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1. The real numbers
1.1. Conventions on sets and functions
Definition.  For 𝑓 : 𝑋 → 𝑌 , preimage of 𝑍 ⊆ 𝑌  is

𝑓−1(𝑍) ≔ {𝑥 ∈ 𝑋 : 𝑓(𝑥) ∈ 𝑍}

Definition.  𝑓 : 𝑋 → 𝑌  injective if

∀𝑦 ∈ 𝑓(𝑋), ∃!𝑥 ∈ 𝑋 : 𝑦 = 𝑓(𝑥)

Definition.  𝑓 : 𝑋 → 𝑌  surjective if 𝑌 = 𝑓(𝑋).
Proposition.  Let 𝑓 : 𝑋 → 𝑌 , 𝐴, 𝐵 ⊆ 𝑋, then

𝑓(𝐴 ∩ 𝐵) ⊆ 𝑓(𝐴) ∩ 𝑓(𝐵),
𝑓(𝐴 ∪ 𝐵) = 𝑓(𝐴) ∪ 𝑓(𝐵),

𝑓(𝑋) − 𝑓(𝐴) ⊆ 𝑓(𝑋 − 𝐴)

Proposition.  Let 𝑓 : 𝑋 → 𝑌 , 𝐶, 𝐷 ⊆ 𝑌 , then

𝑓−1(𝐶 ∩ 𝐷) = 𝑓−1(𝐶) ∩ 𝑓−1(𝐷),

𝑓−1(𝐶 ∪ 𝐷) = 𝑓−1(𝐶) ∪ 𝑓−1(𝐷),

𝑓−1(𝑌 − 𝐶) = 𝑋 − 𝑓−1(𝐶)

1.2. The real numbers
Definition.  𝑎 ∈ ℝ is an upper bound of 𝐸 ⊆ ℝ if ∀𝑥 ∈ 𝐸, 𝑥 ≤ 𝑎.
Definition.  𝑐 ∈ ℝ is a least upper bound (supremum) of 𝐸, 𝑐 = sup(𝐸), if 𝑐 ≤
𝑎 for every upper bound 𝑎.
Definition.  𝑎 ∈ ℝ is an lower bound of 𝐸 ⊆ ℝ if ∀𝑥 ∈ 𝐸, 𝑥 ≥ 𝑎.
Definition.  𝑐 ∈ ℝ is a greatest lower bound (infimum), 𝑐 = inf(𝐸), if 𝑐 ≥ 𝑎 for
every lower bound 𝑎.
Theorem (Completeness axiom of the real numbers).  Every 𝐸 ⊆ ℝ with an upper
bound has a least upper bound. Every 𝐸 ⊆ ℝ with a lower bound has a greatest
lower bound.
Proposition (Archimedes' principle).

∀𝑥 ∈ ℝ, ∃𝑛 ∈ ℕ : 𝑛 > 𝑥

Remark.  Every non-empty subset of ℕ has a minimum.
Proposition.  ℚ is dense in ℝ:

∀𝑥 < 𝑦 ∈ ℝ, ∃𝑟 ∈ ℚ : 𝑟 ∈ (𝑥, 𝑦)

1.3. Sequences, limits and series
Definition.  𝑙 ∈ ℝ is limit of (𝑥𝑛) ((𝑥𝑛) converges to 𝑙) if

∀𝜀 > 0, ∃𝑁 ∈ ℕ : ∀𝑛 ≥ 𝑁, |𝑥𝑛 − 𝑙| < 𝜀
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A sequence converges in ℝ (is convergent) if it has a limit 𝑙 ∈ ℝ. Limit 𝑙 =
lim𝑛→∞ 𝑥𝑛 is unique.
Definition.  (𝑥𝑛) tends to infinity if

∀𝐾 > 0, ∃𝑁 ∈ ℕ : ∀𝑛 ≥ 𝑁, 𝑥𝑛 > 𝐾

Definition.  Subsequence of (𝑥𝑛) is sequence (𝑥𝑛𝑗
), 𝑛1 < 𝑛2 < ⋯.

Definition.  Limit inferior of sequence 𝑥𝑛 is

lim inf
𝑛→∞

𝑥𝑛 ≔ sup
𝑛∈ℕ

{ inf
𝑚≥𝑛

𝑥𝑚} = lim
𝑛→∞

( inf
𝑚≥𝑛

𝑥𝑚)

Definition.  Limit superior of sequence 𝑥𝑛 is

lim sup
𝑛→∞

𝑥𝑛 ≔ inf
𝑛∈ℕ

{sup
𝑚≥𝑛

𝑥𝑚} = lim
𝑛→∞

(sup
𝑚≥𝑛

𝑥𝑚)

Proposition.  Let (𝑥𝑛) bounded, 𝑙 ∈ ℝ. Then 𝑙 = lim sup 𝑥𝑛 iff both of the following
hold:
• ∀𝜀 > 0, ∃𝑁 ∈ ℕ : ∀𝑛 ≥ 𝑁, 𝑥𝑛 < 𝑙 + 𝜀.
• ∀𝜀 > 0, ∀𝑁 ∈ ℕ : ∃𝑛 ≥ 𝑁 : 𝑥𝑛 > 𝑙 − 𝜀.
Proposition.  Let (𝑥𝑛) bounded, 𝑙 ∈ ℝ. Then 𝑙 = lim inf 𝑥𝑛 iff both of the following
hold:
• ∀𝜀 > 0, ∃𝑁 ∈ ℕ : ∀𝑛 ≥ 𝑁, 𝑥𝑛 > 𝑙 − 𝜀.
• ∀𝜀 > 0, ∀𝑁 ∈ ℕ : ∃𝑛 ≥ 𝑁 : 𝑥𝑛 < 𝑙 + 𝜀.
Theorem (Bolzano-Weierstrass).  Every bounded sequence has a convergent
subsequence.
Proposition.  Let (𝑥𝑛) bounded. There exists convergent subsequence with limit 
lim sup 𝑥𝑛 and convergent subsequence with limit lim inf 𝑥𝑛.
Proposition.  Let (𝑥𝑛) bounded, then (𝑥𝑛) is convergent iff lim sup 𝑥𝑛 = lim inf 𝑥𝑛.
Theorem (Monotone convergence theorem for sequences).  Monotone sequence
converges in ℝ or tends to either ∞ or −∞.
Definition.  (𝑥𝑛) is Cauchy sequence if

∀𝜀 > 0, ∃𝑁 ∈ ℕ : ∀𝑛, 𝑚 ≥ 𝑁, |𝑥𝑛 − 𝑥𝑚| < 𝜀

Theorem.  Every Cauchy sequence in ℝ is convergent.

1.4. Open and closed sets
Definition.  𝑈 ⊆ ℝ is open if

∀𝑥 ∈ 𝑈, ∃𝜀 > 0 : (𝑥 − 𝜀, 𝑥 + 𝜀) ⊆ 𝑈

Proposition.  Arbitrary unions of open sets are open. Finite intersections of open
sets are open.
Definition.  𝑥 ∈ ℝ is point of closure (limit point) for 𝐸 ⊆ ℝ if

∀𝜀 > 0, ∃𝑦 ∈ 𝐸 : |𝑥 − 𝑦| < 𝜀
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Equivalently, 𝑥 is point of closure of 𝐸 if every open interval containing 𝑥 contains a
point of 𝐸.
Definition.  Closure of 𝐸, 𝐸, is set of points of closure. Note 𝐸 ⊆ 𝐸.
Definition.  𝐹  is closed if 𝐹 = 𝐹 .
Proposition.  𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐵. If 𝐴 ⊂ 𝐵 ⊆ ℝ then 𝐴 ⊂ 𝐵.
Proposition.  For any set 𝐸, 𝐸 is closed, i.e. 𝐸 = 𝐸.
Proposition.  𝐸 ⊆ ℝ is closed iff ℝ − 𝐸 is open.
Proposition.  Arbitrary intersections of closed sets are closed. Finite unions of
closed sets are closed.
Definition.  Collection 𝐶 of subsets of ℝ covers (is a covering of) 𝐹 ⊆ ℝ if 𝐹 ⊆
∪𝑆∈𝐶 𝑆. If each 𝑆 in 𝐶 open, 𝐶 is open covering. If 𝐶 is finite, 𝐶 is finite
covering.
Definition.  Covering 𝐶 of 𝐹  contains a finite subcover if exists {𝑆1, …, 𝑆𝑛} ⊆ 𝐶
with 𝐹 ⊆ ∪𝑛

𝑖=1 𝑆𝑖 (i.e. a finite subset of 𝐶 covers 𝐹 ).
Definition.  𝐹  is compact if any open covering of 𝐹  contains a finite subcover.
Example.  ℝ is not compact, [𝑎, 𝑏] is compact.
Theorem (Heine Borel).  𝐹  compact iff 𝐹  closed and bounded.

1.5. Continuity, pointwise and uniform convergence of
functions
Definition.  Let 𝐸 ⊆ ℝ. 𝑓 : 𝐸 → ℝ is continuous at 𝑎 ∈ 𝐸 if

∀𝜀 > 0, ∃𝛿 > 0 : ∀𝑥 ∈ 𝐸, |𝑥 − 𝑎| < 𝛿 ⟹ |𝑓(𝑥) − 𝑓(𝑎)| < 𝜀

𝑓 is continuous if continuous at all 𝑦 ∈ 𝐸.
Definition.  lim𝑥→𝑎 𝑓(𝑥) = 𝑙 if

∀𝜀 > 0, ∃𝛿 > 0 : ∀𝑥 ∈ 𝐸, |𝑥 − 𝑎| < 𝛿 ⟹ |𝑓(𝑥) − 𝑙| < 𝜀

Proposition.  lim𝑥→𝑎 𝑓(𝑥) = 𝑙 iff for every sequence (𝑎𝑛) with lim𝑛→∞ 𝑎𝑛 = 𝑎, 
lim𝑛→∞ 𝑓(𝑎𝑛) = 𝑙.
Proposition.  𝑓 is continuous at 𝑎 ∈ 𝐸 iff lim𝑥→𝑎 𝑓(𝑥) = 𝑓(𝑎) (and this limit exists).
Definition.  𝑓 : 𝐸 → ℝ is uniformly continuous if

∀𝜀 > 0, ∃𝛿 > 0 : ∀𝑥, 𝑦 ∈ 𝐸, |𝑥 − 𝑦| < 𝛿 ⟹ |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀

Proposition.  Let 𝐹  closed and bounded, 𝑓 : 𝐹 → ℝ continuous. Then 𝑓 is uniformly
continuous.
Definition.  Let 𝑓𝑛 : 𝐸 → ℝ sequence of functions, 𝑓 : 𝐸 → ℝ. (𝑓𝑛) converges
pointwise to 𝑓 if

∀𝜀 > 0, ∀𝑥 ∈ 𝐸, ∃𝑁 ∈ ℕ : ∀𝑛 ≥ 𝑁, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀

(𝑓𝑛) converges uniformly to 𝑓 is

4



∀𝜀 > 0, ∃𝑁 ∈ ℕ : ∀𝑛 ≥ 𝑁, ∀𝑥 ∈ 𝐸, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀

Theorem.  Let 𝑓𝑛 : 𝐸 → ℝ sequence of continuous functions converging uniformly to
𝑓 : 𝐸 → ℝ. Then 𝑓 is continuous.
Definition.  𝑃 = {𝑥0, …, 𝑥𝑛} is partition of [𝑎, 𝑏] if 𝑎 = 𝑥0 < ⋯ < 𝑥𝑛 = 𝑏.
Definition.  𝑓 : [𝑎, 𝑏] → ℝ is piecewise linear if there exists partition 𝑃 =
{𝑥0, …, 𝑥𝑛} and 𝑚𝑖, 𝑐𝑖 ∈ ℝ such that

∀𝑖 ∈ [𝑛], ∀𝑥 ∈ (𝑥𝑖−1, 𝑥𝑖), 𝑓(𝑥) = 𝑚𝑖𝑥 + 𝑐𝑖

𝑓 is continuous on [𝑎, 𝑏] − 𝑃 .
Definition.  𝑔 : [𝑎, 𝑏] → ℝ is step function if there exists partition 𝑃 = {𝑥0, …, 𝑥𝑛}
and 𝑚𝑖 ∈ ℝ such that

∀𝑖 ∈ [𝑛], ∀𝑥 ∈ (𝑥𝑖−1, 𝑥𝑖), 𝑔(𝑥) = 𝑚𝑖

𝑔 is continuous on [𝑎, 𝑏] − 𝑃 .
Theorem.  Let 𝑓 : 𝐸 → ℝ continuous, 𝐸 closed and bounded. Then there exist
continuous piecewise linear 𝑓𝑛 with 𝑓𝑛 → 𝑓 uniformly, and step functions 𝑔𝑛 with 
𝑔𝑛 → 𝑓 uniformly.
Definition.  𝑓 : 𝐸 → ℝ is Lipschitz if

∃𝐶 > 0 : ∀𝑥, 𝑦 ∈ 𝐸, |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐶|𝑥 − 𝑦|

Definition.  𝑓 : 𝐸 → ℝ is bi-Lipschitz if

∃𝐶 > 0 : ∀𝑥, 𝑦 ∈ 𝐸, 𝐶−1|𝑥 − 𝑦| ≤ |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐶|𝑥 − 𝑦|

1.6. The extended real numbers
Definition.  Extended reals are ℝ ∪ {−∞, ∞} with the order relation −∞ < ∞
and ∀𝑥 ∈ ℝ, −∞ < 𝑥 < ∞. ∞ is an upper bound and −∞ is a lower bound for every 
𝑥 ∈ ℝ, so sup(ℝ) = ∞, inf(ℝ) = −∞, sup(∅) = −∞, inf(∅) = ∞.
• Addition: ∀𝑎 ∈ ℝ, 𝑎 + ∞ = ∞ ∧ 𝑎 + (−∞) = −∞. ∞ + ∞ = ∞ − (−∞) = ∞. 

∞ − ∞ is undefined.
• Multiplication: ∀𝑎 > 0, 𝑎 ⋅ ∞ = ∞, ∀𝑎 < 0, 𝑎 ⋅ ∞ = −∞. Also ∞ ⋅ ∞ = ∞.
• lim sup and lim inf are defined as

lim sup 𝑥𝑛 ≔ inf{sup{𝑥𝑘 : 𝑘 ≥ 𝑛} : 𝑛 ∈ ℕ}, lim inf 𝑥𝑛 ≔ sup{inf{𝑥𝑘 : 𝑘 ≥ 𝑛} : 𝑛 ∈ ℕ}

Definition.  Extended real number 𝑙 is limit of (𝑥𝑛) if either
• ∀𝜀 > 0, ∃𝑁 ∈ ℕ : ∀𝑛 ≥ 𝑁, |𝑥𝑛 − 𝑙| < 𝜀. Then (𝑥𝑛) converges to 𝑙. or
• ∀Δ > 0, ∃𝑁 ∈ ℕ : ∀𝑛 ≥ 𝑁, 𝑥𝑛 > Δ (limit is ∞) or
• ∀Δ > 0, ∃𝑁 ∈ ℕ : ∀𝑛 ≥ 𝑁, 𝑥𝑛 < −Δ (limit is −∞).

