Contents

1. Introduction
2. Symmetric key ciphers 2
3. Public key encryption and RSA 4
3.1. Factorisation
4. Diffie-Hellman key exchange 6
5. Elliptic curves
5.1. Torsion points
5.2. Rational points 12
6. Basic coding theory 13
6.1. First definitions
6.2. Nearest-neighbour decoding 14
6.3. Probabilities
6.4. Bounds on codes
7. Linear codes 16
7.1. Finite vector spaces
7.2. Weight and minimum distance 16
8. Codes as images 16
8.1. Generator-matrices 17
8.2. Encoding and channel decoding 17
8.3. Equivalence and standard form 17
9. Codes as kernels 18
9.1. Dual codes
9.2. Check-matrices
9.3. Minimum distance from a check-matrix 20
10. Polynomials and cyclic codes
10.1. Non-prime finite fields 20
10.2. Cyclic codes
10.3. Matrices for cyclic codes 22
11. MDS and perfect codes 22 $$
11.1. Reed-Solomon codes 22
11.2. Hamming codes

1. Introduction

Definition. Encryption process:

- Alice has a message (**plaintext**) which is **encrypted** using an **encryption key** to produce the **ciphertext**, which is sent to Bob.
- Bob uses a **decryption key** (which depends on the encryption key) to **decrypt** the ciphertext and recover the original plaintext.
- It should be computationally infeasible to determine the plaintext without knowing the decryption key.

Definition. Caesar cipher:

• Add constant k to each letter in plaintext to produce ciphertext:

 ${\rm ciphertext\ letter} = {\rm plaintext\ letter} + k \mod 26$

• To decrypt,

 ${\rm plaintext\ letter} = {\rm ciphertext\ letter} - k \mod 26$

• The key is $k \mod 26$.

Note. Z is represented as $0 = 26 \mod 26$, A as $1 \mod 26$.

Definition. We define the following cryptosystem objectives:

- Secrecy: an intercepted message is not able to be decrypted
- Integrity: it is impossible to alter a message without the receiver knowing
- Authenticity: receiver is certain of identity of sender (they can tell if an impersonator sent the message)
- **Non-repudiation**: sender cannot claim they did not send a message; the receiver can prove they did.

Definition. **Kerckhoff's principle**: a cryptographic system should be secure even if the details of the system are known to an attacker.

Definition. There are 4 types of attack:

- **Ciphertext-only**: the plaintext is deduced from the ciphertext.
- **Known-plaintext**: intercepted ciphertext and associated stolen plaintext are used to determine the key.
- **Chosen-plaintext**: an attacker tricks a sender into encrypting various chosen plaintexts and observes the ciphertext, then uses this information to determine the key.
- **Chosen-ciphertext**: an attacker tricks the receiver into decrypting various chosen ciphertexts and observes the resulting plaintext, then uses this information to determine the key.

2. Symmetric key ciphers

Note. When converting letters to numbers, treat letters as integers modulo 26, with $A = 1, Z = 0 \equiv 26 \pmod{26}$. Treat string of text as vector of integers modulo 26.

Definition. A **symmetric key cipher** is one in which encryption and decryption keys are equal.

Definition. Key size is $\log_2(\text{number of possible keys})$.

Example. Caesar cipher is a **substitution cipher**. A stronger substitution cipher is this: key is permutation of $\{a, ..., z\}$. But vulnerable to known-plaintext attacks and ciphertext-only attacks, since different letters (and letter pairs) occur with different frequencies in English.

Definition. **One-time pad**: key is uniformly, independently random sequence of integers mod 26, $(k_1, k_2, ...)$, known to sender and receiver. If message is $(m_1, m_2, ..., m_r)$ then ciphertext is $(c_1, c_2, ..., c_r) = (k_1 + m_1, k_2 + m_2, ..., k_r + m_r)$. To decrypt the ciphertext, $m_i = c_i - k_i$. Once $(k_1, ..., k_r)$ have been used, they must never be used again.

- One-time pad is information-theoretically secure against ciphertext-only attack: $\mathbb{P}(M = m \mid C = c) = \mathbb{P}(M = m).$
- Disadvantage is keys must never be reused, so must be as long as message.
- Keys must be truly random.

Theorem (Chinese remainder theorem). Let $m, n \in \mathbb{N}$ coprime, $a, b \in \mathbb{Z}$. Then exists unique solution $x \mod mn$ to the congruences

$$x \equiv a \mod m$$
$$x \equiv b \mod n$$

Definition. Block cipher: group characters in plaintext into blocks of n (the block length) and encrypt each block with a key. So plaintext $p = (p_1, p_2, ...)$ is divided into blocks $P_1, P_2, ...$ where $P_1 = (p_1, ..., p_n), P_2 = (p_{n+1}, ..., p_{2n}), ...$ Then ciphertext blocks are given by $C_i = f(\text{key}, P_i)$ for some encryption function f.

Definition. Hill cipher:

- Plaintext divided into blocks $P_1, ..., P_r$ of length n.
- Each block represented as column vector $P_i \in (\mathbb{Z}/26\mathbb{Z})^n$
- Key is invertible $n \times n$ matrix M with elements in $\mathbb{Z}/26\mathbb{Z}$.
- Ciphertext for block P_i is

$$C_i = MP_i$$

It can be decrypted with $P_i = M^{-1}C_i$.

• Let $P = (P_1, ..., P_r), C = (C_1, ..., C_r)$, then C = MP.

Definition. **Confusion** means each character of ciphertext depends on many characters of key.

Definition. **Diffusion** means changing single character of plaintext changes many characters of ciphertext. Ideal diffusion is when changing single character of plaintext changes a proportion of (S-1)/S of the characters of the ciphertext, where S is the number of possible symbols.

Remark. Confusion and diffusion make ciphertext-only attacks difficult.

Example. For Hill cipher, *i*th character of ciphertext depends on *i*th row of key (so depends on n characters of the key M) - this is medium confusion. If *j*th character of

plaintext changes and $M_{ij} \neq 0$ then *i*th character of ciphertext changes. M_{ij} is non-zero with probability roughly 25/26 so good diffusion.

Example. Hill cipher is susceptible to known plaintext attack:

- If $P = (P_1, ..., P_n)$ are *n* blocks of plaintext with length *n* such that *P* is invertible and we know *P* and the corresponding *C*, then we can recover *M*, since $C = MP \Longrightarrow M = CP^{-1}$.
- If enough blocks of ciphertext are intercepted, it is very likely that n of them will produce an invertible matrix P.

3. Public key encryption and RSA

Definition. Public key cryptosystem:

- Bob produces encryption key, k_E , and decryption key, k_D . He publishes k_E and keeps k_D secret.
- To encrypt message m, Alice sends ciphertext $c = f(m, k_E)$ to Bob.
- To decrypt ciphertext c, Bob computes $g(c, k_D)$, where g satisfies

$$g(f(m,k_E),k_D)=m$$

for all messages m and all possible keys.

• Computing m from $f(m, k_E)$ should be hard without knowing k_D .

Algorithm. Converting between messages and numbers:

• To convert message $m_1m_2...m_r$, $m_i \in \{0, ..., 25\}$ to number, compute

$$m=\sum_{i=1}^r m_i 26^{i-1}$$

• To convert number m to message, append character $m \mod 26$ to message. If m < 26, stop. Otherwise, floor divide m by 26 and repeat.

Theorem (Fermat's little theorem). Let p prime, $a \in \mathbb{Z}$ coprime to p, then $a^{p-1} \equiv 1 \pmod{p}$.

Definition. Euler φ function is

$$\varphi : \mathbb{N} \to \mathbb{N}, \quad \varphi(n) = |\{1 \le a \le n : \gcd(a, n) = 1\}| = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$$

Proposition. $\varphi(p^r) = p^r - p^{r-1}, \ \varphi(mn) = \varphi(m)\varphi(n)$ for gcd(m, n) = 1.

Theorem (Euler's theorem). If gcd(a, n) = 1, $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Algorithm (RSA).

- k_E is pair (n, e) where n = pq, the **RSA modulus**, is product of two distinct primes and $e \in \mathbb{Z}$, the **encryption exponent**, is coprime to $\varphi(n)$.
- k_D , the decryption exponent, is integer d such that $de \equiv 1 \pmod{\varphi(n)}$.
- m is an integer modulo n, m and n are coprime.
- Encryption: $c = m^e \pmod{n}$.
- Decryption: $m = c^d \pmod{n}$.
- It is recommended that n have at least 2048 bits. A typical choice of e is $2^{16} + 1$.

Definition. RSA problem: given n = pq a product of two unknown primes, e and $m^e \pmod{n}$, recover m. If n can be factored, then RSA is solved.

Definition. Factorisation problem: given n = pq for large distinct primes p and q, find p and q.

