
Contents
1. Introduction .. 2
2. Symmetric key ciphers .. 2
3. Public key encryption and RSA ... 4
3.1. Factorisation .. 6
4. Diffie-Hellman key exchange ... 6
5. Elliptic curves ... 8
5.1. Torsion points .. 12
5.2. Rational points .. 12
6. Basic coding theory .. 13
6.1. First definitions .. 13
6.2. Nearest-neighbour decoding ... 14
6.3. Probabilities ... 14
6.4. Bounds on codes .. 15
7. Linear codes .. 16
7.1. Finite vector spaces ... 16
7.2. Weight and minimum distance .. 16
8. Codes as images .. 16
8.1. Generator-matrices .. 17
8.2. Encoding and channel decoding ... 17
8.3. Equivalence and standard form .. 17
9. Codes as kernels .. 18
9.1. Dual codes ... 18
9.2. Check-matrices ... 19
9.3. Minimum distance from a check-matrix ... 20
10. Polynomials and cyclic codes .. 20
10.1. Non-prime finite fields .. 20
10.2. Cyclic codes ... 21
10.3. Matrices for cyclic codes .. 22
11. MDS and perfect codes ... 22
11.1. Reed-Solomon codes ... 22
11.2. Hamming codes .. 24

1

1. Introduction
Definition. Encryption process:
• Alice has a message (plaintext) which is encrypted using an encryption key to

produce the ciphertext, which is sent to Bob.
• Bob uses a decryption key (which depends on the encryption key) to decrypt

the ciphertext and recover the original plaintext.
• It should be computationally infeasible to determine the plaintext without

knowing the decryption key.
Definition. Caesar cipher:
• Add constant 𝑘 to each letter in plaintext to produce ciphertext:

ciphertext letter = plaintext letter + 𝑘 mod 26
• To decrypt,

plaintext letter = ciphertext letter − 𝑘 mod 26
• The key is 𝑘 mod 26.
Note. 𝑍 is represented as 0 = 26 mod 26, 𝐴 as 1 mod 26.
Definition. We define the following cryptosystem objectives:
• Secrecy: an intercepted message is not able to be decrypted
• Integrity: it is impossible to alter a message without the receiver knowing
• Authenticity: receiver is certain of identity of sender (they can tell if an

impersonator sent the message)
• Non-repudiation: sender cannot claim they did not send a message; the receiver

can prove they did.
Definition. Kerckhoff’s principle: a cryptographic system should be secure even
if the details of the system are known to an attacker.
Definition. There are 4 types of attack:
• Ciphertext-only: the plaintext is deduced from the ciphertext.
• Known-plaintext: intercepted ciphertext and associated stolen plaintext are used

to determine the key.
• Chosen-plaintext: an attacker tricks a sender into encrypting various chosen

plaintexts and observes the ciphertext, then uses this information to determine the
key.

• Chosen-ciphertext: an attacker tricks the receiver into decrypting various chosen
ciphertexts and observes the resulting plaintext, then uses this information to
determine the key.

2. Symmetric key ciphers
Note. When converting letters to numbers, treat letters as integers modulo 26, with
𝐴 = 1, 𝑍 = 0 ≡ 26 (mod 26). Treat string of text as vector of integers modulo 26.
Definition. A symmetric key cipher is one in which encryption and decryption
keys are equal.

2

Definition. Key size is log2(number of possible keys).
Example. Caesar cipher is a substitution cipher. A stronger substitution cipher is
this: key is permutation of {𝑎, …, 𝑧}. But vulnerable to known-plaintext attacks and
ciphertext-only attacks, since different letters (and letter pairs) occur with different
frequencies in English.
Definition. One-time pad: key is uniformly, independently random sequence of
integers mod 26, (𝑘1, 𝑘2, …), known to sender and receiver. If message is
(𝑚1, 𝑚2, …, 𝑚𝑟) then ciphertext is (𝑐1, 𝑐2, …, 𝑐𝑟) = (𝑘1 + 𝑚1, 𝑘2 + 𝑚2, …, 𝑘𝑟 + 𝑚𝑟). To
decrypt the ciphertext, 𝑚𝑖 = 𝑐𝑖 − 𝑘𝑖. Once (𝑘1, …, 𝑘𝑟) have been used, they must
never be used again.
• One-time pad is information-theoretically secure against ciphertext-only attack:

ℙ(𝑀 = 𝑚 | 𝐶 = 𝑐) = ℙ(𝑀 = 𝑚).
• Disadvantage is keys must never be reused, so must be as long as message.
• Keys must be truly random.
Theorem (Chinese remainder theorem). Let 𝑚, 𝑛 ∈ ℕ coprime, 𝑎, 𝑏 ∈ ℤ. Then exists
unique solution 𝑥 mod 𝑚𝑛 to the congruences

𝑥 ≡ 𝑎 mod 𝑚
𝑥 ≡ 𝑏 mod 𝑛

Definition. Block cipher: group characters in plaintext into blocks of 𝑛 (the block
length) and encrypt each block with a key. So plaintext 𝑝 = (𝑝1, 𝑝2, …) is divided
into blocks 𝑃1, 𝑃2, … where 𝑃1 = (𝑝1, …, 𝑝𝑛), 𝑃2 = (𝑝𝑛+1, …, 𝑝2𝑛), …. Then ciphertext
blocks are given by 𝐶𝑖 = 𝑓(key, 𝑃𝑖) for some encryption function 𝑓 .
Definition. Hill cipher:
• Plaintext divided into blocks 𝑃1, …, 𝑃𝑟 of length 𝑛.
• Each block represented as column vector 𝑃𝑖 ∈ (ℤ/26ℤ)𝑛

• Key is invertible 𝑛 × 𝑛 matrix 𝑀 with elements in ℤ/26ℤ.
• Ciphertext for block 𝑃𝑖 is

𝐶𝑖 = 𝑀𝑃𝑖

It can be decrypted with 𝑃𝑖 = 𝑀−1𝐶𝑖.
• Let 𝑃 = (𝑃1, …, 𝑃𝑟), 𝐶 = (𝐶1, …, 𝐶𝑟), then 𝐶 = 𝑀𝑃 .
Definition. Confusion means each character of ciphertext depends on many
characters of key.
Definition. Diffusion means changing single character of plaintext changes many
characters of ciphertext. Ideal diffusion is when changing single character of plaintext
changes a proportion of (𝑆 − 1)/𝑆 of the characters of the ciphertext, where 𝑆 is the
number of possible symbols.
Remark. Confusion and diffusion make ciphertext-only attacks difficult.
Example. For Hill cipher, 𝑖th character of ciphertext depends on 𝑖th row of key (so
depends on 𝑛 characters of the key 𝑀) - this is medium confusion. If 𝑗th character of

3

plaintext changes and 𝑀𝑖𝑗 ≠ 0 then 𝑖th character of ciphertext changes. 𝑀𝑖𝑗 is non-
zero with probability roughly 25/26 so good diffusion.
Example. Hill cipher is susceptible to known plaintext attack:
• If 𝑃 = (𝑃1, …, 𝑃𝑛) are 𝑛 blocks of plaintext with length 𝑛 such that 𝑃 is invertible

and we know 𝑃 and the corresponding 𝐶, then we can recover 𝑀 , since 𝐶 =
𝑀𝑃 ⟹ 𝑀 = 𝐶𝑃−1.

• If enough blocks of ciphertext are intercepted, it is very likely that 𝑛 of them will
produce an invertible matrix 𝑃 .

3. Public key encryption and RSA
Definition. Public key cryptosystem:
• Bob produces encryption key, 𝑘𝐸, and decryption key, 𝑘𝐷. He publishes 𝑘𝐸 and

keeps 𝑘𝐷 secret.
• To encrypt message 𝑚, Alice sends ciphertext 𝑐 = 𝑓(𝑚, 𝑘𝐸) to Bob.
• To decrypt ciphertext 𝑐, Bob computes 𝑔(𝑐, 𝑘𝐷), where 𝑔 satisfies

𝑔(𝑓(𝑚, 𝑘𝐸), 𝑘𝐷) = 𝑚

for all messages 𝑚 and all possible keys.
• Computing 𝑚 from 𝑓(𝑚, 𝑘𝐸) should be hard without knowing 𝑘𝐷.
Algorithm. Converting between messages and numbers:
• To convert message 𝑚1𝑚2…𝑚𝑟, 𝑚𝑖 ∈ {0, …, 25} to number, compute

𝑚 = ∑
𝑟

𝑖=1
𝑚𝑖26𝑖−1

• To convert number 𝑚 to message, append character 𝑚 mod 26 to message. If 𝑚 <
26, stop. Otherwise, floor divide 𝑚 by 26 and repeat.