(𝑥𝑛) converges in the extended reals if it has a limit in the extended reals.

2. Further analysis of subsets of ℝ
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2.1. Countability and uncountability
Definition.  𝐴 is countable if 𝐴 = ∅, 𝐴 is finite or there is a bĳection 𝜑 : ℕ → 𝐴 (in
which case 𝐴 is countably infinite). Otherwise 𝐴 is uncountable. Enumeration
is bĳection to 𝐴 from [𝑛] or ℕ.
Proposition.  If there is surjection from countable set to 𝐴, or injection from 𝐴 to
countable set, then 𝐴 is countable.
Proposition.  Any subset of ℕ is countable.
Proposition.  ℚ is countable.
Proposition.  If (𝑎𝑛) is a nonnegative sequence and 𝜑 : ℕ → ℕ is a bĳection then

∑
∞

𝑛=1
𝑎𝑛 = ∑

∞

𝑛=1
𝑎𝜑(𝑛)

Proposition.  If (𝑎𝑛,𝑘) is a nonnegative sequence and 𝜑 : ℕ → ℕ × ℕ is a bĳection
then

∑
∞

𝑛=1
∑
∞

𝑘=1
𝑎𝑛,𝑘 = ∑

∞

𝑛=1
𝑎𝜑(𝑛)

Definition.  𝑓 : 𝑋 → 𝑌  is monotone if 𝑥 ≥ 𝑦 ⇒ 𝑓(𝑥) ≥ 𝑓(𝑦) or 𝑥 ≤ 𝑦 ⇒ 𝑓(𝑥) ≥
𝑓(𝑦).
Proposition.  Let 𝑓 be monotone on (𝑎, 𝑏). Then it is discontinuous on a countable
set.
Lemma.  Set of sequences in {0, 1}, {(𝑥𝑛)𝑛∈ℕ : ∀𝑛 ∈ ℕ, 𝑥𝑛 ∈ {0, 1}} is uncountable.

Theorem.  ℝ is uncountable.

2.2. The structure theorem for open sets
Definition.  Collection {𝐴𝑖 : 𝑖 ∈ 𝐼} of sets is (pairwise) disjoint if 𝑛 ≠ 𝑚 ⟹ 𝐴𝑛 ∩
𝐴𝑚 = ∅.
Theorem (Structure theorem for open sets).  Let 𝑈 ⊆ ℝ open. Then exists countable
collection of disjoint open intervals {𝐼𝑛 : 𝑛 ∈ ℕ} such that 𝑈 = ∪𝑛∈ℕ 𝐼𝑛.

2.3. Accumulation points and perfect sets
Definition.  𝑥 ∈ ℝ is accumulation point of 𝐸 ⊆ ℝ if 𝑥 is point of closure of 𝐸 −
{𝑥}. Equivalently, 𝑥 is a point of closure if

∀𝜀 > 0, ∃𝑦 ∈ 𝐸 : 𝑦 ≠ 𝑥 ∧ |𝑥 − 𝑦| < 𝜀

Equivalently, there exists a sequence of distinct 𝑦𝑛 ∈ 𝐸 with 𝑦𝑛 → 𝑥 as 𝑛 → ∞.
Proposition.  Set of accumulation points of ℚ is ℝ.
Proposition.  Set of accumulation points 𝐸′ of 𝐸 is closed.
Definition.  𝐸 ⊆ ℝ is isolated if

∀𝑥 ∈ 𝐸, ∃𝜀 > 0 : (𝑥 − 𝜀, 𝑥 + 𝜀) ∩ 𝐸 = {𝑥}
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Proposition.  𝐸 is isolated iff it has no accumulation points.
Definition.  Bounded set 𝐸 is perfect if it equals its set of accumulation points.
Theorem.  Every non-empty perfect set is uncountable.

2.4. The middle-third Cantor set
Proposition.  Let {𝐹𝑛 : 𝑛 ∈ ℕ} be collection of non-empty nested closed sets (so 
𝐹𝑛+1 ⊆ 𝐹𝑛), one of which is bounded. Then

⋂
𝑛∈ℕ

𝐹𝑛 ≠ ∅

Definition.  The middle third Cantor set is defined by:
• Define 𝐶0 ≔ [0, 1]
• Given 𝐶𝑛 = ∪2𝑛

𝑖=1 [𝑎𝑖, 𝑏𝑖], 𝑎1 < 𝑏1 < 𝑎2 < ⋯ < 𝑎2𝑛 < 𝑏2𝑛 , with |𝑏𝑖 − 𝑎𝑖| = 3−𝑛, define

𝐶𝑛+1 ≔ ∪2𝑛

𝑖=1 [𝑎𝑖, 𝑎𝑖 + 3−(𝑛+1)] ∪ [𝑏𝑖 − 3−(𝑛+1), 𝑏𝑖]

which is a union of 2𝑛+1 disjoint intervals, with all differences in endpoints
equalling 3−(𝑛+1).

• The middle third Cantor set is

𝐶 ≔ ⋂
𝑛∈ℕ0

𝐶𝑛

Observe that if 𝑎 is an endpoint of an interval in 𝐶𝑛, it is contained in 𝐶.
Proposition.  The middle third Cantor set is closed, non-empty and equal to its set
of accumulation points. Hence it is perfect and so uncountable.
Definition.  Let 𝑘 ∈ ℕ − {1}, 𝑥 ∈ [0, 1). 0.𝑎1𝑎2…, 𝑎𝑖 ∈ {0, …, 𝑘 − 1}, is a 𝑘-ary
expansion of 𝑥 if

𝑥 = ∑
𝑖∈ℕ

𝑎𝑖
𝑘𝑖

Remark.  The 𝑘-ary expansion may not be unique, but there is a countable set 𝐸 ⊆
[0, 1) such that every 𝑥 ∈ [0, 1) − 𝐸 has a unique 𝑘-ary expansion.
Remark.  For every 𝑥 ∈ 𝐶, the ternary (𝑘 = 3) expansion of 𝑥 is unique and

𝑥 = ∑
𝑖∈ℕ

𝑎𝑖
3𝑖 , 𝑎𝑖 ∈ {0, 2}

Moreover, every choice of sequence (𝑎𝑖), 𝑎𝑖 ∈ {0, 2}, gives 𝑥 = ∑𝑖∈ℕ
𝑎𝑖
3𝑖 ∈ 𝐶.

Definition.  Cantor-Lebesgue function, 𝑔 : [0, 1] → [0, 1], is defined by

𝑔(𝑥) ≔
⎩{
⎨
{⎧∑𝑖∈ℕ

𝑎𝑖/2
2𝑖 if 𝑥 = ∑𝑖∈ℕ

𝑎𝑖
3𝑖 , 𝑎𝑖 ∈ {0, 2}

sup{𝑔(𝑦) : 𝑦 ∈ 𝐶, 𝑦 ≤ 𝑥} if 𝑥 ∉ 𝐶

𝑔 is a surjection, monotone and continuous.
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2.5. 𝐺𝛿, 𝐹𝜎
Definition.  𝐸 ⊆ ℝ is 𝐺𝛿 if 𝐸 = ∩𝑛∈ℕ 𝑈𝑛 with 𝑈𝑛 open.
Definition.  𝐸 ⊆ ℝ is 𝐹𝜎 if 𝐸 = ∪𝑛∈ℕ 𝐹𝑛 with 𝐹𝑛 closed.
Lemma.  Set of points where 𝑓 : ℝ → ℝ is continuous is 𝐺𝛿.

3. Construction of Lebesgue measure
3.1. Lebesgue outer measure
Definition.  Let 𝐼 non-empty interval with endpoints 𝑎 = inf(𝐼) ∈ {−∞} ∪ ℝ and 
𝑏 = sup(𝐼) ∈ ℝ ∪ {∞}. The length of 𝐼 is

ℓ(𝐼) ≔ 𝑏 − 𝑎

and set ℓ(∅) = 0.
Definition.  Let 𝐴 ⊆ ℝ. Lebesgue outer measure of 𝐴 is infimum of all sums of
lengths of intervals covering 𝐴:

𝜇∗(𝐴) ≔ inf{∑
𝑘∈ℕ

ℓ(𝐼𝑘) : 𝐴 ⊆ ⋃
𝑘∈ℕ

𝐼𝑘, 𝐼𝑘 intervals}

It satisfies monotonicity: 𝐴 ⊆ 𝐵 ⟹ 𝜇∗(𝐴) ≤ 𝜇∗(𝐵).
Proposition.  Outer measure is countably subadditive:

𝜇∗(⋃
𝑘∈ℕ

𝐸𝑘) ≤ ∑
𝑘∈ℕ

𝜇∗(𝐸𝑘)

This implies finite subadditivity:

𝜇∗(⋃
𝑛

𝑘=1
𝐸𝑘) ≤ ∑

𝑛

𝑘=1
𝜇∗(𝐸𝑘)

Lemma.  We have

𝜇∗(𝐴) = inf{∑
𝑘∈ℕ

ℓ(𝐼𝑘) : 𝐴 ⊂ ⋃
𝑘∈ℕ

𝐼𝑘, 𝐼𝑘 ≠ ∅ open intervals}

Proposition.  Outer measure of interval is its length: 𝜇∗(𝐼) = ℓ(𝐼).

3.2. Measurable sets
Notation.  𝐸𝑐 = ℝ − 𝐸.
Proposition.  Let 𝐸 = (𝑎, ∞). Then

∀𝐴 ⊆ ℝ, 𝜇∗(𝐴) = 𝜇∗(𝐴 ∩ 𝐸) + 𝜇∗(𝐴 ∩ 𝐸𝑐)

Definition.  𝐸 ⊆ ℝ is Lebesgue measurable if

∀𝐴 ⊆ ℝ, 𝜇∗(𝐴) = 𝜇∗(𝐴 ∩ 𝐸) + 𝜇∗(𝐴 ∩ 𝐸𝑐)
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Collection of such sets is ℱ𝜇∗ .
Lemma (Excision Property).  Let 𝐸 Lebesgue measurable set with finite measure
and 𝐸 ⊆ 𝐵, then

𝜇∗(𝐵 − 𝐸) = 𝜇∗(𝐵) − 𝜇∗(𝐸)

Proposition.  If 𝐸1, …, 𝐸𝑛 Lebesgue measurable then ∪𝑛
𝑘=1 𝐸𝑘 is Lebesgue

measurable. If 𝐸1, …, 𝐸𝑛 disjoint then

𝜇∗(𝐴 ∩ ⋃
𝑛

𝑘=1
𝐸𝑘) = ∑

𝑛

𝑘=1
𝜇∗(𝐴 ∩ 𝐸𝑘)

for any 𝐴 ⊆ ℝ. In particular, for 𝐴 = ℝ,

𝜇∗(⋃
𝑛

𝑘=1
𝐸𝑘) = ∑

𝑛

𝑘=1
𝜇∗(𝐸𝑘)

Remark.  Not every set is Lebesgue measurable.
Definition.  Collection of subsets of ℝ is an algebra if contains ∅ and closed under
taking complements and finite unions: if 𝐴, 𝐵 ∈ 𝒜 then ℝ − 𝐴, 𝐴 ∪ 𝐵 ∈ 𝒜.
Remark.  A union of a countable collection of Lebesgue measurable sets is also the
union of a countable disjoint collection of Lebesgue measurable sets: if {𝐴𝑘}𝑘∈ℕ is
countable collection of Lebesgue measurable sets, then let 𝐴1′ ≔ 𝐴1 and for 𝑘 > 1,
define

𝐴𝑘′ ≔ 𝐴𝑘 − ∪𝑘−1
𝑖=1 𝐴𝑖

then {𝐴𝑘′}𝑘∈ℕ is disjoint union of Lebesgue measurable sets and ∪𝑘∈ℕ 𝐴𝑘′ = ∪𝑘∈ℕ 𝐴𝑘.

Proposition.  If 𝐸 is countable union of Lebesgue measurable sets, then 𝐸 is
Lebesgue measurable. Also, if {𝐸𝑘}𝑘∈ℕ is countable disjoint collection of Lebesgue
measurable sets then

𝜇(⋃
𝑘∈ℕ

𝐸𝑘) = ∑
𝑘∈ℕ

𝜇(𝐸𝑘)

3.3. Abstract definition of a measure
Definition.  Let 𝑋 ⊆ ℝ. Collection of subsets of ℱ of 𝑋 is 𝜎-algebra if
• ∅ ∈ ℱ
• 𝐸 ∈ ℱ ⟹ 𝐸𝑐 ∈ ℱ
• If ∀𝑘 ∈ ℕ, 𝐸𝑘 ∈ ℱ then ∪𝑘∈ℕ 𝐸𝑘 ∈ ℱ.
Example.
• Trivial examples are ℱ = {∅, ℝ} and ℱ = 𝒫(ℝ).
• Countable intersections of 𝜎-algebras are 𝜎-algebras.
Definition.  Let ℱ 𝜎-algebra of 𝑋. 𝜈 : ℱ → ℝ ∪ {±∞} is measure satisfying
• 𝜈(∅) = 0
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• ∀𝐸 ∈ ℱ, 𝜈(𝐸) ≥ 0
• Countable additivity: if 𝐸1, 𝐸2, … ∈ ℱ are disjoint then

𝜈(⋃
𝑘∈ℕ

𝐸𝑘) = ∑
𝑘∈ℕ

𝜈(𝐸𝑘)

Elements of ℱ are measurable (as they are the only sets on which the measure 𝜈 is
defined).
Proposition.  If 𝜈 is measure then it satisfies:
• Monotonicity: 𝐴 ⊆ 𝐵 ⟹ 𝜈(𝐴) ≤ 𝜈(𝐵).
• Countable subadditivity: 𝜈(∪𝑘∈ℕ 𝐸𝑘) ≤ ∑𝑘∈ℕ 𝜈(𝐸𝑘).
• Excision: if 𝐵 has finite measure, then 𝐴 ⊆ 𝐵 ⟹ 𝜈(𝐵 − 𝐴) = 𝜈(𝐵) − 𝜈(𝐴).

3.4. Lebesgue measure
Lemma.  𝐹𝜇∗ is 𝜎-algebra and contains every interval.
Theorem (Carathéodory Extension).  Restriction of the 𝜇∗ to 𝐹𝜇∗ is a measure.
Theorem (Hahn extension theorem).  There exists unique measure 𝜇 defined on ℱ𝜇∗

for which 𝜇(𝐼) = ℓ(𝐼) for any interval 𝐼 .
Definition.  The measure 𝜇 of 𝜇∗ restricted to ℱ𝜇∗ is the Lebesgue measure. It
satisfies 𝜇(𝐼) = ℓ(𝐼) for any interval 𝐼 and is translation invariant.

3.5. Sets of measure 0
Proposition.  Middle-third Cantor set is Lebesgue measurable and has Lebesgue
measure 0.
Proposition.  Any countable set is Lebesgue measurable and has Lebesgue measure 
0.
Proposition.  Any 𝐸 with 𝜇∗(𝐸) = 0 is Lebesgue measurable and has 𝜇(𝐸) = 0.
Lemma.  Let 𝐸 Lebesgue measurable set with 𝜇(𝐸) = 0, then ∀𝐸′ ⊆ 𝐸, 𝐸′ is
Lebesgue measurable.