Definition. RSA signatures:

- Public key is (n, e) and private key is d.
- When sending a message m, message is **signed** by also sending $s = m^d \mod n$, the **signature**.
- (m, s) is received, **verified** by checking if $m = s^e \mod n$.
- Forging a signature on a message m would require finding s with $m = s^e \mod n$. This is the RSA problem.
- However, choosing signature s first then taking $m = s^e \mod n$ produces valid pairs.
- To solve this, (m, s) is sent where $s = h(m)^d$, h is **hash function**. Then the message receiver verifies $h(m) = s^e \mod n$.
- Now, for a signature to be forged, an attacker would have to find m with $h(m) = s^e \mod n$.

Definition. Hash function is function $h : {\text{messages}} \to \mathcal{H}$ that:

- Can be computed efficiently
- Is preimage-resistant: can't quickly find m given h(m).
- Is collision-resistant: can't quickly find m, m' such that h(m) = h(m').

Example (Attacks on RSA).

- If you can factor n, you can compute d, so can break RSA (as then you know $\varphi(n)$ so can compute $e^{-1} \mod \varphi(n)$).
- If $\varphi(n)$ is known, then we have pq = n and $(p-1)(q-1) = \varphi(n)$ so $p+q = n \varphi(n) + 1$. Hence p and q are roots of $x^2 (n \varphi(n) + 1)x + n$.
- Known *d* attack:
 - de-1 is multiple of $\varphi(n)$ so $p,q \mid x^{de-1}-1$.
 - Look for factor K of de 1 with $x^K 1$ divisible by p but not q (or vice versa) (so likely that $(p-1) \mid K$ but $(q-1) \nmid K$).
 - ▶ Let $de 1 = 2^r s$, gcd(2, s) = 1, choose random $x \mod n$. Let $y = x^s$, then $y^{2^r} = x^{2^r s} = x^{de-1} \equiv 1 \mod n$.
 - If $y \equiv 1 \mod n$, restart with new random x. Find first occurence of 1 in $y, y^2, ..., y^{2^r} \colon y^{2^j} \not\equiv 1 \mod n, y^{2^{j+1}} \equiv 1 \mod n$ for some $j \ge 0$.
 - Let $a := y^{2^j}$, then $a^2 \equiv 1 \mod n$, $a \not\equiv 1 \mod n$. If $a \equiv -1 \mod n$, restart with new random x.
 - Now n = pq | a² − 1 = (a + 1)(a − 1) but n ∤ (a + 1), (a − 1). So p divides one of a + 1, a − 1 and q divides the other. So gcd(a − 1, n), gcd(a + 1, n) are prime factors of n.

Theorem. it is no easier to find $\varphi(n)$ than to factorise n.

Theorem. it is no easier to find d than to factor n.

Algorithm (Miller-Rabin). To probabilistically check whether n is prime: 1. Let $n - 1 = 2^r s$, gcd(2, s) = 1.

- 2. Choose random $x \mod n$, compute $y = x^s \mod n$.
- 3. Compute $y, y^2, \dots, y^{2^r} \mod n$.
- 4. If 1 isn't in this list, n is **composite** (with witness x).
- 5. If 1 is in list preceded by number other than ± 1 , n is **composite** (with witness x).
- 6. Other, n is **possible prime** (to base x).

Theorem.

- If *n* prime then it is possible prime to every base.
- If n composite then it is possible prime to $\leq 1/4$ of possible bases.

In particular, if k random bases are chosen, probability of composite n being possible prime for all k bases is $\leq 4^{-k}$.

3.1. Factorisation

Algorithm (Trial division factorisation). For p = 2, 3, 5, ... up to \sqrt{n} , test whether $p \mid n$.

Algorithm (Fermat's method for factorisation).

- If $x^2 \equiv y^2 \mod n$ but $x \not\equiv \pm y \mod n$, then x y is divisible by factor of n but not by n itself, so gcd(x y, n) gives proper factor of n (or 1).
- Let $a = \lceil \sqrt{n} \rceil$. Compute $a^2 \mod n$, $(a+1)^2 \mod n$ until a square $x^2 \equiv (a+i)^2 \mod n$ appears. Then compute gcd(a+i-x,n).
- Works well under special conditions on the factors: if $|p q| \le 2\sqrt{2}\sqrt[4]{n}$ then Fermat's method takes one step: $x = \lfloor \sqrt{n} \rfloor$ works.

Definition. An integer is *B*-smooth if all its prime factors are $\leq B$.

Algorithm (Quadratic sieve).

- Choose B and let m be number of primes $\leq B$.
- Look at integers $x = \lceil \sqrt{n} \rceil + k$, k = 1, 2, ... and check whether $y = x^2 n$ is B-smooth.
- Once $y_1 = x_1^2 n, ..., y_t = x_t^2 n$ are all *B*-smooth with t > m, find some product of them that is a square.
- Deduce a congruence between the squares. Use difference of two squares and gcd to factor n.
- Time complexity is $\exp(\sqrt{\log n \log \log n})$.

4. Diffie-Hellman key exchange

Theorem (Primitive root theorem). Let p prime, then there exists $g \in \mathbb{F}_p^{\times}$ such that $1, g, \dots, g^{p-2}$ is complete set of residues mod p.

Definition. Let p prime, $g \in \mathbb{F}_p^{\times}$. Order of g is smallest $a \in \mathbb{N}$ such that $g^a = 1$. g is **primitive root** if its order is p-1 (equivalently, $1, g, ..., g^{p-2}$ is complete set of residues mod p).

Definition. Let p prime, $g \in \mathbb{F}_p^{\times}$ primitive root. If $x \in \mathbb{F}_p^{\times}$ then $x = g^L$ for some $0 \le L < p-1$. Then L is **discrete logarithm** of x to base g. Write $L = L_g(x)$.

Proposition.

 $\bullet \ g^{L_g(x)} \equiv x \pmod{p} \text{ and } g^a \equiv x \pmod{p} \Longleftrightarrow a \equiv L_g(x) \pmod{p-1}.$

- $L_q(1) = 0, L_q(g) = 1.$
- $\bullet \ \ L_g(xy)\equiv L_g(x)+L_g(y) \quad (\mathrm{mod}\, p-1).$
- $L_g(x^{-1}) = -L_g(x) \pmod{p-1}$.
- $\bullet \ \ L_g(g^a \operatorname{mod} p) \equiv a \ (\operatorname{mod} p 1).$
- *h* is primitive root mod *p* iff $L_g(h)$ coprime to p-1. So number of primitive roots mod *p* is $\varphi(p-1)$.

Definition. Discrete logarithm problem: given p, g, x, compute $L_g(x)$.

Definition. Diffie-Hellman key exchange:

- Alice and Bob publicly choose prime p and primitive root $g \mod p$.
- Alice chooses secret $\alpha \mod(p-1)$ and sends $g^{\alpha} \mod p$ to Bob publicly.
- Bob chooses secret $\beta \mod(p-1)$ and sends $g^\beta \mod p$ to Alice publicly.
- Alice and Bob both compute shared secret $\kappa = g^{\alpha\beta} = (g^{\alpha})^{\beta} = (g^{\beta})^{\alpha} \mod p$.

Definition. Diffie-Hellman problem: given $p, g, g^{\alpha}, g^{\beta}$, compute $g^{\alpha\beta}$.

Remark. If discrete logarithm problem can be solved, so can Diffie-Hellman problem (since could compute $\alpha = L_q(g^a)$ or $\beta = L_q(g^\beta)$).

Definition. Elgamal public key encryption:

- Alice chooses prime p, primitive root g, private key $\alpha \mod(p-1)$.
- Her public key is $y = g^{\alpha}$.
- Bob chooses random $k \mod (p-1)$
- To send message m (integer mod p), he sends the pair $(r, m') = (g^k, my^k)$.
- To decrypt message, Alice computes $r^{\alpha} = g^{\alpha k} = y^k$ and then $m'r^{-\alpha} = m'y^{-k} = mg^{\alpha k}g^{-\alpha k} = m$.
- If Diffie-Hellman problem is hard, then Elgamal encryption is secure against known plaintext attack.
- Key k must be random and different each time.

Definition. Decision Diffie-Hellman problem: given g^a, g^b, c in \mathbb{F}_p^{\times} , decide whether $c = g^{ab}$.

This problem is not always hard, as can tell if g^{ab} is square or not. Can fix this by taking g to have large prime order $q \mid (p-1)$. p = 2q + 1 is a good choice.

Definition. Elgamal signatures:

- Public key is $(p,g), y = g^{\alpha}$ for private key α .
- Valid Elgamal signature on $m \in \{0, ..., p-2\}$ is pair $(r, s), 0 \le r, s \le p-1$ such that

$$y^rr^s=g^m \pmod{p}$$

- Alice computes $r = g^k$, $k \in (\mathbb{Z}/(p-1))^{\times}$ random. k should be different each time.
- Then $g^{\alpha r}g^{ks} \equiv g^m \mod p$ so $\alpha r + ks \equiv m \pmod{p-1}$ so $s = k^{-1}(m \alpha r) \mod p 1$.

Definition. Elgamal signature problem: given p, g, y, m, find r, s such that $y^r r^s = m$.

