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1. The real numbers

1.1. Conventions on sets and functions
Definition. For f: X — Y, preimage of Z C Y is

fH2)={zeX: f(z) € Z}
Definition. f: X — Y injective if
Vy € f(X),3lx e X :y= f(z)
Definition. f: X — Y surjective if Y = f(X).
Proposition. Let f: X —- Y, A, B C X, then
f(AnB) C f(A)N f(B)
f(AUB) = f(A) U f(B)
f(X)—1(4) € f(X - A)
Proposition. Let f: X =Y, C,D CY, then

Y
Y

1.2. The real numbers
Definition. a € R is an upper bound of E C R if Vz € F,z < a.

Definition. ¢ € R is a least upper bound (supremum) of E, ¢ = sup(E), if ¢ <
a for every upper bound a.

Definition. a € R is an lower bound of F C R if Vx € E,x > a.

Definition. ¢ € R is a greatest lower bound (infimum), ¢ = inf(E), if ¢ > a for
every lower bound a.

Theorem (Completeness axiom of the real numbers). Every E C R with an upper
bound has a least upper bound. Every E C R with a lower bound has a greatest
lower bound.

Proposition (Archimedes' principle).
VreR,IneN:n>z

Remark. Every non-empty subset of N has a minimum.
Proposition. Q is dense in R:

Ve<yeR IreQ:re(x,y)
1.3. Sequences, limits and series
Definition. [ € R is limit of (z,,) ((x,,) converges to [) if

Ve>0,ANeN:Vn>N, |z, <e



A sequence converges in R (is convergent) if it has a limit [ € R. Limit [ =

lim,,_, . z, is unique.

Definition. (z,) tends to infinity if
VK >0,3NeN:Vn>N, z,>K

Definition. Subsequence of (z,,) is sequence (z,, ), ny < ny < ---.
J

Definition. Limit inferior of sequence z,, is

liminfz,, = supy inf xm} = lim <1nf wm>
n— o0 neN \m2n n—oo \m>n

Definition. Limit superior of sequence z,, is

limsupz,, := inf{sup :cm} = lim (sup xm>

n—00 neN | m>n n—=00 \ m>n

Proposition. Let (z,) bounded, [ € R. Then | = lim sup z,, iff both of the following
hold:

e Ve>0,INeN:Vn> Nz, <l+e.

e Ve>0,YNeN:In>N:z, >1—¢.

Proposition. Let (z,) bounded, [ € R. Then ! = lim infz,, iff both of the following
hold:

e Ve >0,INeN:Vn > N,z, >l —e.

e Ve>0,YVNeN:In>N:z, <l+e.

Theorem (Bolzano-Weierstrass). Every bounded sequence has a convergent
subsequence.

Proposition. Let (z,) bounded. There exists convergent subsequence with limit
lim sup z,, and convergent subsequence with limit lim infz,,.

Proposition. Let (z,) bounded, then (z,,) is convergent iff lim sup z,, = lim infx,,.

Theorem (Monotone convergence theorem for sequences). Monotone sequence
converges in R or tends to either oo or —oo.

Definition. (z,) is Cauchy sequence if
Ve >0,ANeN:Vn,m >N, |z,—z,|<e

Theorem. Every Cauchy sequence in R is convergent.

1.4. Open and closed sets
Definition. U C R is open if
VeeU,FJe>0: (x—e,x+¢e)CU

Proposition. Arbitrary unions of open sets are open. Finite intersections of open
sets are open.

Definition. z € R is point of closure (limit point) for £ C R if

Ve>0,Jye E:|lr—y|<e



Equivalently, x is point of closure of FE if every open interval containing = contains a
point of FE.

Definition. Closure of E, E, is set of points of closure. Note E C E.
Definition. F is closed if F = F.

Proposition. AUB=AUB.If AC BCR then A C B.
Proposition. For any set E, E is closed, i.e. E = E.

Proposition. E C R is closed iff R — FE is open.

Proposition. Arbitrary intersections of closed sets are closed. Finite unions of
closed sets are closed.

Definition. Collection C of subsets of R covers (is a covering of) F C R if F' C
Ugec S. If each S in C open, C is open covering. If C is finite, C' is finite
covering.

Definition. Covering C of F' contains a finite subcover if exists {5, ...,S,,} CC
with FF C U ; S, (i.e. a finite subset of C covers F).

Definition. F' is compact if any open covering of F' contains a finite subcover.
Example. R is not compact, [a,b] is compact.

Theorem (Heine Borel). F' compact iff F' closed and bounded.

1.5. Continuity, pointwise and uniform convergence of

functions
Definition. Let E CR. f: F — R is continuous at a € F if

Ve>0,30 >0:Vx € E |z —a|<d=|f(z)— fla)| <e
f is continuous if continuous at all y € E.
Definition. lim, ., f(z) =1if
Ve>0,30 >0:Vez e E| |z —a|<d=|f(z) - <e

Proposition. lim, ,, f(x) = [ iff for every sequence (a,,) with lim, , _ a, = a,
liHl'n%oo f(a’n) = l

Proposition. f is continuous at a € E iff lim,_,, f(z) = f(a) (and this limit exists).

Definition. f: E — R is uniformly continuous if
Ve>0,30 >0:Ve,y€ E| |z —y|<d=|f(z) — fly)| <e

Proposition. Let F' closed and bounded, f: FF — R continuous. Then f is uniformly
continuous.

Definition. Let f, : E — R sequence of functions, f: E — R. (f,,) converges
pointwise to f if

Ve >0,Vx € E,GaN e N:Vn> N, |f,(z) — f(z)| <€

(f,,) converges uniformly to f is



Ve >0,AN eN:Vn> N, Ve e E||f, () — f(z)| <e
Theorem. Let f,, : E — R sequence of continuous functions converging uniformly to
f:E — R. Then f is continuous.
Definition. P = {z,...,z,} is partition of [a,b] if a =z, < - <z, = b.
Definition. f:[a,b] — R is piecewise linear if there exists partition P =
{zg,...,z,} and m;,¢; € R such that

1)1

Vi€ [n],Vz € (z;,_1,7;), [flz)=mz+c

f is continuous on [a, b] — P.
Definition. g¢: [a,b] — R is step function if there exists partition P = {z,, ..., z,, }
and m; € R such that

Vi e [’I’L],V.’E € (xi—laxi)a g(.’.l?) =m,

g is continuous on [a,b] — P.
Theorem. Let f: F — R continuous, E closed and bounded. Then there exist

continuous piecewise linear f, with f, — f uniformly, and step functions g, with
g, — f uniformly.

Definition. f: E — R is Lipschitz if
Definition. f: E — R is bi-Lipschitz if

3C >0:Vz,ye E, Cllz—y| <|f(z)— f(y)| < Clz—y|

1.6. The extended real numbers
Definition. Extended reals are R U {—o0, 00} with the order relation —oco < co
and Vz € R, —0o < z < 00. o0 is an upper bound and —oo is a lower bound for every
r € R, so sup(R) = oo, inf(R) = —oo0, sup(f) = —oo, inf(f)) = .
« Addition: Va € R,a+ 00 =00 Aa+ (—00) = —00. 00 4+ 00 = 00 — (—00) = 00.
0o — oo is undefined.
e Multiplication: Va > 0,a - 0o = 00, Va < 0,a - 0o = —00. Also 0o - 0o = o0.
e lim sup and lim inf are defined as

limsup z,, := inf{sup{z; : k > n}:n €N}, liminfz, :=sup{inf{z,:k>n}:n e N}

Definition. Extended real number [ is limit of (x,,) if either

e Ve>0,IN e N:Vn> N, |z, — | <e. Then (z,) converges to [. or
e VA>0,3NeN:Vn>N,z, > A (limit is o) or

e VA>0,INeN:Vn>N,z, <—A (limit is —00).