3.6. Continuity of measure
Definition.  Countable collection {𝐸𝑘}𝑘∈ℕ is ascending if ∀𝑘 ∈ ℕ, 𝐸𝑘 ⊆ 𝐸𝑘+1 and
descending if ∀𝑘 ∈ ℕ, 𝐸𝑘+1 ⊆ 𝐸𝑘.
Theorem.  Every measure 𝑚 satisfies:
• If {𝐴𝑘}𝑘∈ℕ is ascending collection of measurable sets, then

𝑚(⋃
𝑘∈ℕ

𝐴𝑘) = lim
𝑘→∞

𝑚(𝐴𝑘)

• If {𝐵𝑘}𝑘∈ℕ is descending collection of measurable sets and 𝑚(𝐵1) < ∞, then

𝑚(⋂
𝑘∈ℕ

𝐵𝑘) = lim
𝑘→∞

𝑚(𝐵𝑘)
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3.7. An approximation result for Lebesgue measure
Definition.  Borel 𝜎-algebra ℬ(ℝ) is smallest 𝜎-algebra containing all intervals: for
any other 𝜎-algebra ℱ containing all intervals, ℬ(ℝ) ⊆ ℱ.

ℬ(ℝ) ≔ ⋂{ℱ : ℱ 𝜎 -algebra containing all intervals}

𝐸 ∈ ℬ(ℝ) is Borel or Borel measurable.
Lemma.  All open subsets of ℝ, closed subsets of ℝ, 𝐺𝛿 sets and 𝐹𝜎 sets are Borel.
Proposition.  The following are equivalent:
• 𝐸 is Lebesgue measurable
• ∀𝜀 > 0, ∃ open 𝐺 : 𝐸 ⊆ 𝐺 ∧ 𝜇∗(𝐺 − 𝐸) < 𝜀
• ∀𝜀 > 0, ∃ closed 𝐹 : 𝐹 ⊆ 𝐸 ∧ 𝜇∗(𝐸 − 𝐹) < 𝜀
• ∃𝐺 ∈ 𝐺𝛿 : 𝐸 ⊆ 𝐺 ∧ 𝜇∗(𝐺 − 𝐸) = 0
• ∃𝐹 ∈ 𝐹𝜎 : 𝐹 ⊆ 𝐸 ∧ 𝜇∗(𝐸 − 𝐹) = 0

4. Measurable functions
4.1. Definition of a measurable function
Proposition.  Let 𝑓 : ℝ → ℝ. 𝑓 continuous iff ∀ open 𝑈 ⊆ ℝ, 𝑓−1(𝑈) ⊆ ℝ is open.
Lemma.  Let 𝑓 : 𝐸 → ℝ ∪ {±∞} with 𝐸 Lebesgue measurable. The following are
equivalent:
• ∀𝑐 ∈ ℝ, {𝑥 ∈ 𝐸 : 𝑓(𝑥) > 𝑐} is Lebesgue measurable.
• ∀𝑐 ∈ ℝ, {𝑥 ∈ 𝐸 : 𝑓(𝑥) ≥ 𝑐} is Lebesgue measurable.
• ∀𝑐 ∈ ℝ, {𝑥 ∈ 𝐸 : 𝑓(𝑥) < 𝑐} is Lebesgue measurable.
• ∀𝑐 ∈ ℝ, {𝑥 ∈ 𝐸 : 𝑓(𝑥) ≤ 𝑐} is Lebesgue measurable.

The same statement holds for Borel measurable sets.
Definition.  𝑓 : 𝐸 → ℝ ∪ {±∞} is (Lebesgue) measurable if it satisfies any of the
above properties and if 𝐸 is Lebesgue measurable. 𝑓 being Borel measurable is
defined similarly.
Corollary.  If 𝑓 is Lebesgue measurable then for every 𝐵 ∈ ℬ(ℝ), 𝑓−1(𝐵) is
measurable. In particular, if 𝑓 is Lebesgue measurable, preimage of any interval is
measurable.
Definition.  Indicator function on set 𝐴, 𝟙𝐴 : ℝ → {0, 1}, is

𝟙𝐴(𝑥) ≔ {1 if 𝑥 ∈ 𝐴
0 if 𝑥 ∉ 𝐴

Definition.  𝜑 : ℝ → ℝ is simple (measurable) function if 𝜑 is measurable
function that has finite codomain.

4.2. Fundamental aspects of measurable functions
Definition.  Let 𝐸 ⊆ 𝐹 ⊆ ℝ, let 𝑓 : 𝐹 → ℝ. Restriction 𝑓𝐸 is function with domain
𝐸 and for which ∀𝑥 ∈ 𝐸, 𝑓𝐸(𝑥) = 𝑓(𝑥).
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Definition.  Real-valued function which is increasing or decreasing is monotone.
Definition.  Sequence (𝑓𝑛) on domain 𝐸 is increasing if 𝑓𝑛 ≤ 𝑓𝑛+1 on 𝐸 for all 𝑛 ∈
ℕ.
Example.  Continuous functions are measurable.
Definition.  For 𝑓1 : 𝐸 → ℝ, …, 𝑓𝑛 : 𝐸 → ℝ, define

max{𝑓1, …, 𝑓𝑛}(𝑥) ≔ max{𝑓1(𝑥), …, 𝑓𝑛(𝑥)}

min{𝑓1, …, 𝑓𝑛} is defined similarly.
Proposition.  For finite family {𝑓𝑘}𝑛

𝑘=1 of measurable functions with common
domain 𝐸, max{𝑓1, …, 𝑓𝑛} and min{𝑓1, …, 𝑓𝑛} are measurable.
Definition.  For 𝑓 : 𝐸 → ℝ, functions |𝑓|, 𝑓+, 𝑓− defined on 𝐸 are

|𝑓|(𝑥) ≔ max{𝑓(𝑥), −𝑓(𝑥)}, 𝑓+(𝑥) ≔ max{𝑓(𝑥), 0}, 𝑓−(𝑥) ≔ max{−𝑓(𝑥), 0}

Corollary.  If 𝑓 measurable on 𝐸, so are |𝑓|, 𝑓+ and 𝑓−.
Proposition.  Let 𝑓 : 𝐸 → ℝ ∪ {±∞}. For measurable 𝐷 ⊆ 𝐸, 𝑓 measurable on 𝐸 iff
restrictions of 𝑓 to 𝐷 and 𝐸 − 𝐷 are measurable.
Theorem.  Let 𝑓, 𝑔 : 𝐸 → ℝ measurable.
• Linearity: ∀𝛼, 𝛽 ∈ ℝ, 𝛼𝑓 + 𝛽𝑔 is measurable.
• Products: 𝑓𝑔 is measurable.
Proposition.  Let 𝑓𝑛 : 𝐸 → ℝ ∪ {±∞} be sequence of measurable functions that
converges pointwise to 𝑓 : 𝐸 → ℝ ∪ {±∞}. Then 𝑓 is measurable.
Lemma (Simple approximation lemma).  Let 𝑓 : 𝐸 → ℝ measurable and bounded, so
∃𝑀 ≥ 0 : ∀𝑥 ∈ 𝐸, |𝑓|(𝑥) < 𝑀 . Then ∀𝜀 > 0, there exist simple measurable functions 
𝜑𝜀, 𝜓𝜀 : 𝐸 → ℝ such that

∀𝑥 ∈ 𝐸, 𝜑𝜀(𝑥) ≤ 𝑓(𝑥) ≤ 𝜓𝜀(𝑥) ∧ 0 ≤ 𝜓𝜀(𝑥) − 𝜑𝜀(𝑥) < 𝜀

Theorem (Simple approximation theorem).  Let 𝑓 : 𝐸 → ℝ ∪ {±∞}, 𝐸 measurable.
Then 𝑓 is measurable iff there exists sequence (𝜑𝑛) of simple functions on 𝐸 which
converge pointwise on 𝐸 to 𝑓 and satisfy

∀𝑛 ∈ ℕ, ∀𝑥 ∈ 𝐸, |𝜑𝑛|(𝑥) ≤ |𝑓|(𝑥)

If 𝑓 is nonnegative, (𝜑𝑛) can be chosen to be increasing.
Definition.  Let 𝑓, 𝑔 : 𝐸 → ℝ ∪ {±∞}. Then 𝑓 = 𝑔 almost everywhere if {𝑥 ∈ 𝐸 :
𝑓(𝑥) ≠ 𝑔(𝑥)} has measure 0.
Proposition.  Let 𝑓1, 𝑓2, 𝑓3 : 𝐸 → ℝ ∪ {±∞} measurable. If 𝑓1 = 𝑓2 almost
everywhere and 𝑓2 = 𝑓3 almost everywhere then 𝑓1 = 𝑓3 almost everywhere.
Remark.  Lebesgue measurable functions can be modified arbitrarily on a set of
measure 0 without affecting measurability.
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Proposition.  Let 𝑓𝑛 : 𝐸 → ℝ ∪ {±∞} sequence of measurable functions, 𝑓 : 𝐸 →
ℝ ∪ {±∞} measurable. Set of points where (𝑓𝑛) converges pointwise to 𝑓 is
measurable.
Proposition.  Let 𝑓, 𝑔 : 𝐸 → ℝ ∪ {±∞} measurable and finite almost everywhere on 
𝐸.
• Linearity: ∀𝛼, 𝛽 ∈ ℝ, there exists function equal to 𝛼𝑓 + 𝛽𝑔 almost everywhere

on 𝐸 (any such function is measurable).
• Products: there exists function equal to 𝑓𝑔 almost everywhere on 𝐸 (any such

function is measurable).
Definition.  Sequence of functions (𝑓𝑛) with domain 𝐸 converge in measure to 𝑓
if (𝑓𝑛) and 𝑓 are finite almost everywhere and

∀𝜀 > 0, 𝜇({𝑥 ∈ 𝐸 : |𝑓𝑛(𝑥) − 𝑓(𝑥)| > 𝜀}) → 0 as 𝑛 → ∞

5. The Lebesgue integral
5.1. The integral of a simple measurable function
Definition.  Let 𝜑 be real-valued function taking finitely many values 𝛼1 < ⋯ < 𝛼𝑛,
then standard representation of 𝜑 is

𝜑 = ∑
𝑛

𝑖=1
𝛼𝑖𝟙𝐴𝑖

, 𝐴𝑖 = 𝜑−1({𝛼𝑖})

Lemma.  Let 𝜑 = ∑𝑚
𝑖=1 𝛽𝑖𝟙𝐵𝑖

, 𝐵𝑖 disjoint measurable collection, 𝛽𝑖 ∈ ℝ, then 𝜑 is
simple measurable. If 𝜑 takes value 0 outside a set of finite measure then

∑
𝑛

𝑖=1
𝛼𝑖𝜇(𝐴𝑖) = ∑

𝑚

𝑖=1
𝛽𝑖𝜇(𝐵𝑖)

where 𝐴𝑖 in standard representation.
Definition.  Let 𝜑 be simple nonnegative measurable function or simple measurable
function taking value 0 outside set of finite measure. Integral of 𝜑 with respect to 𝜇
is

∫ 𝜑 = ∑
𝑛

𝑖=1
𝛼𝑖𝜇(𝐴𝑖)

where 𝜑 = ∑𝑛
𝑖=1 𝛼𝑖𝟙𝐴𝑖

 is standard representation. Here, use convention 0 ⋅ ∞ = 0. For
measurable 𝐸 ⊆ ℝ, define

∫
𝐸

𝜑 = ∫ 𝟙𝐸𝜑

Example.
• Let 𝜑2 = 𝟙[0,2] + 𝟙[1,3] = 𝟙[0,1)∪(2,3] + 2𝟙[1,2] so ∫ 𝜑2 = 4.
• Let 𝜑3 = 𝟙ℝ, then ∫ 𝜑3 = 1 ⋅ ∞ = ∞.
• Let 𝜑4 = 𝟙(0,∞) + (−1)𝟙(−∞,0). This can’t be integrated.
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• Let 𝜑5 = 𝟙(−1,0) + (−1)𝟙(0,1), then ∫ 𝜑5 = 0.
Lemma.  Let 𝐵1, …, 𝐵𝑚 be measurable sets, 𝛽1, …, 𝛽𝑚 ∈ ℝ − {0}. Then 𝜑 =
∑𝑚

𝑖=1 𝛽𝑖𝟙𝐵𝑖
 is simple measurable function. Also,

𝜇(⋃
𝑚

𝑖=1
𝐵𝑖) < ∞ ⟹ ∑

𝑛

𝑖=1
𝛼𝑖𝜇(𝐴𝑖) = ∑

𝑚

𝑖=1
𝛽𝑖𝜇(𝐵𝑖)

where 𝐴𝑖 in standard representation.
Proposition.  Let 𝜑, 𝜓 be simple measurable functions:
• If 𝜑, 𝜓 take value 0 outside a set of finite measure, then ∀𝛼, 𝛽 ∈ ℝ,

∫(𝛼𝜑 + 𝛽𝜓) = 𝛼 ∫ 𝜑 + 𝛽 ∫ 𝜓

• If 𝜑, 𝜓 nonnegative, then ∀𝛼, 𝛽 ≥ 0,

∫(𝛼𝜑 + 𝛽𝜓) = 𝛼 ∫ 𝜑 + 𝛽 ∫ 𝜓

• Monotonicity:

0 ≤ 𝜑 ≤ 𝜓 ⟹ 0 ≤ ∫ 𝜑 ≤ ∫ 𝜓

Corollary.  Let 𝜑 nonnegative simple function, then

∫ 𝜑 = sup{∫ 𝜓 : 0 ≤ 𝜓 ≤ 𝜑, 𝜓 simple measurable}

Lemma.  Let 𝜑 simple measurable nonnegative function. 𝜑 takes value 0 outside a
set of finite measure iff ∫ 𝜑 < ∞. Also, ∫ 𝜑 = ∞ iff there exist 𝛼 > 0, measurable 𝐴
with 𝜇(𝐴) = ∞ and ∀𝑥 ∈ 𝐴, 𝜑(𝑥) ≥ 𝛼.
Lemma.  Let {𝐸𝑛} be ascending collection of measurable sets, ∪𝑛∈ℕ 𝐸𝑛 = ℝ. Let 𝜑
be simple nonnegative measurable function. Then

∫
𝐸𝑛

𝜑 → ∫ 𝜑 as 𝑛 → ∞

5.2. The integral of a nonnegative function
Notation.  Let ℳ+ denote collection of nonnegative measurable functions 𝑓 : ℝ →
ℝ≥0 ∪ {∞}.
Definition.  Support of measurable function 𝑓 with domain 𝐸 is supp(𝑓) ≔ {𝑥 ∈
𝐸 : 𝑓(𝑥) ≠ 0}.
Definition.  Let 𝑓 ∈ ℳ+. Integral of 𝑓 with respect to 𝜇 is

∫ 𝑓 ≔ sup{∫ 𝜑 : 0 ≤ 𝜑 ≤ 𝑓, 𝜑 simple measurable} ∈ ℝ ∪ {∞}

For measurable set 𝐸, define
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∫
𝐸

𝑓 ≔ ∫ 𝟙𝐸𝑓

Proposition (Monotonicity).  Let 𝑓, 𝑔 measurable, nonnegative. If 𝑔 ≤ 𝑓 then ∫ 𝑔 ≤
∫ 𝑓 . Let 𝐸, 𝐹  measurable. If 𝐸 ⊆ 𝐹  then ∫

𝐸
𝑓 ≤ ∫

𝐹
𝑓 .