Theorem (Fermat's little theorem). Let 𝑝 prime, 𝑎 ∈ ℤ coprime to 𝑝, then 𝑎𝑝−1 ≡
1 (mod 𝑝).
Definition. Euler 𝜑 function is

𝜑 : ℕ → ℕ, 𝜑(𝑛) = |{1 ≤ 𝑎 ≤ 𝑛 : gcd(𝑎, 𝑛) = 1}| = |(ℤ/𝑛ℤ)×|

Proposition. 𝜑(𝑝𝑟) = 𝑝𝑟 − 𝑝𝑟−1, 𝜑(𝑚𝑛) = 𝜑(𝑚)𝜑(𝑛) for gcd(𝑚, 𝑛) = 1.
Theorem (Euler's theorem). If gcd(𝑎, 𝑛) = 1, 𝑎𝜑(𝑛) ≡ 1 (mod 𝑛).
Algorithm (RSA).
• 𝑘𝐸 is pair (𝑛, 𝑒) where 𝑛 = 𝑝𝑞, the RSA modulus, is product of two distinct

primes and 𝑒 ∈ ℤ, the encryption exponent, is coprime to 𝜑(𝑛).
• 𝑘𝐷, the decryption exponent, is integer 𝑑 such that 𝑑𝑒 ≡ 1 (mod 𝜑(𝑛)).
• 𝑚 is an integer modulo 𝑛, 𝑚 and 𝑛 are coprime.
• Encryption: 𝑐 = 𝑚𝑒 (mod 𝑛).
• Decryption: 𝑚 = 𝑐𝑑 (mod 𝑛).
• It is recommended that 𝑛 have at least 2048 bits. A typical choice of 𝑒 is 216 + 1.

4

Definition. RSA problem: given 𝑛 = 𝑝𝑞 a product of two unknown primes, 𝑒 and
𝑚𝑒 (mod 𝑛), recover 𝑚. If 𝑛 can be factored, then RSA is solved.
Definition. Factorisation problem: given 𝑛 = 𝑝𝑞 for large distinct primes 𝑝 and
𝑞, find 𝑝 and 𝑞.
Definition. RSA signatures:
• Public key is (𝑛, 𝑒) and private key is 𝑑.
• When sending a message 𝑚, message is signed by also sending 𝑠 = 𝑚𝑑 mod 𝑛, the

signature.
• (𝑚, 𝑠) is received, verified by checking if 𝑚 = 𝑠𝑒 mod 𝑛.
• Forging a signature on a message 𝑚 would require finding 𝑠 with 𝑚 = 𝑠𝑒 mod 𝑛.

This is the RSA problem.
• However, choosing signature 𝑠 first then taking 𝑚 = 𝑠𝑒 mod 𝑛 produces valid pairs.
• To solve this, (𝑚, 𝑠) is sent where 𝑠 = ℎ(𝑚)𝑑, ℎ is hash function. Then the

message receiver verifies ℎ(𝑚) = 𝑠𝑒 mod 𝑛.
• Now, for a signature to be forged, an attacker would have to find 𝑚 with ℎ(𝑚) =

𝑠𝑒 mod 𝑛.
Definition. Hash function is function ℎ : {messages} → ℋ that:
• Can be computed efficiently
• Is preimage-resistant: can’t quickly find 𝑚 given ℎ(𝑚).
• Is collision-resistant: can’t quickly find 𝑚, 𝑚′ such that ℎ(𝑚) = ℎ(𝑚′).
Example (Attacks on RSA).
• If you can factor 𝑛, you can compute 𝑑, so can break RSA (as then you know 𝜑(𝑛)

so can compute 𝑒−1 mod 𝜑(𝑛)).
• If 𝜑(𝑛) is known, then we have 𝑝𝑞 = 𝑛 and (𝑝 − 1)(𝑞 − 1) = 𝜑(𝑛) so 𝑝 + 𝑞 = 𝑛 −

𝜑(𝑛) + 1. Hence 𝑝 and 𝑞 are roots of 𝑥2 − (𝑛 − 𝜑(𝑛) + 1)𝑥 + 𝑛.
• Known 𝑑 attack:

‣ 𝑑𝑒 − 1 is multiple of 𝜑(𝑛) so 𝑝, 𝑞 | 𝑥𝑑𝑒−1 − 1.
‣ Look for factor 𝐾 of 𝑑𝑒 − 1 with 𝑥𝐾 − 1 divisible by 𝑝 but not 𝑞 (or vice versa)

(so likely that (𝑝 − 1) | 𝐾 but (𝑞 − 1) ∤ 𝐾).
‣ Let 𝑑𝑒 − 1 = 2𝑟𝑠, gcd(2, 𝑠) = 1, choose random 𝑥 mod 𝑛. Let 𝑦 = 𝑥𝑠, then 𝑦2𝑟 =

𝑥2𝑟𝑠 = 𝑥𝑑𝑒−1 ≡ 1 mod 𝑛.
‣ If 𝑦 ≡ 1 mod 𝑛, restart with new random 𝑥. Find first occurence of 1 in

𝑦, 𝑦2, …, 𝑦2𝑟 : 𝑦2𝑗 ≢ 1 mod 𝑛, 𝑦2𝑗+1 ≡ 1 mod 𝑛 for some 𝑗 ≥ 0.
‣ Let 𝑎 ≔ 𝑦2𝑗 , then 𝑎2 ≡ 1 mod 𝑛, 𝑎 ≢ 1 mod 𝑛. If 𝑎 ≡ −1 mod 𝑛, restart with new

random 𝑥.
‣ Now 𝑛 = 𝑝𝑞 | 𝑎2 − 1 = (𝑎 + 1)(𝑎 − 1) but 𝑛 ∤ (𝑎 + 1), (𝑎 − 1). So 𝑝 divides one of

𝑎 + 1, 𝑎 − 1 and 𝑞 divides the other. So gcd(𝑎 − 1, 𝑛), gcd(𝑎 + 1, 𝑛) are prime
factors of 𝑛.

Theorem. it is no easier to find 𝜑(𝑛) than to factorise 𝑛.
Theorem. it is no easier to find 𝑑 than to factor 𝑛.
Algorithm (Miller-Rabin). To probabilistically check whether 𝑛 is prime:
1. Let 𝑛 − 1 = 2𝑟𝑠, gcd(2, 𝑠) = 1.

5

2. Choose random 𝑥 mod 𝑛, compute 𝑦 = 𝑥𝑠 mod 𝑛.
3. Compute 𝑦, 𝑦2, …, 𝑦2𝑟 mod 𝑛.
4. If 1 isn’t in this list, 𝑛 is composite (with witness 𝑥).
5. If 1 is in list preceded by number other than ±1, 𝑛 is composite (with witness 𝑥).
6. Other, 𝑛 is possible prime (to base 𝑥).
Theorem.
• If 𝑛 prime then it is possible prime to every base.
• If 𝑛 composite then it is possible prime to ≤ 1/4 of possible bases.

In particular, if 𝑘 random bases are chosen, probability of composite 𝑛 being possible
prime for all 𝑘 bases is ≤ 4−𝑘.

3.1. Factorisation
Algorithm (Trial division factorisation). For 𝑝 = 2, 3, 5, … up to

√
𝑛, test whether

𝑝 | 𝑛.
Algorithm (Fermat's method for factorisation).
• If 𝑥2 ≡ 𝑦2 mod 𝑛 but 𝑥 ≢ ±𝑦 mod 𝑛, then 𝑥 − 𝑦 is divisible by factor of 𝑛 but not

by 𝑛 itself, so gcd(𝑥 − 𝑦, 𝑛) gives proper factor of 𝑛 (or 1).
• Let 𝑎 = ⌈

√
𝑛⌉. Compute 𝑎2 mod 𝑛, (𝑎 + 1)2 mod 𝑛 until a square 𝑥2 ≡

(𝑎 + 𝑖)2 mod 𝑛 appears. Then compute gcd(𝑎 + 𝑖 − 𝑥, 𝑛).
• Works well under special conditions on the factors: if |𝑝 − 𝑞| ≤ 2

√
2 4
√

𝑛 then
Fermat’s method takes one step: 𝑥 = ⌈

√
𝑛⌉ works.

Definition. An integer is 𝐵-smooth if all its prime factors are ≤ 𝐵.
Algorithm (Quadratic sieve).
• Choose 𝐵 and let 𝑚 be number of primes ≤ 𝐵.
• Look at integers 𝑥 = ⌈

√
𝑛⌉ + 𝑘, 𝑘 = 1, 2, … and check whether 𝑦 = 𝑥2 − 𝑛 is 𝐵-

smooth.
• Once 𝑦1 = 𝑥2

1 − 𝑛, …, 𝑦𝑡 = 𝑥2
𝑡 − 𝑛 are all 𝐵-smooth with 𝑡 > 𝑚, find some product

of them that is a square.
• Deduce a congruence between the squares. Use difference of two squares and gcd

to factor 𝑛.
• Time complexity is exp(

√
log 𝑛 log log 𝑛).