(z,,) converges in the extended reals if it has a limit in the extended reals.

2. Further analysis of subsets of R



2.1. Countability and uncountability

Definition. A is countable if A = (), A is finite or there is a bijection ¢ : N — A (in
which case A is countably infinite). Otherwise A is uncountable. Enumeration
is bijection to A from [n] or N.

Proposition. If there is surjection from countable set to A, or injection from A to
countable set, then A is countable.

Proposition. Any subset of N is countable.
Proposition. Q is countable.

Proposition. If (a,,) is a nonnegative sequence and ¢ : N — N is a bijection then

2—:1 apn, = 2—:1 Qi (n)

Proposition. If (a,, ;) is a nonnegative sequence and ¢ : N — N x N is a bijection
then

o0 o oo
Z Z Ank = Z )
n=1 k=1 n=1

Definition. f: X — Y is monotone if x >y = f(z) > f(y) or z <y = f(z) >
fy).

Proposition. Let f be monotone on (a,b). Then it is discontinuous on a countable
set.

Lemma. Set of sequences in {0,1}, {(z,,) _:Vn €N, z, € {0,1}} is uncountable.

Theorem. R is uncountable.

2.2. The structure theorem for open sets
Definition. Collection {A, : i € I} of sets is (pairwise) disjoint if n #m = A, N
A =0

Theorem (Structure theorem for open sets). Let U C R open. Then exists countable
collection of disjoint open intervals {I,, : n € N} such that U = U, oy L,.

2.3. Accumulation points and perfect sets
Definition. z € R is accumulation point of £ C R if z is point of closure of F —
{z}. Equivalently, x is a point of closure if

Ve>0,Fye E:y#+axA|lx—y|<e
Equivalently, there exists a sequence of distinct y,, € E with y,, — x as n — oo.
Proposition. Set of accumulation points of Q is R.

Proposition. Set of accumulation points E’ of F is closed.

Definition. F C R is isolated if

Vee E,3e>0: (x—¢e,z+¢)NE ={z}



Proposition. F is isolated iff it has no accumulation points.
Definition. Bounded set E is perfect if it equals its set of accumulation points.

Theorem. Every non-empty perfect set is uncountable.

2.4. The middle-third Cantor set
Proposition. Let {F,, : n € N} be collection of non-empty nested closed sets (so
F, . CF,), one of which is bounded. Then

() F, #0

neN

Definition. The middle third Cantor set is defined by:
o Define C; := [0, 1]
o Given C, = U, [a;,b;], a3 < by < ag < -+ < agn < byn, with |b; — a;| = 3™, define

1771

Cryr = U, [a, 0, + 37(n+1)] U [b; — 3-(n+b) b;]

which is a union of 2"*! disjoint intervals, with all differences in endpoints

equalling 3-(»+1).

e The middle third Cantor set is

C:=(]¢C,

neNy

Observe that if a is an endpoint of an interval in C,,, it is contained in C.

Proposition. The middle third Cantor set is closed, non-empty and equal to its set
of accumulation points. Hence it is perfect and so uncountable.

Definition. Let k € N— {1}, z € [0,1). 0.ay0a,..., a; € {0,...,k — 1}, is a k-ary
expansion of z if

Remark. The k-ary expansion may not be unique, but there is a countable set F C
[0,1) such that every z € [0,1) — F has a unique k-ary expansion.

Remark. For every z € C, the ternary (k = 3) expansion of z is unique and

a;
x:Z§, aZE{O,Q}

1€N
Moreover, every choice of sequence (a;), a; € {0,2}, gives z = 3", #eC.
Definition. Cantor-Lebesgue function, g : [0, 1] — [0, 1], is defined by
a;/2 . . a;
x) = 2ien 2t if =20 y5a €10,2}

sup{g(y) :y € C,y <z}ifx ¢ C

g is a surjection, monotone and continuous.



2.5. Gs, F,
Definition. F C R is G if E =N,y U, with U,, open.

Definition. ECRis F, if E = U,y F,, with F,, closed.

Lemma. Set of points where f : R — R is continuous is Gj.

3. Construction of Lebesgue measure

3.1. Lebesgue outer measure

Definition. Let I non-empty interval with endpoints a = inf(I) € {—oo} UR and
b=sup(l) € RU{oo}. The length of I is

(I):=b—a
and set £(0) = 0.

Definition. Let A C R. Lebesgue outer measure of A is infimum of all sums of
lengths of intervals covering A:

w*(A) = inf{ZE(Ik) A C U I, I, intervals}
keN keN

It satisfies monotonicity: A C B = u*(A) < p*(B).

Proposition. Outer measure is countably subadditive:

©* (U Ek) < ZN*(Ek)
keN keN

This implies finite subadditivity:

Lemma. We have
p(A) = inf{ZE(Ik) tAC U I, I, # 0 open intervals}
keN keN

Proposition. Outer measure of interval is its length: p*(I) = £(I).

3.2. Measurable sets
Notation. F¢ =R — FE.

Proposition. Let F = (a,00). Then
VACR, p*(A)=p*(ANE)+ pu*(ANE°)
Definition. FE C R is Lebesgue measurable if

VACR, p*(A)=p*(ANE)+ pu* (AN E°)



Collection of such sets is F u

Lemma (Excision Property). Let E Lebesgue measurable set with finite measure
and F C B, then

p*(B—E) = p*(B) — p*(E)

Proposition. If E,,..., E, Lebesgue measurable then U;_; E, is Lebesgue
measurable. If E,, ..., E, disjoint then

pw* (A N Ek>
k=1

for any A C R. In particular, for A = R,

I (O Ek) = iﬂ*(Ek)

k=1 k=1

Z,u (ANEy)

n
k=1

Remark. Not every set is Lebesgue measurable.

Definition. Collection of subsets of R is an algebra if contains ) and closed under
taking complements and finite unions: if A,B € A then R— A, AUB € A.

Remark. A union of a countable collection of Lebesgue measurable sets is also the
union of a countable disjoint collection of Lebesgue measurable sets: if {A} ren 18

countable collection of Lebesgue measurable sets, then let A, := A; and for k > 1,
define

Ay = Ay — UL A,

then {A,"}, . is disjoint union of Lebesgue measurable sets and Uy A" = Upen Ay

Proposition. If E is countable union of Lebesgue measurable sets, then F is
Lebesgue measurable. Also, if {E}} rey 18 countable disjoint collection of Lebesgue
measurable sets then

u(U Ek) => uwEy)

keN keN

3.3. Abstract definition of a measure

Definition. Let X C R. Collection of subsets of & of X is o-algebra if
e DeF

e FeF = FE°cdF

e fVEke N E, € F then Uy B, € F.

Example.
o Trivial examples are ¥ = {0, R} and F = P(R).
e Countable intersections of o-algebras are g-algebras.

Definition. Let F o-algebra of X. v: F — RU {+o0} is measure satisfying
« v(0)=0



e« VE€F,v(E)>0
o Countable additivity: if E, E,,... € & are disjoint then

z/(U Ek) => v(E)

keN keN

Elements of F are measurable (as they are the only sets on which the measure v is
defined).

Proposition. If v is measure then it satisfies:

o Monotonicity: A C B = v(A) <v(B).

« Countable subadditivity: v(Upen Ey) <32, V(Ey)-

o Excision: if B has finite measure, then A C B = v(B — A) = v(B) — v(A).

3.4. Lebesgue measure

Lemma. F). is o-algebra and contains every interval.
Theorem (Carathéodory Extension). Restriction of the p* to F),. is a measure.