Theorem (Monotone convergence theorem).  Let (𝑓𝑛) be sequence in ℳ+. If (𝑓𝑛) is
increasing on measurable set 𝐸 and converges pointwise to 𝑓 on 𝐸 then

∫
𝐸

𝑓𝑛 → ∫
𝐸

𝑓 as 𝑛 → ∞

Corollary.  Restriction of integral to nonnegative functions is linear: ∀𝑓, 𝑔 ∈ ℳ+, 
∀𝛼 ≥ 0,

∫(𝑓 + 𝑔) = ∫ 𝑓 + ∫ 𝑔

∫ 𝛼𝑓 = 𝛼 ∫ 𝑓

Lemma (Fatou's Lemma).  Let (𝑓𝑛) be sequence in ℳ+, then

∫ lim inf
𝑛→∞

𝑓𝑛 ≤ lim inf
𝑛→∞

∫ 𝑓𝑛

Lemma.  Let (𝑓𝑛) ⊂ ℳ+, then

∫ ∑
𝑛∈ℕ

𝑓𝑛 = ∑
𝑛∈ℕ

∫ 𝑓𝑛

Proposition (Chebyshev's inequality).  Let 𝑓 be nonnegative measurable function on
𝐸. Then

∀𝜆 > 0, 𝜇({𝑥 ∈ 𝐸 : 𝑓(𝑥) ≥ 𝜆}) ≤
1
𝜆

∫
𝐸

𝑓

Proposition.  Let 𝑓 be nonnegative measurable function on 𝐸. Then

∫
𝐸

𝑓 = 0 ⟺ 𝑓 = 0 almost everywhere on 𝐸

5.3. Integration of measurable functions
Notation.  Let ℳ denote set of measurable functions.
Definition.  𝑓 ∈ ℳ+ is integrable if ∫ 𝑓 < ∞. By Chebyshev’s inequality, if 𝑓 is
integrable, then 𝑓 is finite almost everywhere.
Definition.  Let 𝑓 : ℝ → ℝ ∪ {±∞} measurable function. 𝑓 is integrable if ∫ 𝑓+

and ∫ 𝑓− are finite. In this case, for any measurable set 𝐸, define

∫
𝐸

𝑓 ≔ ∫
𝐸

𝑓+ − ∫
𝐸

𝑓−
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Note that if 𝑓 integrable then 𝑓+ − 𝑓− is well-defined.
Proposition.  If 𝑓 = 𝑓1 − 𝑓2, 𝑓1, 𝑓2 ∈ ℳ+, 𝑓1, 𝑓2 integrable, then

∫ 𝑓+ − ∫ 𝑓− = ∫ 𝑓1 − ∫ 𝑓2

Definition.  𝑓 ∈ ℳ is integrable over 𝐸 (𝐸 is measurable) if ∫
𝐸

𝑓+ and ∫
𝐸

𝑓− are
finite (i.e. 𝑓 ⋅ 𝟙𝐸 is integrable).
Theorem.  𝑓 ∈ ℳ is integrable iff |𝑓| is integrable. If 𝑓 integrable, then

|∫ 𝑓| ≤ ∫|𝑓|

Corollary.  Let 𝑓, 𝑔 ∈ ℳ, |𝑓| ≤ |𝑔|. If 𝑔 integrable then |𝑓| is integrable, and ∫|𝑓| ≤
∫|𝑔|.
Example.  sin is not integrable over ℝ, but is integrable over [0, 2𝜋], since |𝑓[0,2𝜋]| ≤
𝟙[0,2𝜋].
Theorem (Linearity of Integration).  Let 𝑓, 𝑔 ∈ ℳ integrable. Then 𝑓 + 𝑔 is
integrable and ∀𝛼 ∈ ℝ, 𝛼𝑓 is integrable. The integral is linear:

∫(𝑓 + 𝑔) = ∫ 𝑓 + ∫ 𝑔

∫ 𝛼𝑓 = 𝛼 ∫ 𝑓

Theorem (Dominated Convergence Theorem).  Let (𝑓𝑛) be sequence of integrable
functions. If there exists an integrable 𝑔 with ∀𝑛 ∈ ℕ, |𝑓𝑛| ≤ 𝑔, and 𝑓𝑛 → 𝑓 pointwise
almost everywhere then 𝑓 is integrable and

∫ 𝑓 = lim
𝑛→∞

∫ 𝑓𝑛

5.4. Integrability: Riemann vs Lebesgue
Proposition.  Let 𝑓 bounded function on bounded measurable domain 𝐸. Then 𝑓 is
measurable and ∫

𝐸
|𝑓| < ∞ iff

sup{∫
𝐸

𝜑 : 𝜑 ≤ 𝑓, 𝜑 simple measurable} = inf{∫
𝐸

𝜓 : 𝑓 ≤ 𝜓 : 𝜓 simple measurable}

(If 𝑓 satisfies either condition then ∫
𝐸

𝑓 is equal to the two above expressions).

Definition.  Bounded function 𝑓 is Lebesgue integrable if it satisfies either of the
equivalences in the above proposition.
Definition.  Let 𝑃 = {𝑥0, …, 𝑥𝑛} partition of [𝑎, 𝑏], 𝑓 : [𝑎, 𝑏] → ℝ bounded. Lower
and upper Darboux sums for 𝑓 with respect to 𝑃  are
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𝐿(𝑓, 𝑃 ) ≔ ∑
𝑛

𝑖=1
𝑚𝑖(𝑥𝑖 − 𝑥𝑖−1), 𝑈(𝑓, 𝑃 ) ≔ ∑

𝑛

𝑖=1
𝑀𝑖(𝑥𝑖 − 𝑥𝑖−1)

where

𝑚𝑖 ≔ inf{𝑓(𝑥) : 𝑥 ∈ (𝑥𝑖−1, 𝑥𝑖)}, 𝑀𝑖 ≔ sup{𝑓(𝑥) : 𝑥 ∈ (𝑥𝑖−1, 𝑥𝑖)}

If 𝑃 ⊆ 𝑄 (𝑄 is a refinement of 𝑃 ), then

𝐿(𝑓, 𝑃 ) ≤ 𝐿(𝑓, 𝑄) ≤ 𝑈(𝑓, 𝑄) ≤ 𝑈(𝑓, 𝑃 )

Definition.  Lower and upper Riemann integrals of 𝑓 over [𝑎, 𝑏] are

ℐ𝑏
𝑎(𝑓) ≔ sup{𝐿(𝑓, 𝑃 ) : 𝑃 partition of [𝑎, 𝑏]}

ℐ𝑏
𝑎(𝑓) ≔ inf{𝑈(𝑓, 𝑃 ) : 𝑃 partition of [𝑎, 𝑏]}

Definition.  Let 𝑓 : [𝑎, 𝑏] → ℝ bounded, then 𝑓 is Riemann integrable (𝑓 ∈ ℛ), if

ℐ𝑏
𝑎(𝑓) = ℐ𝑏

𝑎(𝑓)

and common value ℐ𝑏
𝑎(𝑓) = ∫𝑏

𝑎
𝑓(𝑥) d𝑥 is Riemann integral of 𝑓 .

Remark.  Let 𝑔 : [𝑎, 𝑏] → ℝ step function with discontinuities at 𝑃 = {𝑥0, …, 𝑥𝑛}, so 
𝑔 = ∑𝑛

𝑖=1 𝛼𝑖𝟙(𝑥𝑖−1,𝑥𝑖) almost everywhere. So 𝑔 is simple measurable and

𝐿(𝑔, 𝑃 ) = ∑
𝑛

𝑖=1
𝛼𝑖(𝑥𝑖 − 𝑥𝑖−1) = 𝑈(𝑔, 𝑃 ) = ∫ 𝑔 = ℐ𝑏

𝑎(𝑔)

Hence for any bounded 𝑓 : [𝑎, 𝑏] → ℝ,

ℐ𝑏
𝑎(𝑓) = sup{∫ 𝜑 : 𝜑 ≤ 𝑓, 𝜑 step function},

ℐ𝑏
𝑎(𝑓) = inf{∫ 𝜓 : 𝑓 ≤ 𝜓, 𝜓 step function}

Theorem.  Let 𝑓 : [𝑎, 𝑏] → ℝ bounded, 𝑎, 𝑏 ≠ ±∞. If 𝑓 Riemann integrable over [𝑎, 𝑏]
then 𝑓 Lebesgue integrable over [𝑎, 𝑏] and the two integrals are equal.
Theorem.  Let 𝑓 : [𝑎, 𝑏] → ℝ bounded, 𝑎, 𝑏 ≠ ±∞. Then 𝑓 is Riemann integrable on 
[𝑎, 𝑏] iff 𝑓 is continuous on [𝑎, 𝑏] except on a set of measure zero.
Lemma.  Let (𝜑𝑛), (𝜓𝑛) be sequences of functions, all integrable over 𝐸, (𝜑𝑛)
increasing on 𝐸, (𝜓𝑛) decreasing on 𝐸. Let 𝑓 : 𝐸 → ℝ with

∀𝑛 ∈ ℕ, 𝜑𝑛 ≤ 𝑓 ≤ 𝜓𝑛 on 𝐸, lim
𝑛→∞

∫
𝐸

(𝜓𝑛 − 𝜑𝑛) = 0

Then 𝜑𝑛, 𝜓𝑛 → 𝑓 pointwise almost everywhere on 𝐸, 𝑓 is integrable over 𝐸 and

lim
𝑛→∞

∫
𝐸

𝜑𝑛 = lim
𝑛→∞

∫
𝐸

𝜓𝑛 = ∫
𝐸

𝑓
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Definition.  For partition 𝑃 = {𝑥0, …, 𝑥𝑛}, gap of 𝑃  is

gap(𝑃) ≔ max{|𝑥𝑖 − 𝑥𝑖−1| : 𝑖 ∈ {1, …, 𝑛}}

Lemma.  Let 𝑓 : [𝑎, 𝑏] → ℝ, 𝐸 ⊆ [𝑎, 𝑏] be set where 𝑓 is continuous. Let (𝑃𝑛) be
sequence of partitions of [𝑎, 𝑏] with 𝑃𝑛+1 ⊆ 𝑃𝑛 and gap(𝑃𝑛) → 0 as 𝑛 → ∞. Let 
𝜑𝑛, 𝜓𝑛 : [𝑎, 𝑏] → ℝ step functions with

𝜑𝑛(𝑥) ≔ inf{𝑓(𝑥) : 𝑥 ∈ (𝑥𝑖−1, 𝑥𝑖)}, 𝜓𝑛(𝑥) ≔ sup{𝑓(𝑥) : 𝑥 ∈ (𝑥𝑖−1, 𝑥𝑖)}

for 𝑃𝑛 = {𝑥0, …, 𝑥𝑛}. Then ∀𝑥 ∈ 𝐸 − ∪𝑛∈ℕ 𝑃𝑛,

𝜑𝑛(𝑥), 𝜓𝑛(𝑥) → 𝑓(𝑥) as 𝑛 → ∞

Definition.  Let 𝑓 : (𝑎, 𝑏] → ℝ, −∞ ≤ 𝑎 < 𝑏 < ∞, 𝑓 bounded and Riemann
integrable on all closed bounded sub-intervals of (𝑎, 𝑏]. If

lim
𝑡→𝑎,𝑡>𝑎

ℐ𝑏
𝑡(𝑓)

exists then this is defined as the improper Riemann integral ℐ𝑏
𝑎(𝑓). Similar

definitions exist for 𝑓 : (𝑎, 𝑏) → ℝ and 𝑓 : [𝑎, 𝑏) → ℝ.
Note.  Improper Riemann integral may exist without function being Lebesgue
integral.
Proposition.  If 𝑓 is integrable, the improper Riemann integral is equal to the
Lebesgue integral whenever the former exists.
Definition.  Let 𝛼 : [𝑎, 𝑏] → ℝ monotonically increasing (and so bounded). For
partition 𝑃 = {𝑥0, …, 𝑥𝑛} of [𝑎, 𝑏] and bounded 𝑓 : [𝑎, 𝑏] → ℝ, define

𝐿(𝑓, 𝑃 , 𝛼) ≔ ∑
𝑛

𝑖=1
𝑚𝑖(𝛼(𝑥𝑖) − 𝛼(𝑥𝑖−1)), 𝑈(𝑓, 𝑃 , 𝛼) ≔ ∑

𝑛

𝑖=1
𝑀𝑖(𝛼(𝑥𝑖) − 𝛼(𝑥𝑖−1))

where 𝑚𝑖 ≔ inf{𝑓(𝑥) : 𝑥 ∈ (𝑥𝑖−1, 𝑥𝑖)}, 𝑀𝑖 ≔ sup{𝑓(𝑥) : 𝑥 ∈ (𝑥𝑖−1, 𝑥𝑖)}. Then 𝑓 is
integrable with respect to 𝛼, 𝑓 ∈ ℛ(𝛼), if

inf{𝑈(𝑓, 𝑃 , 𝛼) : 𝑃 partition of [𝑎, 𝑏]} = sup{𝐿(𝑓, 𝑃 , 𝛼) : 𝑃 partition of [𝑎, 𝑏]}

and the common value ∫𝑏
𝑎

𝑓 d𝛼 is the Riemann-Stieltjes integral of 𝑓 with respect
to 𝛼.
Proposition.  Let 𝑓 : (𝑎, 𝑏) → ℝ, then set of points where 𝑓 is differentiable is
measurable.
Remark.  If 𝛼 : [0, 1] → [𝑎, 𝑏] bĳection, then

∫
1

0
𝑓 ∘ 𝛼 d𝛼 = ∫

𝑏

𝑎
𝑓(𝑥) d𝑥

Proposition.  Let 𝛼 be monotonically increasing and differentiable with 𝛼′ ∈ ℛ.
Then 𝑔 ∈ ℛ(𝛼) iff 𝑔𝛼′ ∈ ℛ, and in that case,
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∫
𝑏

𝑎
𝑔 d𝛼 = ∫

𝑏

𝑎
𝑔(𝑥)𝛼′(𝑥) d𝑥

Remark.  When 𝑔 = 1, this says ∫𝑏
𝑎

1 d𝛼 = 𝛼(𝑏) − 𝛼(𝑎) = ∫ 𝛼′(𝑥) d𝑥, similar to the
fundamental theorem of calculus.

