
1. The action principle
• For small 𝛿𝑠 ∈ ℝ, 𝑓(𝑠 + 𝛿𝑠) = 𝑓(𝑠) + 𝑑𝑓(𝑠)

𝑑𝑠 𝛿𝑠 + 𝑅(𝑠, 𝛿𝑠)
• With 𝛿𝑓 ≔ 𝑓(𝑠 + 𝛿𝑠) − 𝑓(𝑠), 𝛿𝑓 = 𝑑𝑓(𝑠)

𝑑𝑠 𝛿𝑠 + 𝑅(𝑠, 𝛿𝑠), with

lim
𝛿𝑠→0

𝑅(𝑠, 𝛿𝑠)
𝛿𝑠

= 0

So 𝛿𝑓 vanishes to first order in 𝛿𝑠, so 𝑅(𝑠, 𝛿𝑠) can be written as 𝑂((𝛿𝑠)2)
• At the extrema of 𝑓 , 𝑑𝑓(𝑠)𝑑𝑠 = 0 so 𝛿𝑓 = 𝑂((𝛿𝑠)2)
• Functional: map from functions to ℝ
• 𝑦(𝑡) stationary for functional 𝑆 if

𝑑𝑆[𝑦(𝑡) + 𝜀𝑧(𝑡)]
𝑑𝜀

∣𝜀=0= 0

for every smooth 𝑧(𝑡) with 𝑧(𝑎) = 𝑧(𝑏) = 0. We use the notation 𝛿𝑦(𝑡) = 𝜀𝑧(𝑡). 𝑦(𝑡)
is called a path.

• Action principle (variational principle): paths described by particles are
stationary paths of 𝑆 (an action functional):

𝛿𝑆 ≔ 𝑆[𝑥 + 𝛿𝑥] − 𝑆[𝑥] = 𝑂((𝛿𝑥)2)

for arbitrary smooth small deformations 𝛿𝑥(𝑡) around true path 𝑥(𝑡).
• Fundamental lemma of the calculus of variations: Let 𝑓(𝑥) be continuous in

[𝑎, 𝑏] and

∫
𝑏

𝑎
𝑓(𝑥)𝑔(𝑥) d𝑥 = 0

for every smooth 𝑔(𝑥) in [𝑎, 𝑏] with 𝑔(𝑎) = 𝑔(𝑏) = 0. Then 𝑓(𝑥) = 0 in [𝑎, 𝑏].
• Notation:

𝜕𝐿
𝜕𝑥

=
𝜕𝐿(𝑟, 𝑠)
𝜕𝑟

∣(𝑟,𝑠)=(𝑥(𝑡), ̇𝑥(𝑡)),
𝜕𝐿
𝜕 ̇𝑥

=
𝜕𝐿(𝑟, 𝑠)
𝜕𝑠

∣(𝑟,𝑠)=(𝑥(𝑡), ̇𝑥(𝑡))

• For a path 𝑞
̅
 and a Lagrangian 𝐿(𝑞

̅
, ̇𝑞
̅
), the action for the path is

𝑆 = ∫
𝑡1

𝑡0

𝐿(𝑞
̅
(𝑡), ̇𝑞

̅
(𝑡))) d𝑡

• The action above satisfies

0 = 𝛿𝑆 = ∫
𝑡1

𝑡0

(∑
𝑁

𝑖=1

𝜕𝐿
𝜕𝑞𝑖

𝛿𝑞𝑖 +∑
𝑁

𝑖=1

𝜕𝐿
𝜕 ̇𝑞𝑖

𝛿 ̇𝑞𝑖)d𝑡

• Euler-Lagrange equation:

𝜕𝐿
𝜕𝑥

−
𝑑
𝑑𝑡
(
𝜕𝐿
𝜕 ̇𝑥

) = 0

• The arguments in a Lagrangian, 𝑥 and ̇𝑥, are independent:
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𝜕𝑥
𝜕 ̇𝑥

=
𝜕 ̇𝑥
𝜕𝑥

= 0

• Configuration space, 𝓒: set of all possible instantaneous confiugratinons of a
physical system. (Includes positions but not velocities).

• For configuration space 𝒞 of system 𝒮, 𝑆 has dim(𝒞) degrees of freedom.
• Generalised coordinates: A set of coordinates in configuration space.
• Notation: 𝑞

̅
 shows results holds for arbitrary choices of generalised coordinates.

• Euler-Lagrange equation for configuration space 𝓒:

𝜕𝐿
𝜕𝑞𝑖

−
𝑑
𝑑𝑡
(
𝜕𝐿
𝜕 ̇𝑞𝑖

) = 0 ∀𝑖 ∈ {1,…, dim(𝒞)}

• For system with kinetic energy 𝑇(𝑞
̅
, ̇𝑞
̅
) and potential energy 𝑉 (𝑞

̅
), the Lagrangian

for the system is

𝐿(𝑞
̅
, ̇𝑞
̅
) = 𝑇(𝑞

̅
, ̇𝑞
̅
) − 𝑉 (𝑞

̅
)

• Ignorable coordinate 𝒒𝒊: Lagrangian does not depend on 𝑞𝑖:

𝜕𝐿(𝑞1,…𝑞𝑁 , ̇𝑞1,… ̇𝑞𝑁)
𝜕𝑞𝑖

= 0

• Generalised momentum of coordinate 𝑞𝑖:

𝑝𝑖 ≔
𝜕𝐿
𝜕 ̇𝑞𝑖

• Generalised momentum of ignorable coordinate is conserved.