Theorem (Hahn extension theorem). There exists unique measure y defined on & .
for which p(I) = £(I) for any interval I.

Definition. The measure p of p* restricted to # . is the Lebesgue measure. It
satisfies u(I) = £(I) for any interval I and is translation invariant.

3.5. Sets of measure 0
Proposition. Middle-third Cantor set is Lebesgue measurable and has Lebesgue

measure 0.

Proposition. Any countable set is Lebesgue measurable and has Lebesgue measure
0.

Proposition. Any E with u*(E) = 0 is Lebesgue measurable and has u(E) = 0.

Lemma. Let E Lebesgue measurable set with u(E) =0, then VE' C E, E’ is
Lebesgue measurable.

3.6. Continuity of measure
Definition. Countable collection {E}, . is ascending if Vk € N, E} C Ey; and
descending if Vk e N, E, | C E,.

Theorem. Every measure m satisfies:
o If {A.}, _ is ascending collection of measurable sets, then

m (U Ak) = kli_)m m(Ay)

keN

o If {B,} rey 18 descending collection of measurable sets and m(B;) < oo, then

m(ﬂ Bk) = klggo m(By,)

keN

10



3.7. An approximation result for Lebesgue measure
Definition. Borel o-algebra B(R) is smallest o-algebra containing all intervals: for
any other o-algebra F containing all intervals, B(R) C &.

B(R) := ﬂ{&" : & o -algebra containing all intervals}

E € B(R) is Borel or Borel measurable.
Lemma. All open subsets of R, closed subsets of R, G5 sets and F, sets are Borel.

Proposition. The following are equivalent:

e F is Lebesgue measurable
Ve>0,3open G: ECGAp*(G—FE)<e
Ve >0,3closed F: FCEAu(E—F)<e
GeGs: ECGAp (G—FE)=0

e JFeF, :FCEAN(E—F)=0

4. Measurable functions

4.1. Definition of a measurable function
Proposition. Let f: R — R. f continuous iff ¥ open U C R, f~1(U) C R is open.

Lemma. Let f: E — RU {400} with E Lebesgue measurable. The following are
equivalent:

e VceR,{z € E: f(x) > c} is Lebesgue measurable.

e VeeR,{z € E: f(x) > c} is Lebesgue measurable.

e VceR,{z € E: f(x) < c} is Lebesgue measurable.

e VeeR,{z € E: f(x) < c} is Lebesgue measurable.

The same statement holds for Borel measurable sets.

Definition. f: F — RU {400} is (Lebesgue) measurable if it satisfies any of the
above properties and if E is Lebesgue measurable. f being Borel measurable is
defined similarly.

Corollary. If f is Lebesgue measurable then for every B € B(R), f~1(B) is
measurable. In particular, if f is Lebesgue measurable, preimage of any interval is
measurable.

Definition. Indicator function on set A, 1, : R — {0,1}, is

lifze A
La(@) = {o ifzg¢ A

Definition. ¢ : R — R is simple (measurable) function if ¢ is measurable
function that has finite codomain.

4.2. Fundamental aspects of measurable functions
Definition. Let E C F C R, let f: FF — R. Restriction f is function with domain
E and for which Vz € E,| fg(x) = f(x).

11



Definition. Real-valued function which is increasing or decreasing is monotone.

Definition. Sequence (f,,) on domain E is increasing if f,, < f,,,; on E for all n €
N.

Example. Continuous functions are measurable.

Definition. For f, : E = R, ..., f,, : E = R, define
max{f, ..., f, }(¢) := max{f,(z), ..., f(x)}

min{ f;, ..., f,,} is defined similarly.

Proposition. For finite family {f,} . of measurable functions with common

k=1
domain E, max{fi, ..., f,,} and min{f,,..., f,,} are measurable.

Definition. For f: E — R, functions |f|, f*, f~ defined on FE are

|f1(z) = max{f(z), —f(z)}, fT(z):=max{f(z),0}, [ (z):=max{—f(z),0}
Corollary. If f measurable on E, so are |f|, f* and f~.

Proposition. Let f: E — RU {£oc0}. For measurable D C F, f measurable on F iff
restrictions of f to D and F — D are measurable.

Theorem. Let f,g: E — R measurable.
o Linearity: Vo, 8 € R, af + Bg is measurable.
e Products: fg is measurable.

Proposition. Let f,, : E — R U {+o0} be sequence of measurable functions that
converges pointwise to f: E— R U {+oo}. Then f is measurable.

Lemma (Simple approximation lemma). Let f: E — R measurable and bounded, so
dM > 0:Vx € E,|f|(z) < M. Then Ve > 0, there exist simple measurable functions
Y., ¥, E— R such that

Ve e B, ¢ (z) < f(z) < () N0 <9 (2) — g (2) <&

Theorem (Simple approximation theorem). Let f: E — RU {£oc0}, E measurable.
Then f is measurable iff there exists sequence (¢,,) of simple functions on E which
converge pointwise on F to f and satisfy

vn e N,Vz € E, |, |(z) < [f[(x)

If f is nonnegative, (¢,,) can be chosen to be increasing.

Definition. Let f,g: E — RU{+oo}. Then f = g almost everywhere if {z € E :
f(z) # g(z)} has measure 0.

Proposition. Let f, f5, f3 : E — RU {£o00} measurable. If f; = f, almost
everywhere and f, = f; almost everywhere then f; = f; almost everywhere.

Remark. Lebesgue measurable functions can be modified arbitrarily on a set of
measure 0 without affecting measurability.

12



Proposition. Let f,, : E — R U {+o0} sequence of measurable functions, f: E —
R U {400} measurable. Set of points where (f,,) converges pointwise to f is
measurable.

Proposition. Let f,g: E — RU {4+o00} measurable and finite almost everywhere on

E.

e Linearity: Va, 8 € R, there exists function equal to af + 8¢ almost everywhere
on E (any such function is measurable).

o Products: there exists function equal to fg almost everywhere on E (any such
function is measurable).

Definition. Sequence of functions (f,,) with domain E converge in measure to f
if (f,)) and f are finite almost everywhere and

Ve >0, p{zeE:|f,(x)— f(x)]>¢e}) >0asn— o0

5. The Lebesgue integral

5.1. The integral of a simple measurable function
Definition. Let ¢ be real-valued function taking finitely many values oy < --- < o,
then standard representation of ¢ is

Y= EaiﬂAia A= ({ey})
=1

Lemma. Let ¢ = ZZ | Bilp,, B; disjoint measurable collection, B; € R, then ¢ is
simple measurable. If ¢ takes value 0 outside a set of finite measure then

n m
Z o u(A;) = Z B;n(B;)
i=1 i=1
where A, in standard representation.

Definition. Let ¢ be simple nonnegative measurable function or simple measurable
function taking value 0 outside set of finite measure. Integral of ¢ with respect to u
is

/so = g;am(fli)

where ¢ = ZL L ;1 4, is standard representation. Here, use convention 0 - oo = 0. For
measurable £ C R, define
/ ¢ = / 1py
E
Example.

+ Lot 9y =15 + g = Lpp1yug + 2z 50 [ = 4.
o Let g3 =1y, then [z =100 = 0.
o Let o4 =1 00) + (—1)L(_s 0)- This can’t be integrated.

13



Lemma. Let By,..., B,, be measurable sets, 3, ..., 8,, € R—{0}. Then ¢ =
ZZ | Bilp, is simple measurable function. Also,

v (CJ Bi> <00 = iaiu(Ai) = Z@N(Bi)

where A, in standard representation.