6. Lebesgue spaces
6.1. Normed linear spaces
Definition.  Let 𝑋 be complex linear space (vector space over ℂ). ‖⋅‖ : 𝑋 → ℝ≥0
is norm on 𝑋 if
• ∀𝑥 ∈ 𝑋, ‖𝑥‖ = 0 ⟺ 𝑥 = 0.
• ∀𝑥 ∈ 𝑋, ∀𝜆 ∈ ℂ, ‖𝜆𝑥‖ = |𝜆| ‖𝑥‖.
• ∀𝑥, 𝑦 ∈ 𝑋, ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖.

𝑋 equipped with norm ‖⋅‖, (𝑋, ‖⋅‖), is called complex normed linear space.
Example.
• ‖𝑥‖ =

√
𝑥𝑥 is norm on ℂ.

• Let 𝐶[𝑎, 𝑏] denote linear space of continuous real-valued functions on [𝑎, 𝑏]. Then

‖𝑓‖max ≔ max{|𝑓(𝑥)| : 𝑥 ∈ [𝑎, 𝑏]}

is norm on 𝐶[𝑎, 𝑏].
Proposition.  Norm induces metric on 𝑋: 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖.
Definition.  Let (𝑋, ‖⋅‖) be normed linear space.
• Sequence (𝑓𝑛) in 𝑋 is Cauchy sequence in 𝑋 if

∀𝜀 > 0, ∃𝑁 ∈ ℕ : ∀𝑛, 𝑚 ≥ 𝑁, ‖𝑓𝑛 − 𝑓𝑚‖ < 𝜀
• Sequence (𝑓𝑛) in 𝑋 converges in 𝑋, ‖𝑓𝑛 − 𝑓‖ → 0 as 𝑛 → ∞, if

∃𝑓 ∈ 𝑋 : ∀𝜀 > 0, ∃𝑁 ∈ ℕ : ∀𝑛 ≥ 𝑁, ‖𝑓𝑛 − 𝑓‖ < 𝜀
• (𝑋, ‖⋅‖) is complete if every Cauchy sequence converges in 𝑋.
• Banach space is complete normed linear space.
Proposition.  Let (𝑋, ‖⋅‖) be normed linear space.
• If (𝑥𝑛) converges in 𝑋, (𝑥𝑛) is Cauchy sequence in 𝑋.
• Let (𝑥𝑛) be Cauchy sequence in 𝑋. If (𝑥𝑛) has convergent subsequence in 𝑋 then 

(𝑥𝑛) converges in 𝑋.

6.2. Lebesgue spaces 𝐿𝑝, 𝑝 ∈ [1, ∞)
Definition.  Let 𝑝 ∈ [1, ∞), 𝐸 ⊆ ℝ.
• Linear space 𝐿𝑝(𝐸) is defined as

𝐿𝑝(𝐸) ≔ {𝑓 : 𝐸 → ℂ : 𝑓 is measurable and ∫
𝐸

|𝑓|𝑝 < ∞}/ ≅

where 𝑓 ≅ 𝑔 iff 𝑓 = 𝑔 almost everywhere:
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𝑓 ≅ 𝑔 ⟺ ∃𝐹 ⊆ 𝐸 : 𝜇(𝐹) = 0 ∧ ∀𝑥 ∈ 𝐸 − 𝐹, 𝑓(𝑥) = 𝑔(𝑥)
• Define ‖⋅‖𝐿𝑝 : 𝐿𝑝(𝐸) → ℝ as

‖𝑓‖𝐿𝑝 ≔ (∫
𝐸

|𝑓|𝑝)
1/𝑝

Remark.
• We often consider space 𝐿𝑝(𝐸) of real-valued measurable functions 𝑓 : 𝐸 → ℝ such

that ∫
𝐸

|𝑓|𝑝 < ∞.
• For 𝑓 : 𝐸 → ℂ, 𝑓 = 𝑓1 + 𝑖𝑓2, 𝑓 is measurable iff 𝑓1 : 𝐸 → ℝ and 𝑓2 : 𝐸 → ℝ are

measurable. Also,

∫
𝐸

|𝑓|𝑝 < ∞ ⟺ (∫
𝐸

|𝑓1|𝑝 < ∞ ∧ ∫
𝐸

|𝑓2|𝑝 < ∞)

Example.  Let 𝐸 = ℝ, 𝑓(𝑥) = 𝟙ℝ−ℚ(𝑥) + 𝑖𝟙ℚ(𝑥) and 𝑔(𝑥) = 1. Then 𝜇(ℚ) = 0 so 
𝑓 ≅ 𝑔.
Proposition.  Let (𝑓𝑛), (𝑔𝑛) sequences of measurable functions, ∀𝑛 ∈ ℕ, 𝑓𝑛 ≅ 𝑔𝑛, 
lim𝑛→∞ 𝑓𝑛 = 𝑓 and lim𝑛→∞ 𝑔𝑛 = 𝑔. Then 𝑓 ≅ 𝑔.
Definition.  𝑝, 𝑞 ∈ ℝ are conjugate exponents if 𝑝 > 1 and 1

𝑝 + 1
𝑞 = 1.

Lemma (Young's inequality).  Let 𝑝, 𝑞 conjugate exponents, then

∀𝐴, 𝐵 ∈ ℝ≥0, 𝐴𝐵 ≤
𝐴𝑝

𝑝
+

𝐵𝑞

𝑞

with equality iff 𝐴𝑝 = 𝐵𝑞.
Lemma (Hölder's inequality).  Let 𝑝, 𝑞 conjugate exponents. If 𝑓 ∈ 𝐿𝑝(𝐸), 𝑔 ∈
𝐿𝑞(𝐸), then

∫
𝐸

|𝑓𝑔| ≤ ‖𝑓‖𝐿𝑝‖𝑔‖𝐿𝑞

Corollary (Cauchy-Schwarz inequality for 𝐿2(𝐸)).  If 𝑓, 𝑔 ∈ 𝐿2(𝐸), then

|∫
𝐸

𝑓𝑔| ≤ ∫
𝐸

|𝑓𝑔| ≤ ‖𝑓‖𝐿2‖𝑔‖𝐿2

Lemma (Minkowski's inequality).  Let 𝑝 ∈ [1, ∞). If 𝑓, 𝑔 ∈ 𝐿𝑝(𝐸) then 𝑓 + 𝑔 ∈ 𝐿𝑝(𝐸)
and

‖𝑓 + 𝑔‖𝐿𝑝 ≤ ‖𝑓‖𝐿𝑝 + ‖𝑔‖𝐿𝑝

Theorem.  For 𝑝 ∈ [1, ∞), (𝐿𝑝(𝐸), ‖⋅‖𝐿𝑝) is normed linear space.
Proposition.  Let 1 ≤ 𝑝 < 𝑞 < ∞. If 𝜇(𝐸) < ∞ then 𝐿𝑞(𝐸) ⊆ 𝐿𝑝(𝐸) and

‖𝑓‖𝐿𝑝 ≤ 𝜇(𝐸)
1
𝑝−1

𝑞 ‖𝑓‖𝐿𝑞
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Remark.
• Convergence in 𝐿𝑝 is also called convergence in the mean of order 𝑝.
• This notion of convergence is different to pointwise convergence, uniform

convergence and convergence in measure.
Theorem (Riesz-Fischer).  For 𝑝 ∈ [1, ∞), (𝐿𝑝(𝐸), ‖⋅‖𝐿𝑝) is complete.

6.3. Lebesgue space 𝐿∞

Definition.
• Let 𝑓 : 𝐸 → ℂ measurable. 𝑓 is essentially bounded if

∃𝑀 ≥ 0 : |𝑓(𝑥)| ≤ 𝑀 almost everywhere on 𝐸
• 𝐿∞(𝐸) is collection of equivalence classes of essentially bounded functions where 

𝑓 ≅ 𝑔 iff 𝑓 = 𝑔 almost everywhere.
• For 𝑓 ∈ 𝐿∞(𝐸), define

‖𝑓‖𝐿∞ ≔ ess sup|𝑓| ≔ inf{𝑀 ∈ ℝ : 𝜇({𝑥 ∈ 𝐸 : |𝑓(𝑥)| > 𝑀}) = 0}

Proposition.
• 0 ≤ |𝑓(𝑥)| ≤ ‖𝑓‖𝐿∞ almost everywhere.
• ‖𝑓‖𝐿∞ is norm on 𝐿∞(𝐸).
• If 𝑓 ∈ 𝐿1(𝐸), 𝑔 ∈ 𝐿∞(𝐸), then

∫
𝐸

|𝑓𝑔| ≤ ‖𝑓‖𝐿1‖𝑔‖𝐿∞

Proposition.  Let (𝑓𝑛) sequence of functions in 𝐿∞(𝐸). Then (𝑓𝑛) converges to 𝑓 ∈
𝐿∞(𝐸) iff there exists 𝐺 ⊆ 𝐸 with 𝜇(𝐺) = 0 and (𝑓𝑛) converges to 𝑓 uniformly on 
𝐸 − 𝐺.
Theorem.  (𝐿∞(𝐸), ‖⋅‖𝐿∞) is complete.
Remark.  If 𝜇(𝐸) < ∞, then 𝐿∞(𝐸) ⊂ 𝐿𝑝(𝐸) for 𝑝 ∈ [1, ∞) and

‖𝑓‖𝐿𝑝 ≤ 𝜇(𝐸)1/𝑝‖𝑓‖𝐿∞

since

‖𝑓‖𝑝
𝐿𝑝 = ∫

𝐸
|𝑓|𝑝 ≤ ∫

𝐸
‖𝑓‖𝑝

𝐿∞ ⋅ 𝟙𝐸 = ‖𝑓‖𝑝
𝐿∞𝜇(𝐸)

6.4. Approximation and separability
Definition.  Let (𝑋, ‖⋅‖) be normed linear space. Let 𝐹 ⊆ 𝐺 ⊆ 𝑋. 𝐹  is dense in 𝐺 if

∀𝑔 ∈ 𝐺, ∀𝜀 > 0, ∃𝑓 ∈ 𝐹 : ‖𝑓 − 𝑔‖ < 𝜀

Proposition.
• 𝐹  is dense in 𝐺 iff for every 𝑔 ∈ 𝐺, there exists sequence (𝑓𝑛) in 𝐹  such that 

lim𝑛→∞ 𝑓𝑛 = 𝑔 in 𝑋.
• For 𝐹 ⊆ 𝐺 ⊆ 𝐻 ⊆ 𝑋, if 𝐹  dense in 𝐺 and 𝐺 dense in 𝐻, then 𝐹  dense in 𝐻.
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Proposition.  Let 𝑝 ∈ [1, ∞]. Then subspace of simple functions in (𝐿𝑝(𝐸), ‖⋅‖𝐿𝑝) is
dense in (𝐿𝑝(𝐸), ‖⋅‖𝐿𝑝).
Definition.  𝜓 : ℝ → ℝ is step function if it can be written as

𝜓 = ∑
𝑁

𝑘=1
̃𝑎𝑘𝟙(𝑎𝑘,𝑏𝑘)

where the intervals (𝑎𝑘, 𝑏𝑘) are disjoint.
Proposition.  Let [𝑎, 𝑏] be bounded, 𝑝 ∈ [1, ∞). Then subspace of step functions on 
[𝑎, 𝑏] is dense in (𝐿𝑝([𝑎, 𝑏]), ‖⋅‖𝐿𝑝).
Definition.  Normed linear space (𝑋, ‖⋅‖) is separable if there exists countable,
dense subset 𝑋′ ⊆ 𝑋.
Example.  ℝ is separable, since ℚ is countable and dense in ℝ.
Theorem.  Let 𝐸 ⊆ ℝ measurable, 𝑝 ∈ [1, ∞). Then (𝐿𝑝(𝐸), ‖⋅‖𝐿𝑝) is separable. In
particular, step functions are dense in 𝐿𝑝(𝐸) for 𝑝 ∈ [1, ∞).
Proposition.  Let 𝜀 > 0, 𝑓 ∈ 𝐿𝑝(𝐸), 𝑝 ∈ [1, ∞). There exists continuous 𝑔 ∈ 𝐿𝑝(𝐸)
such that ‖𝑓 − 𝑔‖𝐿𝑝 < 𝜀.
Remark.  Linear space of continuous functions that vanish outside bounded set is
dense in (𝐿𝑝(𝐸), ‖⋅‖𝐿𝑝) for 𝑝 ∈ [1, ∞).
Remark.  Differentiable functions are also dense in (𝐿𝑝(𝐸), ‖⋅‖𝐿𝑝) for 𝑝 ∈ [1, ∞).
Remark.  Step functions and continuous functions are not dense in (𝐿∞(𝐸), ‖⋅‖𝐿∞).
Example.  In general, (𝐿∞(𝐸), ‖⋅‖𝐿∞) is not separable. Let [𝑎, 𝑏] be bounded, 𝑎 ≠ 𝑏.
Assume there is countable {𝑓𝑛 : 𝑛 ∈ ℕ} which is dense in (𝐿∞([𝑎, 𝑏]), ‖⋅‖𝐿∞). Then for
every 𝑥 ∈ [𝑎, 𝑏], can choose 𝑔(𝑥) ∈ ℕ such that

‖𝟙[𝑎,𝑥] − 𝑓𝑔(𝑥)‖𝐿∞
<

1
2

Also, for 𝑥1 ≤ 𝑥2,

‖𝟙[𝑎,𝑥1] − 𝟙[𝑎,𝑥2]‖𝐿∞
= {

1 if 𝑎 ≤ 𝑥1 < 𝑥2 ≤ 𝑏
0 if 𝑥1 = 𝑥2

and

‖𝟙[𝑎,𝑥1] − 𝟙[𝑎,𝑥2]‖𝐿∞
≤ ‖𝟙[𝑎,𝑥1] − 𝑓𝑔(𝑥1)‖𝐿∞

+ ‖𝑓𝑔(𝑥1) − 𝑓𝑔(𝑥2)‖𝐿∞
+ ‖𝑓𝑔(𝑥2) − 𝟙[𝑎,𝑥2]‖𝐿∞

< 1 + ‖𝑓𝑔(𝑥1) − 𝑓𝑔(𝑥2)‖𝐿∞

If 𝑔(𝑥1) = 𝑔(𝑥2) then ‖𝟙[𝑎,𝑥1] − 𝟙[𝑎,𝑥2]‖𝐿∞
= 0 so 𝑔 : [𝑎, 𝑏] → ℕ is injective. But ℕ is

countable and [𝑎, 𝑏] is not countable: contradiction.