2. Symmetries, Noether’s theorem and conservation
laws
• Transformation depending on 𝜺: family of smooth maps 𝜑(𝜀) : 𝒞 → 𝒞 with

𝜑(0) the identity map. Can be written as

𝑞𝑖 → 𝑞𝑖′ = 𝜙𝑖(𝑞1,…, 𝑞𝑁 , 𝜀)

where the 𝜙𝑖 are a set of 𝑁 = dim(𝒞) functions representing the transformation in
the given coordinate system. Change in velocities is

̇𝑞𝑖 →
𝑑
𝑑𝑡
𝜙𝑖

• Generator of 𝝋:

𝑑𝜑(𝜀)
𝑑𝜀

∣𝜀=0= 𝜑′(0)

• In any coordinate system,

𝑞𝑖 → 𝜙𝑖(𝑞
̅
, 𝜀) = 𝑞𝑖 + 𝜀𝑎𝑖(𝑞

̅
) + 𝑂(𝜀2)

where
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𝑎𝑖 =
𝜕𝜙𝑖(𝑞

̅
, 𝜀)

𝜕𝜀
∣𝜀=0

So the generator of the transformation is 𝑎𝑖.
• For velocities,

̇𝑞𝑖 → ̇𝑞𝑖 + 𝜀 ̇𝑎𝑖(𝑞1,…, 𝑞𝑁 , ̇𝑞1,…, ̇𝑞𝑁) + 𝑂(𝜀2)

generated by ̇𝑎𝑖.
• Equations of motion don’t change when total derivative of function of coordinates

and time is added to Lagrangian:

𝐿 → 𝐿+
𝑑𝐹(𝑞1,…, 𝑞𝑁 , 𝑡)

𝑑𝑡

doesn’t change equations of motion.
• Transformation 𝜑(𝜀) is symmetry if for some 𝐹(𝑞

̅
, 𝑡),

𝐿 → 𝐿′ = 𝐿(𝜙(𝑞1, 𝜀),…, 𝜙(𝑞𝑁 , 𝜀)) = 𝐿 + 𝜀
𝑑𝐹(𝑞1,…, 𝑞𝑁 , 𝑡)

𝑑𝑡
+ 𝑂(𝜀2)

𝐹(𝑞
̅
, 𝑡) defined up to a constant.

• For ignorable coordinate 𝑞𝑖, transformation 𝑞𝑖 → 𝑞𝑖 + 𝑐𝑖 is symmetry since 𝑞𝑖
doesn’t appear in Lagrangian and ̇𝑞𝑖 stays invariant. So 𝐹 = 0 here and 𝑎𝑘 = 𝛿𝑖𝑘.

• Noether’s theorem: Let a symmetric transformation be generated by
𝑎𝑖(𝑞1,…, 𝑞𝑁 ), so

𝐿 → 𝐿+ 𝜀
𝑑𝐹(𝑞1,…, 𝑞𝑁 , 𝑡)

𝑑𝑡
+ 𝑂(𝜀2)

Then

𝑄 ≔ (∑
𝑁

𝑖=1
𝑎𝑖
𝜕𝐿
𝜕 ̇𝑞𝑖

)− 𝐹

is conserved (so 𝑑𝑄𝑑𝑡 = 0).
• 𝑄 is called Noether charge.
• Given Lagrangian 𝐿(𝑞

̅
, ̇𝑞
̅
, 𝑡), energy is

𝐸 ≔ (∑
𝑁

𝑖=1
̇𝑞𝑖
𝜕𝐿
𝜕 ̇𝑞𝑖

)−𝐿

• Along path 𝑞
̅
(𝑡) satisfying equations of motion,

𝑑𝐸
𝑑𝑡

= −
𝜕𝐿
𝜕𝑡

• So energy conserved iff Lagrangian doesn’t depend explicitly on time.

3. Normal modes
• Canonical kinetic term: of the form 𝑇 = 1

2 ∑
𝑛
𝑖=1 ̇𝑞2𝑖 .
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• Normal mode: solution to ̈𝑞
̅
+ 𝐴𝑞

̅
= 0, associated with eigenvalue 𝜆(𝑖) > 0 of 𝐴,

of form

𝑞
̅
(𝑡) = 𝑣

̅
(𝑖)(𝛼(𝑖) cos(√𝜆(𝑖)𝑡) + 𝛽(𝑖) sin(√𝜆(𝑖)𝑡))

• Zero mode: solution to ̈𝑞
̅
+ 𝐴𝑞

̅
= 0, associated with eigenvalue 𝜆(𝑖) = 0 of 𝐴, of

form

𝑞
̅
(𝑡) = 𝑣

̅
(𝑖)(𝛼(𝑖)𝑡 + 𝛽(𝑖))

• Instability: solution to ̈𝑞
̅
+ 𝐴𝑞

̅
= 0, associated with eigenvalue 𝜆(𝑖) < 0 of 𝐴, of

form

𝑞
̅
(𝑡) = 𝑣

̅
(𝑖)(𝛼(𝑖) cosh(√−𝜆(𝑖)𝑡) + 𝛽(𝑖) sinh(√−𝜆(𝑖)𝑡))

• When no instabilities, general solution is superposition (sum) of normal modes and
zero modes.