Proposition. Let ¢, be simple measurable functions:
o If p, 1 take value 0 outside a set of finite measure, then Va, 5 € R,

/(a90+/3¢)=a/90+ﬂ/¢

o If ¢, nonnegative, then Vo, 8 > 0,

/(a@+ﬁ¢):a/w+ﬂ/¢

ngélﬁ:oﬁ/@S/Qﬁ

e Monotonicity:

Corollary. Let ¢ nonnegative simple function, then

/90 = sup{/w 10 <Y <, 9 simple measurable}

Lemma. Let ¢ simple measurable nonnegative function. ¢ takes value 0 outside a
set of finite measure iff [ ¢ < co. Also, [ ¢ = oo iff there exist & > 0, measurable A
with u(A) = oo and Vz € A, p(z) > a.

Lemma. Let {E, } be ascending collection of measurable sets, U,y E,, = R. Let ¢
be simple nonnegative measurable function. Then

/ go—)/go as n — 0o
E'I’L

5.2. The integral of a nonnegative function

Notation. Let M* denote collection of nonnegative measurable functions f: R —
R- U {oo}.

Definition. Support of measurable function f with domain E is supp(f) := {z €
E: f(z) #0}.

Definition. Let f € M*. Integral of f with respect to u is

/f = sup{/gp :0< o < f,p simple measurable} € RU {0}

For measurable set E, define

14



[Ef::/nEf

Proposition (Monotonicity). Let f, g measurable, nonnegative. If g < f then [ g <
[ f. Let E, F measurable. If E C F' then fEf < fF f.

Theorem (Monotone convergence theorem). Let (f,,) be sequence in M™*. If (f,,) is
increasing on measurable set E and converges pointwise to f on E then

/fn—>/f as n — 0o
E E

Corollary. Restriction of integral to nonnegative functions is linear: Vf,g € M,

Ya > 0,
/(f+g)=/f+/g
fer=e]s

Lemma (Fatou's Lemma). Let (f,) be sequence in M, then

/ lim inf f,, < lim inf / fn
n—oo n—oo
Lemma. Let (f,) C M*, then
[Zr=3[%
neN neN

Proposition (Chebyshev's inequality). Let f be nonnegative measurable function on
E. Then

1
YA>0, ullze B f@) 2 A<y [ f
E
Proposition. Let f be nonnegative measurable function on E. Then

/ f =0« f =0 almost everywhere on
E

5.3. Integration of measurable functions
Notation. Let M denote set of measurable functions.

Definition. f € M* is integrable if [ f < co. By Chebyshev’s inequality, if f is
integrable, then f is finite almost everywhere.

Definition. Let f: R — R U {400} measurable function. f is integrable if [ f*
and [ f~ are finite. In this case, for any measurable set E, define

Sl
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Note that if f integrable then f+ — f~ is well-defined.
Proposition. If f = f, — fy, f1, fo € M™T, fi, fo integrable, then

[r=[r=[n-]n

Definition. f € M is integrable over E (FE is measurable) if fE f* and fE f~ are
finite (i.e. f- 1y is integrable).
Theorem. f € M is integrable iff | f| is integrable. If f integrable, then

[1= fin

Corollary. Let f,g € M, |f| < |g|. If g integrable then |f] is integrable, and [|f] <

[lgl.

Example. sin is not integrable over R, but is integrable over [0, 2], since |fig o] <
1[0,271']'
Theorem (Linearity of Integration). Let f,g € M integrable. Then f + g is

integrable and Ya € R, af is integrable. The integral is linear:

/(f+g)=/f+/g
for-a

Theorem (Dominated Convergence Theorem). Let (f,,) be sequence of integrable
functions. If there exists an integrable g with Vn € N, |f,.| < ¢, and f,, — f pointwise
almost everywhere then f is integrable and

[t [

5.4. Integrability: Riemann vs Lebesgue
Proposition. Let f bounded function on bounded measurable domain E. Then f is
measurable and [ |f| < oo iff

sup{ / v :p < f,p simple measurable} = inf{ / Y f < simple measurable}
E E

(If f satisfies either condition then fE f is equal to the two above expressions).

Definition. Bounded function f is Lebesgue integrable if it satisfies either of the
equivalences in the above proposition.

Definition. Let P = {z, ..., x,,} partition of [a,b], f : [a,b] — R bounded. Lower
and upper Darboux sums for f with respect to P are
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L(f,P):= zn;mz(xz —z;,4), U(f,P):= zn;Mz(% — ;)
where
m; = inf{f(z) : 2z € (z;,_1,2;)}, M;:=sup{f(2):z € (z;1,)}
If PCQ (Q is a refinement of P), then
L(f,P) < L(f,Q) <U(f,Q) <U(f,P)

Definition. Lower and upper Riemann integrals of f over [a,b] are

ZZ(f) := sup{L(f, P) : P partition of [a,b]}

72(]”) := inf{U(f, P) : P partition of [a, b]}
Definition. Let f : [a,b] — R bounded, then f is Riemann integrable (f € &), if

—=b

7°(f) = To(f)

and common value J2(f) = f; f(z)dz is Riemann integral of f.

Remark. Let g: [a,b] — R step function with discontinuities at P = {z, ..., z,, }, so
g= Z?: TR NP almost everywhere. So g is simple measurable and

L(g,P) =) a;(z;—z;1) =U(g,P) = /g =74(9)
i=1
Hence for any bounded f : [a,b] — R,

ZZ(f) = SUP{/SO o < f,p step function},

b

T (f) = inf{/¢ : f <, step function}

Theorem. Let f:[a,b] — R bounded, a,b # +oo. If f Riemann integrable over [a, b]
then f Lebesgue integrable over [a, b] and the two integrals are equal.

Theorem. Let f: [a,b] — R bounded, a,b # +o00. Then f is Riemann integrable on
[a,b] iff f is continuous on [a, b] except on a set of measure zero.

Lemma. Let (¢,,), (1,,) be sequences of functions, all integrable over E, (¢,,)
increasing on E, (1,,) decreasing on E. Let f: E — R with

VNEN,QOnSfS’(/)nOHE, hm/(lbn—SDn):O
n—oo E
Then ¢,,,v,, — f pointwise almost everywhere on E, f is integrable over E and
lim ¢, = lim Y, = / f

n—00
E
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Definition. For partition P = {z,,...,z, }, gap of P is
gap(P) := max{|z; —z; ,|:i € {1,...,n}}

Lemma. Let f:[a,b] = R, E C [a,b] be set where f is continuous. Let (P,) be
sequence of partitions of [a,b] with P, ; C P, and gap(P,) — 0 as n — oco. Let
©ns W, + [a,b] — R step functions with

on(x) = inf{f(z) : x € (x;_1,2;)}, ¥,(z):=sup{f(z): 2 € (v;_1,2;)}
for P, = {zg,...,x,}. Then Vo € E — U, oy P,,

o, (), Y, (x) = f(z) asn—
Definition. Let f: (a,b] 5 R, —00 < a < b < o0, f bounded and Riemann

integrable on all closed bounded sub-intervals of (a, b]. If

lim J%(f)

t—a,t>a

exists then this is defined as the improper Riemann integral J(f). Similar
definitions exist for f: (a,b) — R and f: [a,b) — R.

Note. Improper Riemann integral may exist without function being Lebesgue
integral.

Proposition. If f is integrable, the improper Riemann integral is equal to the
Lebesgue integral whenever the former exists.

Definition. Let « : [a,b] — R monotonically increasing (and so bounded). For
partition P = {z, ...,z, } of [a,b] and bounded f : [a,b] — R, define

L Poa) = Y milala) — ale), Uf,Pa): ZM oz 1))

where m; := inf{f(z) : ¢ € (z;_1,2;)}, M, :=sup{f(x):z € (z;_;,z;)}. Then f is
integrable with respect to «, f € R(«), if

inf{U(f, P,a) : P partition of [a,b]} = sup{L(f, P,a) : P partition of [a,b]}

and the common value f; fda is the Riemann-Stieltjes integral of f with respect
to a.

