎0; 𝑎1,…, 𝑎𝑘]
• 𝐶𝑛 = 𝑝𝑛 / 𝑞𝑛, where

[
𝑝𝑘
𝑞𝑘

𝑝𝑘−1
𝑞𝑘−1

] = [𝑎0
1

1
0
][𝑎1

1
1
0
] ⋯ [𝑎𝑘

1
1
0
]

so 𝑝1 = 𝑎0𝑎1 + 1, 𝑝0 = 𝑎0, 𝑞1 = 𝑎1, 𝑞0 = 1 and 𝑝𝑘 = 𝑎𝑘𝑝𝑘−1 + 𝑝𝑘−2,
𝑞𝑘 = 𝑎𝑘𝑞𝑘−1 + 𝑞𝑘−2

• If [𝑎0; 𝑎1,…, 𝑎𝑛] is simple CF, then 𝑞𝑘−1 ≤ 𝑞𝑘 and 𝑞𝑘−1 < 𝑞𝑘 if 𝑘 > 1.
• 𝑝𝑘𝑞𝑘−1 − 𝑞𝑘𝑝𝑘−1 = (−1)𝑘+1

• gcd(𝑝𝑘, 𝑞𝑘) = 1.
• Let 𝛼 = [𝑎0; 𝑎1,…, 𝑎𝑛], 𝑘 = 0,…, 𝑛 − 1, then even numbered convergents increasing:

𝐶0 < 𝐶2 <⋯< 𝐶2𝑚, odd numbered convergents decreasing 𝐶2𝑚+1 <⋯< 𝐶3 < 𝐶1
and for every 𝑘 with 2𝑘 + 1 ≤ 𝑛,

𝑝2𝑘
𝑞2𝑘

< 𝛼 ≤
𝑝2𝑘+1
𝑞2𝑘+1

and

|𝛼 −
𝑝𝑘
𝑞𝑘
| ≤

1
𝑞𝑘𝑞𝑘+1

• Infinite CF [𝑎0; 𝑎1,…] is limit of convergents 𝐶𝑛 = [𝑎0; 𝑎1,…, 𝑎𝑛].
• For simple infinite CF, limit always exists.
• Pell’s equation: 𝑥2 − 𝑑𝑦2 = 1, 𝑑 ∈ ℕ not square.
• Negative Pell’s equation: 𝑥2 − 𝑑𝑦2 = −1.
• Infinite CF periodic if of form

[𝑎0; 𝑎1,…, 𝑎𝑚, 𝑎𝑚+1,…, 𝑎𝑚+𝑛, 𝑎𝑚+1,…, 𝑎𝑚+𝑛,…]

𝑎0; 𝑎1,…, 𝑎𝑚 is initial part, 𝑎𝑚+1,…, 𝑎𝑚+𝑛, 𝑎𝑚+1,…, 𝑎𝑚+𝑛,… is periodic part. In
periodic part, 𝑎𝑖 = 𝑎𝑗 if 𝑖 ≡ 𝑗 (mod𝑛). Write as

[𝑎0; 𝑎1,…, 𝑎𝑚,
̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲
𝑎𝑚+1,…, 𝑎𝑚+𝑛]

𝑛 is period.
• If 𝑑 not square, CF of 

√
𝑑 is periodic with initial part only 𝑎0.
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• Let 𝑝𝑘 / 𝑞𝑘 be convergents of simple CF expansion of 
√
𝑑 with period 𝑛, then for

all 𝑘 ≥ 1,

𝑝2𝑘𝑛−1 − 𝑑𝑞2𝑘𝑛−1 = (−1)𝑘𝑛

• So if 𝑛 even or 𝑘 even, (𝑥, 𝑦) = (𝑝𝑘𝑛−1, 𝑞𝑘𝑛−1) are solution to Pell’s equation. Else
(𝑥, 𝑦) = (𝑝𝑘𝑛−1, 𝑞𝑘𝑛−1) are solution to negative Pell’s equation. All positive
solutions to (negative) Pell equation given by above.
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