6.5. Riesz representation theorem for 𝐿𝑝(𝐸), 𝑝 ∈ [1, ∞)
Definition.  Let 𝑋 be linear space. 𝑇 : 𝑋 → ℝ is linear functional if
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∀𝑓, 𝑔 ∈ 𝑋, ∀𝑎, 𝑏 ∈ ℝ, 𝑇 (𝑎𝑓 + 𝑏𝑔) = 𝑎𝑇 (𝑓) + 𝑏𝑇 (𝑔)

Any linear combination of linear functionals is linear, so set of linear functionals on
linear space is also linear space.
Definition.  Let (𝑋, ‖⋅‖) be normed linear space. 𝑇 : 𝑋 → ℝ is bounded functional
if

∃𝑀 ≥ 0 : ∀𝑓 ∈ 𝑋, |𝑇 (𝑓)| ≤ 𝑀‖𝑓‖

Norm of 𝑇 , ‖𝑇 ‖∗, is the smallest such 𝑀 .
Remark.  For bounded linear functional 𝑇  on normed linear space (𝑋, ‖⋅‖),

|𝑇 (𝑓) − 𝑇 (𝑔)| ≤ ‖𝑇 ‖∗‖𝑓 − 𝑔‖

This gives the following continuity property: if 𝑓𝑛 → 𝑓 ∈ 𝑋, then 𝑇 (𝑓𝑛) → 𝑇(𝑓).
Example.  Let 𝐸 ⊆ ℝ measurable, 𝑝 ∈ [1, ∞), 𝑞 conjugate to 𝑝. Let ℎ ∈ 𝐿𝑞(𝐸).
Define 𝑇 : 𝐿𝑝(𝐸) → ℝ by

𝑇 (𝑓) = ∫
𝐸

ℎ ⋅ 𝑓

By Holder’s inequality,

|𝑇 (𝑓)| = |∫
𝐸

ℎ𝑓| ≤ ∫
𝐸

|ℎ𝑓| ≤ ‖ℎ‖𝐿𝑞‖𝑓‖𝐿𝑝

So 𝑇  is bounded linear functional.
Remark.  We can write ‖⋅‖∗ as

‖𝑇 ‖∗ ≔ inf{𝑀 ∈ ℝ : ∀𝑓 ∈ 𝑋, |𝑇 (𝑓)| ≤ 𝑀‖𝑓‖} = sup{|𝑇 (𝑓)| : 𝑓 ∈ 𝑋, ‖𝑓‖ ≤ 1}

Definition.  Dual space of 𝑋, 𝑋∗, is set of bounded linear functionals on 𝑋 with
norm ‖⋅‖∗.
Proposition.  Let (𝑋, ‖⋅‖) be normed linear space, then dual space of 𝑋 is linear
space with norm ‖⋅‖∗.
Remark.  Bounded linear functional is special case of bounded linear
transformation between normed spaces. 𝑇 : 𝑋 → 𝑌  is bounded linear
transformation if 𝑇 (𝑎𝑓 + 𝑏𝑔) = 𝑎𝑇 (𝑓) + 𝑏𝑇 (𝑔) and ∃𝑀 ≥ 0 : ‖𝑇 (𝑓)‖𝑌 ≤ 𝑀‖𝑓‖𝑋.
Proposition.  Let 𝐸 ⊆ ℝ measurable, 𝑝 ∈ [1, ∞), 𝑞 conjugate to 𝑝, ℎ ∈ 𝐿𝑞(𝐸). Define
𝑇 : 𝐿𝑝(𝐸) → ℝ by

𝑇 (𝑓) = ∫
𝐸

ℎ𝑓

Then ‖𝑇 ‖∗ = ‖ℎ‖𝐿𝑞 .
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Theorem (Riesz representation theorem for 𝐿𝑝).  Let 𝑝 ∈ [1, ∞), 𝑞 conjugate to 𝑝, 
𝐸 ⊆ ℝ measurable. For ℎ ∈ 𝐿𝑞(𝐸), define bounded linear functional 𝑅ℎ : 𝐿𝑝(𝐸) → ℝ
by

𝑅ℎ(𝑓) = ∫
𝐸

ℎ𝑓

Then for every bounded linear functional 𝑇 : 𝐿𝑝(𝐸) → ℝ, there is unique ℎ ∈ 𝐿𝑞(𝐸)
such that

𝑅ℎ = 𝑇 ∧ ‖𝑇 ‖∗ = ‖ℎ‖𝐿𝑞

Theorem.  Let [𝑎, 𝑏] be non-degenerate, bounded interval, 𝑝 ∈ [1, ∞), 𝑞 conjugate to 
𝑝. If 𝑇  is bounded linear functional on 𝐿𝑝([𝑎, 𝑏]) then there exists ℎ ∈ 𝐿𝑞([𝑎, 𝑏]) such
that

𝑇 (𝑓) = ∫
𝑏

𝑎
ℎ𝑓

7. Hilbert spaces
7.1. Inner product spaces
Definition.  Let 𝐻 be complex linear space. Inner product on 𝐻 is function ⟨⋅, ⋅⟩ :
𝐻 × 𝐻 → ℂ such that ∀𝑎, 𝑏 ∈ ℂ, ∀𝑥, 𝑦, 𝑧 ∈ 𝐻,
• Linear in first variable: ⟨𝑎𝑥 + 𝑏𝑦, 𝑧⟩ = 𝑎⟨𝑥, 𝑧⟩ + 𝑏⟨𝑦, 𝑧⟩.
• Conjugate symmetric: ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩.
• Positive: 𝑥 ≠ 0 ⟹ ⟨𝑥, 𝑥⟩ ∈ (0, ∞)
• ⟨𝑥, 𝑥⟩ = 0 ⟺ 𝑥 = 0.

These imply that ⟨0, 𝑥⟩ = 0 and inner product is conjugate linear in second variable: 
⟨𝑧, 𝑎𝑥 + 𝑏𝑦⟩ = 𝑎⟨𝑧, 𝑥⟩ + 𝑏⟨𝑧, 𝑦⟩.
Example.
• ℝ𝑛 has inner product ⟨𝑥, 𝑦⟩ = ∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖.
• ℂ𝑛 has inner product ⟨𝑥, 𝑦⟩ = ∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖.
• Inner product induces metric on 𝐻:

𝑑(𝑥, 𝑦) = ⟨𝑥 − 𝑦, 𝑥 − 𝑦⟩1/2

Definition.  Complex linear space 𝐻 with inner product ⟨⋅, ⋅⟩ is called pre-Hilbert
space or inner product space.
Definition.  Let 𝐻 inner product space. For 𝑥 ∈ 𝐻, define the norm

‖𝑥‖ = √⟨𝑥, 𝑥⟩

Proposition.  ‖𝑥 ± 𝑦‖2 = ‖𝑥‖2 ± 2 Re(⟨𝑥, 𝑦⟩) + ‖𝑦‖2.
Theorem (Cauchy-Schwarz inequality).  Let (𝐻, ⟨⋅, ⋅⟩) be pre-Hilbert space. Then

∀𝑥, 𝑦 ∈ 𝐻, |⟨𝑥, 𝑦⟩| ≤ ‖𝑥‖‖𝑦‖
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with equality iff 𝑥 and 𝑦 linearly dependent.
Theorem (Parallelogram Identity).  A normed linear space 𝑋 is an inner product
space with norm derived from the inner product (i.e. ‖⋅‖ = √⟨⋅, ⋅⟩) iff

∀𝑥, 𝑦 ∈ 𝑋, ‖𝑥 + 𝑦‖2 + ‖𝑥 − 𝑦‖2 = 2‖𝑥‖2 + 2‖𝑦‖2

Definition.  Let (𝑋, ⟨⋅, ⋅⟩𝑋), (𝑌 , ⟨⋅, ⋅⟩𝑌 ) be inner product spaces.
• An inner product on 𝑋 × 𝑌  is

⟨(𝑥1, 𝑦1), (𝑥2, 𝑦2)⟩𝑋×𝑌 = ⟨𝑥1, 𝑥2⟩𝑋 + ⟨𝑦1, 𝑦2⟩𝑌

• The associated norm on 𝑋 × 𝑌  is

‖(𝑥, 𝑦)‖𝑋×𝑌 = √⟨(𝑥, 𝑦), (𝑥, 𝑦)⟩𝑋×𝑌 = √‖𝑥‖2
𝑋 + ‖𝑦‖2

𝑌

Theorem.  Let 𝑋 inner product space, 𝑥𝑛 → 𝑥, 𝑦𝑛 → 𝑦 in 𝑋. Then ⟨𝑥𝑛, 𝑦𝑛⟩𝑋 →
⟨𝑥, 𝑦⟩𝑋.

Proof.   Use |⟨𝑥𝑛, 𝑦𝑛⟩ − ⟨𝑥, 𝑦⟩| = |⟨𝑥𝑛 − 𝑥, 𝑦𝑛⟩ + ⟨𝑥, 𝑦𝑛⟩ − ⟨𝑥, 𝑦𝑛⟩ + ⟨𝑥, 𝑦𝑛 − 𝑦⟩| and
Cauchy-Schwarz, reverse triangle inequality to show ‖𝑦𝑛‖ → ‖𝑦‖. □

Proposition.  The norm and inner product are continuous.

7.2. Hilbert spaces
Definition.  Hilbert space is inner product space which is complete with respect to
norm induced by inner product.
Example.  ℝ𝑛 with standard inner product is Hilbert space.
Example.  Define inner product on 𝐿2(𝐸)

⟨𝑓, 𝑔⟩𝐿2 ≔ ∫
𝐸

𝑓𝑔

Induced norm is the 𝐿2 norm. So by Riesz-Fischer theorem, (𝐿2(𝐸), ⟨⋅, ⋅⟩𝐿2) is Hilbert
space.
Definition.  Let 𝐻 Hilbert space with inner product ⟨⋅, ⋅⟩.
• 𝑥, 𝑦 ∈ 𝐻 are orthogonal, 𝑥 ⟂ 𝑦 if ⟨𝑥, 𝑦⟩ = 0.
• 𝐴, 𝐵 ⊆ 𝐻 are orthogonal, 𝐴 ⟂ 𝐵 if ∀𝑥 ∈ 𝐴, ∀𝑦 ∈ 𝐵, 𝑥 ⟂ 𝑦.
• Orthogonal complement of 𝐴 ⊆ 𝐻 is

𝐴⟂ ≔ {𝑥 ∈ 𝐻 : ∀𝑦 ∈ 𝐴, 𝑥 ⟂ 𝑦}

Theorem (Pythagorean Theorem).  If 𝑥1, …, 𝑥𝑛 ∈ 𝐻, 𝑥𝑖 ⟂ 𝑥𝑗 for 𝑖 ≠ 𝑗, then

‖∑
𝑛

𝑖=1
𝑥𝑖‖

2

= ∑
𝑛

𝑖=1
‖𝑥𝑖‖

2

Proof.   Use linearity of inner product and orthogonal condition. □

Theorem.  Let 𝐻 Hilbert space, 𝐴 ⊆ 𝐻, then 𝐴⟂ is closed subspace of 𝐻.
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Proof.
• Subspace:

‣ For 𝑦, 𝑧 ∈ 𝐴⟂, 𝜆, 𝜇 ∈ ℂ, show ∀𝑥 ∈ 𝐴, 𝜆𝑦 + 𝜇𝑧 ∈ 𝐴⟂.
• Closed:

‣ Show if (𝑦𝑛) ⊆ 𝐴⟂, 𝑦𝑛 → 𝑦, then 𝑦 ∈ 𝐴⟂:
– Let 𝑥 ∈ 𝐴, then show |⟨𝑥, 𝑦⟩| → 0 by squeezing, triangle inequality and

Cauchy-Schwarz.

□

Theorem (Projection).  Let 𝑀  closed subspace of Hilbert space 𝐻.
• For every 𝑥 ∈ 𝐻, there exists unique closest point 𝑦 ∈ 𝑀 :

∀𝑥 ∈ 𝐻, ∃!𝑦 ∈ 𝑀 : ‖𝑥 − 𝑦‖ = min{‖𝑥 − 𝑧‖ : 𝑧 ∈ 𝑀}

We say 𝑦 is “the best approximation” to 𝑥 in 𝑀 .
• The point 𝑦 ∈ 𝑀  closest to 𝑥 ∈ 𝐻 is unique element of 𝑀  such that (𝑥 − 𝑦) ⟂ 𝑀 .

Proof.
• Let 𝑑 = inf{‖𝑥 − 𝑧‖ : 𝑧 ∈ 𝑀}. Show that ∃𝑦 ∈ 𝑀 : ‖𝑥 − 𝑦‖ = 𝑑:

‣ There is sequence (𝑦𝑛) ⊂ 𝑀  with ‖𝑥 − 𝑦𝑛‖ → 𝑑. Show that (𝑦𝑛) is Cauchy:
– ‖𝑦𝑚 − 𝑦𝑛‖2 + ‖2𝑥 − 𝑦𝑚 − 𝑦𝑛‖2 = 2‖𝑥 − 𝑦𝑚‖2 + 2‖𝑥 − 𝑦𝑛‖2 by parallelogram

identity.
– 𝑦𝑚+𝑦𝑛

2 ∈ 𝑀 , so ‖2𝑥 − 𝑦𝑚 − 𝑦𝑛‖ ≥ 2𝑑.
‣ Deduce that 𝑦𝑛 → 𝑦 ∈ 𝑀  and ‖𝑥 − 𝑦‖ → 𝑑 by squeezing.

• Uniqueness of 𝑦:
‣ Let ‖𝑥 − 𝑦‖ = 𝑑 = ‖𝑥 − 𝑦′‖.
‣ By parallelogram identity, 2‖𝑥 − 𝑦‖2 + 2‖𝑥 − 𝑦′‖2 = ‖2𝑥 − 𝑦 − 𝑦′‖2 + ‖𝑦 − 𝑦′‖2.
‣ Use that 𝑦+𝑦′

2 ∈ 𝑀  to show ‖𝑦 − 𝑦′‖ = 0.
• To show 𝑧 = 𝑥 − 𝑦 ⟂ 𝑀 :

‣ For 𝑤 ∈ 𝑀 , write ⟨𝑧, 𝑤⟩ = |⟨𝑧, 𝑤⟩| 𝜆 where 𝜆 = 𝑒𝑖𝜃, set 𝑢 = 𝜆𝑤.
‣ Define 𝑓(𝑡) = ‖𝑧 + 𝑡𝑢‖2, show 𝑡 = 0 is minimum of 𝑓 and so 0 = 𝑓 ′(0), hence 𝑧 ∈

𝑀⟂.
• To show uniqueness of 𝑧:

‣ Show for 𝑦, 𝑦′ ∈ 𝑀  such that 𝑥 − 𝑦 ⟂ 𝑀  and 𝑥 − 𝑦′ ⟂ 𝑀 , then ⟨𝑦 − 𝑦′, 𝑤⟩ = 0
for any 𝑤 ∈ 𝑀 . Set 𝑤 = 𝑦 − 𝑦′ to give 𝑦 = 𝑦′.

□

Definition.  Direct sum of subspaces 𝑀  and 𝑁  of linear space is

𝑀 ⊕ 𝑁 ≔ {𝑦 + 𝑧 : 𝑦 ∈ 𝑀, 𝑧 ∈ 𝑁}

Corollary.  If 𝑀  closed subspace of Hilbert space 𝐻, then 𝐻 = 𝑀 ⊕ 𝑀⟂.

For all 𝑥 ∈ 𝐻, 𝑥 can be written uniquely as 𝑥 = 𝑦 + 𝑧 where 𝑦 is best approximation
to 𝑥 in 𝑀  and 𝑧 = 𝑥 − 𝑦 ⟂ 𝑀 .