Proposition. Let f: (a,b) — R, then set of points where f is differentiable is
measurable.

Remark. If a: [0,1] — [a,b] bijection, then

/Olfoada:/abf(a:)dx

Proposition. Let a be monotonically increasing and differentiable with o’ € X.
Then g € R(a) iff go’ € R, and in that case,
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/bgda = /b g(z)d (z) dx

a a

Remark. When g = 1, this says f; lda = a(b) — a(a) = [ o/ (x) dz, similar to the
fundamental theorem of calculus.

6. Lebesgue spaces

6.1. Normed linear spaces

Definition. Let X be complex linear space (vector space over C). |-| : X — Ry,
is norm on X if

e Ve X, |z]| =0« z=0.

o« Ve X,VAeC,|Ax|| = |\ |z|.

« Yo,y e Xz +yl <z + lyl.

X equipped with norm ||, (X, ||), is called complex normed linear space.

Example.
e |z| = V2T is norm on C.
o Let C[a,b] denote linear space of continuous real-valued functions on [a, b]. Then

[ 1] e := max{[f(x)] : z € [a, b]}

max
is norm on C'a, b].
Proposition. Norm induces metric on X: d(z,y) = |z — y|.

Definition. Let (X, |-|) be normed linear space.

Sequence (f,) in X is Cauchy sequence in X if

Ve >0,AN e N:Vn,m >N, |f,—fnl <e

Sequence (f,) in X converges in X, |f,, — f| — 0 as n — oo, if

feX:Ve>0,ANeN:Vn>N, |f,—fl<e

(X, |-]) is complete if every Cauchy sequence converges in X.

Banach space is complete normed linear space.

Proposition. Let (X, |-|) be normed linear space.

o If (z,) converges in X, (,,) is Cauchy sequence in X.

o Let (z,) be Cauchy sequence in X. If (z,,) has convergent subsequence in X then
(z,,) converges in X.

6.2. Lebesgue spaces LP, p € [1,00)
Definition. Let p € [1,00), E CR.
o Linear space LP(FE) is defined as

LP(E) := {f : E— C: f is measurable and/ |fIP < oo}/ =
E
where f = g iff f = g almost everywhere:
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f2g<=3JdFCE:uF)=0AVze E—F, f(z) =g(x)

o Define ||, : LP(E) = R as
1/p
171, = ( / |f|”)
FE

o We often consider space LP(FE) of real-valued measurable functions f : E — R such
that [ [f[P < co.

e For f: E—C, f=f +ify, fismeasurableiff f; : E - Rand f,: E — R are
measurable. Also,

/E|f|p<00<:> ([E|f1|p<ooA/E|f2|p<oo>

Example. Let £ =R, f(r) = 1g_g(z) + ilg(r) and g(z) = 1. Then u(Q) = 0 so
f=g

Proposition. Let (f,,), (g,,) sequences of measurable functions, Vn € N, f, =~ g, ,
lim, ., f,=fandlim, g, =g Then f=g.

Definition. p,q € R are conjugate exponents if p > 1 and % + % =1.

Remark.

Lemma (Young's inequality). Let p, g conjugate exponents, then
AP B
VA,BeR.,, AB<— +—
- p q
with equality iff AP = BY.

Lemma (Holder's inequality). Let p, g conjugate exponents. If f € LP(FE), g €
Li(E), then

[ 155l <1811,
E

Corollary (Cauchy-Schwarz inequality for L?(E)). If f,g € L*(E), then

[Efy

Lemma (Minkowski's inequality). Let p € [1,00). If f,g € LP(E) then f + g € LP(E)
and

< / fal <171 ol
E

If+gll,, <A, + 19l

Theorem. For p € [1,00), (LP(E),|-[,,) is normed linear space.

Proposition. Let 1 <p < ¢ < oco. If u(F) < oo then LY(E) C LP(FE) and

171, < n(E)r s,
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Remark.

e Convergence in LP is also called convergence in the mean of order p.

e This notion of convergence is different to pointwise convergence, uniform
convergence and convergence in measure.

Theorem (Riesz-Fischer). For p € [1,00), (LP(E), || ,) is complete.

6.3. Lebesgue space L
Definition.
e Let f: E — C measurable. f is essentially bounded if
dM >0:|f(x)| < M almost everywhere on E

o L*°(E) is collection of equivalence classes of essentially bounded functions where
f =g iff f= g almost everywhere.
o For f € L>®(F), define

|f]l, o :=esssup|f|:=inf{M € R: u({z € E: [f(z)] > M}) =0}

Proposition.

« 0<|f(2) < |f],.. almost everywhere.
¢ ||f,~ is norm on L*(E).

e If fe Ll(E), g € L (E), then

/ ol <A1, Dol
E

Proposition. Let (f,) sequence of functions in L*>°(E). Then (f,) converges to f €
L (E) iff there exists G C FE with u(G) = 0 and (f,,) converges to f uniformly on
E—G.

Theorem. (L*(E),|-|,..) is complete.

Remark. If u(E) < oo, then L>®(E) C LP(FE) for p € [1,00) and

1£1,, < u@E)PI1,

6.4. Approximation and separability
Definition. Let (X, |-|) be normed linear space. Let FF C G C X. F is dense in G if

Vge G,Ve>0,3feF: |f—yg|<e

Proposition.

o Fis dense in G iff for every g € G, there exists sequence (f,,) in F' such that
lim, .. f,=g¢in X.

e For FCGCHCLX,if F dense in G and G dense in H, then F' dense in H.
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Proposition. Let p € [1,00]. Then subspace of simple functions in (LP(E), || ,) is
dense in (LP(E), ||, )-

Definition. ¥ : R — R is step function if it can be written as

N
Y= @l s,
k=1

where the intervals (ay,b,) are disjoint.

Proposition. Let [a,b] be bounded, p € [1,00). Then subspace of step functions on
[a,b] is dense in (LP([a,b]), ||, )-

Definition. Normed linear space (X, ||-||) is separable if there exists countable,
dense subset X’ C X.

Example. R is separable, since QQ is countable and dense in R.

Theorem. Let E C R measurable, p € [1,00). Then (LP(E), |-|,) is separable. In
particular, step functions are dense in LP(FE) for p € [1, 00).

Proposition. Let ¢ >0, f € LP(E), p € [1,00). There exists continuous g € LP(E)
such that |f —g] , <e.

Remark. Linear space of continuous functions that vanish outside bounded set is
dense in (LP(E), ||, ) for p € [1,00).

Remark. Differentiable functions are also dense in (LP(E), |, ,) for p € [1,00).
Remark. Step functions and continuous functions are not dense in (L>(E), ||, ..)-

Example. In general, (L°°(E), ||, ..) is not separable. Let [a, b] be bounded, a # b.
Assume there is countable {f,, : n € N} which is dense in (L*([a,b]), ||, ..). Then for
every x € [a,b], can choose g(z) € N such that

1
|tear = fow . <35

Also, for z; < z,,

1 1 _J1 ifa<z <z <D

H [a,z1] — “[a,z,] L,o° - 0 if Ty = Ty

and

|tae = Lol < [Yee = fown |, o+ [Fowr) = Fotwnll, o + [ fotwn) = Liaal|

<1+ Hfg(mﬁ o f9($2) Lo

If g(x;) = g(xy) then H]l[ . 0 so ¢ : [a,b] — N is injective. But N is

countable and [a, b] is not countable: contradiction.

a,zq] :ﬂ'[a:wz}

6.5. Riesz representation theorem for LP(F), p € [1,00)
Definition. Let X be linear space. T : X — R is linear functional if
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Vf,g€ X,Ya,b e R, T(af +bg)=aT(f)+bT(g)

Any linear combination of linear functionals is linear, so set of linear functionals on
linear space is also linear space.