Algorithm (Baby-step giant-step algorithm). To solve DLP:

- Let $N = \left\lceil \sqrt{p-1} \right\rceil$.
- Baby-steps: compute $g^j \mod p$ for $0 \le j < N$.
- Giant-steps: compute $xg^{-Nk} \mod p$ for $0 \le k < N$.
- Look for a match between baby-steps and giant-steps lists: $g^j = xg^{-Nk} \Longrightarrow x = g^{j+Nk}$.
- Always works since if $x = g^L$ for $0 \le L , L can be written as <math>j + Nk$ with $j, k \in \{0, ..., N 1\}$.

Algorithm (Index calculus). To solve DLP:

- Fix smoothness bound *B*.
- Find many multiplicative relations between B-smooth numbers and powers of $g \mod p$.
- Solve these relations to find discrete logarithms of primes $\leq B$.
- For i = 1, 2, ... compute $xg^i \mod p$ until one is *B*-smooth, then use result from previous step.

Remark. Pohlig-Hellman algorithm computes discrete logarithms mod p with approximate complexity $\log(p)\sqrt{\ell}$ where ℓ is largest prime factor of p-1, so is fast if p-1 is *B*-smooth. Therefore p is chosen so that p-1 has large prime factor, e.g. choose Germain prime p = 2q + 1, with q prime.

5. Elliptic curves

Definition. **abelian group** (G, \circ) satisfies:

- Associativity: $\forall a, b, c, \in G, a \circ (b \circ c) = (a \circ b) \circ c$.
- Identity: $\exists e \in G : \forall g \in G, e \times g = g$.
- Inverses: $\forall g \in G, \exists h \in G : g \circ h = h \circ g = e$
- Commutativity: $\forall a, b \in G, a \circ b = b \circ a$.

Definition. $H \subseteq G$ is subgroup of G if (H, \circ) is group.

Remark. To show H is subgroup, sufficient to show $g, h \in H \Rightarrow g \circ h \in H$ and $h^{-1} \in H$.

Notation. for $g \in G$, write [n]g for $g \circ \cdots \circ g$ n times if n > 0, e if n = 0, $[-n]g^{-1}$ if n < 0.

Definition. subgroup generated by g is

$$\langle g \rangle = \{ [n]g : n \in \mathbb{Z} \}$$

If $\langle g \rangle$ finite, it has order n, and g has order n. If $G = \langle g \rangle$ for some $g \in G$, G is cyclic and g is generator.

Theorem (Lagrange's theorem). Let G finite group, H subgroup of G, then $|H| \mid |G|$.

Corollary. if G finite, $g \in G$ has order n, then $n \mid |G|$.

Definition. DLP for abelian groups: given G a cyclic abelian group, $g \in G$ a generator of $G, x \in G$, find L such that [L]g = x. L is well-defined modulo |G|.

Definition. let (G, \circ) , (H, \bullet) abelian groups, homomorphism between G and H is $f: G \to H$ with

$$\forall g,g' \in G, \quad f(g \circ g') = f(g) \bullet f(g')$$

Isomorphism is bijective homomorphism. G and H are **isomorphic**, $G \cong H$, if there is isomorphism between them.

Theorem (Fundamental theorem of finite abelian groups). Let G finite abelian group, then there exist unique integers $2 \le n_1, ..., n_r$ with $n_i \mid n_{i+1}$ for all i, such that

$$G \simeq (\mathbb{Z}/n_1) \times \dots \times (\mathbb{Z}/n_r)$$

In particular, G is isomorphic to product of cyclic groups.

Definition. let K field, char(K) > 3. An **elliptic curve** over K is defined by the equation

$$y^2 = x^3 + ax + b$$

where $a, b \in K$, $\Delta_E \coloneqq 4a^3 + 27b^2 \neq 0$.

Remark. $\Delta_E \neq 0$ is equivalent to $x^3 + ax + b$ having no repeated roots (i.e. *E* is smooth).

Definition. for elliptic curve E defined over K, a K-point (point) on E is either:

- A normal point: $(x, y) \in K^2$ satisfying the equation defining E.
- The **point at infinity** \overline{O} which can be thought of as infinitely far along the *y*-axis (in either direction).

Denote set of all K-points on E as E(K).

Remark. Any elliptic curve E(K) is an abelian group, with group operation \oplus is defined as:

- We should have $P \oplus Q \oplus R = \overline{O}$ iff P, Q, R lie on straight line.
- In this case, $P \oplus Q = -R$.
- To find line ℓ passing through $P = (x_0, y_0)$ and $Q = (x_1, y_1)$:
 - If $x_0 \neq x_1$, then equation of ℓ is $y = \lambda x + \mu$, where

$$\lambda=\frac{y_1-y_0}{x_1-x_0}, \quad \mu=y_0-\lambda x_0$$

Now

$$y^{2} = x^{3} + ax + b = (\lambda x + \mu)^{2}$$
$$\implies 0 = x^{3} - \lambda^{2}x^{2} + (a - 2\lambda\mu)x + (b - \mu^{2})$$

Since sum of roots of monic polynomial is equal to minus the coefficient of the second highest power, and two roots are x_0 and x_1 , the third root is $x_2 = \lambda^2 - x_0 - x_1$. Then $y_2 = \lambda x_2 + \mu$ and $R = (x_2, y_2)$.

• If $x_0 = x_1$, then using implicit differentiation:

$$y^{2} = x^{3} + ax + b$$
$$\implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^{2} + a}{2y}$$

and the rest is as above, but instead with $\lambda = \frac{3x_0^2 + a}{2y_0}$.

Definition. Group law of elliptic curves: let $E : y^2 = x^3 + ax + b$. For all normal points $P = (x_0, y_0), Q = (x_1, y_1) \in E(K)$, define

- \overline{O} is group identity: $P \oplus \overline{O} = \overline{O} \oplus P = P$.
- If $P = -Q =: (x_0, -y_0), P \oplus Q = \overline{O}$.
- Otherwise, $P \oplus Q = (x_2, -y_2)$, where

$$\begin{split} x_2 &= \lambda^2 - (x_0 + x_1), \\ y_2 &= \lambda x_2 + \mu, \\ \lambda &= \begin{cases} \frac{y_1 - y_0}{x_1 - x_0} \text{ if } x_0 \neq x_1 \\ \frac{3x_0^2 + a}{2y_0} \text{ if } x_0 = x_1 \\ \mu &= y_0 - \lambda x_0 \end{split}$$

Example.

• Let E be given by $y^2 = x^3 + 17$ over \mathbb{Q} , $P = (-1, 4) \in E(\mathbb{Q})$, $Q = (2, 5) \in E(\mathbb{Q})$. To find $P \oplus Q$,

$$\lambda = \frac{5-4}{2-(-1)} = \frac{1}{3}, \quad \mu = 4 - \lambda(-1) = \frac{13}{3}$$

So $x_2=\lambda^2-(-1)-2=-\frac{8}{9}$ and $y_2=-(\lambda x_2+\mu)=-\frac{109}{27}$ hence

$$P\oplus Q=\left(-\frac{8}{9},-\frac{109}{27}\right)$$

To find [2]P,

so

$$\begin{split} \lambda &= \frac{3(-1)^2 + 0}{2 \cdot 4} = \frac{3}{8}, \quad \mu = 4 - \frac{3}{8} \cdot (-1) = \frac{35}{8} \\ x_3 &= \lambda^2 - 2 \cdot (-1) \frac{137}{64}, \, y_3 = -(\lambda x_3 + \mu) = -\frac{2651}{512} \text{ hence} \\ &[2]P = (x_3, y_3) = \left(\frac{137}{64}, -\frac{2651}{512}\right) \end{split}$$

Theorem (Hasse's theorem). Let $|E(\mathbb{F}_p)| = N$, then

$$|N-(p+1)| \leq 2\sqrt{p}$$

Theorem. $E(\mathbb{F}_p)$ is isomorphic to either \mathbb{Z}/k or $\mathbb{Z}/m \times \mathbb{Z}/n$ with $m \mid n$.

Definition. Elliptic curve Diffie-Hellman:

• Alice and Bob publicly choose elliptic curve $E(\mathbb{F}_p)$ and $P \in \mathbb{F}_p$ with order a large prime n.

- Alice chooses random $\alpha \in \{0,...,n-1\}$ and publishes $Q_A = [\alpha]P.$
- Bob chooses random $\beta \in \{0, ..., n-1\}$ and publishes $Q_B = [\beta]P$.
- Alice computes $[\alpha]Q_B = [\alpha\beta]P$, Bob computes $[\beta]Q_A = [\beta\alpha]P$.
- Shared key is $K = [\alpha \beta] P$.

Definition. Elliptic curve Elgamal signatures:

- Use agreed elliptic curve E over \mathbb{F}_p , point $P \in E(\mathbb{F}_p)$ of prime order n.
- Alice wants to sign message m, encoded as integer mod n.
- Alice generates private key $\alpha \in \mathbb{Z}/n$ and public key $Q = [\alpha]P$.
- Valid signature is (R, s) where $R = (x_R, y_R) \in E(\mathbb{F}_p), s \in \mathbb{Z}/n, [\widetilde{x_R}]Q \oplus [s]R = [m]P.$
- To generate a valid signature, Alice chooses random $0 \neq k \in (\mathbb{Z}/n)^{\times}$ and sets R = [k]P, $s = k^{-1}(m \widetilde{x_R}\alpha)$.
- k must be randomly generated for each message.