4. Fields and the wave equation
• Generalised Euler-Lagrange equations for fields:

𝜕ℒ
𝜕𝑢

−
𝜕
𝜕𝑥

(
𝜕ℒ
𝜕𝑢𝑥

)−
𝜕
𝜕𝑡
(
𝜕ℒ
𝜕𝑢𝑡

) = 0

and for 𝑛 fields 𝑢(𝑖):

𝜕ℒ
𝜕𝑢(𝑖)

−
𝜕
𝜕𝑥

(
𝜕ℒ
𝜕𝑢(𝑖)𝑥

)−
𝜕
𝜕𝑡
(

𝜕ℒ
𝜕𝑢(𝑖)𝑡

) = 0 ∀𝑖

• If fields don’t depend on (𝑡, 𝑥) but on 𝑑 coordinates 𝑥𝑖,

𝜕ℒ
𝜕𝑢(𝑖)

−∑
𝑑

𝑘=1

𝜕
𝜕𝑥𝑘

(
𝜕ℒ
𝜕𝑢(𝑖)𝑘

)

where 𝑢(𝑖)𝑘 = 𝜕𝑢(𝑖)
𝜕𝑥𝑘

• Massless scalar field Lagrangian:

ℒ =
1
2
𝜌𝑢2𝑡 −

1
2
𝜏𝑢2𝑥

𝜌 is density, 𝜏  is tension. The field 𝑢 is the massless scalar.
• Equation of motion for massless scalar field is

𝜌𝑢𝑡𝑡 − 𝜏𝑢𝑥𝑥 = 0

which rearranges to wave equation:

𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥

where 𝑐2 = 𝜏 / 𝜌.
• D’Alembert’s solution to wave equation:
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𝑢(𝑥, 𝑡) = 𝑓(𝑥 − 𝑐𝑡) + 𝑔(𝑥 + 𝑐𝑡)

𝑓(𝑥 − 𝑐𝑡) corresponds to a wave moving to the right with speed 𝑐, 𝑔(𝑥 + 𝑐𝑡)
corresponds to a wave moving to the left with speed 𝑐.

• If 𝑢(𝑥, 0) = 𝜑(𝑥) and 𝑢𝑡(𝑥, 0) = 𝜓(𝑥) then

𝑢(𝑥, 𝑡) =
1
2
(𝜑(𝑥 − 𝑐𝑡) + 𝜑(𝑥 + 𝑐𝑡)) +

1
2𝑐

∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝜓(𝑠) d𝑠

• In field theory, symmetry is transformation

𝑢 → 𝑢′ = 𝑢 + 𝜀𝑎(𝑢)

such that 𝛿ℒ = 𝑂(𝜀2). 𝑎(𝑢) generates the transformation.
• Note: often, 𝑥0 chosen to be 𝑡.
• Let 𝑢𝑖 = 𝜕𝑢

𝜕𝑥𝑖
, generalised momentum vector is

Π
̅̅ ̅̅ ̅
≔ (

𝜕ℒ
𝜕𝑢0

,…,
𝜕ℒ
𝜕𝑢𝑑

)

• Noether current associated to transformation generated by 𝑎 is

𝐽
̅̅ ̅̅
= 𝑎Π

̅̅ ̅̅ ̅
• If 𝐽

̅̅ ̅̅
 associated to symmetry,

∇
̅̅̅ ̅̅
⋅ 𝐽
̅̅ ̅̅
=∑

𝑑

𝑖=0

𝜕𝐽𝑖
𝜕𝑥𝑖

= 0

• (Noether) charge density:

𝒬 ≔ 𝐽0
• For 𝑑 = 1, charge contained in interval (𝒂, 𝒃):

𝑄(𝑎,𝑏) = ∫
𝑏

𝑎
𝒬d𝑥

• For 𝑑 = 1,

𝑑𝑄(𝑎,𝑏)

𝑑𝑡
= 𝐽1(𝑎) − 𝐽1(𝑏)

• Noether charge is total charge over all space. For 𝑑 = 1:

𝑄 ≔ 𝑄(−∞,∞) = ∫
∞

−∞
𝐽0 d𝑥

• If 𝑑 = 1 and lim𝑥→±∞ 𝐽1 = 0,

𝑑𝑄
𝑑𝑡

= 0

• Energy-momentum tensor:

𝑇𝑖𝑗 ≔
𝜕ℒ
𝜕𝑢𝑗

𝜕𝑢
𝜕𝑥𝑖

− 𝛿𝑖𝑗ℒ
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• Energy density:

ℰ ≔ 𝑇00
• Conservation law for energy-momentum tensor:

∑
𝑑

𝑗=0

𝜕𝑇𝑖𝑗
𝜕𝑥𝑗

= 0

• Energy flux: 𝑇𝑡𝑥.
• Dirichlet boundary condition for wave equation: 𝑢𝑡(0, 𝑡) = 0 (so 𝑢(0, 𝑡) = 0 as

𝑢 has shift symmetry) which gives

𝑢(𝑥, 𝑡) = 𝑓(𝑥 − 𝑐𝑡) − 𝑓(−𝑥 − 𝑐𝑡)

Here, waves reflected off boundary and turned upside down.
• Neumann (free) boundary condition: 𝑢𝑥(0, 𝑡) = 0 which gives

𝑢(𝑥, 𝑡) = 𝑓(𝑥 − 𝑐𝑡) + 𝑓(−𝑥 − 𝑐𝑡)

So waves reflected off boundary and not turned upside down.
• Junction conditions:

• 𝑢 continuous at 0:

lim
𝜀→0+

𝑢(𝜀, 𝑡) = lim
𝜀→0−

𝑢(𝜀, 𝑡)

• Energy conservation across junction:

𝑑
𝑑𝑡
( lim
𝜀→0+

𝐸(−𝜀, 𝜀)) = lim
𝜀→0+

(𝑇𝑡𝑥)𝑥=−𝜀 − lim
𝜀→0+

(𝑇𝑡𝑥)𝑥=𝜀
• Ansatz for wave function with spring at junction at 𝒙 = 𝟎:

𝑢(𝑥, 𝑡) = {
Re((𝑒𝑖𝑝𝑥 +𝑅𝑒−𝑖𝑝𝑥)𝑒−𝑖𝑝𝑐𝑡) if 𝑥 ≤ 0
Re(𝑇 𝑒𝑖𝑝(𝑥−𝑐𝑡)) if 𝑥 > 0

5. The Hamiltonian formalism
• State of classical system at given instant in time is complete set of data that fully

fixes future evolution of system.
• Phase (state) space of system is space of all possible states system can be in at

instant in time.
• Hamiltonian formalism parameterises phase space as generalised coordinates

𝑞
̅
(𝑡) and associated generalised momenta 𝑝

̅
(𝑡).