Definition. Let (X, |-|) be normed linear space. T': X — R is bounded functional
if
M >0:VfeX, [T(f)] < M|f|

Norm of T, [T , is the smallest such M.

Remark. For bounded linear functional T' on normed linear space (X, |||),
T(f) =T <ITI,1f -9l

This gives the following continuity property: if f, — f € X, then T'(f,,) — T(f).

Example. Let E C R measurable, p € [1,00), ¢ conjugate to p. Let h € LY(E).
Define T': LP(E) — R by

T<f>=[Eh-f

By Holder’s inequality,

()l =

[

So T is bounded linear functional.

< / nfl < IRl A,
FE

Remark. We can write ||-|_as

IT], :==inf{M e R:Vf € X,|T(f)| < M[f|} =sup{|T(f) : f € X, [f] <1}
Definition. Dual space of X, X*, is set of bounded linear functionals on X with
norm ||||*

Proposition. Let (X, |-|) be normed linear space, then dual space of X is linear
space with norm |-] .

Remark. Bounded linear functional is special case of bounded linear
transformation between normed spaces. T : X — Y is bounded linear

transformation if T'(af + bg) = aT'(f) + bT'(g) and IM 2 0: [T'(f)[, < M| f] -

Proposition. Let E C R measurable, p € [1,00), g conjugate to p, h € LI(E). Define
T:LP(E) — R by

T(f) = /E hf

Then [T, = [|Al],-
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Theorem (Riesz representation theorem for L?). Let p € [1,00), ¢ conjugate to p,
E C R measurable. For h € LI(E), define bounded linear functional R, : LP(E) — R
by

Ry(f) = /E nf

Then for every bounded linear functional 7' : L,(E) — R, there is unique h € LI(E)
such that

R,=T A |T|, =I~l,,

Theorem. Let [a,b] be non-degenerate, bounded interval, p € [1,00), ¢ conjugate to
p. If T is bounded linear functional on L?([a, b]) then there exists h € Li([a, b]) such
that

T(f) =/bhf

a

7. Hilbert spaces

7.1. Inner product spaces

Definition. Let H be complex linear space. Inner product on H is function (-, ) :
H x H — C such that Va,b € C,Vx,y,z € H,
e Linear in first variable: (az + by, z) = a(z, z) + b(y, 2).

o Conjugate symmetric: (z,y) = (y, ).

o Positive: x # 0 = (z,z) € (0,00)

e (z,2) =0<=x=0.

These imply that (0, z) = 0 and inner product is conjugate linear in second variable:
(z,ax + by) = @(z,z) + b(z,y).

Example.

e R™ has inner product (z,y) =3>_"  z;y;.

o C™ has inner product (z,y) = Z?Il T,7;.
e Inner product induces metric on H:

d(l’,y) = <JI -y _y>1/2

Definition. Complex linear space H with inner product (-,-) is called pre-Hilbert
space or inner product space.

Definition. Let H inner product space. For x € H, define the norm
|z = v {z,z)
Proposition. |z +y|* = 2] + 2 Re((z,y)) + |y|*.
Theorem (Cauchy-Schwarz inequality). Let (H, (-,-)) be pre-Hilbert space. Then

Vo,y e H, [{z,y)] <|z|]yl
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with equality iff z and y linearly dependent.

Theorem (Parallelogram Identity). A normed linear space X is an inner product
space with norm derived from the inner product (i.e. |-| = 1/(:,)) iff

2 2 2 2
Ve,y e X,z +yl” + e —yl” = 2]«]” + 2]yl

Definition. Let (X, (-, ~>X>, (Y, (-, )Y) be inner product spaces.
e An inner product on X X Y is

(@1, 91): (T2, 92)) ooy = (T1,T2) 5 + (Y15 Y2)y

e The associated norm on X XY is

2 2
1@ 9) ey = /(@0 @,9)) oy = el + Ll
Theorem. Let X inner product space, z,, — z, y, = y in X. Then (z,,,y,), —
<x7y>X

P’f’OOf. Use |<xnayn> o <xay>‘ = |<xn - xayn> + <xayn> o <xayn> + <x)yn - y>| and
Cauchy-Schwarz, reverse triangle inequality to show |y, | — |y||- O

Proposition. The norm and inner product are continuous.

7.2. Hilbert spaces

Definition. Hilbert space is inner product space which is complete with respect to
norm induced by inner product.

Example. R™ with standard inner product is Hilbert space.

Example. Define inner product on L?(E)

(), = /E 19

Induced norm is the L? norm. So by Riesz-Fischer theorem, (L%(E), (-, -)
space.

;2) is Hilbert

Definition. Let H Hilbert space with inner product (-, -).

e z,y € H are orthogonal, z 1 y if (z,y) = 0.

e A,BC H are orthogonal, A | BifVre A\Vye B, = 1ly.
e Orthogonal complement of A C H is

At ={zx e H:Vyc A, = Ly}

Theorem (Pythagorean Theorem). If zy,...,x, € H, z; L z; for i # j, then

2
- 2
= lail
i=1

Proof. Use linearity of inner product and orthogonal condition. O

n

DL

i=1

Theorem. Let H Hilbert space, A C H, then At is closed subspace of H.
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Proof.
e Subspace:
» For y,z € A*, A\, n € C, show Vz € A, \y + pz € AL,
o Closed:
» Show if (y,) C AL, y,, — v, then y € A+:
— Let x € A, then show |(z,y)| — 0 by squeezing, triangle inequality and
Cauchy-Schwarz.

Theorem (Projection). Let M closed subspace of Hilbert space H.
e For every x € H, there exists unique closest point y € M:

Vee HAye M: |z—y|=min{|z—z|:2z¢c M}

We say y is “the best approximation” to z in M.
o The point y € M closest to x € H is unique element of M such that (z —y) L M.

Proof.
o Let d =inf{||z — 2| : z € M}. Show that Iy € M : |z —y| = d:
» There is sequence (y,,) C M with |z —y,,| — d. Show that (y,,) is Cauchy:
Y = al* + 122 — ¥, — v, l* = 2l& — 4, |* + 2l — y,|* by parallelogram
identity.
— YmUn ¢ M, 50 |22 — Yy, — Y| > 2d.
» Deduce that y,, = y € M and |z — y| — d by squeezing.
e Uniqueness of y:
> Let |z —y| = d =z -]
» By parallelogram identity, 2|z — y|* + 2|z —y/|* = |2z —y —v/|* + |y — ¥/|~.
» Use that %y/ € M to show |ly —y’| = 0.
e Toshow z=2z—y L M:
» For w € M, write (z,w) = |{z,w)| A where A\ = €%, set u = \w.
» Define f(t) = |z + tu|’, show ¢ = 0 is minimum of f and so 0 = f/(0), hence z €
M*.
e To show uniqueness of z:
» Show for y,y" € M such that z —y L M and x —y" 1L M, then (y —y’,w) =0
for any w € M. Set w =y —y’ to give y =19'.

Definition. Direct sum of subspaces M and N of linear space is
M&N:={y+z:ye M,ze N}
Corollary. If M closed subspace of Hilbert space H, then H = M & M+*.

For all x € H, x can be written uniquely as ¢ = y + z where y is best approximation
toxin Mand z=z—y 1L M.

