1. Floating-point arithmetic

Fixed point representation:

xr = :I:(dld2"'dk—1~ dk'dn)ﬁ

e Floating-point representation:

where B is an exponent bias.

o If d; # 0 then the floating point system is normalised and each float has a unique
representation.

e binary64: stored as

seqg---€gd; ...dsg

where s is the sign (0 for positive, 1 for negative), ey,...e, is the exponent, and
d,...dsy is the mantissa. The bias is 1023. The number represented is

(—1)*(L.dy...ds,) 2671928 if € # O or 2047

where e = (ey...€p), € = 2047 is used to store NaN, £oo. The first case e # 0 is a
normal representation, the e = 0 case is a subnormal representation.
o Floating-point numbers have finite precision: exists €;, > 0 such that
fl(z) = f1((1 4+ ¢)z) for all € < g,,.
o Floating-point numbers have finite range: exists m,,, and m
<lz[<m
¢ Underflow: where floating point calculation result is smaller than smallest

such that fl

min

defined only when m_;, _—

representable float. Result is set to zero.

e Overflow: where floating point calculation result is larger than largest
representable float. Floating-point exception is raised.

o Machine epsilon €,,: difference between smallest representable number greater
than 1 and 1. g,, = g~**+1

o fl(z) maps real numbers to floats.

« Chopping: rounds towards zero. Given z = (0. d;...d,d;,,...) - 8¢, if the float has

B
k mantissa digits, then

ﬂchop(x) = (Odldk)) Be
+ Rounding: rounds to nearest. Given z = (0. d1~-dkdk+1--~)ﬁ - B¢, if the float has k

mantissa digits, then
(O'dl“'dk)ﬁ - pe if p <

((0. dl...dk)ﬂ + B—k) - Beif p >

D=

fciround (ZE) =

N[=

where p = (0.d,;...).

Relative rounding error:

il _
e =MD 7T g — s te)
T
ﬂchop(x) —Z < B_k+1 f,:‘llround(:[’.) —Z < lﬂ_lﬂ_l
x - ’ — 2

Round-to-nearest half-to-even: fairer rounding than regular rounding for
discrete values. In the case of a tie, round to nearest even integer:

1
2

% and dj, is odd)

(0.dy...dy) ;- B if p< 1
((0. dy.dy), + /H) Beifp> L

z®y = 1fl(fl(z) + fl(y)) and similarly for ®, ©, @.
Relative error in = 4+ y can be large:

and dj, is even)

Nl
o
=

S

D
|

ﬂ1round (:L‘) =

Nl
o
=

Yy

i)
|

fi(z) +fl(y) — (z +y) =z(1+e,) +y(l+¢,) — (z+y) = ze, + ¢,

so relative error is
TE, + YE,
Tty

In general, t® (y® 2) £ (2 Dy) ® 2
For some computations, can avoid round-off errors (usually caused by subtraction
of numbers close in value) e.g. instead of

B —b+ Vb?2 —4ac
- 2a

T

compute

—b+\/b2—4ac —b—vbQ—4ac —2¢
2a —b—Vb2—4ac b+ Vb2 —4dac

xT

2. Polynomial Interpolation

P, is set of polynomials of degree < n.

conv{z, ..., x,} is smallest closed interval containing {z,...,z,}.
Taylor’s theorem: for function f, if for t € P, , t9)(zy) = fU)(x,) for
j €{0,...,n} then

A3

—(n 1) (z — mo)nﬂ

f@) —t(z) =

for some £ € conv{z,, z} (Lagrange form of remainder).