4. Diffie-Hellman key exchange
Theorem (Primitive root theorem). Let 𝑝 prime, then there exists 𝑔 ∈ 𝔽×

𝑝 such that
1, 𝑔, …, 𝑔𝑝−2 is complete set of residues mod 𝑝.
Definition. Let 𝑝 prime, 𝑔 ∈ 𝔽×

𝑝 . Order of 𝑔 is smallest 𝑎 ∈ ℕ such that 𝑔𝑎 = 1. 𝑔 is
primitive root if its order is 𝑝 − 1 (equivalently, 1, 𝑔, …, 𝑔𝑝−2 is complete set of
residues mod 𝑝).
Definition. Let 𝑝 prime, 𝑔 ∈ 𝔽×

𝑝 primitive root. If 𝑥 ∈ 𝔽×
𝑝 then 𝑥 = 𝑔𝐿 for some 0 ≤

𝐿 < 𝑝 − 1. Then 𝐿 is discrete logarithm of 𝑥 to base 𝑔. Write 𝐿 = 𝐿𝑔(𝑥).
Proposition.
• 𝑔𝐿𝑔(𝑥) ≡ 𝑥 (mod 𝑝) and 𝑔𝑎 ≡ 𝑥 (mod 𝑝) ⟺ 𝑎 ≡ 𝐿𝑔(𝑥) (mod 𝑝 − 1).

6

• 𝐿𝑔(1) = 0, 𝐿𝑔(𝑔) = 1.
• 𝐿𝑔(𝑥𝑦) ≡ 𝐿𝑔(𝑥) + 𝐿𝑔(𝑦) (mod 𝑝 − 1).
• 𝐿𝑔(𝑥−1) = −𝐿𝑔(𝑥) (mod 𝑝 − 1).
• 𝐿𝑔(𝑔𝑎 mod 𝑝) ≡ 𝑎 (mod 𝑝 − 1).
• ℎ is primitive root mod 𝑝 iff 𝐿𝑔(ℎ) coprime to 𝑝 − 1. So number of primitive roots

mod 𝑝 is 𝜑(𝑝 − 1).
Definition. Discrete logarithm problem: given 𝑝, 𝑔, 𝑥, compute 𝐿𝑔(𝑥).
Definition. Diffie-Hellman key exchange:
• Alice and Bob publicly choose prime 𝑝 and primitive root 𝑔 mod 𝑝.
• Alice chooses secret 𝛼 mod(𝑝 − 1) and sends 𝑔𝛼 mod 𝑝 to Bob publicly.
• Bob chooses secret 𝛽 mod(𝑝 − 1) and sends 𝑔𝛽 mod 𝑝 to Alice publicly.
• Alice and Bob both compute shared secret 𝜅 = 𝑔𝛼𝛽 = (𝑔𝛼)𝛽) = (𝑔𝛽)𝛼 mod 𝑝.
Definition. Diffie-Hellman problem: given 𝑝, 𝑔, 𝑔𝛼, 𝑔𝛽, compute 𝑔𝛼𝛽.
Remark. If discrete logarithm problem can be solved, so can Diffie-Hellman problem
(since could compute 𝛼 = 𝐿𝑔(𝑔𝑎) or 𝛽 = 𝐿𝑔(𝑔𝛽)).
Definition. Elgamal public key encryption:
• Alice chooses prime 𝑝, primitive root 𝑔, private key 𝛼 mod(𝑝 − 1).
• Her public key is 𝑦 = 𝑔𝛼.
• Bob chooses random 𝑘 mod(𝑝 − 1)
• To send message 𝑚 (integer mod 𝑝), he sends the pair (𝑟, 𝑚′) = (𝑔𝑘, 𝑚𝑦𝑘).
• To decrypt message, Alice computes 𝑟𝛼 = 𝑔𝛼𝑘 = 𝑦𝑘 and then 𝑚′𝑟−𝛼 = 𝑚′𝑦−𝑘 =

𝑚𝑔𝛼𝑘𝑔−𝛼𝑘 = 𝑚.
• If Diffie-Hellman problem is hard, then Elgamal encryption is secure against

known plaintext attack.
• Key 𝑘 must be random and different each time.
Definition. Decision Diffie-Hellman problem: given 𝑔𝑎, 𝑔𝑏, 𝑐 in 𝔽×

𝑝 , decide
whether 𝑐 = 𝑔𝑎𝑏.

This problem is not always hard, as can tell if 𝑔𝑎𝑏 is square or not. Can fix this by
taking 𝑔 to have large prime order 𝑞 | (𝑝 − 1). 𝑝 = 2𝑞 + 1 is a good choice.
Definition. Elgamal signatures:
• Public key is (𝑝, 𝑔), 𝑦 = 𝑔𝛼 for private key 𝛼.
• Valid Elgamal signature on 𝑚 ∈ {0, …, 𝑝 − 2} is pair (𝑟, 𝑠), 0 ≤ 𝑟, 𝑠 ≤ 𝑝 − 1

such that

𝑦𝑟𝑟𝑠 = 𝑔𝑚 (mod 𝑝)
• Alice computes 𝑟 = 𝑔𝑘, 𝑘 ∈ (ℤ/(𝑝 − 1))× random. 𝑘 should be different each time.
• Then 𝑔𝛼𝑟𝑔𝑘𝑠 ≡ 𝑔𝑚 mod 𝑝 so 𝛼𝑟 + 𝑘𝑠 ≡ 𝑚 (mod 𝑝 − 1) so 𝑠 = 𝑘−1(𝑚 −

𝛼𝑟) mod 𝑝 − 1.
Definition. Elgamal signature problem: given 𝑝, 𝑔, 𝑦, 𝑚, find 𝑟, 𝑠 such that
𝑦𝑟𝑟𝑠 = 𝑚.
Algorithm (Baby-step giant-step algorithm). To solve DLP:

7

• Let 𝑁 = ⌈
√

𝑝 − 1⌉.
• Baby-steps: compute 𝑔𝑗 mod 𝑝 for 0 ≤ 𝑗 < 𝑁 .
• Giant-steps: compute 𝑥𝑔−𝑁𝑘 mod 𝑝 for 0 ≤ 𝑘 < 𝑁 .
• Look for a match between baby-steps and giant-steps lists: 𝑔𝑗 = 𝑥𝑔−𝑁𝑘 ⟹ 𝑥 =

𝑔𝑗+𝑁𝑘.
• Always works since if 𝑥 = 𝑔𝐿 for 0 ≤ 𝐿 < 𝑝 − 1 ≤ 𝑁2, 𝐿 can be written as 𝑗 + 𝑁𝑘

with 𝑗, 𝑘 ∈ {0, …, 𝑁 − 1}.
Algorithm (Index calculus). To solve DLP:
• Fix smoothness bound 𝐵.
• Find many multiplicative relations between 𝐵-smooth numbers and powers of

𝑔 mod 𝑝.
• Solve these relations to find discrete logarithms of primes ≤ 𝐵.
• For 𝑖 = 1, 2, … compute 𝑥𝑔𝑖 mod 𝑝 until one is 𝐵-smooth, then use result from

previous step.
Remark. Pohlig-Hellman algorithm computes discrete logarithms mod 𝑝 with
approximate complexity log(𝑝)

√
ℓ where ℓ is largest prime factor of 𝑝 − 1, so is fast if

𝑝 − 1 is 𝐵-smooth. Therefore 𝑝 is chosen so that 𝑝 − 1 has large prime factor, e.g.
choose Germain prime 𝑝 = 2𝑞 + 1, with 𝑞 prime.

5. Elliptic curves
Definition. abelian group (𝐺, ∘) satisfies:
• Associativity: ∀𝑎, 𝑏, 𝑐, ∈ 𝐺, 𝑎 ∘ (𝑏 ∘ 𝑐) = (𝑎 ∘ 𝑏) ∘ 𝑐.
• Identity: ∃𝑒 ∈ 𝐺 : ∀𝑔 ∈ 𝐺, 𝑒 × 𝑔 = 𝑔.
• Inverses: ∀𝑔 ∈ 𝐺, ∃ℎ ∈ 𝐺 : 𝑔 ∘ ℎ = ℎ ∘ 𝑔 = 𝑒
• Commutativity: ∀𝑎, 𝑏 ∈ 𝐺, 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎.
Definition. 𝐻 ⊆ 𝐺 is subgroup of 𝐺 if (𝐻, ∘) is group.
Remark. To show 𝐻 is subgroup, sufficient to show 𝑔, ℎ ∈ 𝐻 ⇒ 𝑔 ∘ ℎ ∈ 𝐻 and
ℎ−1 ∈ 𝐻.
Notation. for 𝑔 ∈ 𝐺, write [𝑛]𝑔 for 𝑔 ∘ ⋯ ∘ 𝑔 𝑛 times if 𝑛 > 0, 𝑒 if 𝑛 = 0, [−𝑛]𝑔−1 if
𝑛 < 0.
Definition. subgroup generated by 𝑔 is

⟨𝑔⟩ = {[𝑛]𝑔 : 𝑛 ∈ ℤ}

If ⟨𝑔⟩ finite, it has order 𝑛, and 𝑔 has order 𝑛. If 𝐺 = ⟨𝑔⟩ for some 𝑔 ∈ 𝐺, 𝐺 is
cyclic and 𝑔 is generator.
Theorem (Lagrange's theorem). Let 𝐺 finite group, 𝐻 subgroup of 𝐺, then
|𝐻| | |𝐺|.
Corollary. if 𝐺 finite, 𝑔 ∈ 𝐺 has order 𝑛, then 𝑛 | |𝐺|.
Definition. DLP for abelian groups: given 𝐺 a cyclic abelian group, 𝑔 ∈ 𝐺 a
generator of 𝐺, 𝑥 ∈ 𝐺, find 𝐿 such that [𝐿]𝑔 = 𝑥. 𝐿 is well-defined modulo |𝐺|.