Proof. By above theorem. O
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Definition. Let H Hilbert space. {ua}aE ; is orthonormal if it is orthogonal:
u, L ug for a # B, and normalised: VYo € I, |u, [ = 1.

Definition. Let X Banach space, {z, € X : @ € I} be indexed set where I is
countable or uncountable.
e For each finite J C I, define partial sum as

S; :=Zxa

aeJ
e Unordered sum of {z, € X : @ € I} converges unconditionally to z € X,
written z = Y, =z, if Ve > 0, there exists finite J C I such that |Sx —z| < e
acl ¢
for every finite J C K C I.
e Unordered sum Zae ; T is Cauchy if Ve > 0, there exists finite J C I such that
IS, || < € for every finite L C I — J. Note that

DL T T

aeLUJ aed

IScl =

« Unordered sum of {z, € X : & € I} converges absolutely if >° _ [z, converges
unconditionally in R.

Proposition. Unordered sum in Banach space converges unconditionally iff it is
Cauchy.

Definition. Let {c, : a € I} C [0, o0]. Define

an = sup{z c,:JCI,J finite}

aecl acd
Proposition. Let {c, :a €I} C[0,00], K={a€l:c, >0} If 3 _ ¢, <oo,then
K is countable.

Theorem (Bessel's inequality). Let U = {u,, : @ € I'} orthonormal in Hilbert space
H. Then

Vee H, Y |(z,uy)? < [z|?

acl
In particular, Vo € H, {a € I : {(x,u,) # 0} is countable.

Proof.
e Prove for any finite J C I, then take supremum on LHS.
e Show that

T — Z(x,uama

acd

= Jzl* =) lw, ua)?

aed

using equation 2.2 and Pythagorean theorem.
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Theorem. If U = {u,, : « € I} is orthonormal subset of Hilbert space H then the

following are equivalent:

o If Vael,(z,u,) =0, then x =0.

e« VeeH x=3 _ (¢ ,u,)u, where sum converges unconditionally in H and only
has countably many non-zero terms.

o Parseval’s identity:

2
Ve e H, al® =) [z u,)?
acl
Proof.
e (i) = (ii): let {a; : j € N} be set of indices where (z, uaj> # 0. Show the partial
sums of ZjeN(x, uaj)uaj are Cauchy using Pythagorean theorem and so show

converges.
e Set

Yy=x— Z<w7uo¢j>ua

JjeN

J

and show (y,u,) = 0.
o (ii) = (iii): let € > 0. Use definition of unconditional convergence of z and
Pythagorean theorem to show |z|* — > nerl (@ u, )| < e.

g

Definition. Orthonormal subset U = {u,, : a € I} of Hilbert space H is complete if
it satisfies any of the conditions in Theorem 7.2.16. An orthonormal basis of H is a
complete orthonormal subset of H.

Definition. U is maximal orthonormal set if VV C H such that U C V', V is not
orthonormal.

Lemma. U is maximal orthonormal set iff it is an orthonormal basis.

Remark. For orthonormal basis {u, : & € N}, representation x =3 _c,u, is
unique (consider (x — x,ug) = limn_,oo<zzzl(ca —d, )y, ug)).

Theorem. Every Hilbert space H has orthonormal basis. If V' C H is orthonormal
set, then H has orthonormal basis containing V.

Proof.

o Assume H # {0}. Use partial ordering C.

o Let {U, : a € I} be totally ordered collection of orthonormal sets. Find upper
bound of {U,, : a € I'} which is orthonormal.

e Show result using Theorem 7.2.25 and Lemma 7.2.19.

e To show orthonormal sets V' can be extended to orthonormal bases, use same
argument on family of all orthonormal subsets of H containing V.

Definition. A set X is partially ordered if it is equipped with relation <
satisfying:
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e Reflexivity: Ve € X,z < x.
o Transitivity: (z <yAy<z) =z <z
o Anti-symmetry: (z <yAy<z) =z =y.

X is totally ordered if partially ordered and Vx,y € X, either x <y or y < z.

Definition. Let X totally ordered set with relation <. x € X is upper bound for

YCXifVyeY,y<z.zxze Xismaximalif Vye X,z <y=—=y=r=.

Example. Let X be non-empty collection of sets. Then C is partial ordering on X.

A € X is upper bound for X’ C X if every set in X’ is subset of A. M € X is
maximal if it is not proper subset of any set in X.

Theorem (Zorn's Lemma). A partially ordered set X that has upper bounds for its
totally ordered subsets has a maximal element.

Proposition. Hilbert space is separable iff it has countable orthonormal basis.

Proof.

o =:let U = {u,, : n € N} countable, dense in H. Recursively discard any u,, in

Theorem (Riesz Representation Theorem for Hilbert Spaces). Let H Hilbert space

linear span of u,, ..., u,_; to obtain linearly independent set V' = {v,, : n € N}
whose linear span is dense in H. Applying Gram-Schmidt, set

v E :

1

wy, = H, vy Wpi1 = Cphypq (Un+1 <wk’vn+1wk>)
U1

k=1

where ¢,, € C chosen so that |w,| = 1. {w,, : n € N} is countable orthonormal
basis.
<=: let {w,, : n € N} be orthonormal basis, show that

Sy = {chwk iy, € Q—i—i(@}
k=1

is countable and U,y S,,, dense in H.

with inner product (-,-), T': H — R bounded linear functional. Then

Ay e H:VzecH, T(z)=(z,y)

Note RHS gives bounded linear functional by Cauchy-Schwarz.

Proof.

Existence:

» Show N = {x € H : T(z) = 0} is closed subspace of H, use that H = N @ N*.

» Assume N7 contains v with |v| = 1. For z € H, define u = T'(z)v — T'(v)z.
» Show that (u,v) = 0, deduce a value for y from this.
Uniqueness: straightforward.
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8. Convergence of Fourier series

Note. We can view f: [—m, m| — C as being 27-periodic by extending it on the real
line.

Definition. m-th partial Fourier sum of 27-periodic integrable function f :

[—m, 7] — C is given by

m

(Smf)@) = D ap(f)et

k=—m

where
1 [7 .
o) = 5= [ Fwetvay

are Fourier coefficients of f.

Definition. Let f,g: [—m, m] = C be 2m-periodic integrable functions. Convolution
f=xgis

(F+9)e) = 5= [ fwgte—v)dy

Proposition. Let f,g,h: [—m, 7] = C be 2m-periodic integrable functions, ¢ € C.
Then = satisfies:

o Commutativity: fxg=gx* f.

o Distributivity: fx(g+h) = (f*g) + (f xh).

o Homogeneity: (c¢f)xg=c(f *xg) = f * (cg).

o Associativity: (fxg)xh = fx(g=*h).

8.1. Pointwise convergence of Fourier series via Dirichlet

kernel
Definition. Let m € N;. The m-th Dirichlet kernel is

m
D, (z):= Z etke
k=—m
Proposition.
e D, is trigonometric polynomial of degree m with coefficients equal to 1 for k €
[—m, m| and 0 otherwise.
e D, is real-valued and 27-periodic.
. 1 4

— D, (z)dz =1
2 J_

Proposition. Let f:[—m, ] = C be 2m-periodic integrable function. Then

m

(D * (@)= ) ar(fe* = (S, f)(@)

k=—m
where a,(f) = % f:r fly)e ™ dy.
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Proposition.

o=

Remark. RHS in Proposition 8.1.4 has removable singularity at £ = 0, and
D,.(0) = 2m + 1. Applying I’'Hopital’s rule to RHS gives

lim Sin((m + %)m)

25 sin(3)

=2m+1

Theorem (Riemann-Lebesgue Lemma). Let E C R measurable, f € L*(E). Then

lim f(z)sin(nz) = lim f(z) cos(nz) = lim f(z)emn® =0
n—oco |, n—oco J . n—oco J .