Algorithm (Elliptic curve DLP baby-step giant-step algorithm). Given P and $Q = [\alpha]P$, find α :

- Let $N = \lfloor \sqrt{n} \rfloor$, *n* is order of *P*.
- Compute P, [2]P, ..., [N-1]P.
- Compute $Q \oplus [-N]P, Q \oplus [-2N]P, ..., Q \oplus [-(N-1)N]P$ and find a match between these two lists: $[i]P = Q \oplus [-jN]P$, then [i+jN]P = Q so $\alpha = i+jN$.

Remark. For well-chosen elliptic curves, the best algorithm for solving DLP is the baby-step giant-step algorithm, with run time $O(\sqrt{n}) \approx O(\sqrt{p})$. This is much slower than the index-calculus method for the DLP in \mathbb{F}_p^{\times} .

Algorithm (Pollard's p-1 algorithm). To factorise n = pq:

- Choose smoothness bound B.
- Choose random $2 \le a \le n-2$. Set $a_1 = a, i = 2$.
- Compute $a_i = a_{i-1}^i \mod n$. Find $d = \gcd(a_i 1, n)$. If 1 < d < n, we have found a nontrivial factor of n. If d = n, pick new a and retry. If d = 1, increment i by 1 and repeat this step.
- A variant is instead of computing $a_i = a_{i-1}^i$, compute $a_i = a_{i-1}^{m_{i-1}}$ where $m_1, ..., m_r$ are the prime powers $\leq B$ (each prime power is the maximal prime power $\leq B$ for that prime).
- The algorithm works if p-1 is B-powersmooth (all prime power factors are $\leq B$), since if b is order of $a \mod p$, then $b \mid (p-1)$ so $b \mid B!$ (also $b \mid m_1 \cdots m_r$). If the first i for which i! (or $m_1 \cdots m_i$) is divisible by d and order of $a \mod q$, then $a_i 1 = a^{i!} 1 \mod n$ is divisible by both p and q, so must retry with different a.

Remark. Let n = pq, p, q prime, $a, b \in \mathbb{Z}$, $gcd(4a^3 + 27b^2, n) = 1$. Then $E: y^2 = x^3 + ax + b$ defines elliptic curve over \mathbb{F}_p and over \mathbb{F}_q . If $(x, y) \in \mathbb{Z}/n$ is solution to $E \mod n$ then can reduce coordinates mod p to obtain non-infinite point of $E(\mathbb{F}_p)$ and mod q to obtain non-infinite point of $E(\mathbb{F}_q)$.

Proposition. let $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E \mod n$, with

 $(P_1 \operatorname{mod} p) \oplus (P_2 \operatorname{mod} p) = \overline{O}$ $(P_1 \operatorname{mod} q) \oplus (P_2 \operatorname{mod} q) \neq \overline{O}$

Then $gcd(x_1 - x_2, n)$ (or $gcd(2x_1, n)$ if $P_1 = P_2$) is factor of n.

Algorithm (Lenstra's algorithm). To factorise n:

- Choose smoothness bound B.
- Choose random elliptic curve E over \mathbb{Z}/n with $gcd(\Delta_E, n) = 1$ and P = (x, y) a point on E.
- Set $P_1 = P$, attempt to compute P_i , $2 \le i \le B$ by $P_i = [i]P_{i-1}$. If one of these fails, a divisor of n has been found (by failing to compute an inverse mod n). If this divisor is trivial, restart with new curve and point.
- If i = B is reached, restart with new curve and point.
- Again, a variant is calculating $P_i=[m_i]P_{i-1}$ instead of $[i]P_{i-1}$ where $m_1,...,m_r$ are the prime powers $\leq B$

Remark. Lenstra's algorithm works if $|E(\mathbb{Z}/p)|$ is *B*-powersmooth but $|E(\mathbb{Z}/q)|$ isn't. Since we can vary *E*, it is very likely to work eventually.

Running time depends on p (the smaller prime factor):

$$O\Bigl(\exp\Bigl(\sqrt{2\log(p)\log\log(p)}\Bigr)\Bigr)$$

Compare this to the general number field sieve running time:

$$O\left(\exp\left(C(\log n)^{1/3}(\log\log n)^{2/3}\right)\right)$$

5.1. Torsion points

Definition. Let G abelian group. $g \in G$ is a **torsion** if it has finite order. If order divides n, then [n]g = e and g is n-torsion.

Definition. *n*-torsion subgroup is

$$G[n] \coloneqq \{g \in G : [n]g = e\}$$

Definition. torsion subgroup of G is

$$G_{\mathrm{tors}} = \{g \in G : g \text{ is torsion}\} = \bigcup_{n \in \mathbb{N}} G[n]$$

Example.

- In \mathbb{Z} , only 0 is torsion.
- In $(\mathbb{Z}/10)^{\times}$, by Lagrange's theorem, every point is 4-torsion.
- For finite groups $G,\,G_{\rm tors}=G=G[|G|]$ by Lagrange's theorem.

5.2. Rational points

Note. for elliptic curve $E: y^2 = x^3 + ax + b$ over \mathbb{Q} , can assume that $a, b \in \mathbb{Z}$. So assume $a, b \in \mathbb{Z}$ in this section.

Theorem (Nagell-Lutz). Let *E* elliptic curve, let $P = (x, y) \in E(\mathbb{Q})_{\text{tors}}$. Then $x, y \in \mathbb{Z}$, and either y = 0 (in which case *P* is 2-torsion) or $y^2 \mid \Delta_E$.

Corollary. $E(\mathbb{Q})_{\text{tors}}$ is finite.

Example. can use Nagell-Lutz to show a point is not torsion.

• P = (0, 1) lies on elliptic curve $y^2 = x^3 - x + 1$. $[2]P = (\frac{1}{4}, -\frac{7}{8}) \notin \mathbb{Z}^2$. Then [2]P is not torsion, hence P is not torsion. So $E(\mathbb{Q})$ contains distinct points ..., $[-2]P, -P, \overline{O}, P, [2]P, ...$, hence E has infinitely many solutions in \mathbb{Q} .

Theorem (Mazur). Let *E* be elliptic curve over \mathbb{Q} . Then $E(\mathbb{Q})_{\text{tors}}$ is either:

- cyclic of order $1 \le N \le 10$ or order 12, or
- of the form $\mathbb{Z}/2 \times \mathbb{Z}/2N$ for $1 \le N \le 4$.

Definition. let $E: y^2 = x^3 + ax + b$ defined over \mathbb{Q} , $a, b \in \mathbb{Z}$. For odd prime p, taking reductions \overline{a} , $\overline{b} \mod p$ gives curve over \mathbb{F}_p :

$$\overline{E}: y^2 = x^3 + \overline{a}x + \overline{b}$$

This is elliptic curve if $\Delta_E \not\equiv 0 \mod p$, in which case p is **prime of good reduction** for E.

Theorem. let $E: y^2 = x^3 + ax + b$ defined over \mathbb{Q} , $a, b \in \mathbb{Z}$, p be odd prime of good reduction for E. Then $f: E(\mathbb{Q})_{\text{tors}} \to \overline{E}(\mathbb{F}_p)$ defined by

$$f(x,y)\coloneqq (\overline{x},\overline{y}), \quad f(\overline{O})\coloneqq \overline{O}$$

is an injective homomorphism (note $x, y \in \mathbb{Z}$ by Nagell-Lutz).

Corollary. $E(\mathbb{Q})_{\text{tors}}$ can be thought of as subgroup of $E(\mathbb{F}_p)$ for any prime p of good reduction, so by Lagrange's theorem, $|E(\mathbb{Q})_{\text{tors}}|$ divides $|E(\mathbb{F}_p)|$.

Theorem (Mordell). If E is elliptic curve over \mathbb{Q} , then

$$E(\mathbb{Q}) \cong E(\mathbb{Q})_{\text{tors}} \times \mathbb{Z}^r$$

for some $r \ge 0$ the **rank** of *E*. So for some $P_1, ..., P_r \in E(\mathbb{Q})$,

$$E(\mathbb{Q}) = \{n_1P_1 + \dots + n_rP_r + T : n_i \in \mathbb{Z}, T \in E(\mathbb{Q})_{\mathrm{tors}}\}$$

 $P_1, ..., P_r$ (together with T) are **generators** for $E(\mathbb{Q})$.

6. Basic coding theory

6.1. First definitions

Definition.

- Alphabet A is finite set of symbols.
- A^n is set of all lists of n symbols from A these are words of length n.
- Code of block length n on A is subset of A^n .
- Codeword is element of a code.

Definition. If |A| = 2, codes on A are **binary** codes. If |A| = 3, codes on A are **ternary codes**. If |A| = q, codes on A are *q*-ary codes. Generally, use $A = \{0, 1, ..., q - 1\}$.