8

Definition. let (𝐺, ∘), (𝐻, ∙) abelian groups, homomorphism between 𝐺 and 𝐻 is
𝑓 : 𝐺 → 𝐻 with

∀𝑔, 𝑔′ ∈ 𝐺, 𝑓(𝑔 ∘ 𝑔′) = 𝑓(𝑔) ∙ 𝑓(𝑔′)

Isomorphism is bĳective homomorphism. 𝐺 and 𝐻 are isomorphic, 𝐺 ≅ 𝐻, if
there is isomorphism between them.
Theorem (Fundamental theorem of finite abelian groups). Let 𝐺 finite abelian
group, then there exist unique integers 2 ≤ 𝑛1, …, 𝑛𝑟 with 𝑛𝑖 | 𝑛𝑖+1 for all 𝑖, such that

𝐺 ≃ (ℤ/𝑛1) × ⋯ × (ℤ/𝑛𝑟)

In particular, 𝐺 is isomorphic to product of cyclic groups.
Definition. let 𝐾 field, char(𝐾) > 3. An elliptic curve over 𝐾 is defined by the
equation

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

where 𝑎, 𝑏 ∈ 𝐾, Δ𝐸 ≔ 4𝑎3 + 27𝑏2 ≠ 0.
Remark. Δ𝐸 ≠ 0 is equivalent to 𝑥3 + 𝑎𝑥 + 𝑏 having no repeated roots (i.e. 𝐸 is
smooth).
Definition. for elliptic curve 𝐸 defined over 𝐾, a 𝐾-point (point) on 𝐸 is either:
• A normal point: (𝑥, 𝑦) ∈ 𝐾2 satisfying the equation defining 𝐸.
• The point at infinity 𝑂 which can be thought of as infinitely far along the 𝑦-axis

(in either direction).

Denote set of all 𝐾-points on 𝐸 as 𝐸(𝐾).
Remark. Any elliptic curve 𝐸(𝐾) is an abelian group, with group operation ⊕ is
defined as:
• We should have 𝑃 ⊕ 𝑄 ⊕ 𝑅 = 𝑂 iff 𝑃 , 𝑄, 𝑅 lie on straight line.
• In this case, 𝑃 ⊕ 𝑄 = −𝑅.
• To find line ℓ passing through 𝑃 = (𝑥0, 𝑦0) and 𝑄 = (𝑥1, 𝑦1):

‣ If 𝑥0 ≠ 𝑥1, then equation of ℓ is 𝑦 = 𝜆𝑥 + 𝜇, where

𝜆 =
𝑦1 − 𝑦0
𝑥1 − 𝑥0

, 𝜇 = 𝑦0 − 𝜆𝑥0

Now

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 = (𝜆𝑥 + 𝜇)2

⟹ 0 = 𝑥3 − 𝜆2𝑥2 + (𝑎 − 2𝜆𝜇)𝑥 + (𝑏 − 𝜇2)

Since sum of roots of monic polynomial is equal to minus the coefficient of the
second highest power, and two roots are 𝑥0 and 𝑥1, the third root is 𝑥2 = 𝜆2 −
𝑥0 − 𝑥1. Then 𝑦2 = 𝜆𝑥2 + 𝜇 and 𝑅 = (𝑥2, 𝑦2).

‣ If 𝑥0 = 𝑥1, then using implicit differentiation:

9

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

⟹
d𝑦
d𝑥

=
3𝑥2 + 𝑎

2𝑦

and the rest is as above, but instead with 𝜆 = 3𝑥2
0+𝑎

2𝑦0
.

Definition. Group law of elliptic curves: let 𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏. For all normal
points 𝑃 = (𝑥0, 𝑦0), 𝑄 = (𝑥1, 𝑦1) ∈ 𝐸(𝐾), define
• 𝑂 is group identity: 𝑃 ⊕ 𝑂 = 𝑂 ⊕ 𝑃 = 𝑃 .
• If 𝑃 = −𝑄 ≕ (𝑥0, −𝑦0), 𝑃 ⊕ 𝑄 = 𝑂.
• Otherwise, 𝑃 ⊕ 𝑄 = (𝑥2, −𝑦2), where

𝑥2 = 𝜆2 − (𝑥0 + 𝑥1),
𝑦2 = 𝜆𝑥2 + 𝜇,

𝜆 =

⎩{
⎨
{⎧

𝑦1−𝑦0
𝑥1−𝑥0

if 𝑥0 ≠ 𝑥1

3𝑥2
0+𝑎

2𝑦0
if 𝑥0 = 𝑥1

,

𝜇 = 𝑦0 − 𝜆𝑥0

Example.
• Let 𝐸 be given by 𝑦2 = 𝑥3 + 17 over ℚ, 𝑃 = (−1, 4) ∈ 𝐸(ℚ), 𝑄 = (2, 5) ∈ 𝐸(ℚ).

To find 𝑃 ⊕ 𝑄,

𝜆 =
5 − 4

2 − (−1)
=

1
3
, 𝜇 = 4 − 𝜆(−1) =

13
3

So 𝑥2 = 𝜆2 − (−1) − 2 = −8
9 and 𝑦2 = −(𝜆𝑥2 + 𝜇) = −109

27 hence

𝑃 ⊕ 𝑄 = (−
8
9
, −

109
27

)

To find [2]𝑃 ,

𝜆 =
3(−1)2 + 0

2 ⋅ 4
=

3
8
, 𝜇 = 4 −

3
8

⋅ (−1) =
35
8

so 𝑥3 = 𝜆2 − 2 ⋅ (−1)137
64 , 𝑦3 = −(𝜆𝑥3 + 𝜇) = −2651

512 hence

[2]𝑃 = (𝑥3, 𝑦3) = (
137
64

, −
2651
512

)

Theorem (Hasse's theorem). Let |𝐸(𝔽𝑝)| = 𝑁 , then

|𝑁 − (𝑝 + 1)| ≤ 2√𝑝

Theorem. 𝐸(𝔽𝑝) is isomorphic to either ℤ/𝑘 or ℤ/𝑚 × ℤ/𝑛 with 𝑚 | 𝑛.
Definition. Elliptic curve Diffie-Hellman:
• Alice and Bob publicly choose elliptic curve 𝐸(𝔽𝑝) and 𝑃 ∈ 𝔽𝑝 with order a large

prime 𝑛.

10

• Alice chooses random 𝛼 ∈ {0, …, 𝑛 − 1} and publishes 𝑄𝐴 = [𝛼]𝑃 .
• Bob chooses random 𝛽 ∈ {0, …, 𝑛 − 1} and publishes 𝑄𝐵 = [𝛽]𝑃 .
• Alice computes [𝛼]𝑄𝐵 = [𝛼𝛽]𝑃 , Bob computes [𝛽]𝑄𝐴 = [𝛽𝛼]𝑃 .
• Shared key is 𝐾 = [𝛼𝛽]𝑃 .
Definition. Elliptic curve Elgamal signatures:
• Use agreed elliptic curve 𝐸 over 𝔽𝑝, point 𝑃 ∈ 𝐸(𝔽𝑝) of prime order 𝑛.
• Alice wants to sign message 𝑚, encoded as integer mod 𝑛.
• Alice generates private key 𝛼 ∈ ℤ/𝑛 and public key 𝑄 = [𝛼]𝑃 .
• Valid signature is (𝑅, 𝑠) where 𝑅 = (𝑥𝑅, 𝑦𝑅) ∈ 𝐸(𝔽𝑝), 𝑠 ∈ ℤ/𝑛, [𝑥𝑅]𝑄 ⊕ [𝑠]𝑅 =

[𝑚]𝑃 .
• To generate a valid signature, Alice chooses random 0 ≠ 𝑘 ∈ (ℤ/𝑛)× and sets 𝑅 =

[𝑘]𝑃 , 𝑠 = 𝑘−1(𝑚 − 𝑥𝑅𝛼).
• 𝑘 must be randomly generated for each message.
Algorithm (Elliptic curve DLP baby-step giant-step algorithm). Given 𝑃 and 𝑄 =
[𝛼]𝑃 , find 𝛼:
• Let 𝑁 = ⌈

√
𝑛⌉, 𝑛 is order of 𝑃 .