Polynomial interpolation: given nodes {acj} and function f, there exists

unique p € P, such that p interpolates f: p(fbj) = f(acj) fgr j€A0,...,n}.
Cauchy’s theorem: let p € P, interpolate f at {a:j}(jzo , then

Vz € conv{z;}, f(z) —p(z) = (.’E —) - (z—x,) for some ¢ € conv{z;}

Chebyshev polynomials:

T, (x) = cos(ncos™(z)), =€ [-1,1]
Tn—i—l(x) = 2.’13Tn(.’13) o Tn—l(x)‘

Roots of T, (z) are x; = cos(m(j + 1)/ n) for j € {0,...,n—1}. Local extrema at
y; = cos(jm / n) forjE{O n—l}

Let w,(z) = (z — z,)) {; } —1,1] (if {«;} ¢ [-1,1] so interval is
[a, b], then we can map z; — a + 3 (:v -|— 1)(b —a)). Then sup,¢;_; j|w, ()| attains
its min value iff {x;} are zeros of T, ,,(z). Also,

27" < s[up |w,, (z)] < 2n+1
ei

Convergence theorem: let f € C%([—1,1]), {x]}n . be zeros of Chebyshev
]:

polynomial T, (z) and p, € P, interpolate f at {x;}. Then

s(u11))|f(:c) —p,(x)] >0 asn— o0
1,1

Weierstrass’ theorem: let f € C%([a,b]). Ve > 0, exists polynomial p such that

sup |f(z) —p(z)| <e
z€(a,b)

Lagrange construction: basis polynomials given by

r—X;

satisfy Lk(:vj) = 03, Then

interpolates f at {xj}

e Note: Lagrange construction not often used due to computational cost and as we
have to recompute from scratch if {xj} is extended.

e Divided difference operator:

[z;].f = f(z;)
[:E xk]f = [xj];f_a[;:k]f7 [xkaxk]f = yh_g}k[mk’y] = f/(xk)

[xj, ...,xk,y]f— [:(:j, ...,a:k,z]f
Y— 2z

[mj,...,xk,y,z]f =

These can be computed incrementally as new nodes are added.
e Newton construction: Interpolating polynomial p is

p(z) = [xo]f + (x — z¢) [T, 21 f + (7 — T0) (T — T1)[T05 T1, To| f
+ @ — o) (@ — 2y) [0, s T f

n

e Hermite construction: for nodes {wj} o exists unique py, ; € Py, that

interpolates f and f’ at {x]} Can be found using Newton construction, using
nodes (x, Ty, T1, Ty, .-y Ty, T,,)- Generally, if p’(z),) = f'(x},) is needed, include z;
twice. If p™ (z,) = f™(x,) is needed, include z, n + 1 times.

o If yy, ...,y is permutation of z, ...,z then [y, ..., yu| f = [z, ---, L] f-

o Interpolating error is
f(@) —ple) = (x —zp) - (& —z,)[xg, -, T, 2]

which gives

_)
(g5 -s Ty, 2] f = m
o Range reduction: when computing a function e.g. f(z) = arctan(zx),
f(=z) = —f(x) and f(1 /x) =5 — f(z) so only need to compute for z € [0, 1].

3. Root finding

o Intermediate value theorem: if f continuous on [a,b] and f(a) < ¢ < f(b) then
exists z € (a,b) such that f(z) =c.
 Bisection: let f € C%((a,,b,]), f(a,)f(b,) < 0. Then set m, = (a, +b,) /2 and

(an+17bn+1) = {

Then:
1
° bn+l —Qpy = E(bn - a‘n)'
o By intermediate value theorem, exists p, € (a,,b,) with f(p,) = 0.
n+1)(bo — ay).
o False position: same as bisection except set m, as x intercept of line from

(@, f(a,)) to (b, f(by,)):

® |pn _mn| < 2_(

¢ Bisection and false position are bracketing methods. Always work but slow.

m,

o Fixed-point iteration: rearrange f(x,) =0 to =, = g(z,) then iterate

Lpy1 = g(xn)
e f is Lipschitz continuous if for some L,

[f(z) = f(y)| < Llz -y
o Space of Lipschitz functions on X is C%'(X).
e Smallest such L is Lipschitz constant.
e Every Lipschitz function is continuous.
e Lipschitz constant is bounded by derivative:

< sup|f'(z)]

f is contraction if Lipschitz constant L < 1.

Contraction mapping or Banach fixed point theorem: if g is a contraction
and g(X) C X (g maps X to itself) then:

o Exists unique solution z, € X to g(z) = = and

o The fixed point iteration method converges z, — z,.