• When going from Lagrangian to Hamiltonian formalism, define generalised
momentum as

𝑝𝑖 ≔
𝜕𝐿(𝑞

̅
, ̇𝑞
̅
, 𝑡)

𝜕 ̇𝑞𝑖
• Poisson bracket of 𝑓(𝑞

̅
, 𝑝
̅
, 𝑡) and 𝑔(𝑞

̅
, 𝑝
̅
, 𝑡):
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{𝑓, 𝑔} ≔∑
𝑛

𝑖=1
(
𝜕𝑓
𝜕𝑞𝑖

𝜕𝑔
𝜕𝑝𝑖

−
𝜕𝑓
𝜕𝑝𝑖

𝜕𝑔
𝜕𝑞𝑖

)

where 𝑛 is dimension of configuration space (half dimension of phase space).
Position and momentum treated as independent when taking partial derivatives.

• Properties of Poisson bracket:
• Antisymmetric: {𝑓, 𝑔} = −{𝑔, 𝑓}.
• Linear: {𝑎𝑓 + 𝑏𝑔, ℎ} = 𝑎{𝑓, ℎ} + 𝑏{𝑔, ℎ}.
• Leibniz identity: {𝑓𝑔, ℎ} = 𝑓{𝑔, ℎ} + 𝑔{𝑓, ℎ}.
• Jacobi identity: {{𝑓, 𝑔}, ℎ} + {{ℎ, 𝑓}, 𝑔} + {{𝑔, ℎ}, 𝑓} = 0.

• Let 𝒫 be phase space, ℱ be set of functions from 𝒫 to ℝ.
• Hamiltonian flow defined by 𝑓 : 𝒫 → ℝ is infinitesimal transformation on ℱ

given by

Φ(𝑒)
𝑓 : ℱ → ℱ, Φ(𝑒)

𝑓 (𝑔) ≔ 𝑔 + 𝜀{𝑔, 𝑓} + 𝑂(𝜀2)

• Φ(𝑒)
𝑓  is generator of map from 𝒫 to 𝒫:

Φ(𝑒)
𝑓 (𝑞𝑖) = 𝑞𝑖 + 𝜀

𝜕𝑓
𝜕𝑝𝑖

+𝑂(𝜀2)

Φ(𝑒)
𝑓 (𝑝𝑖) = 𝑝𝑖 − 𝜀

𝜕𝑓
𝜕𝑞𝑖

+𝑂(𝜀2)

• Noether charge 𝑄 = (∑𝑛
𝑖=1 𝑎𝑖𝑝𝑖) − 𝐹  generates symmetry transformation via

Hamiltonian flow:

Φ(𝑒)
𝑄 (𝑞𝑖) = 𝑞𝑖 + 𝜀{𝑞𝑖, 𝑄} + 𝑂(𝜀2) = 𝑞𝑖 + 𝜀𝑎𝑖 +𝑂(𝜀2)

• Hamiltonian gives energy:

𝐻 = (∑
𝑛

𝑖=1
𝑝𝑖 ̇𝑞𝑖)−𝐿

• Hamilton’s equations of motion:

̇𝑞𝑖 = {𝑞𝑖, 𝐻} =
𝜕𝐻
𝜕𝑝𝑖

, ̇𝑝𝑖 = {𝑝𝑖, 𝐻} = −
𝜕𝐻
𝜕𝑞𝑖

• Time evolution of 𝑓(𝑞
̅
, 𝑝
̅
) generated by 𝐻:

𝑑𝑓
𝑑𝑡

= {𝑓,𝐻}

If 𝑓 depends explicitly on time,

𝑑𝑓
𝑑𝑡

=
𝜕𝑓
𝜕𝑡

+ {𝑓,𝐻}

• Relation between Hamiltonian and Lagrangian:

𝜕𝐻(𝑞
̅
, 𝑝
̅
, 𝑡)

𝜕𝑡
∣𝑞
̅
,𝑝
̅
= −

𝜕𝐿(𝑞
̅
, ̇𝑞
̅
, 𝑡)

𝜕𝑡
∣𝑞
̅
, ̇𝑞
̅
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• If function 𝑄 doesn’t depend explicitly on time, {𝐻,𝑄} = 0 so Hamiltonian left
invariant by transformation generated by 𝑄:

Φ𝑄(𝐻) = 𝐻 + 𝜀{𝑄,𝐻} + 𝑂(𝜀2) = 𝐻 +𝑂(𝜀2)

6. Wave function and probabilities
• Wave function: continuous, complex function of position 𝑥 and time 𝑡: 𝜓(𝑥, 𝑡).
• Probability density to find particle at time 𝒕 and position 𝒙:

𝑃(𝑥, 𝑡) = |𝜓(𝑥, 𝑡)|2, with

∫
∞

−∞
𝑃(𝑥, 𝑡) d𝑥 = 1

If this integral exists, 𝜓 is square-normalisable. If integral equal to 1, 𝜓 is
normalised. Probability of finding particle in interval (𝑎, 𝑏) is

∫
𝑏

𝑎
𝑃(𝑥, 𝑡) d𝑥

• Expectation value of 𝑓(𝑥):