• Compute 𝑃 , [2]𝑃 , …, [𝑁 − 1]𝑃 .
• Compute 𝑄 ⊕ [−𝑁]𝑃 , 𝑄 ⊕ [−2𝑁]𝑃 , …, 𝑄 ⊕ [−(𝑁 − 1)𝑁]𝑃 and find a match

between these two lists: [𝑖]𝑃 = 𝑄 ⊕ [−𝑗𝑁]𝑃 , then [𝑖 + 𝑗𝑁]𝑃 = 𝑄 so 𝛼 = 𝑖 + 𝑗𝑁 .
Remark. For well-chosen elliptic curves, the best algorithm for solving DLP is the
baby-step giant-step algorithm, with run time 𝑂(

√
𝑛) ≈ 𝑂(√𝑝). This is much slower

than the index-calculus method for the DLP in 𝔽×
𝑝 .

Algorithm (Pollard’s 𝑝 − 1 algorithm). To factorise 𝑛 = 𝑝𝑞:
• Choose smoothness bound 𝐵.
• Choose random 2 ≤ 𝑎 ≤ 𝑛 − 2. Set 𝑎1 = 𝑎, 𝑖 = 2.
• Compute 𝑎𝑖 = 𝑎𝑖

𝑖−1 mod 𝑛. Find 𝑑 = gcd(𝑎𝑖 − 1, 𝑛). If 1 < 𝑑 < 𝑛, we have found a
nontrivial factor of 𝑛. If 𝑑 = 𝑛, pick new 𝑎 and retry. If 𝑑 = 1, increment 𝑖 by 1
and repeat this step.

• A variant is instead of computing 𝑎𝑖 = 𝑎𝑖
𝑖−1, compute 𝑎𝑖 = 𝑎𝑚𝑖−1

𝑖−1 where 𝑚1, …, 𝑚𝑟
are the prime powers ≤ 𝐵 (each prime power is the maximal prime power ≤ 𝐵 for
that prime).

• The algorithm works if 𝑝 − 1 is 𝐵-powersmooth (all prime power factors are ≤
𝐵), since if 𝑏 is order of 𝑎 mod 𝑝, then 𝑏 | (𝑝 − 1) so 𝑏 | 𝐵! (also 𝑏 | 𝑚1⋯𝑚𝑟). If the
first 𝑖 for which 𝑖! (or 𝑚1⋯𝑚𝑖) is divisible by 𝑑 and order of 𝑎 mod 𝑞, then 𝑎𝑖 −
1 = 𝑎𝑖! − 1 mod 𝑛 is divisible by both 𝑝 and 𝑞, so must retry with different 𝑎.

Remark. Let 𝑛 = 𝑝𝑞, 𝑝, 𝑞 prime, 𝑎, 𝑏 ∈ ℤ, gcd(4𝑎3 + 27𝑏2, 𝑛) = 1. Then 𝐸 : 𝑦2 =
𝑥3 + 𝑎𝑥 + 𝑏 defines elliptic curve over 𝔽𝑝 and over 𝔽𝑞. If (𝑥, 𝑦) ∈ ℤ/𝑛 is solution to
𝐸 mod 𝑛 then can reduce coordinates mod 𝑝 to obtain non-infinite point of 𝐸(𝔽𝑝) and
mod 𝑞 to obtain non-infinite point of 𝐸(𝔽𝑞).
Proposition. let 𝑃1 = (𝑥1, 𝑦1), 𝑃2 = (𝑥2, 𝑦2) ∈ 𝐸 mod 𝑛, with

11

(𝑃1 mod 𝑝) ⊕ (𝑃2 mod 𝑝) = 𝑂

(𝑃1 mod 𝑞) ⊕ (𝑃2 mod 𝑞) ≠ 𝑂

Then gcd(𝑥1 − 𝑥2, 𝑛) (or gcd(2𝑥1, 𝑛) if 𝑃1 = 𝑃2) is factor of 𝑛.
Algorithm (Lenstra's algorithm). To factorise 𝑛:
• Choose smoothness bound 𝐵.
• Choose random elliptic curve 𝐸 over ℤ/𝑛 with gcd(Δ𝐸, 𝑛) = 1 and 𝑃 = (𝑥, 𝑦) a

point on 𝐸.
• Set 𝑃1 = 𝑃 , attempt to compute 𝑃𝑖, 2 ≤ 𝑖 ≤ 𝐵 by 𝑃𝑖 = [𝑖]𝑃𝑖−1. If one of these

fails, a divisor of 𝑛 has been found (by failing to compute an inverse mod 𝑛). If
this divisor is trivial, restart with new curve and point.

• If 𝑖 = 𝐵 is reached, restart with new curve and point.
• Again, a variant is calculating 𝑃𝑖 = [𝑚𝑖]𝑃𝑖−1 instead of [𝑖]𝑃𝑖−1 where 𝑚1, …, 𝑚𝑟 are

the prime powers ≤ 𝐵
Remark. Lenstra’s algorithm works if |𝐸(ℤ/𝑝)| is 𝐵-powersmooth but |𝐸(ℤ/𝑞)|
isn’t. Since we can vary 𝐸, it is very likely to work eventually.

Running time depends on 𝑝 (the smaller prime factor):

𝑂(exp(√2 log(𝑝) log log(𝑝)))

Compare this to the general number field sieve running time:

𝑂(exp(𝐶(log 𝑛)1/3(log log 𝑛)2/3))

5.1. Torsion points
Definition. Let 𝐺 abelian group. 𝑔 ∈ 𝐺 is a torsion if it has finite order. If order
divides 𝑛, then [𝑛]𝑔 = 𝑒 and 𝑔 is 𝑛-torsion.
Definition. 𝑛-torsion subgroup is

𝐺[𝑛] ≔ {𝑔 ∈ 𝐺 : [𝑛]𝑔 = 𝑒}

Definition. torsion subgroup of 𝐺 is

𝐺tors = {𝑔 ∈ 𝐺 : 𝑔 is torsion} = ⋃
𝑛∈ℕ

𝐺[𝑛]

Example.
• In ℤ, only 0 is torsion.
• In (ℤ/10)×, by Lagrange’s theorem, every point is 4-torsion.
• For finite groups 𝐺, 𝐺tors = 𝐺 = 𝐺[|𝐺|] by Lagrange’s theorem.

5.2. Rational points
Note. for elliptic curve 𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 over ℚ, can assume that 𝑎, 𝑏 ∈ ℤ. So
assume 𝑎, 𝑏 ∈ ℤ in this section.

12

Theorem (Nagell-Lutz). Let 𝐸 elliptic curve, let 𝑃 = (𝑥, 𝑦) ∈ 𝐸(ℚ)tors. Then 𝑥, 𝑦 ∈
ℤ, and either 𝑦 = 0 (in which case 𝑃 is 2-torsion) or 𝑦2 ∣ Δ𝐸.
Corollary. 𝐸(ℚ)tors is finite.
Example. can use Nagell-Lutz to show a point is not torsion.
• 𝑃 = (0, 1) lies on elliptic curve 𝑦2 = 𝑥3 − 𝑥 + 1. [2]𝑃 = (1

4 , −7
8) ∉ ℤ2. Then [2]𝑃 is

not torsion, hence 𝑃 is not torsion. So 𝐸(ℚ) contains distinct points
…, [−2]𝑃 , −𝑃 , 𝑂, 𝑃 , [2]𝑃 , …, hence 𝐸 has infinitely many solutions in ℚ.

Theorem (Mazur). Let 𝐸 be elliptic curve over ℚ. Then 𝐸(ℚ)tors is either:
• cyclic of order 1 ≤ 𝑁 ≤ 10 or order 12, or
• of the form ℤ/2 × ℤ/2𝑁 for 1 ≤ 𝑁 ≤ 4.
Definition. let 𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 defined over ℚ, 𝑎, 𝑏 ∈ ℤ. For odd prime 𝑝,
taking reductions 𝑎, 𝑏 mod 𝑝 gives curve over 𝔽𝑝:

𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

This is elliptic curve if Δ𝐸 ≢ 0 mod 𝑝, in which case 𝑝 is prime of good reduction
for 𝐸.
Theorem. let 𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 defined over ℚ, 𝑎, 𝑏 ∈ ℤ, 𝑝 be odd prime of good
reduction for 𝐸. Then 𝑓 : 𝐸(ℚ)tors → 𝐸(𝔽𝑝) defined by

𝑓(𝑥, 𝑦) ≔ (𝑥, 𝑦), 𝑓(𝑂) ≔ 𝑂

is an injective homomorphism (note 𝑥, 𝑦 ∈ ℤ by Nagell-Lutz).
Corollary. 𝐸(ℚ)tors can be thought of as subgroup of 𝐸(𝔽𝑝) for any prime 𝑝 of
good reduction, so by Lagrange’s theorem, |𝐸(ℚ)tors| divides |𝐸(𝔽𝑝)|.
Theorem (Mordell). If 𝐸 is elliptic curve over ℚ, then

𝐸(ℚ) ≅ 𝐸(ℚ)tors × ℤ𝑟

for some 𝑟 ≥ 0 the rank of 𝐸. So for some 𝑃1, …, 𝑃𝑟 ∈ 𝐸(ℚ),

𝐸(ℚ) = {𝑛1𝑃1 + ⋯ + 𝑛𝑟𝑃𝑟 + 𝑇 : 𝑛𝑖 ∈ ℤ, 𝑇 ∈ 𝐸(ℚ)tors}

𝑃1, …, 𝑃𝑟 (together with 𝑇) are generators for 𝐸(ℚ).