Proof.   By above theorem. □
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Definition.  Let 𝐻 Hilbert space. {𝑢𝛼}𝛼∈𝐼 is orthonormal if it is orthogonal: 
𝑢𝛼 ⟂ 𝑢𝛽 for 𝛼 ≠ 𝛽, and normalised: ∀𝛼 ∈ 𝐼, ‖𝑢𝛼‖ = 1.
Definition.  Let 𝑋 Banach space, {𝑥𝛼 ∈ 𝑋 : 𝛼 ∈ 𝐼} be indexed set where 𝐼 is
countable or uncountable.
• For each finite 𝐽 ⊆ 𝐼 , define partial sum as

𝑆𝐽 ≔ ∑
𝛼∈𝐽

𝑥𝛼

• Unordered sum of {𝑥𝛼 ∈ 𝑋 : 𝛼 ∈ 𝐼} converges unconditionally to 𝑥 ∈ 𝑋,
written 𝑥 = ∑𝛼∈𝐼 𝑥𝛼, if ∀𝜀 > 0, there exists finite 𝐽 ⊆ 𝐼 such that ‖𝑆𝐾 − 𝑥‖ < 𝜀
for every finite 𝐽 ⊆ 𝐾 ⊆ 𝐼 .

• Unordered sum ∑𝛼∈𝐼 𝑥𝛼 is Cauchy if ∀𝜀 > 0, there exists finite 𝐽 ⊆ 𝐼 such that 
‖𝑆𝐿‖ < 𝜀 for every finite 𝐿 ⊆ 𝐼 − 𝐽 . Note that

‖𝑆𝐿‖ = ‖ ∑
𝛼∈𝐿∪𝐽

𝑥𝛼 − ∑
𝛼∈𝐽

𝑥𝛼‖

• Unordered sum of {𝑥𝛼 ∈ 𝑋 : 𝛼 ∈ 𝐼} converges absolutely if ∑𝛼∈𝐼‖𝑥𝛼‖ converges
unconditionally in ℝ.

Proposition.  Unordered sum in Banach space converges unconditionally iff it is
Cauchy.
Definition.  Let {𝑐𝛼 : 𝛼 ∈ 𝐼} ⊆ [0, ∞]. Define

∑
𝛼∈𝐼

𝑐𝛼 = sup{∑
𝛼∈𝐽

𝑐𝛼 : 𝐽 ⊆ 𝐼, 𝐽 finite}

Proposition.  Let {𝑐𝛼 : 𝛼 ∈ 𝐼} ⊆ [0, ∞], 𝐾 = {𝛼 ∈ 𝐼 : 𝑐𝛼 > 0}. If ∑𝛼∈𝐼 𝑐𝛼 < ∞, then
𝐾 is countable.
Theorem (Bessel's inequality).  Let 𝑈 = {𝑢𝛼 : 𝛼 ∈ 𝐼} orthonormal in Hilbert space 
𝐻. Then

∀𝑥 ∈ 𝐻, ∑
𝛼∈𝐼

|⟨𝑥, 𝑢𝛼⟩|2 ≤ ‖𝑥‖2

In particular, ∀𝑥 ∈ 𝐻, {𝛼 ∈ 𝐼 : ⟨𝑥, 𝑢𝛼⟩ ≠ 0} is countable.

Proof.
• Prove for any finite 𝐽 ⊆ 𝐼 , then take supremum on LHS.
• Show that

‖𝑥 − ∑
𝛼∈𝐽

⟨𝑥, 𝑢𝛼⟩𝑢𝛼‖ = ‖𝑥‖2 − ∑
𝛼∈𝐽

|⟨𝑥, 𝑢𝛼⟩|2

using equation 2.2 and Pythagorean theorem.

□
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Theorem.  If 𝑈 = {𝑢𝛼 : 𝛼 ∈ 𝐼} is orthonormal subset of Hilbert space 𝐻 then the
following are equivalent:
• If ∀𝛼 ∈ 𝐼, ⟨𝑥, 𝑢𝛼⟩ = 0, then 𝑥 = 0.
• ∀𝑥 ∈ 𝐻, 𝑥 = ∑𝛼∈𝐼⟨𝑥, 𝑢𝛼⟩𝑢𝛼 where sum converges unconditionally in 𝐻 and only

has countably many non-zero terms.
• Parseval’s identity:

∀𝑥 ∈ 𝐻, ‖𝑥‖2 = ∑
𝛼∈𝐼

|⟨𝑥, 𝑢𝛼⟩|2

Proof.
• (i) ⟹ (ii): let {𝛼𝑗 : 𝑗 ∈ ℕ} be set of indices where ⟨𝑥, 𝑢𝛼𝑗

⟩ ≠ 0. Show the partial
sums of ∑𝑗∈ℕ⟨𝑥, 𝑢𝛼𝑗

⟩𝑢𝛼𝑗
 are Cauchy using Pythagorean theorem and so show

converges.
• Set

𝑦 = 𝑥 − ∑
𝑗∈ℕ

⟨𝑥, 𝑢𝛼𝑗
⟩𝑢𝛼𝑗

and show ⟨𝑦, 𝑢𝛼⟩ = 0.
• (ii) ⟹ (iii): let 𝜀 > 0. Use definition of unconditional convergence of 𝑥 and

Pythagorean theorem to show ‖𝑥‖2 − ∑𝛼∈𝐼 |⟨𝑥, 𝑢𝛼⟩|2 < 𝜀.

□

Definition.  Orthonormal subset 𝑈 = {𝑢𝛼 : 𝛼 ∈ 𝐼} of Hilbert space 𝐻 is complete if
it satisfies any of the conditions in Theorem 7.2.16. An orthonormal basis of 𝐻 is a
complete orthonormal subset of 𝐻.
Definition.  𝑈  is maximal orthonormal set if ∀𝑉 ⊆ 𝐻 such that 𝑈 ⊊ 𝑉 , 𝑉  is not
orthonormal.
Lemma.  𝑈  is maximal orthonormal set iff it is an orthonormal basis.
Remark.  For orthonormal basis {𝑢𝛼 : 𝛼 ∈ ℕ}, representation 𝑥 = ∑𝛼∈ℕ 𝑐𝛼𝑢𝛼 is
unique (consider ⟨𝑥 − 𝑥, 𝑢𝛽⟩ = lim𝑛→∞⟨∑𝑛

𝛼=1(𝑐𝛼 − 𝑑𝛼)𝑢𝛼, 𝑢𝛽⟩).
Theorem.  Every Hilbert space 𝐻 has orthonormal basis. If 𝑉 ⊆ 𝐻 is orthonormal
set, then 𝐻 has orthonormal basis containing 𝑉 .

Proof.
• Assume 𝐻 ≠ {0}. Use partial ordering ⊆.
• Let {𝑈𝛼 : 𝛼 ∈ 𝐼} be totally ordered collection of orthonormal sets. Find upper

bound of {𝑈𝛼 : 𝛼 ∈ 𝐼} which is orthonormal.
• Show result using Theorem 7.2.25 and Lemma 7.2.19.
• To show orthonormal sets 𝑉  can be extended to orthonormal bases, use same

argument on family of all orthonormal subsets of 𝐻 containing 𝑉 .

□

Definition.  A set 𝑋 is partially ordered if it is equipped with relation ≤
satisfying:
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• Reflexivity: ∀𝑥 ∈ 𝑋, 𝑥 ≤ 𝑥.
• Transitivity: (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) ⟹ 𝑥 ≤ 𝑧.
• Anti-symmetry: (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) ⟹ 𝑥 = 𝑦.

𝑋 is totally ordered if partially ordered and ∀𝑥, 𝑦 ∈ 𝑋, either 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥.
Definition.  Let 𝑋 totally ordered set with relation ≤. 𝑥 ∈ 𝑋 is upper bound for 
𝑌 ⊆ 𝑋 if ∀𝑦 ∈ 𝑌 , 𝑦 ≤ 𝑥. 𝑥 ∈ 𝑋 is maximal if ∀𝑦 ∈ 𝑋, 𝑥 ≤ 𝑦 ⟹ 𝑦 = 𝑥.
Example.  Let 𝑋 be non-empty collection of sets. Then ⊆ is partial ordering on 𝑋. 
𝐴 ∈ 𝑋 is upper bound for 𝑋′ ⊆ 𝑋 if every set in 𝑋′ is subset of 𝐴. 𝑀 ∈ 𝑋 is
maximal if it is not proper subset of any set in 𝑋.
Theorem (Zorn's Lemma).  A partially ordered set 𝑋 that has upper bounds for its
totally ordered subsets has a maximal element.
Proposition.  Hilbert space is separable iff it has countable orthonormal basis.

Proof.
• ⟹: let 𝑈 = {𝑢𝑛 : 𝑛 ∈ ℕ} countable, dense in 𝐻. Recursively discard any 𝑢𝑛 in

linear span of 𝑢1, …, 𝑢𝑛−1 to obtain linearly independent set 𝑉 = {𝑣𝑛 : 𝑛 ∈ ℕ}
whose linear span is dense in 𝐻. Applying Gram-Schmidt, set

𝑤1 =
𝑣1

‖𝑣1‖
, …, 𝑤𝑛+1 = 𝑐𝑛+1(𝑣𝑛+1 − ∑

𝑛

𝑘=1
⟨𝑤𝑘, 𝑣𝑛+1𝑤𝑘⟩)

where 𝑐𝑛 ∈ ℂ chosen so that ‖𝑤𝑛‖ = 1. {𝑤𝑛 : 𝑛 ∈ ℕ} is countable orthonormal
basis.

• ⟸: let {𝑤𝑛 : 𝑛 ∈ ℕ} be orthonormal basis, show that

𝑆𝑚 = {∑
𝑚

𝑘=1
𝑐𝑘𝑤𝑘 : 𝑐𝑘 ∈ ℚ + 𝑖ℚ}

is countable and ∪𝑚∈ℕ 𝑆𝑚 dense in 𝐻.

□

Theorem (Riesz Representation Theorem for Hilbert Spaces).  Let 𝐻 Hilbert space
with inner product ⟨⋅, ⋅⟩, 𝑇 : 𝐻 → ℝ bounded linear functional. Then

∃!𝑦 ∈ 𝐻 : ∀𝑥 ∈ 𝐻, 𝑇 (𝑥) = ⟨𝑥, 𝑦⟩

Note RHS gives bounded linear functional by Cauchy-Schwarz.

Proof.
• Existence:

‣ Show 𝑁 = {𝑥 ∈ 𝐻 : 𝑇 (𝑥) = 0} is closed subspace of 𝐻, use that 𝐻 = 𝑁 ⊕ 𝑁⟂.
‣ Assume 𝑁⟂ contains 𝑣 with ‖𝑣‖ = 1. For 𝑥 ∈ 𝐻, define 𝑢 = 𝑇(𝑥)𝑣 − 𝑇(𝑣)𝑥.
‣ Show that ⟨𝑢, 𝑣⟩ = 0, deduce a value for 𝑦 from this.

• Uniqueness: straightforward.

□
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8. Convergence of Fourier series
Note.  We can view 𝑓 : [−𝜋, 𝜋] → ℂ as being 2𝜋-periodic by extending it on the real
line.
Definition.  𝑚-th partial Fourier sum of 2𝜋-periodic integrable function 𝑓 :
[−𝜋, 𝜋] → ℂ is given by

(𝑆𝑚𝑓)(𝑥) = ∑
𝑚

𝑘=−𝑚
𝑎𝑘(𝑓)𝑒𝑖𝑘𝑥

where

𝑎𝑘(𝑓) =
1
2𝜋

∫
𝜋

−𝜋
𝑓(𝑦)𝑒−𝑖𝑘𝑦 d𝑦

are Fourier coefficients of 𝑓 .
Definition.  Let 𝑓, 𝑔 : [−𝜋, 𝜋] → ℂ be 2𝜋-periodic integrable functions. Convolution
𝑓 ∗ 𝑔 is

(𝑓 ∗ 𝑔)(𝑥) =
1
2𝜋

∫
𝜋

−𝜋
𝑓(𝑦)𝑔(𝑥 − 𝑦) d𝑦

Proposition.  Let 𝑓, 𝑔, ℎ : [−𝜋, 𝜋] → ℂ be 2𝜋-periodic integrable functions, 𝑐 ∈ ℂ.
Then ∗ satisfies:
• Commutativity: 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓 .
• Distributivity: 𝑓 ∗ (𝑔 + ℎ) = (𝑓 ∗ 𝑔) + (𝑓 ∗ ℎ).
• Homogeneity: (𝑐𝑓) ∗ 𝑔 = 𝑐(𝑓 ∗ 𝑔) = 𝑓 ∗ (𝑐𝑔).
• Associativity: (𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ).

8.1. Pointwise convergence of Fourier series via Dirichlet
kernel
Definition.  Let 𝑚 ∈ ℕ0. The 𝑚-th Dirichlet kernel is

𝐷𝑚(𝑥) ≔ ∑
𝑚

𝑘=−𝑚
𝑒𝑖𝑘𝑥

Proposition.
• 𝐷𝑚 is trigonometric polynomial of degree 𝑚 with coefficients equal to 1 for 𝑘 ∈

[−𝑚, 𝑚] and 0 otherwise.
• 𝐷𝑚 is real-valued and 2𝜋-periodic.
• 1

2𝜋
∫

𝜋

−𝜋
𝐷𝑚(𝑥) d𝑥 = 1

Proposition.  Let 𝑓 : [−𝜋, 𝜋] → ℂ be 2𝜋-periodic integrable function. Then

(𝐷𝑚 ∗ 𝑓)(𝑥) = ∑
𝑚

𝑘=−𝑚
𝑎𝑘(𝑓)𝑒𝑖𝑘𝑥 = (𝑆𝑚𝑓)(𝑥)

where 𝑎𝑘(𝑓) = 1
2𝜋 ∫𝜋

−𝜋
𝑓(𝑦)𝑒−𝑖𝑘𝑦 d𝑦.
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Proposition.

𝐷𝑚(𝑥) =
sin((𝑚 + 1

2)𝑥)
sin(𝑥

2)

Remark.  RHS in Proposition 8.1.4 has removable singularity at 𝑥 = 0, and 
𝐷𝑚(0) = 2𝑚 + 1. Applying l’Hopital’s rule to RHS gives

lim
𝑥→0

sin((𝑚 + 1
2)𝑥)

sin(𝑥
2)

= 2𝑚 + 1

Theorem (Riemann-Lebesgue Lemma).  Let 𝐸 ⊆ ℝ measurable, 𝑓 ∈ 𝐿1(𝐸). Then

lim
𝑛→∞

∫
𝐸

𝑓(𝑥) sin(𝑛𝑥) = lim
𝑛→∞

∫
𝐸

𝑓(𝑥) cos(𝑛𝑥) = lim
𝑛→∞

∫
𝐸

𝑓(𝑥)𝑒−𝑖𝑛𝑥 = 0

Proof.
• First consider when 𝑓(𝑥) = 𝟙(𝑎,𝑏)(𝑥). Define 𝐼𝑗 = (2𝜋𝑗

𝑛 , 2𝜋(𝑗+1)
𝑛 ), so integral of 

sin(𝑛𝑥) over each 𝐼𝑗 is 0.
• Write

(𝑎, 𝑏) = 𝐿 ∪ ⋃
𝑁

𝑗=1
𝐼𝑗 ∪ 𝑅

so that length(𝐿), length(𝑅) < 2𝜋
𝑛 .