⟨𝑓(𝑥)⟩ = ∫
∞

−∞
𝑓(𝑥)𝑃(𝑥, 𝑡) d𝑥

• Uncertainty in position: Δ𝑥 = √⟨𝑥2⟩ − ⟨𝑥⟩2
• Infinite potential well in 0 < 𝑥 < 𝐿:

𝑉 (𝑥) = {0 if 0 < 𝑥 < 𝐿
∞ otherwise

Wave function vanishes in regions 𝑥 ≤ 0 and 𝑥 ≥ 𝐿. Eigenfunctions for this
potential are

𝜑𝑛(𝑥) = √2
𝐿
sin(

𝑛𝜋𝑥
𝐿

)

• Wave function collapse: if position is measured to be 𝑥0, wave function becomes
very localised around at 𝑥0, and measurement immediately afterwards will also
yield 𝑥0.

• ⟨𝑥⟩ is not average of repeated measurements of same particle, but average of
measurements of many particles with same wave function.

7. Momentum and Planck’s constant
• Position operator:

̂𝑥 = 𝑥
• Momentum operator:

̂𝑝 = −𝑖ℏ
𝜕
𝜕𝑥

8



where ℏ is reduced Planck constant.
• Commutator:

[ ̂𝑥, ̂𝑝] ≔ ̂𝑥 ̂𝑝 − ̂𝑝 ̂𝑥 = 𝑖ℏ
• Expectation value of momentum for wave function 𝝍:

⟨𝑝⟩ = ∫
∞

−∞

̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲
𝜓(𝑥, 𝑡) ̂𝑝𝜓(𝑥, 𝑡) d𝑥 = −𝑖ℏ∫

∞

−∞

̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲
𝜓(𝑥, 𝑡)

𝜕
𝜕𝑥

𝜓(𝑥, 𝑡) d𝑥

• Expection value of function of momentum:

⟨𝑓(𝑝)⟩ = ∫
∞

−∞

̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲̲
𝜓(𝑥, 𝑡)𝑓( ̂𝑝)𝜓(𝑥, 𝑡) d𝑥

• Momentum uncertainty:

Δ𝑝 = √⟨𝑝2⟩ − ⟨𝑝⟩2

• Heisenberg’s uncertainty principle: for any normalised wave function,

Δ𝑥Δ𝑝 ≥
ℏ
2

8. Schrodinger’s equation
• Hamiltonian operator:

𝐻 =
̂𝑝2

2𝑚
+ 𝑉 (𝑥) = −

ℏ2

2𝑚
𝜕2

𝜕𝑥2
+ 𝑉 (𝑥)

Corresponds to measurements of energy.
• Schrodinger’s equation:

𝑖ℏ
𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
= 𝐻𝜓(𝑥, 𝑡)

9. The Hilbert space
• Hermitian inner product on vector space 𝑽 : map ⟨⋅, ⋅⟩ : 𝑉 × 𝑉 → ℂ

satisfying:
• ⟨𝑣, 𝑤⟩ =

̲̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲
⟨𝑤, 𝑣⟩.

• ⟨𝑣, 𝑎1𝑤1 + 𝑎2𝑤2⟩ = 𝑎1⟨𝑣, 𝑤1⟩ + 𝑎2⟨𝑣, 𝑤2⟩.
• ⟨𝑎1𝑣1 + 𝑎2𝑣2, 𝑤⟩ =

̲̲ ̲̲ ̲̲
𝑎1⟨𝑣1, 𝑤⟩ +

̲̲ ̲̲ ̲̲
𝑎2⟨𝑣2, 𝑤⟩

• ⟨𝑣, 𝑣⟩ ≥ 0 for all 𝑣 and ⟨𝑣, 𝑣⟩ = 0⟺ 𝑣 = 0.
• Set of continuous square-integrable wave functions forms complex vector space. So

𝑎1𝜓1 + 𝑎2𝜓2 is also square-integrable.
• Hermitian inner product of two wave functions:

⟨𝜓1, 𝜓2⟩ = ∫
∞

−∞

̲̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲
𝜓1(𝑥)𝜓2(𝑥) d𝑥
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• If {𝜑𝑛(𝑥)} is orthonormal basis so ⟨𝜑𝑚, 𝜑𝑛⟩ = 𝛿𝑚𝑛, then any vector can be
expressed

𝜓(𝑥) =∑
𝑛
𝑐𝑛𝜑𝑛(𝑥)

where 𝑐𝑚 = ⟨𝜑𝑚, 𝜓⟩. Hermitian product is then

⟨𝜓1, 𝜓2⟩ =∑
𝑖

̲̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲̲
𝜓1(𝑥)𝜓2(𝑥) =∑

𝑛

̲
𝑐1,𝑛𝑐2,𝑛

So squared norm of 𝜓 is |𝜓|2 = ⟨𝜓, 𝜓⟩ = ∑𝑛 |𝑐𝑛|
2.

10. Hermitian operators
• For vector space 𝑉 , linear operator is map 𝐴 : 𝑉 → 𝑉  with

𝐴(𝑎1𝑣1 + 𝑎2𝑣2) = 𝑎1(𝐴𝑣1) + 𝑎2(𝐴𝑣2)
• Any linear combination or composition of linear operators is linear operator.
• Matrix elements of linear operator for orthonormal basis {𝑒𝑗}:

𝐴𝑖𝑗 = ⟨𝑒𝑖, 𝐴𝑒𝑗⟩.
• Adjoint 𝐴†: ⟨𝑣1, 𝐴𝑣2⟩ = ⟨𝐴†𝑣1, 𝑣2⟩. Adjoint has matrix elements which are

conjugate of transpose of original matrix.
• Properties of adjoint:

• (𝑎1𝐴1 + 𝑎2𝐴2)
† =

̲̲ ̲̲ ̲̲
𝑎1𝐴

†
1 +

̲̲ ̲̲ ̲̲
𝑎2𝐴

†
2.