Definition. Let $x = x_1...x_n$, $y = y_1...y_n \in A^n$. Hamming distance between x and y is number of indices where x and y differ:

$$d:A^n\times A^n\to \{0,...,n\}, \quad d(x,y)\coloneqq |\{i\in [n]: x_i\neq y_i\}|$$

So d(x, y) is minimum number of changes needed to change x to y. If x transmitted and y received, then d(x, y) symbol-errors have occurred.

Proposition. Let x, y words of length n.

- $0 \le d(x,y) \le n$.
- $\bullet \ \ d(x,y)=0 \Longleftrightarrow x=y.$
- d(x, y) = d(y, x).
- $\bullet \ \ \forall z \in A^n, d(x,y) \leq d(x,z) + d(z,y).$

Definition. **Minimum distance** of code C is

$$d(C)\coloneqq\min\{d(x,y):x,y\in C,x\neq y\}\in\mathbb{N}$$

Notation. Code of block length n with M codewords and minimum distance d is called (n, M, d) (or (n, M)) code. A q-ary code is called an $(n, M, d)_q$ code.

Definition. Let $C \subseteq A^n$ code, x word of length n. A **nearest neighbour** of x is codeword $c \in C$ such that $d(x, c) = \min\{d(x, y) : y \in C\}$.

6.2. Nearest-neighbour decoding

Definition. Nearest-neighbour decoding (NND) means if word x received, it is decoded to a nearest neighbour of x in a code C.

Proposition. Let C be code with minimum distance d, let word x be received with t symbol errors. Then

- If $t \leq d-1$, then we can detect that x has some errors.
- If $t \leq \left|\frac{d-1}{2}\right|$, then NND will correct the errors.

6.3. Probabilities

Definition. q-ary symmetric channel with symbol-error probability p is channel for q-ary alphabet A such that:

- For every $a \in A$, probability that a is changed in channel is p (i.e. symbol-errors in different positions are independent events).
- For every $a \neq b \in A$, probability that a is changed to b in channel is

$$\mathbb{P}(b \text{ received} \mid a \text{ sent}) = \frac{p}{q-1}$$

i.e. given that a symbol has changed, it is equally likely to change to any of the q-1 other symbols.

Proposition. Let c codeword in q-ary code $C \subseteq A^n$ sent over q-ary symmetric channel with symbol-error probability p. Then

$$\mathbb{P}(x \text{ received} \mid c \text{ sent}) = \left(\frac{p}{q-1}\right)^t (1-p)^{n-t}, \text{ where } t = d(c,x)$$

x	t = d(000, x)	chance 000 received	chance if $p = 0.01$	NND decodes
		as x		correctly?
000	0	$\left(1-p ight)^3$	0.970299	yes
100	1	$p{\left({1 - p} \right)^2}$	0.009801	yes
010	1	$p(1-p)^2$	0.009801	yes
001	1	$p{\left({1 - p} ight)^2}$	0.009801	yes
110	2	$p^2(1-p)$	0.000099	no
101	2	$p^2(1-p)$	0.000099	no
011	2	$p^2(1-p)$	0.000099	no
111	3	p^3	0.000001	no

Example. Let $C = \{000, 111\} \subset \{0, 1\}^3$.

Corollary. If $p < \frac{q-1}{q}$ then P(x received | c sent) increases as d(x, c) decreases. **Remark**. By Bayes' theorem,

$$\mathbb{P}(c \text{ sent} \mid x \text{ received}) = \frac{\mathbb{P}(c \text{ sent and } x \text{ received})}{\mathbb{P}(x \text{ received})} = \frac{\mathbb{P}(c \text{ sent})\mathbb{P}(x \text{ received} \mid c \text{ sent})}{\mathbb{P}(x \text{ received})}$$

Proposition. Let C be q-ary (n, M, d) code used over q-ary symmetric channel with symbol-error probability p < (q-1)/q, and each codeword $c \in C$ is equally likely to be sent. Then for any word x, $\mathbb{P}(c \text{ sent } | x \text{ received})$ increases as d(x, c) decreases.

6.4. Bounds on codes

Proposition (Singleton bound). For q-ary code (n, M, d) code, $M \le q^{n-d+1}$.

Definition. Code which saturates singleton bound is called **maximum distance** separable (MDS).

Example. Let C_n be binary repetition code of block length n,

$$C_n \coloneqq \{\underbrace{00...0}_n, \underbrace{11...1}_n\} \subset \{0,1\}^n$$

 ${\cal C}_n$ is $\left(n,2,n\right)_2$ code, and $2=2^{n-n+1}$ so ${\cal C}_n$ is MDS code.

Definition. Let A be alphabet, |A| = q. Let $n \in \mathbb{N}, 0 \le t \le n, t \in \mathbb{N}, x \in A^n$.

• Ball of radius t around x is

$$S(x,t)\coloneqq \{y\in A^n: d(y,x)\leq t\}$$

• Code $C \subseteq A^n$ is **perfect** if

$$\exists t \in \mathbb{N}_0: A^n = \coprod_{c \in C} S(c,t)$$

where \coprod is disjoint union.

Example. For $C = \{000, 111\} \subset \{0, 1\}^3$, $S(000, 1) = \{000, 100, 010, 001\}$ and $S(111, 1) = \{111, 011, 101, 110\}$. These are disjoint and $S(000, 1) \cup S(111, 1) = \{0, 1\}^3$, so C is perfect.

Example. Let $C = \{111, 020, 202\} \subset \{0, 1, 2\}^3$. $\forall c \in C, d(c, 012) = 2$. So 012 is not in any S(c, 1) but is in every S(c, 2), so C is not perfect.

Lemma. Let $|A| = q, x \in A^n$, then

$$|S(x,t)| = \sum_{k=0}^t \binom{n}{k} (q-1)^k$$

Example. Let $C = \{111, 020, 202\} \subset \{0, 1, 2\}^3$, so q = 3, n = 3. So $|S(x, 1)| = \binom{3}{0} + \binom{3}{1}(3-1) = 7$, $|S(x,2)| = \binom{3}{0} + \binom{3}{1}(3-1) + \binom{3}{2}(3-1)^2 = 19$. But $|\{0, 1, 2\}|^3 = 27$ and $7 \nmid 27$, $19 \nmid 27$, so $\{0, 1, 2\}^3$ can't be particular by balls of either size. So C can't be perfect. |S(x,3)| = 27, but then C must contain only one codeword to be perfect, and |S(x,0)| = 1, but then $C = A^n$ to be perfect. These are trivial, useless codes.

Proposition (Hamming/sphere-packing bound). q-ary (n, M, d) code satisfies

$$M\sum_{k=0}^{t} {n \choose k} (q-1)^k \le q^n$$
, where $t = \left\lfloor \frac{d-1}{2} \right\rfloor$

Corollary. Code saturates Hamming bound iff it is perfect.

7. Linear codes

7.1. Finite vector spaces

Definition. Linear code of block length n is subspace of \mathbb{F}_q^n .

Example. Let $\boldsymbol{x} = (0, 1, 2, 0), \, \boldsymbol{y} = (1, 1, 1, 1), \, \boldsymbol{z} = (0, 2, 1, 0) \in \mathbb{F}_3^4. \, C_1 = \{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{0}\}$ is not linear code since e.g. $\boldsymbol{x} + \boldsymbol{y} = (1, 2, 0, 1) \notin C_1. \, C_2 = \{\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{0}\}$ is linear code.

Notation. Spanning set of S is $\langle S \rangle$.

Proposition. If linear code $C \subseteq \mathbb{F}_q^n$ has dim(C) = k, then $|C| = q^k$.

Definition. A q-ary [n, k, d] code is linear code: a subspace of \mathbb{F}_q^n of dimension k with minimum distance d. Note: a q-ary [n, k, d] code is a q-ary (n, q^k, d) code.

7.2. Weight and minimum distance

Definition. Weight of $x \in \mathbb{F}_q^n$, w(x), is number of non-zero entries in x:

$$w(\pmb{x}) = |\{i \in [n]: x_i \neq 0\}|$$

Lemma. $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}_q^n, d(\boldsymbol{x}, \boldsymbol{y}) = w(\boldsymbol{x} - \boldsymbol{y})$. In particular, $w(\boldsymbol{x}) = d(\boldsymbol{x}, \boldsymbol{0})$.

Proposition. Let $C \subseteq \mathbb{F}_q^n$ linear code, then

$$d(C) = \min\{w(c) : c \in C, c \neq 0\}$$

Remark. To find d(C) for linear code with q^k words, only need to consider q^k weights instead of $\binom{q^k}{2}$ distances.

8. Codes as images

8.1. Generator-matrices

Definition. Let $C \subseteq \mathbb{F}_q^n$ be linear code. Let $G \in M_{k,n}(\mathbb{F}_q)$, $f_G : \mathbb{F}_q^k \to \mathbb{F}_q^n$ be linear map defined by $f_G(\mathbf{x}) = \mathbf{x}G$. Then G is **generator-matrix** for C if

• $C = \operatorname{im}(f) = \{ \boldsymbol{x}G : \boldsymbol{x} \in \mathbb{F}_q^k \} \subseteq \mathbb{F}_q^n.$

• The rows of G are linearly independent.

i.e. G is generator-matrix for C iff rows of G form basis for C (note $\mathbf{x}G = x_1\mathbf{g_1} + \cdots + x_k\mathbf{g_k}$ where $\mathbf{g_i}$ are rows of G).