6. Basic coding theory
6.1. First definitions
Definition.
• Alphabet 𝐴 is finite set of symbols.
• 𝐴𝑛 is set of all lists of 𝑛 symbols from 𝐴 - these are words of length 𝑛.
• Code of block length 𝑛 on 𝐴 is subset of 𝐴𝑛.
• Codeword is element of a code.

13

Definition. If |𝐴| = 2, codes on 𝐴 are binary codes. If |𝐴| = 3, codes on 𝐴 are
ternary codes. If |𝐴| = 𝑞, codes on 𝐴 are 𝑞-ary codes. Generally, use 𝐴 =
{0, 1, …, 𝑞 − 1}.
Definition. Let 𝑥 = 𝑥1…𝑥𝑛, 𝑦 = 𝑦1…𝑦𝑛 ∈ 𝐴𝑛. Hamming distance between 𝑥 and
𝑦 is number of indices where 𝑥 and 𝑦 differ:

𝑑 : 𝐴𝑛 × 𝐴𝑛 → {0, …, 𝑛}, 𝑑(𝑥, 𝑦) ≔ |{𝑖 ∈ [𝑛] : 𝑥𝑖 ≠ 𝑦𝑖}|

So 𝑑(𝑥, 𝑦) is minimum number of changes needed to change 𝑥 to 𝑦. If 𝑥 transmitted
and 𝑦 received, then 𝑑(𝑥, 𝑦) symbol-errors have occurred.
Proposition. Let 𝑥, 𝑦 words of length 𝑛.
• 0 ≤ 𝑑(𝑥, 𝑦) ≤ 𝑛.
• 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦.
• 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥).
• ∀𝑧 ∈ 𝐴𝑛, 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦).
Definition. Minimum distance of code 𝐶 is

𝑑(𝐶) ≔ min{𝑑(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝐶, 𝑥 ≠ 𝑦} ∈ ℕ

Notation. Code of block length 𝑛 with 𝑀 codewords and minimum distance 𝑑 is
called (𝑛, 𝑀, 𝑑) (or (𝑛, 𝑀)) code. A 𝑞-ary code is called an (𝑛, 𝑀, 𝑑)𝑞 code.
Definition. Let 𝐶 ⊆ 𝐴𝑛 code, 𝑥 word of length 𝑛. A nearest neighbour of 𝑥 is
codeword 𝑐 ∈ 𝐶 such that 𝑑(𝑥, 𝑐) = min{𝑑(𝑥, 𝑦) : 𝑦 ∈ 𝐶}.

6.2. Nearest-neighbour decoding
Definition. Nearest-neighbour decoding (NND) means if word 𝑥 received, it is
decoded to a nearest neighbour of 𝑥 in a code 𝐶.
Proposition. Let 𝐶 be code with minimum distance 𝑑, let word 𝑥 be received with
𝑡 symbol errors. Then
• If 𝑡 ≤ 𝑑 − 1, then we can detect that 𝑥 has some errors.
• If 𝑡 ≤ ⌊𝑑−1

2 ⌋, then NND will correct the errors.

6.3. Probabilities
Definition. 𝑞-ary symmetric channel with symbol-error probability 𝑝 is
channel for 𝑞-ary alphabet 𝐴 such that:
• For every 𝑎 ∈ 𝐴, probability that 𝑎 is changed in channel is 𝑝 (i.e. symbol-errors in

different positions are independent events).
• For every 𝑎 ≠ 𝑏 ∈ 𝐴, probability that 𝑎 is changed to 𝑏 in channel is

ℙ(𝑏 received | 𝑎 sent) =
𝑝

𝑞 − 1

i.e. given that a symbol has changed, it is equally likely to change to any of the 𝑞 − 1
other symbols.
Proposition. Let 𝑐 codeword in 𝑞-ary code 𝐶 ⊆ 𝐴𝑛 sent over 𝑞-ary symmetric
channel with symbol-error probability 𝑝. Then

14

ℙ(𝑥 received | 𝑐 sent) = (
𝑝

𝑞 − 1
)

𝑡

(1 − 𝑝)𝑛−𝑡, where 𝑡 = 𝑑(𝑐, 𝑥)

Example. Let 𝐶 = {000, 111} ⊂ {0, 1}3.

𝑥 𝑡 = 𝑑(000, 𝑥) chance 000 received
as 𝑥

chance if 𝑝 = 0.01 NND decodes
correctly?

000 0 (1 − 𝑝)3 0.970299 yes
100 1 𝑝(1 − 𝑝)2 0.009801 yes
010 1 𝑝(1 − 𝑝)2 0.009801 yes
001 1 𝑝(1 − 𝑝)2 0.009801 yes
110 2 𝑝2(1 − 𝑝) 0.000099 no
101 2 𝑝2(1 − 𝑝) 0.000099 no
011 2 𝑝2(1 − 𝑝) 0.000099 no
111 3 𝑝3 0.000001 no

Corollary. If 𝑝 < 𝑞−1
𝑞 then 𝑃(𝑥 received | 𝑐 sent) increases as 𝑑(𝑥, 𝑐) decreases.

Remark. By Bayes’ theorem,

ℙ(𝑐 sent | 𝑥 received) =
ℙ(𝑐 sent and 𝑥 received)

ℙ(𝑥 received)
=

ℙ(𝑐 sent)ℙ(𝑥 received | 𝑐 sent)
ℙ(𝑥 received)

Proposition. Let 𝐶 be 𝑞-ary (𝑛, 𝑀, 𝑑) code used over 𝑞-ary symmetric channel with
symbol-error probability 𝑝 < (𝑞 − 1)/𝑞, and each codeword 𝑐 ∈ 𝐶 is equally likely to
be sent. Then for any word 𝑥, ℙ(𝑐 sent | 𝑥 received) increases as 𝑑(𝑥, 𝑐) decreases.

6.4. Bounds on codes
Proposition (Singleton bound). For 𝑞-ary code (𝑛, 𝑀, 𝑑) code, 𝑀 ≤ 𝑞𝑛−𝑑+1.
Definition. Code which saturates singleton bound is called maximum distance
separable (MDS).
Example. Let 𝐶𝑛 be binary repetition code of block length 𝑛,

𝐶𝑛 ≔ {00…0⏟
𝑛

, 11…1⏟
𝑛

} ⊂ {0, 1}𝑛

𝐶𝑛 is (𝑛, 2, 𝑛)2 code, and 2 = 2𝑛−𝑛+1 so 𝐶𝑛 is MDS code.
Definition. Let 𝐴 be alphabet, |𝐴| = 𝑞. Let 𝑛 ∈ ℕ, 0 ≤ 𝑡 ≤ 𝑛, 𝑡 ∈ ℕ, 𝑥 ∈ 𝐴𝑛.
• Ball of radius 𝑡 around 𝑥 is

𝑆(𝑥, 𝑡) ≔ {𝑦 ∈ 𝐴𝑛 : 𝑑(𝑦, 𝑥) ≤ 𝑡}
• Code 𝐶 ⊆ 𝐴𝑛 is perfect if

∃𝑡 ∈ ℕ0 : 𝐴𝑛 = ∐
𝑐∈𝐶

𝑆(𝑐, 𝑡)

where ∐ is disjoint union.

15

Example. For 𝐶 = {000, 111} ⊂ {0, 1}3, 𝑆(000, 1) = {000, 100, 010, 001} and
𝑆(111, 1) = {111, 011, 101, 110}. These are disjoint and 𝑆(000, 1) ∪ 𝑆(111, 1) = {0, 1}3,
so 𝐶 is perfect.
Example. Let 𝐶 = {111, 020, 202} ⊂ {0, 1, 2}3. ∀𝑐 ∈ 𝐶, 𝑑(𝑐, 012) = 2. So 012 is not
in any 𝑆(𝑐, 1) but is in every 𝑆(𝑐, 2), so 𝐶 is not perfect.
Lemma. Let |𝐴| = 𝑞, 𝑥 ∈ 𝐴𝑛, then

|𝑆(𝑥, 𝑡)| = ∑
𝑡

𝑘=0
(

𝑛
𝑘

)(𝑞 − 1)𝑘

Example. Let 𝐶 = {111, 020, 202} ⊂ {0, 1, 2}3, so 𝑞 = 3, 𝑛 = 3. So |𝑆(𝑥, 1)| = (3
0) +

(3
1)(3 − 1) = 7, |𝑆(𝑥, 2)| = (3

0) + (3
1)(3 − 1) + (3

2)(3 − 1)2 = 19. But |{0, 1, 2}|3 = 27
and 7 ∤ 27, 19 ∤ 27, so {0, 1, 2}3 can’t be partioned by balls of either size. So 𝐶 can’t
be perfect. |𝑆(𝑥, 3)| = 27, but then 𝐶 must contain only one codeword to be perfect,
and |𝑆(𝑥, 0)| = 1, but then 𝐶 = 𝐴𝑛 to be perfect. These are trivial, useless codes.
Proposition (Hamming/sphere-packing bound). 𝑞-ary (𝑛, 𝑀, 𝑑) code satisfies

𝑀 ∑
𝑡

𝑘=0
(

𝑛
𝑘

)(𝑞 − 1)𝑘 ≤ 𝑞𝑛, where 𝑡 = ⌊
𝑑 − 1

2
⌋

Corollary. Code saturates Hamming bound iff it is perfect.