• (𝐴1𝐴2)
† = 𝐴†

2𝐴
†
1.

• Hermitian operator: linear operator that is equal to adjoint. Matrix is
Hermitian: 𝐴𝑖𝑗 =

̲̲̲̲̲̲̲̲
𝐴𝑗𝑖.

• Position and momentum operators Hermitian, w.r.t. orthonomal basis of wave
functions {𝜑𝑛(𝑥)}.

11. The spectrum of a Hermitian operator
• Wave function 𝜓𝑎 is eigenfunction of Hermitian differential operator 𝐴 with

eigenvalue 𝑎 if 𝐴𝜓𝑎(𝑥) = 𝑎𝜓𝑎(𝑥).
• Expectation value of Hermitian operator:

⟨𝐴⟩ = ⟨𝜓,𝐴𝜓⟩ = ∫
∞

−∞

̲̲̲̲̲̲̲̲̲̲̲̲
𝜓(𝑥)𝐴𝜓(𝑥) d𝑥

.
• If 𝜓𝑎 is eigenfunction, ⟨𝐴⟩ = 𝑎 and ⟨𝐴𝑛⟩ = 𝑎𝑛. So uncertainty Δ𝐴 = 0.
• Let 𝐴 Hermitian operator.

• Eigenvalues are real and
• 𝜓1, 𝜓2 eigenfunctions of 𝐴 with distinct eigenvalues are orthogonal.

• If 𝐴 has discrete spectrum, can choose orthonormal basis of eigenfunctions
{𝜑𝑛(𝑥)} with eigenvalues 𝑎𝑛. Then any wave function can be written as
𝜓(𝑥) = ∑𝑛 𝑐𝑛𝜑𝑛(𝑥) where 𝑐𝑛 = ⟨𝜑𝑛, 𝜓⟩. Can interpret |𝑐𝑛|

2 as probability of
measurement of 𝐴 yielding 𝑎𝑛.
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• Dirac delta function:

𝛿(𝑎) = {0 if 𝑎 ≠ 0
∞ if 𝑎 = 0

with ∫∞
−∞

𝛿(𝑎) d𝑎 = 1 and

∫
∞

−∞
𝛿(𝑎 − 𝑎′)𝑓(𝑎′) d𝑎′ = 𝑓(𝑎)

• Limit definition of Dirac delta function: limit as 𝜀 → 0+ of

𝛿𝜀(𝑎) =
1

𝜀
√
𝜋
𝑒−𝑎2/𝜀2

• Delta funtion is Fourier transform of 𝟏:

𝛿(𝑎) =
1
2𝜋

∫
∞

−∞
𝑒𝑖𝑎𝑎′ d𝑎′

• If 𝐴 has continuous spectrum (eigenvalues 𝑎 ∈ ℝ) then can choose basis of
eigenfunctions 𝜑𝑎(𝑥) with ⟨𝜑𝑎, 𝜑𝑎′⟩ = 𝛿(𝑎 − 𝑎′). Can uniquely expand wave
function

𝜓(𝑥) = ∫
∞

−∞
𝑐(𝑎)𝜑𝑎(𝑥) d𝑎

where 𝑐(𝑎) = ⟨𝜑𝑎, 𝜓⟩. Norm of wave function is

⟨𝜓, 𝜓⟩ = ∫
∞

−∞
|𝑐(𝑎)|2 d𝑎

For normalised wave function,

∫
∞

−∞
|𝑐(𝑎)|2 = 1

so treat |𝑐(𝑎)|2 as probability distribution for measurements of 𝐴.

12. Postulates of quantum mechanics
• Postulates of quantum mechanics:

• Particle described by normalised wave function 𝜓(𝑥).
• Measurable quantities represented by Hermitian operators 𝐴(𝑥, 𝑝), constructed

from polynomial/real analytic functions of position and momentum operators:

̂𝑥 = 𝑥,

̂𝑝 = −𝑖ℏ
𝜕
𝜕𝑥

• Possible outcomes of measurement of 𝐴 are given by its eigenvalues 𝑎. If
spectrum discrete, {𝑎𝑗}, then choose eigenfunction basis 𝜑𝑗(𝑥) with
⟨𝜑𝑖, 𝜑𝑗⟩ = 𝛿𝑖𝑗. Then probability of finding measurement as eigenvalue 𝑎𝑗 is
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|⟨𝜑𝑗, 𝜓⟩|
2. If spectrum continuous, 𝑎 ∈ ℝ, choose eigenfunctions 𝜑𝑎(𝑥) with

⟨𝜑𝑎, 𝜑𝑎′⟩ = 𝛿(𝑎 − 𝑎′), then probability of finding measurement as eigenvalue 𝑎 is
|⟨𝜑𝑎, 𝜓⟩|

2.
• If measurement of 𝐴 yields eigenvalue 𝑎𝑗 (or 𝑎), wave function immediately

afterwards is 𝜑𝑗(𝑥) (or 𝜑𝑎(𝑥)). Note: in continuous case, wave function
immediately afterwards not square-normalisable.

• If no measurements made, 𝜓 evolves in time according to Schrodinger equation:

𝑖ℏ
𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
= 𝐻𝜓(𝑥, 𝑡)

• For discrete spectrum, expectation value of 𝐴 is

⟨𝐴⟩ =∑
𝑗
𝑎𝑗𝑃𝑗

for eigenvalues 𝑎𝑗, 𝑃𝑗 = |𝑐𝑗|
2 is probability of measurement being 𝑎𝑗.