Remark. Given linear code $C = \langle a_1, ..., a_m \rangle$, a generator-matrix can be found for C by constructing the matrix A with rows a_i , then performing elementary row operations to bring A into RREF. Once the m - k bottom zero rows have been removed, the resulting matrix is a generator-matrix.

Example. Let $C = \langle \{(0,0,3,1,4), (2,4,1,4,0), (5,3,0,1,6)\} \rangle \subseteq \mathbb{F}_7^5$.

$$A = \begin{bmatrix} 2 & 4 & 1 & 4 & 0 \\ 5 & 3 & 0 & 1 & 6 \\ 0 & 0 & 3 & 1 & 4 \end{bmatrix} \xrightarrow[A_{12}(1)]{} \begin{bmatrix} 2 & 4 & 1 & 4 & 0 \\ 0 & 0 & 1 & 5 & 6 \\ 0 & 0 & 3 & 1 & 4 \end{bmatrix} \xrightarrow[M_1(4)]{} \begin{bmatrix} 1 & 2 & 4 & 2 & 0 \\ 0 & 0 & 1 & 5 & 6 \\ 0 & 0 & 3 & 1 & 4 \end{bmatrix} \xrightarrow[A_{21}(3), A_{23}(4)]{} \begin{bmatrix} 1 & 2 & 0 & 3 & 4 \\ 0 & 0 & 1 & 5 & 6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

So $G = \begin{bmatrix} 1 & 2 & 0 & 3 & 4 \\ 0 & 0 & 1 & 5 & 6 \end{bmatrix}$ is generator matrix for C and $\dim(C) = 2$.

8.2. Encoding and channel decoding

- Let C be q-ary [n, k] code with generator matrix $G \in M_{k,n}(\mathbb{F}_q)$. To encode a message $x \in \mathbb{F}_q^k$, multiply by G: codeword is c = xG.
- Note that rows of G being linearly independent implies f_G is injective, so no two messages are mapped to same codeword.
- If we want the code to correct (and detect) errors, we must have k < n.
- The received word $y \in \mathbb{F}_q^n$ is decoded to the codeword $c' \in C$.
- Channel decoding is finding the unique word x' such that x'G = c', i.e. $x' \cdot g_i = c'_i$ where g_i is *i*th column of G. This gives n equations in k unknowns. Since c' is a codeword, these equations are consistent, and since f_G is injective, there is a unique solution.
- To solve x'G = c', either use that $G^t(x')^t = (c')^t$ and row-reduce augmented matrix $(G^t \mid (c')^t)$, or pick generator-matrix in RREF, which then picks out each x'_i .

8.3. Equivalence and standard form

Definition. Codes C_1, C_2 of block length *n* over alphabet *A* are **equivalent** if we can transform one to the other by applying sequence of the following two kinds of changes to all the codewords (simultaneously):

- Permute the *n* positions.
- In a particular position, permuting the |A| = q symbols.

Proposition. Equivalent codes have the same parameters (n, M, d).

Definition. Linear codes $C_1, C_2 \subseteq \mathbb{F}_q^n$ are **monomially equivalent** if we can obtain one from the other by applying sequence of the following two kinds of changes to all codewords (simultaneously):

- Permuting the *n* positions.
- In particular position, multiply by $\lambda \in \mathbb{F}_{q}^{\times}$.

If only the first change is used, the codes are **permutation equivalent**.

Definition. $P \in M_n(\mathbb{F}_q)$ is **permutation matrix** if it has a single 1 in each row and column, and zeros elsewhere. Any permutation of *n* positions of row vector in \mathbb{F}_q^n can be described as right multiplication by permutation matrix.

Proposition. Permutation matrices are orthogonal: $P^T = P^{-1}$.

Proposition. Let $C_1, C_2 \subseteq \mathbb{F}_q^n$ linear codes with generator matrices G_1, G_2 . Then if $G_1 = G_2 P$ for permutation matrix P, then C_1 and C_2 are permutation equivalent.

Definition. $M \in M_m(\mathbb{F}_q)$ is **monomial matrix** if it has exactly one non-zero element in each row and column.

Proposition. Monomial matrix M can always be written as M = DP or M = PD' where P is permutation matrix and D, D' are diagonal matrices. P is **permutation** part, D and D' are **diagonal parts** of M.

Example.

$$\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Proposition. Let $C_1, C_2 \subseteq \mathbb{F}_q^n$ be linear codes with generator-matrices G_1, G_2 . Then if $G_2 = G_1 M$ for some monomial matrix M, then C_1 and C_2 are monomially equivalent.

Definition. Let $C \subseteq \mathbb{F}_q^n$ linear code. If $G = (I_k \mid A)$, with $A \in M_{k,n-k}(\mathbb{F}_q)$, is generator-matrix for C, then G is in **standard form**.

Note. Not every linear code has generator-matrix in standard form.

Proposition. Every linear code is permutation equivalent to a linear code with generator-matrix in standard form.

Example. Let $C_1 \subseteq \mathbb{F}_7^5$ have generator matrix $G_1 = \begin{bmatrix} 1 & 2 & 0 & 3 & 4 \\ 0 & 0 & 1 & 5 & 6 \end{bmatrix}$. Then applying permutation matrix

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \Longrightarrow G_1 P = \begin{bmatrix} 1 & 0 & 2 & 3 & 4 \\ 0 & 1 & 0 & 5 & 6 \end{bmatrix} = (I_2 \mid A)$$

9. Codes as kernels

9.1. Dual codes

Definition. Let $C \subseteq \mathbb{F}_q^n$ linear code. **Dual** of C is

$$C^{\perp} \coloneqq \left\{ oldsymbol{v} \in \mathbb{F}_q^n : orall oldsymbol{u} \in C, oldsymbol{v} \cdot oldsymbol{u} = 0
ight\}$$

Proposition. If G is generator matrix for linear code C then

$$C^{\perp} = \{ \boldsymbol{v} \in \mathbb{F}_q^n : \boldsymbol{v} G^T = \boldsymbol{0} \} = \ker(f_{G^T})$$

where $f_{G^T} : \mathbb{F}_q^n \to \mathbb{F}_q^k$, $f(x) = xG^T$ is linear map.

Proposition. Let $C \subseteq \mathbb{F}_q^n$ linear code. Then C^{\perp} is also linear code and $\dim(C) + \dim(C^{\perp}) = n$.

Proposition. Let $C \subseteq \mathbb{F}_q^n$ linear code, then $(C^{\perp})^{\perp} = C$.

Proposition. Let $C \subseteq \mathbb{F}_q^n$ have generator-matrix in standard form, $G = (I_k \mid A)$, then $H = (-A^T \mid I_{n-k})$ is generator-matrix for C^{\perp} .

Proposition. Let G be generator matrix of $C \subseteq \mathbb{F}_q^n$, let $P \in M_n(\mathbb{F}_q)$ permutation matrix such that $GP = (I_k \mid A)$ for some $A \in M_{k,n-k}(\mathbb{F}_q)$. Then $H = (-A^T \mid I_{n-k})P^T$ is generator matrix for C^{\perp} .

Algorithm. To find basis for dual code C^{\perp} , given generator matrix $G = (g_{ij}) \in M_{k,n}(\mathbb{F}_q)$ for C in RREF:

1. Let $L = \{1 \le j \le n : G \text{ has leading 1 in column } j\}$.

2. For each $1 \leq j \leq n, j \notin L$, construct v_j as follows:

1. For $m \notin L$, mth entry of v_j is 1 if m = j and 0 otherwise.

2. Fill in the other entries of v_i (left to right) as $-g_{1i}, ..., -g_{ki}$.

3. The n-k vectors v_j are basis for C^{\perp} .

Example. Let $C \subseteq \mathbb{F}_5^7$ be linear code with generator-matrix

	[1	2	0	3	4	0	0
G =	0	0	1	1	2	0	$\begin{bmatrix} 0\\ 3\\ 4 \end{bmatrix}$
	0	0	0	0	0	1	4

Then $L = \{1, 3, 6\}.$

- $\bullet \ v_2 = (3, 1, 0, 0, 0, 0, 0)$
- $v_4 = (2, 0, 4, 1, 0, 0, 0)$
- $v_5 = (1, 0, 3, 0, 1, 0, 0)$
- $v_7 = (0, 0, 2, 0, 0, 1, 1)$
- So generator matrix for C^{\perp} is

$$H = \begin{bmatrix} 3 & 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 4 & 1 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 1 \end{bmatrix}$$

9.2. Check-matrices

Definition. Let C be $[n,k]_q$ code, assume there exists $H \in M_{n-k,n}(\mathbb{F}_q)$ with linearly independent rows, such that

$$C = \left\{ \boldsymbol{v} \in \mathbb{F}_q^n : \boldsymbol{v} H^t = \boldsymbol{0} \right\}$$

Then H is **check-matrix** for C.