Local convergence theorem: Let g € C!([a,b]) have fixed point z, € (a,b) with
lg’(x,)| < 1. Then with z, sufficiently close to z,, fixed point iteration method
converges to .

o If ¢’(z,) >0, x,, & x, monotonically.

o If ¢'(z,) <0, z, — x, alternates in sign.

o If |¢’(z,)| > 1, iteration method almost always diverges.

x, — x, with order at least o > 1 if

|:L.n+1 —$*| -\

lim < 00

n—reo |xn _x*’a a
If a =1, then A <1 is required.
Exact order of convergence of z, — z,:

T, —T
o= sup{ﬂ: lim M < oo}

noee |mn - x*lﬁ

Limit must be < 1 for a = 1.

Convergence is superlinear if a > 1, linear if « =1 and)\ < 1, sublinear
otherwise.

If g € C?, then with fixed point iteration,

so z,, — z, superlinearly if ¢’(z,) = 0 and linearly otherwise.
If g € CV, fixed point iteration converges with order N > 1 iff

g,(ill*) == g(N_l)(x*) = 07 g(N)(x*) 7& 0
Newton-Raphson: fixed point iteration with g(z) =z — f(x) / f'(x)
f(=,)

X, =T, —
T)
For Newton-Raphson, ¢’(z,) = 0 so quadratic convergence.

Can use Newton-Raphson to solve 1 /x —b = 0:

1/z,—b
nt1 =$n—T/m2=$n(2—b$n)

Newton-Raphson in d dimensions:

T

z . =z,—(Df) ' (z,)f(z,)

where Df is Jacobian.
(.CL‘) ~ (@) —f(Tny)

Tp=Tp—1

e Secant method: approximate f’ with Newton-Raphson:

LTy —Tp1

T =T)~ F(w,)

If f'(z,) # 0, order is (1+v/5) / 2.

4. Numerical differentiation
o Taylor expansion:

h? h3
fle+h) = f(@) £ hf' (@) + 50 f7(2) £ o0 f7 (@) +

e Forward difference approximation:

flx+h)— f(x) . Qf”(f), ¢ € conv{z,z + h}

fla) = == .

with h > 0.
e Backward difference approximation: forward difference but with A < 0.
e Centred difference approximation:
’ f(L'+h —fl‘—h h? 117 117
play = TEHW TR 1o) pie), € elo—hz il
o Richardson extrapolation: for approximation of R(z;0) of the form

R(z;h) = RY(z;h) = R(z;0) + a,(z)h + ay(x)h? + ag(z)h® + -

we have
1) h h? h3
RW(z;h /2) = R(z;0) + al(x)§ + aQ(x)Z + a3(a:)§ + -
This gives second order approximation:
h2

R®(z;h) = 2R (x;h / 2) — RW(z; h) = R(x;0) — aZ(m)E + -

Similarly,
4R (z;h) 2) — R (z;h
RO)(g;) = 2B (@ /2) @3R) _ p(2:0) + dy(2)h® + -

3

is third order approximation. Generally,

2"R™ (2;h / 2) — R™ (z; h)
m—1

R (g5 h) = = R(z;0) + O(h™*)

5. Linear systems

A symmetric if AT = A.

Hermitian conjugate: (A*)ij = A—ﬂ A Hermitian if A* = A.

A non-singular iff Vb € K™, exists solution z € K™ to Az =b (K =R or C).
If A non-singular, exists exactly one solution z to Az = b and unique A~! such
that Vb € K", x = A 'b.

A non-singular iff det(A) # 0.

A positive-definite iff z - Az > 0 Vx # 0.

A positive-semidefinite iff x - Ax > 0 Vz € K".

L lower-triangular iff L;; = 0 for ¢ < j.

U upper-triangular iff U;; = 0 for ¢ > j.

Can solve Lx = b by forward substitution: for j =1, ..., n:

_ yl
b2 Ly

Tj ..
27

Can solve Uz = b by backward substitution: for j =mn, ..., 1:

n
bj =2 pjir Uik
r; =

J Uj'

If A not upper/lower triangular, use Gaussian elimination to reduce A to upper
triangular U using addition of multiple of row to another row. If leading element
in current row is zero, swap with row below.