• For continuous spectrum, expectation value of 𝐴 is

⟨𝐴⟩ = ∫
∞

−∞
𝑎𝑃(𝑎) d𝑎

where 𝑃(𝑎) = |𝑐(𝑎)|2 is probability distribution.

13. Commutators and uncertainty principle
• Commutator of operators 𝐴,𝐵:

[𝐴,𝐵] = 𝐴𝐵 −𝐵𝐴
• Properties of commutator:

• Anti-symmetry: [𝐴,𝐵] = −[𝐵,𝐴].
• Linearity: [𝑎1𝐴1 + 𝑎2𝐴2, 𝐵] = 𝑎1[𝐴1, 𝐵] + 𝑎2[𝐴2, 𝐵].
• [𝐴,𝐵𝐶] = 𝐵[𝐴,𝐶] + [𝐴,𝐵]𝐶.
• Jacobi identity: [𝐴, [𝐵,𝐶]] + [𝐵, [𝐶,𝐴]] + [𝐶, [𝐴,𝐵]] = 0.

• If [𝐴,𝐵] = 0, possible to find orthonormal basis of wave functions which are
eigenfunctions of 𝐴 and 𝐵.

• 𝐴,𝐵 compatible if [𝐴,𝐵] = 0.
• Generalised uncertainty principle: for any square-normalisable wave function,

Δ𝐴Δ𝐵 ≥
1
2
|⟨[𝐴,𝐵]⟩|

• Anti-commutator: {𝐴,𝐵} = 𝐴𝐵 +𝐵𝐴.

14. Energy revisited
• Eigenfunctions of Hamiltonian are bound states if classical solution is bounded

in space.
• Let 𝑉 (𝑥) ≥ 𝑉0 for all 𝑥 ∈ ℝ. Then if wave function normalised, ⟨𝐻⟩ > 𝑉0.
• If 𝜓(𝑥) is normalised eigenfunction of 𝐻 with eigenvalue 𝐸, then 𝐸 > 𝑉0.
• Zero-point energy: smallest eigenvalue 𝐸 > 𝑉0.
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• Spectrum of Hamiltonian is non-degenerate.

15. Stationary states
• Solution to Schrodinger’s equation is 𝜓(𝑥, 𝑡) = 𝜑(𝑥)𝑒−𝑖𝐸𝑡/ℏ where 𝜑(𝑥) is

eigenfunction of Hamiltonian with eigenvalue 𝐸. This solution is stationary wave
function.

• Full solution to Schrodinger’s equation:

𝜓(𝑥, 𝑡) =∑
𝑗
𝑐𝑗𝜑𝑗(𝑥)𝑒−𝑖𝐸𝑗𝑡/ℏ

where {𝜑𝑗(𝑥)} is orthonormal basis of Hamiltonian eigenfunctions with eigenvalues
𝐸𝑗, 𝑐𝑗 are coefficients of initial wave function expansion:

𝜓(𝑥, 0) =∑
𝑗
𝑐𝑗𝜑𝑗(𝑥)

Probability of energy measurement being 𝐸𝑗 is 𝑃𝑗 = |⟨𝜑𝑗, 𝜓⟩|
2 = |𝑐𝑗|

2.
• Time-independent Schrodinger equation:

𝐻𝜑(𝑥) = 𝐸𝜑(𝑥)

where 𝜑(𝑥) is Hamiltonian eigenfunction with eigenvalue (energy) 𝐸.

16. Case study: the free particle
• If 𝑉 (𝑥) = 0, eigenfunction of ̂𝑝 is eigenfunction of 𝐻.

17. Two particle systems
• For two particles in one dimension, wave function is 𝜓(𝑥1, 𝑥2), probability density

is 𝑃(𝑥1, 𝑥2) = |𝜓(𝑥1, 𝑥2)|
2: probability of finding particle one in (𝑎, 𝑏) and particle

two in (𝑐, 𝑑) is

∫
𝑏

𝑎
∫

𝑑

𝑐
𝑃(𝑥1, 𝑥2) d𝑥1 d𝑥2

.
• Probability of finding particle one in (𝑎, 𝑏) is

𝑃(𝑥1) = ∫
𝑏

𝑎
𝑃(𝑥1, 𝑥2) d𝑥2

(similarly for particle two).
• If both positions measured as ̃𝑥1, ̃𝑥2, wave function collapses to product of position

eigenfunctions:

𝜓before(𝑥1, 𝑥2) → 𝜓after(𝑥1, 𝑥2) ∝ 𝛿(𝑥1 − ̃𝑥1)𝛿(𝑥2 − ̃𝑥2)
• If only particle one measured,
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𝜓before(𝑥1, 𝑥2) → 𝛿(𝑥1 − ̃𝑥1)𝜓before( ̃𝑥1, 𝑥2)
• Hamiltonian for two particles with zero potential:

𝐻 = −
ℏ2

2𝑚
𝜕
𝜕𝑥21

−
ℏ2

2𝑚
𝜕
𝜕𝑥22

Eigenfunctions are product are single-particle eigenfunctions:

𝜑(𝑥1, 𝑥2) =
2
𝐿
sin(

𝑛𝜋𝑥1
𝐿

)sin(
𝑚𝜋𝑥2
𝐿

)

Eigenvalues are sum of eigenvalues of single-particle Hamiltonians.
• Wave function separable if can be written as product of function of 𝑥1 and

function of 𝑥2.
• Entangled states: when measurement of one particle affects subsequent

measurement of other particle. Occurs for non-separable wave functions.