Proposition. If code C has generator-matrix G and check-matrix H, then C^{\perp} has check-matrix G and generator-matrix H.

Remark. We can use above algorithm for the $G \leftrightarrow H$ algorithm: obtain a generator-matrix for C from a check-matrix for C, or vice versa.

9.3. Minimum distance from a check-matrix

Lemma. Let C be $[n,k]_q$ code, $C = \{ x \in \mathbb{F}_q^n : xA^T = \mathbf{0} \}$ for some $A \in M_{m,n}(\mathbb{F}_q)$. The following are equivalent:

- There are d linearly dependent columns of A.
- $\exists c \in C : 0 < w(c) \leq d.$

Example. Let $C = \{ \boldsymbol{x} \in \mathbb{F}_7^5 : \boldsymbol{x}A^T = \boldsymbol{0} \}$ where

$$A = \begin{bmatrix} 3 & 1 & 1 & 4 & 1 \\ 2 & 2 & 5 & 1 & 4 \\ 6 & 3 & 5 & 0 & 2 \end{bmatrix} \in M_{3,5}(\mathbb{F}_7)$$

We have $(0, 1, 2, 0, 4)A^T = 0$. So $(0, 1, 2, 0, 4) \in C$, so C has codeword of weight 3. Also, 1(1, 2, 3) + 2(1, 5, 5) + 4(1, 2, 4) = (0, 0, 0) so A has 3 linearly dependent columns.

Theorem. Let $C = \{ \boldsymbol{x} \in \mathbb{F}_q^n : \boldsymbol{x}A^T = \boldsymbol{0} \}$ for some $A \in M_{m,n}(\mathbb{F}_q)$. Then there is a linearly dependent set of d(C) columns of A, but any set of d(C) - 1 columns of A is linearly independent.

So d(C) is the smallest possible size of a set of linearly dependent columns of A.

10. Polynomials and cyclic codes

10.1. Non-prime finite fields

Theorem. Let $f(x) \in \mathbb{F}_q[x]$, then $\mathbb{F}_q[x]/\langle f(x) \rangle$ is ring. $\mathbb{F}_q[x]/\langle f(x) \rangle$ is field iff f(x) irreducible in $\mathbb{F}_q[x]$.

Proposition. If $f(x) = \lambda m(x) \in \mathbb{F}_q[x]$, with $0 \neq \lambda \in \mathbb{F}_q$, then

$$\mathbb{F}_q[x]/\langle f(x)\rangle = \mathbb{F}_q[x]/\langle m(x)\rangle$$

In particular, we only need to consider monic polynomials.

Definition. $\alpha \in \mathbb{F}_q$ is **primitive** if

$$\mathbb{F}_q^{\times} = \left\{ \alpha^j : j \in \{0,...,q-2\} \right\}$$

Every finite field has a primitive element.

Definition. Let $f(x) \in \mathbb{F}_q[x]$ irreducible. If x is primitive in $\mathbb{F}_q[x]/\langle f(x) \rangle$, then f(x) is **primitive polynomial** over \mathbb{F}_q .

Theorem. Let $q = p^r$, p prime, $r \ge 2$ integer. Then there exists monic, irreducible $f(x) \in \mathbb{F}_p[x]$ with $\deg(f) = r$. In particular, $\mathbb{F}_q = \mathbb{F}_p[x]/\langle f(x) \rangle$ is field with $q = p^r$ elements. Moreover, we can choose f(x) to be primitive.

10.2. Cyclic codes

Definition. Code C is **cyclic** if it is linear and

$$(a_0,...,a_{n-1})\in C \Longleftrightarrow (a_{n-1},a_0,...,a_{n-2})\in C$$

i.e. any cyclic shift of a codeword is also a codeword.

Notation. Let $R_n = \mathbb{F}_q[x]/(x^n - 1)$. Note R_n is not field. There is correspondence between elements in R_n and vectors in \mathbb{F}_q^n :

$$a(x)=a_0+\dots+a_{n-1}x^{n-1}\longleftrightarrow {\pmb a}=(a_0,\dots,a_{n-1})$$

Lemma. If $a(x) \leftrightarrow a$, then $xa(x) \leftrightarrow (a_{n-1}, a_0, ..., a_{n-2})$.

 $\begin{array}{ll} \textbf{Proposition.} & C \subseteq R_n \text{ is cyclic iff } C \text{ is ideal in } R_n, \text{ i.e. } a(x), b(x) \in C \Longrightarrow a(x) + \\ b(x) \in C \text{ and } a(x) \in C, r(x) \in R_n \Longrightarrow r(x)a(x) \in C. \end{array}$

Definition. For $f(x) \in R_n$, the code generated by f(x) is

$$\langle f(x)\rangle\coloneqq\{r(x)f(x):r(x)\in R_n\}$$

Proposition. For any $f(x) \in R_n$, $\langle f(x) \rangle$ is cyclic code. **Example**. Let $R_3 = \mathbb{F}_2[x]/(x^3-1)$, $f(x) = x^2 + 1 \in R_3$. Then

$$\begin{split} \langle f(x)\rangle &= \left\{0,1+x,1+x^2,x+x^2\right\} \subseteq R_3 \\ &\longleftrightarrow \left\{(0,0,0),(1,1,0),(1,0,1),(0,1,1)\right\} \subseteq \mathbb{F}_2^3 \end{split}$$

Theorem. Let C cyclic code in R_n over \mathbb{F}_q , $C \neq \{0\}$. Then

- There is unique monic polynomial g(x) of smallest degree in C.
- $C = \langle g(x) \rangle$.
- $g(x) \mid x^n 1$.

Remark. Converse of above theorem holds: every monic factor g(x) of $x^n - 1$ is the unique generator polynomial of $\langle g(x) \rangle$, so distinct factors generate distinct codes. So to find all cyclic codes in R_n , find each monic divisor g(x) of $x^n - 1$ to give cyclic code $\langle g(x) \rangle$.

Remark. If $C = \{0\}$, then setting $g(x) = x^n - 1$, we have $C = \langle g(x) \rangle$.

Definition. In cyclic code C, monic polynomial of minimal degree is the **generatorpolynomial** of C.

Example. To find all binary cyclic codes of block-length 3, consider $R_3 = \mathbb{F}_2[x]/\langle x^3 - 1 \rangle$. In $\mathbb{F}_2[x]$, $x^3 - 1 = (x+1)(x^2 + x + 1)$ and $x^2 + x + 1$ is irreducible. So the possible candidates for the generator-polynomial are

generator	code in R_3	code in \mathbb{F}_2^3
1	R_3	\mathbb{F}_2^3
x + 1	$\{0, 1+x, 1+x^2, x+x^2\}$	$\{(0,0,0),(1,1,0),(1,0,1),(0,1,1)\}$
$x^2 + x + 1$	$\{0, 1 + x + x^2\}$	$\{(0,0,0),(1,1,1)\}$
$x^{3} - 1$	{0}	$\{(0,0,0)\}$

10.3. Matrices for cyclic codes

Proposition. If C is cyclic code with generator-polynomial $g(x) = g_0 + \dots + g_r x^r$, then dim(C) = n - r and C has generator-matrix

$$G = \begin{bmatrix} g_0 \ g_1 \ \cdots \ g_r \ 0 \ \cdots \ \cdots \ 0 \\ 0 \ g_0 \ g_1 \ \cdots \ g_r \ 0 \ \cdots \ 0 \\ 0 \ 0 \ g_0 \ g_1 \ \cdots \ g_r \ 0 \ \cdots \\ 0 \ \cdots \ 0 \ \ddots \ \ddots \ \ddots \ \ddots \ \ddots \\ 0 \ \cdots \ \cdots \ 0 \ g_0 \ g_1 \ \cdots \ g_r \end{bmatrix} \in M_{n-r,n}(\mathbb{F}_q)$$

Example. Let $C = \{(0,0,0), (1,1,0), (0,1,1), (1,0,1)\} \in \mathbb{F}_2^3$. $C = \langle 1+x \rangle$ so $\dim(C) = 3 - 1 = 2$,

$$G = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Definition. Let $C \subseteq R_n$ be [n, k] cyclic code with generator polynomial g(x), let $g(x)h(x) = x^n - 1 \in \mathbb{F}_q[x]$. Then h(x) is the **check-polynomial** of C.

Lemma. Check-polynomial of cyclic [n, k] code is monic of degree k.

Proposition. Let C be cyclic code in R_n with check-polynomial h(x). Then $c(x) \in C$ iff c(x)h(x) = 0 in R_n .

Definition. The **reciprocal polynomial** of $h(x) = h_0 + h_1 x + \dots + h_k x^k$ is

$$\overline{h}(x)=h_k+h_{k-1}x+\cdots+h_0x^k=x^kh(x^{-1})$$

Proposition. Let C cyclic [n, k] code with check-polynomial $h(x) = h_0 + \dots + h_k x^k$. Then

• C has check-matrix

$$H = \begin{bmatrix} h_k & h_{k-1} & \cdots & h_0 & 0 & \cdots & \cdots & 0\\ 0 & h_k & h_{k-1} & \cdots & h_0 & 0 & \cdots & 0\\ 0 & 0 & h_k & h_{k-1} & \cdots & h_0 & 0 & \cdots \\ 0 & \cdots & 0 & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \cdots & \cdots & 0 & h_k & h_{k-1} & \cdots & h_0 \end{bmatrix}$$

• C^{\perp} is cyclic and generated by $\overline{h}(x)$ (i.e. $h_0^{-1}\overline{h}(x)$ is generator-polynomial for C^{\perp}).