7. Linear codes
7.1. Finite vector spaces
Definition. Linear code of block length 𝑛 is subspace of 𝔽𝑛

𝑞 .
Example. Let 𝒙 = (0, 1, 2, 0), 𝒚 = (1, 1, 1, 1), 𝒛 = (0, 2, 1, 0) ∈ 𝔽4

3. 𝐶1 = {𝒙, 𝒚, 𝟎} is
not linear code since e.g. 𝒙 + 𝒚 = (1, 2, 0, 1) ∉ 𝐶1. 𝐶2 = {𝒙, 𝒛, 𝟎} is linear code.
Notation. Spanning set of 𝑆 is ⟨𝑆⟩.
Proposition. If linear code 𝐶 ⊆ 𝔽𝑛

𝑞 has dim(𝐶) = 𝑘, then |𝐶| = 𝑞𝑘.
Definition. A 𝑞-ary [𝑛, 𝑘, 𝑑] code is linear code: a subspace of 𝔽𝑛

𝑞 of dimension 𝑘
with minimum distance 𝑑. Note: a 𝑞-ary [𝑛, 𝑘, 𝑑] code is a 𝑞-ary (𝑛, 𝑞𝑘, 𝑑) code.

7.2. Weight and minimum distance
Definition. Weight of 𝒙 ∈ 𝔽𝑛

𝑞 , 𝑤(𝒙), is number of non-zero entries in 𝒙:

𝑤(𝒙) = |{𝑖 ∈ [𝑛] : 𝑥𝑖 ≠ 0}|

Lemma. ∀𝒙, 𝒚 ∈ 𝔽𝑛
𝑞 , 𝑑(𝒙, 𝒚) = 𝑤(𝒙 − 𝒚). In particular, 𝑤(𝒙) = 𝑑(𝒙, 𝟎).

Proposition. Let 𝐶 ⊆ 𝔽𝑛
𝑞 linear code, then

𝑑(𝐶) = min{𝑤(𝒄) : 𝒄 ∈ 𝐶, 𝒄 ≠ 𝟎}

Remark. To find 𝑑(𝐶) for linear code with 𝑞𝑘 words, only need to consider 𝑞𝑘

weights instead of (𝑞𝑘

2) distances.

16

8. Codes as images
8.1. Generator-matrices
Definition. Let 𝐶 ⊆ 𝔽𝑛

𝑞 be linear code. Let 𝐺 ∈ 𝑀𝑘,𝑛(𝔽𝑞), 𝑓𝐺 : 𝔽𝑘
𝑞 → 𝔽𝑛

𝑞 be linear
map defined by 𝑓𝐺(𝒙) = 𝒙𝐺. Then 𝐺 is generator-matrix for 𝐶 if
• 𝐶 = im(𝑓) = {𝒙𝐺 : 𝒙 ∈ 𝔽𝑘

𝑞} ⊆ 𝔽𝑛
𝑞 .

• The rows of 𝐺 are linearly independent.

i.e. 𝐺 is generator-matrix for 𝐶 iff rows of 𝐺 form basis for 𝐶 (note 𝒙𝐺 = 𝑥1𝒈𝟏 +
⋯ + 𝑥𝑘𝒈𝒌 where 𝒈𝒊 are rows of 𝐺).
Remark. Given linear code 𝐶 = ⟨𝒂1, …, 𝒂𝑚⟩, a generator-matrix can be found for 𝐶
by constructing the matrix 𝐴 with rows 𝒂𝑖, then performing elementary row
operations to bring 𝐴 into RREF. Once the 𝑚 − 𝑘 bottom zero rows have been
removed, the resulting matrix is a generator-matrix.
Example. Let 𝐶 = ⟨{(0, 0, 3, 1, 4), (2, 4, 1, 4, 0), (5, 3, 0, 1, 6)}⟩ ⊆ 𝔽5

7.

𝐴 =
⎣
⎢
⎡2

5
0

4
3
0

1
0
3

4
1
1

0
6
4⎦
⎥
⎤ →

𝐴12(1)
⎣
⎢
⎡2

0
0

4
0
0

1
1
3

4
5
1

0
6
4⎦
⎥
⎤ →

𝑀1(4)
⎣
⎢
⎡1

0
0

2
0
0

4
1
3

2
5
1

0
6
4⎦
⎥
⎤ →

𝐴21(3),𝐴23(4)
⎣
⎢
⎡1

0
0

2
0
0

0
1
0

3
5
0

4
6
0⎦
⎥
⎤

So 𝐺 = [1
0

2
0

0
1

3
5

4
6] is generator matrix for 𝐶 and dim(𝐶) = 2.

8.2. Encoding and channel decoding
• Let 𝐶 be 𝑞-ary [𝑛, 𝑘] code with generator matrix 𝐺 ∈ 𝑀𝑘,𝑛(𝔽𝑞). To encode a

message 𝑥 ∈ 𝔽𝑘
𝑞 , multiply by 𝐺: codeword is 𝑐 = 𝑥𝐺.

• Note that rows of 𝐺 being linearly independent implies 𝑓𝐺 is injective, so no two
messages are mapped to same codeword.

• If we want the code to correct (and detect) errors, we must have 𝑘 < 𝑛.
• The received word 𝑦 ∈ 𝔽𝑛

𝑞 is decoded to the codeword 𝑐′ ∈ 𝐶.
• Channel decoding is finding the unique word 𝑥′ such that 𝑥′𝐺 = 𝑐′, i.e. 𝑥′ ⋅

𝑔𝑖 = 𝑐′
𝑖 where 𝑔𝑖 is 𝑖th column of 𝐺. This gives 𝑛 equations in 𝑘 unknowns. Since

𝑐′ is a codeword, these equations are consistent, and since 𝑓𝐺 is injective, there is
a unique solution.

• To solve 𝑥′𝐺 = 𝑐′, either use that 𝐺𝑡(𝑥′)𝑡 = (𝑐′)𝑡 and row-reduce augmented
matrix (𝐺𝑡 | (𝑐′)𝑡), or pick generator-matrix in RREF, which then picks out each
𝑥′

𝑖.

8.3. Equivalence and standard form
Definition. Codes 𝐶1, 𝐶2 of block length 𝑛 over alphabet 𝐴 are equivalent if we
can transform one to the other by applying sequence of the following two kinds of
changes to all the codewords (simultaneously):
• Permute the 𝑛 positions.
• In a particular position, permuting the |𝐴| = 𝑞 symbols.
Proposition. Equivalent codes have the same parameters (𝑛, 𝑀, 𝑑).

17

Definition. Linear codes 𝐶1, 𝐶2 ⊆ 𝔽𝑛
𝑞 are monomially equivalent if we can obtain

one from the other by applying sequence of the following two kinds of changes to all
codewords (simultaneously):
• Permuting the 𝑛 positions.
• In particular position, multiply by 𝜆 ∈ 𝔽×

𝑞 .

If only the first change is used, the codes are permutation equivalent.
Definition. 𝑃 ∈ 𝑀𝑛(𝔽𝑞) is permutation matrix if it has a single 1 in each row
and column, and zeros elsewhere. Any permutation of 𝑛 positions of row vector in 𝔽𝑛

𝑞
can be described as right multiplication by permutation matrix.
Proposition. Permutation matrices are orthogonal: 𝑃𝑇 = 𝑃−1.
Proposition. Let 𝐶1, 𝐶2 ⊆ 𝔽𝑛

𝑞 linear codes with generator matrices 𝐺1, 𝐺2. Then if
𝐺1 = 𝐺2𝑃 for permutation matrix 𝑃 , then 𝐶1 and 𝐶2 are permutation equivalent.
Definition. 𝑀 ∈ 𝑀𝑚(𝔽𝑞) is monomial matrix if it has exactly one non-zero
element in each row and column.
Proposition. Monomial matrix 𝑀 can always be written as 𝑀 = 𝐷𝑃 or 𝑀 = 𝑃𝐷′

where 𝑃 is permutation matrix and 𝐷, 𝐷′ are diagonal matrices. 𝑃 is permutation
part, 𝐷 and 𝐷′ are diagonal parts of 𝑀 .
Example.