Gaussian elimination with row pivoting: at sth stage of Gaussian
elimination, if largest element in sth column is in row j, swap row j and row s,
then proceeed as usual. This gives more accurate results.

For operation count, assume each arithmetic operation takes one flop.

When asked about order of operation count, include constant multiple as well
as highest power of n.

LU decomposition: write A = LU, then solve Ly = b, then Ux = y with
backward /forward substitution. Better when solving with multiple b.

Frobenius matrix of index s: diagonal elements are 1, other elements zero
except for sth colum below main diagonal.

Any Frobenius matrix can be written

(s) _ (s) (s)
Fz’j = 6ij — fi €;
where e®) is sth unit vector, f(s) = (O, ...,O,fﬁl, - f,(f)) or
FG) =T — f6) @ el

where (v ® w). . = v;w; is tensor product.
ij J
Inverse of Frobenius matrix is Frobenius matrix of same index:

GO =T+ f6) @ el
GU ...GQ6) =T + 28_1) @ el

If A can be transform to upper triangular U by Gaussian eliminiation without
pivoting, then exists lower triangular L such that A = LU. L given by
L,=1 L,=A"" /A"

11

where A1) is matrix at (s — 1)th stage of Gaussian elimination (A% = A is initial
matrix).

Any non-singular A can be written as PA = LU where L is permutation (pivot)
matrix (each row and column has exactly one 1 and all other elements are 0).
Norm of vector space V: map || : V — R with:

o Triangle inequality: |z + y| < |z| + |y|-

o Linearity: |az| = |a||z].

o Positivity: |z|| > 0 and ||z =0 = z = 0.

Seminorm |[z]|: norm except non-zero vectors with |[z]| = 0.

n 1/p
— p
Jz] = <§izlj|xi|)

l, norm: for p > 1,

. norm:

o0

Matrix row-sum norm:

|Al,,,, = max Z!A”\

Matrix column-sum norm:

n
|A]_, = jgaXnZ|Aij|
T =1

= (1t :

For n dimensional vector space V, Hom(V') is vector space of n x n matrices.

Frobenius norm:

Given norm |-| on V, induced norm on Hom(V) is

IIAwII
IA] == = max|Az|
#o ||| lz]=1

Properties of induced norm:
|Az| < |A]|z|, z € V, A € Hom(V).
|AB| < | Al B, A, B € Hom(V).
Spectral radius of matrix:
p(A) := max{|A| : X eigenvalue of A}

We have these equalities:

o Al = 14],,,-
.« |A], = max{\/ |A] : A eigenvalue of ATA} = p(ATA)1/2 = p(AAT)
- 1Al = 141,

« Condition number of A with respect to norm |- :

1/2

(4) = 471 14,
o For A(x + dx) = b+ b,
o],

l=l, =7

601,
ol

(4)
o If |B|| < 1 for any submultiplicative matrix norm |-,

BF 50 ask— oo

Also,

BF -0 ask—o00<pB)<1

o Richardson’s method for lineary systems: Az = b so z = z + w(b — Az) for
some w. So iterate

Residual: r®) := 2(*) — z satisfies
Pkt = (I —wA)yr® = 7B = (I — wA) @

So iteration converges iff (I —wA)* — 0 < p(I —wA) < 1

e Jacobi’s method: split A into A =D — E — F, D diagonal, E strictly lower
triangular, F' strictly upper triangular. Rewrite Az = b as Dz = (E + F)x + b, and
iterate

Residual satisfies r**1) = D~1(E 4 F)r®) so iteration converges iff
(DYE + F))k — 0. Converges if A strictly diagonally dominant
(lay| > Z#i‘aij‘ for all 7).

e Gauss-Seidel method: iterate

(D — E)z*) = Fz®) 1 p

Residual satisfies r**1) = (D — E)ler(’“). Converges if A strictly diagonally
dominant.