11. MDS and perfect codes

11.1. Reed-Solomon codes

Notation. Let $P_k = \mathbb{F}_q[z]_{\leq k}$ be vector space of polynomials of degree < k in \mathbb{F}_q :

$$\mathbb{F}_q[z]_{< k} = \left\{ a_0 + \dots + a_{k-1} z^{k-1} : a_i \in \mathbb{F}_q \right\}$$

Dimension of $\mathbb{F}_q[z]_{\leq k}$ is k.

Definition. Let $0 \le k \le n \le q$, $\boldsymbol{a} = (a_1, ..., a_n)$, $\boldsymbol{b} = (b_1, ..., b_n) \in \mathbb{F}_q^n$ with all a_j distinct and all b_j non-zero. Define the linear map

$$\varphi_{\boldsymbol{a},\boldsymbol{b}}:\boldsymbol{P}_{\!\!\boldsymbol{k}}\to\mathbb{F}_q^n,\quad \varphi_{\boldsymbol{a},\boldsymbol{b}}(f(z))\coloneqq(b_1f(a_1),...,b_nf(a_n))\in\mathbb{F}_q^n$$

The q-ary Reed-Solomon code $RS_k(a, b)$ is the image of $\varphi_{a,b}$:

$$\mathrm{RS}_k(\boldsymbol{a}, \boldsymbol{b}) = \varphi_{\boldsymbol{a}, \boldsymbol{b}}(\boldsymbol{P}_k) \subseteq \mathbb{F}_q^n$$

Proposition.

- $\text{RS}_k(a, b)$ is a q-ary [n, k, n k + 1] code. In particular, it is an MDS code.
- A generator-matrix for $RS_k(a, b)$ is

$$G = (b_j a_j^{i-1})_{i,j} = \begin{bmatrix} \varphi_{\boldsymbol{a},\boldsymbol{b}}(1) \\ \vdots \\ \varphi_{\boldsymbol{a},\boldsymbol{b}}(z^{k-1}) \end{bmatrix} \in M_{k,n}\big(\mathbb{F}_q\big)$$

where $1 \le i \le k, 1 \le j \le n$.

Remark. We have

$$\{0\} = \mathrm{RS}_0({\boldsymbol{a}}, {\boldsymbol{b}}) \subset \mathrm{RS}_1({\boldsymbol{a}}, {\boldsymbol{b}}) \subset \dots \subset \mathrm{RS}_n({\boldsymbol{a}}, {\boldsymbol{b}}) = \mathbb{F}_q^n$$

(since a row is added to the generator matrix each time).

Example. Let q = 7, n = 5, k = 3, a = (0, 1, 6, 2, 3), b = (5, 4, 3, 2, 1). Then

$$\begin{split} \varphi_{\pmb{a},\pmb{b}}: \pmb{P}_3 \to \mathbb{F}_7^5, \\ f(z) \mapsto (5f(0), 4f(1), 3f(6), 2f(2), 1f(3)) \end{split}$$

So a generator matrix for $RS_3(a, b)$ is

$$G = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ 0 & 4 & 4 & 4 & 3 \\ 0 & 4 & 3 & 1 & 2 \end{bmatrix}$$

Definition. $\alpha \in \mathbb{F}_q$ is primitive *n*-th root of unity if $\alpha^n = 1$ and $\forall 0 < j < n$, $\alpha^j \neq 1$.

Proposition. Let $\alpha \in \mathbb{F}_q$ primitive *n*-th root of unity, $m \in \mathbb{Z}$, define

$$\boldsymbol{a}^{(m)} = \left(\left(\alpha^0 \right)^m, ..., \left(\alpha^{n-1} \right)^m \right) \in \mathbb{F}_q^n$$

Then for $0 \le k \le n$, $\mathrm{RS}_k(\boldsymbol{\alpha}^{(1)}, \boldsymbol{\alpha}^{(m)})$ is cyclic.

Example. In \mathbb{F}_5 , $2^1 = 2$, $2^2 = 4$, $2^3 = 3$, $2^4 = 1$ so 2 is primitive 4th root of unity in \mathbb{F}_5 so $\alpha^m = (1^m, 2^m, 4^m, 3^m)$. We have $\alpha^{(1)} = (1, 2, 4, 3)$, $\alpha^{(2)} = (1, 4, 1, 4)$, so a generator matrix for $\mathrm{RS}_2(\alpha^{(1)}, \alpha^{(2)})$ is

$$G = \begin{bmatrix} 1 & 4 & 1 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

By performing ERO's, we obtain another generator matrix

$$G' = \begin{bmatrix} 3 & 1 & 1 & 0 \\ 0 & 3 & 1 & 1 \end{bmatrix}$$

This is generator matrix for the cyclic code with generator polynomial $g(x) = (x - 1)(x - 3) = x^2 + x + 3$. So $\operatorname{RS}_2(\alpha^{(1)}, \alpha^{(2)})$ is cyclic with generator polynomial g(x). Note $x^4 - 1 = (x - 1)(x - 2)(x - 3)(x - 4)$ so $g(x) \mid x^4 - 1$.

Proposition. For $a, b \in \mathbb{F}_q^n$ with a_j all distinct and b_j all non-zero, • There exists c with all $c_j \neq 0$ such that for $1 \leq k \leq n-1$,

- $(\mathrm{RS}_k(\boldsymbol{a}, \boldsymbol{b}))^{\perp} = \mathrm{RS}_{n-k}(\boldsymbol{a}, \boldsymbol{c})$
- **c** is given by the $1 \times n$ check-matrix for $RS_{n-1}(a, b)$.

11.2. Hamming codes

Definition. Let $r \ge 2$, $n = 2^r - 1$, let $H \in M_{r,n}(\mathbb{F}_2)$ have columns corresponding to all non-zero vectors in \mathbb{F}_2^r . The **binary Hamming code of redundancy** r is

$$\operatorname{Ham}_2(r) = \{ \boldsymbol{x} \in \mathbb{F}_2^n : \boldsymbol{x} H^t = \boldsymbol{0} \}$$

Note the order of columns is not specified, so we have a collection of permutationequivalent codes.

Example. For r = 2, 3, we can take

$$H_2 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \quad H_3 = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Proposition. For $r \ge 2$, $\operatorname{Ham}_2(r)$ is perfect $[2^r - 1, 2^r - r - 1, 3]$ code with check-matrix H.

Definition. Can define Hamming codes for q > 2. Consider \mathbb{F}_q^r for $r \ge 2$. $v, w \in \mathbb{F}_q^r - \{0\}$ are **equivalent** if $v = \lambda \cdot w$ for some $\lambda \in \mathbb{F}_q^{\times}$. For $v \in \mathbb{F}_q^r - \{0\}$, set

$$L_{oldsymbol{v}} = \left\{oldsymbol{w} \in \mathbb{F}_q^r : oldsymbol{w} ext{ equivalent to } oldsymbol{v}
ight\} = \left\{\lambdaoldsymbol{v} : \lambda \in \mathbb{F}_q^ imes
ight\}$$

Note $|L_v| = q - 1$ and $w \in L_v$ iff $L_w = L_v$. Also, if $L_v \neq L_w$ then $L_v \cap L_w = \emptyset$. Hence the L_v partition $\mathbb{F}_q^r - \{0\}$ and there are $(q^r - 1)/(q - 1)$ of them. Example. For q = 3, r = 2 there are $(3^2 - 1)/(3 - 1) = 4$ sets:

$$\begin{split} & L_{(0,1)} = \{(0,1),(0,2)\}, \quad L_{(1,0)} = \{(1,0),(2,0)\}, \\ & L_{(1,1)} = \{(1,1),(2,2)\}, \quad L_{(1,2)} = \{(1,2),(2,1)\} \end{split}$$

Definition. For $r \ge 2$, $n = (q^r - 1)/(q - 1)$, construct $H \in M_{r,n}(\mathbb{F}_q)$ by taking one column from each of the *n* different L_v . The **Hamming code of redundancy** *r* is

$$\operatorname{Ham}_q(r) = \left\{ \boldsymbol{x} \in \mathbb{F}_q^n : \boldsymbol{x} H^t = \boldsymbol{0} \right\}$$

Note that different choices of H give monomially equivalent codes. Example. For Ham₃(2), we can choose e.g.

$$H = \begin{bmatrix} 0 & 2 & 2 & 2 \\ 1 & 2 & 0 & 1 \end{bmatrix} \quad \text{or} \quad H = \begin{bmatrix} 2 & 1 & 2 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

Proposition. For $r \ge 2$, $\operatorname{Ham}_q(r)$ is perfect [n, n - r, 3] code, with check-matrix H.