18. Simple harmonic oscillator
• Simple harmonic oscillator potential:

𝑉 (𝑥) =
1
2
𝑚𝜔2𝑥2

where 𝜔 is angular frequency.
• If 𝑉  has minimum at 𝑥 = 𝑥0 and |𝑥 − 𝑥0| small, 𝑚𝜔2 ≈ 1

2𝑉 ′′(𝑥0) by Taylor
expanion of 𝑉 (𝑥) around 𝑥0.

• Energy spectrum of Hamiltonian for simple harmonic oscillator is 𝐸𝑛 = ℏ𝜔(𝑛 + 1
2)

19. The continuity equation
• Probability current density:

𝐽 ≔
ℏ
2𝑚𝑖

(
̲̲̲ ̲
𝜓𝜕𝑥𝜓 − 𝜓𝜕𝑥

̲̲̲ ̲
𝜓)

• Continuity equation:

𝜕𝑡𝑃 + 𝜕𝑥𝐽 = 0

where 𝑃(𝑥, 𝑡) = |𝜓(𝑥, 𝑡)|2.
• Probability current vanishes as 𝑥 → ±∞ for square-normalisable wave functions.

20. Scattering problems
• When particle has to cross potential, for 𝑡 → −∞, 𝜓(𝑥, 𝑡) → 𝜓𝐼(𝑥, 𝑡) is incoming

wavepacket, then it scatters from the potential, as 𝑡 → ∞, tends to sum of
reflected and transmitted wavepackets:

𝜓(𝑥, 𝑡) → 𝜓𝑅(𝑥, 𝑡) + 𝜓𝑇 (𝑥, 𝑡)

As 𝑡 → ∞, reflected and transmitted wavepackets don’t interfere.
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• Probability of reflection is

𝑅 = lim
𝑡→∞

∫
∞

−∞
|𝜓𝑅(𝑥, 𝑡)|

2 d𝑥

Probability of transmission is

𝑇 = lim
𝑡→∞

∫
∞

−∞
|𝜓𝑇 (𝑥, 𝑡)|

2 d𝑥

𝑅 + 𝑇 = 1 if 𝜓 normalised.

21. Tunnelling
• Finite step potential: for 𝑉0 > 0

𝑉 (𝑥) = {0 if 𝑥 < 0
𝑉0 if 𝑥 ≥ 0

• Scattering occurs when particle has energy 𝐸 > 𝑉0.
• Tunnelling occurs when particle has energy 0 < 𝐸 < 𝑉0.
• For scattering, Hamiltonian eigenfunctions are

𝜑(𝑥) = {𝑒
𝑖𝑘𝑥 + 𝑟𝑒−𝑖𝑘𝑥 if 𝑥 < 0
𝑡𝑒𝑖𝑘′𝑥 if 𝑥 ≥ 0

where 𝑘 = √2𝑚𝐸 / ℏ2, 𝑘′ = √2𝑚(𝐸 − 𝑉0) / ℏ2
• Determine 𝑟 and 𝑡 by using that 𝜓 and 𝜕𝑥𝜓 continuous at 𝑥 = 0.
• Finite barrier potential:

𝑉 (𝑥) =
⎩{
⎨
{⎧0 if 𝑥 < 0
𝑉0 if 0 ≤ 𝑥 ≤ 𝐿
0 if 𝑥 > 𝐿

• For tunnelling, Hamiltonian eigenfunctions are

𝜑(𝑥) = {𝑒
𝑖𝑘𝑥 + 𝑟𝑒−𝑖𝑘𝑥 if 𝑥 < 0
𝑡𝑒−𝜅𝑥 if 𝑥 ≥ 0

where 𝜅 = √2𝑚(𝑉0 −𝐸) / ℏ2. Coefficients 𝑟 and 𝑡 found by replacing 𝑘′ → 𝑖𝜅.

22. Momentum-space wave function
• Momentum-space wave function:

̃𝜓(𝑝) =
1√
2𝜋ℏ

∫
∞

−∞
𝜓(𝑥)𝑒−𝑖𝑝𝑥/ℏ d𝑥

satisfies

𝜓(𝑥) =
1√
2𝜋ℏ

∫
∞

−∞

̃𝜓(𝑝)𝑒𝑖𝑝𝑥/ℏ d𝑝
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• For momentum-space wave function, position and momentum act as operators

̂𝑥 = 𝑖ℏ
𝜕
𝜕𝑝

̂𝑝 = 𝑝
• Momentum probability density: ̃𝑃 (𝑝) = | ̃𝜓(𝑝)|

2
. Probability of momentum

measurement being 𝑎 < 𝑝 < 𝑏 is

∫
𝑏

𝑎

̃𝑃 (𝑝) d𝑝

• Momentum expectation value of 𝑓(𝑝):

⟨𝑓(𝑝)⟩ = ∫
∞

−∞
𝑓(𝑝) ̃𝑃 (𝑝) d𝑝

• Position expectation value of 𝑓(𝑥):

⟨𝑓(𝑥)⟩ = ∫
∞

−∞

̲̲̲ ̲̲ ̲̲ ̲̲ ̲̲ ̲
̃𝜓(𝑝)𝑓(𝑖ℏ

𝜕
𝜕𝑝
) ̃𝜓(𝑝) d𝑝

• 𝜓(𝑥) normalised iff ̃𝜓(𝑝) normalised.
• Translating 𝜓(𝑥) by 𝑥0 multiplies ̃𝜓(𝑝) by 𝑒−𝑖𝑝𝑥0/ℏ.
• Translating ̃𝜓(𝑝) by 𝑝0 multiplies 𝜓(𝑥) by 𝑒𝑖𝑝0𝑥/ℏ.
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