6. L?> approximations and orthogonal polynomials
o Inner product over vector space V: map (-,-) : V x V — C satisfying:
o (au+ pu’,v) = alu,v) + B(u',v).
o (u,v) = (v,u).
o (u,u) >0and (u,u) =0<= u=0.

o For V = C"la,b]), define inner product

b
(ab) / u(z)v(z)w(x) dz

a

(vl
where weight function w(z) > 0 except at finite set of points. w(z) =1 if not
specified.

o Inner product induces norm |u| = /(u,w).
e Let V inner product space, X linear subspace of V. Then the p € X that
minimises

E(p) = |f —pl*
satisfies

where X spanned by {¢,}. So if p = P ¢y + -+ +P, ¢k then

(f o) = Z(@jv Sok)f?j

j
e Gram-Schmidt: to construct orthogonal basis {Cok} from non-orthogonal basis

{er}:
[} 900 ey 900

. @k = — Z;:S %% where norm is respect to given inner product.
¥

e Properties of orthogonal basis:

~

e Unique up to normalisation: if {gp}‘} is another orthogonal basis, then ¢} = P,
for some constant c;.
o Has exactly k simple roots in (a, b).

e Recurrence formula to recursively calculate orthogonal basis:

. 1 (28,9,)
By = P, (@) — R (o) —

[l 2.

(=
Pr1

7. Numerical integration

o« Want to approximate
b
1) = [fau(o)dz

with quadrature formula:

for nodes {z;} and coefficients {5, }.

10

Q,, has degree of exactness r if Q,(z’) = I(z?) for all j < r, and

Qn(wr-i-l) 7/: I(IL‘H_l).

By linearity, if @,, has degree of exactness r, then Q,,(p) = I(p) for all p € P..
Interpolatory quadrature: given nodes {z,}, find p that interpolates f at
nodes, f(z;) = p(z;) and find integral of p. E.g. with Lagrange interpolation,

b n b
L(f) = / p(e)dz =3 f(z) / L(2)
a k=0 a

Let t = (x —a) / (b—a) then

b
—1
/ p(z)dz = (b—a/ ldt— (b —a)oy,
0 I#k b, —

a

SO

L(f)=(b—0a)>_ opf(xy)
k=0

Degree of exactness of I, is n.

Newton-Cotes formula: interpolatory quadrature with equidistant nodes.
Closed Newton-Cotes formula: Newton-Cotes with z, = a and z,, = b, so
ty==%

If nodes symmetric, ¢, , =1 —t, then o, _;, = o;.

Rectangle method:

L) = - af(“5°)

If p interpolates f at {x;} C [a,b] then for all x € [a, b],

W1 (‘T)

)

f(@) —p(z) =

where w,,_(z) = (r —zy) - (x —,,) and £ € (a,b).
Error bounded by

b
(n+1)
< G sl [o @] s

Comp051te quadrature divide [a, b] into m subintervals {[x, ,, 1]}z , of each
length h = 7 and apply interpolatory quadrature to each subinterval, then add
each of these together.

Trapezium rule: use composite with closed Newton-Cotes formula with n = 1:

L(f)=(b— a)w to give

Cunl) = "2 (5F00) + Fla) + = 41 0) +)

Simpson’s % rule: use composite with closed Newton-Cotes formula with n = 2:

L(f) = (b—a)(3f(a) + 2f(%2) + £ £(b)) to give

11

b— 1 2 1 1 2 1
Com(f) = —= (gﬂxo) + 5 (o1) + SF@) + 5 f@) + S () + éf(ﬂcm))

e To compute error bounds for composite, add individual error bounds for each of
the individual quadratures.
e Gaussian interpolatory formula

n

G, = prf (@)
k=0
obtains highest degree of exactness 2n + 1 iff nodes {z,} chosen so that
p(x) = (x —z;) - (x — x,,) satisfies

VpeP,, (p,p)=0

{z;} must be roots of ¢,,; € P, where {goj} are orthogonal polynomials with

respect to inner product (-,-) , Then coefficients given by

a7b7

b
x_xl
= d
o /]lxk_xlw@c) 2

a l#k

where w is weight function.

12

	Floating-point arithmetic
	Polynomial Interpolation
	Root finding
	Numerical differentiation
	Linear systems
	L2 approximations and orthogonal polynomials
	Numerical integration