• Show that

|∫
𝐸

𝑓(𝑥) sin(𝑛𝑥)| <
4𝜋
𝑛

• Deduce the sin result for step functions.
• Use that step functions are dense in 𝐿1 to show sin result for 𝑓 ∈ 𝐿1(𝐸) by writing

𝑓 = (𝑓 − 𝜓) + 𝜓 and finally take lim sup.
• Same argument works for cos.
• Conclude exp result.

□

Theorem.  Let 𝑓 ∈ 𝐿1([−𝜋, 𝜋]) be 2𝜋-periodic, assume 𝑓 differentiable at 𝑏 ∈ [−𝜋, 𝜋].
Then

𝑓(𝑏) = lim
𝑚→∞

1
2𝜋

∫
𝜋

−𝜋
𝑓(𝑦)𝐷𝑚(𝑏 − 𝑦) d𝑦 = lim

𝑚→∞
(𝑓 ∗ 𝐷𝑚)(𝑏) = lim

𝑚→∞
𝑆𝑚𝑓(𝑏)

Proof.
• First assume 𝑏 = 0. Let 0 < 𝜀 < 1, show that 𝑓(𝑦)/ sin(𝑦/2) is integrable on [𝜀, 𝜋]

and show

lim
𝑚→∞

∫
𝜋

𝜀

𝑓(𝑦)
sin(𝑦

2)
sin((𝑚 +

1
2
)𝑦) d𝑦 = 0
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Conclude the same for ∫−𝜀
−𝜋

.
• Write 𝑓(𝑦) = 𝑓(0) + 𝑠(𝑦) and split the integral ∫𝜋

−𝜋
 as such.

• Use Proposition 8.1.2 and split integral of 𝑠(𝑦) to show

lim
𝑚→∞

1
2𝜋

∫
𝜋

−𝜋
𝑓(𝑦)𝐷𝑚(𝑦) d𝑦 = 𝑓(0) + lim

𝑚→∞

1
2𝜋

∫
𝜀

−𝜀
𝑠(𝑦)𝐷𝑚(𝑦) d𝑦

• Use differentiability at 0 to show for 𝜀 small and 𝑦 ∈ [−𝜀, 𝜀], |𝑠(𝑦)| ≤ 𝐶|𝑦|.
• Show that |𝑥|/| sin(𝑥)| ≤ 2 for 𝑥 small (for cos(𝑥) ≥ 1

2) by considering 𝑔(𝑥) =
2 sin(𝑥) − 𝑥, and then that

0 ≤ | lim
𝑚→∞

1
2𝜋

∫
𝜀

−𝜀
𝑠(𝑦)𝐷𝑚(𝑦) d𝑦| ≤

4𝐶𝜀
𝜋

• Conclude the result for 𝑏 = 0.
• To show for 𝑏 ∈ [−𝜋, 𝜋], define 𝐺(𝑦) = 𝑓(𝑏 − 𝑦) and use commutativity of

convolution.

□

8.2. Uniform convergence of Cesàro mean Fourier series via
Fejér kernel
Definition.  Let 𝑥 ∈ ℝ, 𝑁 ∈ ℕ. Fejér kernel is

𝐹𝑁(𝑥) =
1
𝑁

∑
𝑁−1

𝑚=0
𝐷𝑚(𝑥) =

1
𝑁

∑
𝑁−1

𝑚=0
∑
𝑚

𝑘=−𝑚
𝑒𝑖𝑘𝑥

Proposition.
• 1

2𝜋
∫

𝜋

−𝜋
𝐹𝑁(𝑥) d𝑥 = 1

•
𝐹𝑁(𝑥) =

1
𝑁

(
sin(𝑁𝑥/2)
sin(𝑥/2)

)
2

• Fejér kernel is non-negative, so

𝐹𝑁(𝑥) = |𝐹𝑁(𝑥)| ⟹ ∫
𝜋

−𝜋
|𝐹𝑁(𝑥)| d𝑥 = 2𝜋

• For 𝜀 > 0 and 𝜀 < |𝑥| < 𝜋, there exists 𝐶𝜀 > 0 such that (sin(𝑥/2))−2 ≤ 𝐶𝜀, hence

∫
𝜋

𝜀
|𝐹𝑁(𝑥)| d𝑥 =

1
𝑁

∫
𝜋

𝜀
|
sin(𝑁𝑥/2)
sin(𝑥/2)

|
2

d𝑥 ≤
1
𝑁

∫ 𝐶𝜀 ≤
𝜋𝐶𝜀
𝑁

→ 0 as 𝑁 → ∞

and similarly for −𝜋 < 𝑥 < −𝜀.
Definition.  The 𝑁-th Cesàro mean is the average of the first 𝑁  partial Fourier
sums of 𝑓 :

1
𝑁

∑
𝑁−1

𝑚=0
(𝑆𝑚𝑓)(𝑥)
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Proposition.  Let 𝑓 : [−𝜋, 𝜋] → ℂ integrable, then convolution of 𝑓 with Fejér kernel
is the Cesàro mean:

(𝑓 ∗ 𝐹𝑁)(𝑥) =
1
𝑁

∑
𝑁−1

𝑚=0
(𝑆𝑚𝑓)(𝑥)

Theorem.  Let 𝑓 : [−𝜋, 𝜋] → ℂ continuous and 2𝜋-periodic, then

∀𝑥 ∈ [−𝜋, 𝜋], 𝑓(𝑥) = lim
𝑁→∞

(𝑓 ∗ 𝐹𝑁)(𝑥) = lim
𝑁→∞

1
𝑁

∑
𝑁−1

𝑚=0
(𝑆𝑚𝑓)(𝑥)

and the convergence is uniform.

Proof.
• Reason that 𝑓 is bounded: |𝑓| ≤ 𝐵 on [−𝜋, 𝜋].
• Let 𝜌 > 0. Show that ∀𝑥, 𝑦 ∈ [−𝜋, 𝜋], for some 𝜀 > 0, |𝑦| < 𝜀 ⟹ |𝑓(𝑥 − 𝑦) −

𝑓(𝑥)| < 𝜌.
• Show that

|(𝑓 ∗ 𝐹𝑁)(𝑥) − 𝑓(𝑥)|

≤
1
2𝜋

(∫
−𝜀

−𝜋
+ ∫

𝜋

𝜀
) |𝐹𝑁(𝑦)| |𝑓(𝑥 − 𝑦) − 𝑓(𝑥)| d𝑦 +

1
2𝜋

∫
𝜀

−𝜀
|𝐹𝑁(𝑦)| |𝑓(𝑥 − 𝑦) − 𝑓(𝑥)| d𝑦

• Show that first terms of RHS tend to zero as 𝑁 → ∞.
• Show last term on RHS is < 𝜌.
• Conclude the result.

□

Remark.
• By above theorem, any 2𝜋-periodic continuous function on [−𝜋, 𝜋] can be

uniformly approximated by trigonometric polynomials, i.e. if 𝜀 > 0, then there
exists trigonometric polynomial 𝑝 such that ∀𝑥 ∈ [−𝜋, 𝜋], |𝑓(𝑥) − 𝑝(𝑥)| < 𝜀.

• This is analogue of Weierstrass Approximation Theorem for 2𝜋-periodic functions.
Weierstrass Approximation Theorem states that for continuous function 𝑓 :
[𝑎, 𝑏] → ℝ and 𝜀 > 0, there exists polynomial 𝑝 such that ∀𝑥 ∈ [𝑎, 𝑏], |𝑓(𝑥) −
𝑝(𝑥)| < 𝜀.

• Continuous functions are dense in 𝐿𝑝([𝑎, 𝑏]) for 𝑝 ∈ [1, ∞). Let 𝜀 > 0, 𝑓 ∈ 𝐿𝑝([𝑎, 𝑏])
and 𝑔 : [𝑎, 𝑏] → ℝ continuous such that ‖𝑓 − 𝑔‖𝐿𝑝 < 𝜀. By Weierstrass
Approximation Theorem, there exists polynomial ̃𝑝 such that

∀𝑥 ∈ [𝑎, 𝑏], |𝑔(𝑥) − ̃𝑝(𝑥)| <
𝜀

(𝑏 − 𝑎)1/𝑝

Hence

∫
𝑏

𝑎
|𝑔(𝑥) − ̃𝑝(𝑥)|𝑝 < 𝜀𝑝 i.e. ‖𝑔 − ̃𝑝‖𝐿𝑝 < 𝜀
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Hence by Minkowski’s inequality, ‖𝑓 − ̃𝑝‖𝐿𝑝 < 2𝜀. Hence polynomials are dense in 
𝐿𝑝([𝑎, 𝑏]) for 𝑝 ∈ [1, ∞).

• Note: for 𝑝 = ∞, any continuous function in 𝐿∞([𝑎, 𝑏]) can be approximated by
polynomials, but continuous functions are not dense in 𝐿∞([𝑎, 𝑏]).

• Similarly, trigonometric polynomials are dense in 𝐿𝑝([−𝜋, 𝜋]) for 𝑝 ∈ [1, ∞).

8.3. Mean convergence of Fourier series in 𝐿2([−𝜋, 𝜋])
Notation.  Define an inner product on 𝐿2([−𝜋, 𝜋]) by

⟨𝑓, 𝑔⟩ =
1
2𝜋

∫
[−𝜋,𝜋]

𝑓𝑔

and denote ‖⋅‖ = √⟨⋅, ⋅⟩. (𝐿2([−𝜋, 𝜋]), ⟨⋅, ⋅⟩) is Hilbert space by Riesz-Fischer.

For 𝑘 ∈ ℤ, 𝑥 ∈ [−𝜋, 𝜋], let 𝜑𝑘(𝑥) = 𝑒𝑖𝑘𝑥, then for 2𝜋-periodic integrable function 𝑓 :
[−𝜋, 𝜋] → ℂ,

𝑎𝑘(𝑓) = ⟨𝑓, 𝜑𝑘⟩, 𝑆𝑁𝑓(𝑥) = ∑
𝑁

𝑘=−𝑁
⟨𝑓, 𝜑𝑘⟩𝜑𝑘

Lemma.  Let 𝑓 ∈ 𝐿2([−𝜋, 𝜋]) be 2𝜋-periodic, define

𝒫𝑁 = { ∑
𝑛

𝑘=−𝑛
𝑐𝑘𝜑𝑘 : 𝑐𝑘 ∈ ℂ, 𝑛 ≤ 𝑁}

Then:
• {𝜑𝑛 : 𝑛 ∈ ℤ} is orthonormal in 𝐿2([−𝜋, 𝜋]) with respect to ⟨⋅, ⋅⟩.
• ∀𝑝 ∈ 𝒫𝑁 , 𝑓 − 𝑆𝑁𝑓 is orthogonal to 𝑝.
• ∀𝑁 ≥ 0, ∀𝑝 ∈ 𝒫𝑁 ,

‖𝑓 − 𝑆𝑁𝑓‖ ≤ ‖𝑓 − 𝑝‖

with equality iff 𝑝 = 𝑆𝑁𝑓 .

Proof.
• Show 1

2𝜋 ∫
[−𝜋,𝜋]

𝜑𝑚𝜑𝑛 = 0 = 𝛿𝑚𝑛 (justify use of Riemann integral).
• Show that (𝑓 − 𝑆𝑁𝑓) ⟂ 𝜑𝑚 for each |𝑚| ≤ 𝑁  to show (𝑓 − 𝑆𝑁𝑓) ⟂ 𝑝 for 𝑝 ∈ 𝒫𝑁 .
• Write 𝑓 − 𝑝 = 𝑓 − 𝑆𝑁𝑓 + 𝑆𝑁𝑓 − ∑𝑁

𝑘=−𝑁 𝑐𝑘𝜑𝑘, use Pythagoras.

□

Remark.  Above lemma is projection result, i.e. 𝑆𝑁𝑓 is best approximation to 𝑓 in 
𝒫𝑁 .
Theorem.  Let 𝑓 ∈ 𝐿2([−𝜋, 𝜋]) be 2𝜋-periodic function. Then Fourier series for 𝑓
converges to 𝑓 in (𝐿2([−𝜋, 𝜋]), ‖⋅‖), i.e.

lim
𝑁→∞

‖𝑆𝑁𝑓 − 𝑓‖ = 0

Proof.
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• First show if 𝑔 : [−𝜋, 𝜋] → ℂ continuous, then ‖𝑆𝑁𝑔 − 𝐺‖ → 0 as 𝑁 → ∞.
‣ Let 𝜀 > 0, then for some 𝑀 , there exists 𝑝 ∈ 𝒫𝑀  such that

∀𝑥 ∈ [−𝜋, 𝜋], |𝑔(𝑥) − 𝑝(𝑥)| < 𝜀
‣ Use that 𝑔(𝑥) = lim𝑁→∞(𝑔 ∗ 𝐹𝑁)(𝑥) and 𝑔 ∗ 𝐹𝑀+1 ∈ 𝒫𝑀 .
‣ Deduce that ‖𝑔 − 𝑝‖2 < 𝜀2.
‣ Show if 𝑀 ≤ 𝑁  then ‖𝑔 − 𝑆𝑁𝑔‖ ≤ ‖𝑔 − 𝑝‖ < 𝜀, conclude result for continuous

functions.
• Let 𝑓 ∈ 𝐿2([−𝜋, 𝜋]), 𝜀 > 0. Using that continuous functions are dense in 

𝐿2([−𝜋, 𝜋]), there is 𝑔 : [−𝜋, 𝜋] → ℂ such that ‖𝑓 − 𝑔‖ < 𝜀.
• Since 𝑔 continuous, for large enough 𝑀 , ‖𝑆𝑀𝑔 − 𝑔‖ < 𝜀 by above.
• Use triangle inequality, the fact that 𝑁 ≥ 𝑀 ⟹ 𝑆𝑀𝑔 ∈ 𝒫𝑁  and projection

theorem to conclude the result.

□

Lemma.  {𝜑𝑛 : 𝑛 ∈ ℤ} is orthonormal basis of (𝐿2([−𝜋, 𝜋]) with respect to inner
product

⟨𝑓, 𝑔⟩ =
1
2𝜋

∫
[−𝜋,𝜋]

𝑓𝑔

Proof.
• Note that (𝐿2([−𝜋, 𝜋]), ⟨⋅, ⋅⟩) is Hilbert space.
• Show Parseval’s identity holds.
• Write 𝑓 = 𝑓 − 𝑆𝑁𝑓 + 𝑆𝑁𝑓 , use projection theorem, Pythagorean theorem and

orthonormality of {𝜑𝑛 : 𝑛 ∈ ℤ} to show

‖𝑓‖2 = ‖𝑓 − 𝑆𝑁𝑓‖2 + ∑
𝑁

𝑘=−𝑁
|⟨𝑓, 𝜑𝑘⟩|2

• Take limit as 𝑁 → ∞ to conclude result.

□
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