Proof. _ ‘
o First consider when f(z) =1, (). Define I; = (%, %), so integral of
sin(nx) over each I; is 0.
o Write
N
(a,b)=LU| J;UR
j=1
so that length(L),length(R) < %’T
e Show that
4
/ f(z)sin(nz)| < =
5 n

e Deduce the sin result for step functions.

o Use that step functions are dense in L! to show sin result for f € L'(E) by writing
f=(f—1)+ v and finally take lim sup.

e Same argument works for cos.

e Conclude exp result.

g

Theorem. Let f € L'([—m,x]) be 2m-periodic, assume f differentiable at b € [—, 7].
Then

1) = tim_ o= [ f0)D 0=y dy =t (£ D,)0) = lim S0

m—o0 27T m—00 m—00
-7

Proof.

o First assume b = 0. Let 0 < ¢ < 1, show that f(y)/sin(y/2) is integrable on [e, 7]
and show

™
lim

| sj;(é)) sin((m + %)y) dy=0
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Conclude the same for f__:
o Write f(y) = f(0) + s(y) and split the integral f:r as such.
o Use Proposition 8.1.2 and split integral of s(y) to show

lim / £y — )+ tm o [ " s(y) Dy () dy

m—o0 27T m—o0 27T

o Use differentiability at 0 to show for € small and y € [—¢,¢], |s(y)| < Cly|.
o Show that |z|/|sin(x)| < 2 for z small (for cos(z) >
2sin(z) — x, and then that

%) by considering g(z) =

4Ce
<
™

i 5= [ 5D, () dy

m—o0 27

o Conclude the result for b = 0.
o To show for b € [—m, 7], define G(y) = f(b —y) and use commutativity of
convolution.

8.2. Uniform convergence of Cesaro mean Fourier series via

Fejér kernel
Definition. Let z € R, N € N. Fejér kernel is

_ ik
Fy(0) =5 > SPIT
m=0 m=0 k=—m
Proposition.
. 1

. 1 (sin(Nz/2)\>
F =—| ————"——
v = 5 (e )
e Fejér kernel is non-negative, so

Fy(a) = 1y ()] = [ | Fy(@)|de = 2n

e Fore>0ande < |z| <, there exists C. > 0 such that (sin(z/2))"> < C,, hence

[ rs@ian=5 [

and similarly for —n < x < —e.

sin Nx/2)
sin(z/2)

7rC'
N

Definition. The N-th Cesaro mean is the average of the first N partial Fourier
sums of f:

1 =

[y
—

m=0
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Proposition. Let f:[—m, ] — C integrable, then convolution of f with Fejér kernel
is the Cesaro mean:

(f * Fy)(z Z

Theorem. Let f:[—m, n] — C continuous and 2m-periodic, then
1 N-1
Vo € [~m, ], f(z) = lim (fxFy)(z) = J&E%O—;(S f)(x)

and the convergence is uniform.

Proof.

o Reason that f is bounded: |f| < B on [—m, 7).

o Let p > 0. Show that Vz,y € [—m, x|, for some € > 0, |y| <e = [f(zx —y) —
f(@)] <p.

e Show that

|(f * Fy)(2) = f(2)]

_2W(/% / )ww Hﬂx—)_f®”®+é%[]ﬂﬂwHﬂm—w—f@H®

e Show that first terms of RHS tend to zero as N — 0.
e Show last term on RHS is < p.
e Conclude the result.

Remark.

e By above theorem, any 27-periodic continuous function on [—m, 7| can be
uniformly approximated by trigonometric polynomials, i.e. if € > 0, then there
exists trigonometric polynomial p such that Vz € [—m, 7], |f(z) — p(z)| < €.

e This is analogue of Weierstrass Approximation Theorem for 27-periodic functions.
Weierstrass Approximation Theorem states that for continuous function f :

[a,b] — R and € > 0, there exists polynomial p such that Vz € [a,b], |f(x) —
p(z)| <e.

o Continuous functions are dense in LP([a, b]) for p € [1,00). Let € > 0, f € LP([a, b])
and g : [a,b] — R continuous such that |f — g, <e. By Weierstrass
Approximation Theorem, there exists polynomial p such that

9

Va € [a,b], |g(z)—p(z)| < b _a)”

Hence

/ﬁg D < ie lg—pl, <e
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Hence by Minkowski’s inequality, |f —p[,, < 2e. Hence polynomials are dense in
L?([a,b]) for p € [1,00).

o Note: for p = 0o, any continuous function in L®([a,b]) can be approximated by
polynomials, but continuous functions are not dense in L*°(]a,b]).

o Similarly, trigonometric polynomials are dense in LP([—m,x]) for p € [1, 00).

8.3. Mean convergence of Fourier series in L?([—,])

Notation. Define an inner product on L?([—n,n]) by

1 _
(f,9) = Py /[_m] fg

and denote |-| = +/(,-). (L*([—m, 7)), (-,-)) is Hilbert space by Riesz-Fischer.
For k € Z, x € [—m, 7], let o, () = e***, then for 27-periodic integrable function f :
[—m, 7] = C,

N

ar(f) = (fio), Snf(@)= D (f en)ex

k=N

Lemma. Let f € L?([—m,7]) be 2m-periodic, define

‘CPN:{chSOkaEC’TLSN}

k=—n

Then:

e {p, :n € Z} is orthonormal in L?([—m, 7]) with respect to (-, ).
o Vpe Py, f— Syf is orthogonal to p.

e« VN >0,Vpe Py,

|f=Snfl < |f —pl
with equality iff p = Sy f.
Proof.

e Show % f[_ﬂ . O Prn = 0=10,,, (justify use of Riemann integral).
o Show that (f — Sy f) L ¢,, for each |m| < N to show (f — Sy f) L p for p e Py.
e Write f—p=f—Syf+Snf— Z]kV:_N cLPi, use Pythagoras.

(]
Remark. Above lemma is projection result, i.e. Sy f is best approximation to f in
Py-
Theorem. Let f € L?([—m,x|) be 2m-periodic function. Then Fourier series for f

converges to f in (L([—m, 7)), |-]]), i-e.

|Snf—fI=0

lim
N—oo

Proof.
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o First show if g : [—m, 7] = C continuous, then |Syg— G| — 0 as N — co.
» Let € > 0, then for some M, there exists p € P, such that

Vi € [_7‘—77—‘—]7 |g<ZE) —p(ﬂ?)| <e
» Use that g(z) = limy_, (9% Fy)(x) and g * Fy;,4 € Py,
» Deduce that |g —p|* < €2

» Show if M < N then |g — Syg| < |g — p| < €, conclude result for continuous
functions.
o Let f € L?([—m,7]), € > 0. Using that continuous functions are dense in
L?([—m,7]), there is g : [—m, 7] — C such that |f —g| < e.
o Since g continuous, for large enough M, ||S,,9 — g|| < € by above.
o Use triangle inequality, the fact that N > M = S,,9 € P 5 and projection
theorem to conclude the result.

Lemma. {y, :n € Z} is orthonormal basis of (L?([—m,«]) with respect to inner

product
9 =5 [ 19

27r [_7717T]

Proof.

 Note that (L?([—m, 7)), (-,-)) is Hilbert space.

o Show Parseval’s identity holds.

o Write f = f — Syf + Sy f, use projection theorem, Pythagorean theorem and
orthonormality of {¢,, : n € Z} to show

N
A2 =1 = SnfIP+ D 1(f, e
k=—N

e Take limit as N — oo to conclude result.
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