⎣
⎢
⎡0

0
1

2
0
0

0
3
0⎦
⎥
⎤ =

⎣
⎢
⎡2

0
0

0
3
0

0
0
1⎦
⎥
⎤

⎣
⎢
⎡0

0
1

1
0
0

0
1
0⎦
⎥
⎤ =

⎣
⎢
⎡0

0
1

1
0
0

0
1
0⎦
⎥
⎤

⎣
⎢
⎡1

0
0

0
2
0

0
0
3⎦
⎥
⎤

Proposition. Let 𝐶1, 𝐶2 ⊆ 𝔽𝑛
𝑞 be linear codes with generator-matrices 𝐺1, 𝐺2. Then

if 𝐺2 = 𝐺1𝑀 for some monomial matrix 𝑀 , then 𝐶1 and 𝐶2 are monomially
equivalent.
Definition. Let 𝐶 ⊆ 𝔽𝑛

𝑞 linear code. If 𝐺 = (𝐼𝑘 | 𝐴), with 𝐴 ∈ 𝑀𝑘,𝑛−𝑘(𝔽𝑞), is
generator-matrix for 𝐶, then 𝐺 is in standard form.
Note. Not every linear code has generator-matrix in standard form.
Proposition. Every linear code is permutation equivalent to a linear code with
generator-matrix in standard form.
Example. Let 𝐶1 ⊆ 𝔽5

7 have generator matrix 𝐺1 = [1
0

2
0

0
1

3
5

4
6]. Then applying

permutation matrix

𝑃 =

⎣
⎢
⎢
⎢
⎢
⎡1

0
0
0
0

0
0
1
0
0

0
1
0
0
0

0
0
0
1
0

0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎤

⟹ 𝐺1𝑃 = [1
0

0
1

2
0

3
5

4
6] = (𝐼2 | 𝐴)

9. Codes as kernels
9.1. Dual codes

18

Definition. Let 𝐶 ⊆ 𝔽𝑛
𝑞 linear code. Dual of 𝐶 is

𝐶⟂ ≔ {𝒗 ∈ 𝔽𝑛
𝑞 : ∀𝒖 ∈ 𝐶, 𝒗 ⋅ 𝒖 = 0}

Proposition. If 𝐺 is generator matrix for linear code 𝐶 then

𝐶⟂ = {𝒗 ∈ 𝔽𝑛
𝑞 : 𝒗𝐺𝑇 = 𝟎} = ker(𝑓𝐺𝑇)

where 𝑓𝐺𝑇 : 𝔽𝑛
𝑞 → 𝔽𝑘

𝑞 , 𝑓(𝑥) = 𝑥𝐺𝑇 is linear map.
Proposition. Let 𝐶 ⊆ 𝔽𝑛

𝑞 linear code. Then 𝐶⟂ is also linear code and dim(𝐶) +
dim(𝐶⟂) = 𝑛.
Proposition. Let 𝐶 ⊆ 𝔽𝑛

𝑞 linear code, then (𝐶⟂)⟂ = 𝐶.
Proposition. Let 𝐶 ⊆ 𝔽𝑛

𝑞 have generator-matrix in standard form, 𝐺 = (𝐼𝑘 | 𝐴),
then 𝐻 = (−𝐴𝑇 | 𝐼𝑛−𝑘) is generator-matrix for 𝐶⟂.
Proposition. Let 𝐺 be generator matrix of 𝐶 ⊆ 𝔽𝑛

𝑞 , let 𝑃 ∈ 𝑀𝑛(𝔽𝑞) permutation
matrix such that 𝐺𝑃 = (𝐼𝑘 | 𝐴) for some 𝐴 ∈ 𝑀𝑘,𝑛−𝑘(𝔽𝑞). Then 𝐻 =
(−𝐴𝑇 | 𝐼𝑛−𝑘)𝑃𝑇 is generator matrix for 𝐶⟂.
Algorithm. To find basis for dual code 𝐶⟂, given generator matrix 𝐺 = (𝑔𝑖𝑗) ∈
𝑀𝑘,𝑛(𝔽𝑞) for 𝐶 in RREF:
1. Let 𝐿 = {1 ≤ 𝑗 ≤ 𝑛 : 𝐺 has leading 1 in column 𝑗}.
2. For each 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ∉ 𝐿, construct 𝒗𝑗 as follows:

1. For 𝑚 ∉ 𝐿, 𝑚th entry of 𝒗𝑗 is 1 if 𝑚 = 𝑗 and 0 otherwise.
2. Fill in the other entries of 𝒗𝑗 (left to right) as −𝑔1𝑗, …, −𝑔𝑘𝑗.

3. The 𝑛 − 𝑘 vectors 𝒗𝑗 are basis for 𝐶⟂.
Example. Let 𝐶 ⊆ 𝔽7

5 be linear code with generator-matrix

𝐺 =
⎣
⎢
⎡1

0
0

2
0
0

0
1
0

3
1
0

4
2
0

0
0
1

0
3
4⎦
⎥
⎤

Then 𝐿 = {1, 3, 6}.
• 𝑣2 = (3, 1, 0, 0, 0, 0, 0)
• 𝑣4 = (2, 0, 4, 1, 0, 0, 0)
• 𝑣5 = (1, 0, 3, 0, 1, 0, 0)
• 𝑣7 = (0, 0, 2, 0, 0, 1, 1)
• So generator matrix for 𝐶⟂ is

𝐻 =

⎣
⎢
⎢
⎡3

2
1
0

1
0
0
0

0
4
3
2

0
1
0
0

0
0
1
0

0
0
0
1

0
0
0
1⎦
⎥
⎥
⎤

9.2. Check-matrices
Definition. Let 𝐶 be [𝑛, 𝑘]𝑞 code, assume there exists 𝐻 ∈ 𝑀𝑛−𝑘,𝑛(𝔽𝑞) with linearly
independent rows, such that

19

𝐶 = {𝒗 ∈ 𝔽𝑛
𝑞 : 𝒗𝐻𝑡 = 𝟎}

Then 𝐻 is check-matrix for 𝐶.
Proposition. If code 𝐶 has generator-matrix 𝐺 and check-matrix 𝐻, then 𝐶⟂ has
check-matrix 𝐺 and generator-matrix 𝐻.
Remark. We can use above algorithm for the 𝐺 ⟷ 𝐻 algorithm: obtain a
generator-matrix for 𝐶 from a check-matrix for 𝐶, or vice versa.

9.3. Minimum distance from a check-matrix
Lemma. Let 𝐶 be [𝑛, 𝑘]𝑞 code, 𝐶 = {𝒙 ∈ 𝔽𝑛

𝑞 : 𝒙𝐴𝑇 = 𝟎} for some 𝐴 ∈ 𝑀𝑚,𝑛(𝔽𝑞).
The following are equivalent:
• There are 𝑑 linearly dependent columns of 𝐴.
• ∃𝒄 ∈ 𝐶 : 0 < 𝑤(𝒄) ≤ 𝑑.
Example. Let 𝐶 = {𝒙 ∈ 𝔽5

7 : 𝒙𝐴𝑇 = 𝟎} where

𝐴 =
⎣
⎢
⎡3

2
6

1
2
3

1
5
5

4
1
0

1
4
2⎦
⎥
⎤ ∈ 𝑀3,5(𝔽7)

We have (0, 1, 2, 0, 4)𝐴𝑇 = 𝟎. So (0, 1, 2, 0, 4) ∈ 𝐶, so 𝐶 has codeword of weight 3.
Also, 1(1, 2, 3) + 2(1, 5, 5) + 4(1, 2, 4) = (0, 0, 0) so 𝐴 has 3 linearly dependent
columns.
Theorem. Let 𝐶 = {𝒙 ∈ 𝔽𝑛

𝑞 : 𝒙𝐴𝑇 = 𝟎} for some 𝐴 ∈ 𝑀𝑚,𝑛(𝔽𝑞). Then there is a
linearly dependent set of 𝑑(𝐶) columns of 𝐴, but any set of 𝑑(𝐶) − 1 columns of 𝐴 is
linearly independent.

So 𝑑(𝐶) is the smallest possible size of a set of linearly dependent columns of 𝐴.

10. Polynomials and cyclic codes
10.1. Non-prime finite fields
Theorem. Let 𝑓(𝑥) ∈ 𝔽𝑞[𝑥], then 𝔽𝑞[𝑥]/⟨𝑓(𝑥)⟩ is ring. 𝔽𝑞[𝑥]/⟨𝑓(𝑥)⟩ is field iff 𝑓(𝑥)
irreducible in 𝔽𝑞[𝑥].
Proposition. If 𝑓(𝑥) = 𝜆𝑚(𝑥) ∈ 𝔽𝑞[𝑥], with 0 ≠ 𝜆 ∈ 𝔽𝑞, then

𝔽𝑞[𝑥]/⟨𝑓(𝑥)⟩ = 𝔽𝑞[𝑥]/⟨𝑚(𝑥)⟩

In particular, we only need to consider monic polynomials.
Definition. 𝛼 ∈ 𝔽𝑞 is primitive if

𝔽×
𝑞 = {𝛼𝑗 : 𝑗 ∈ {0, …, 𝑞 − 2}}

Every finite field has a primitive element.
Definition. Let 𝑓(𝑥) ∈ 𝔽𝑞[𝑥] irreducible. If 𝑥 is primitive in 𝔽𝑞[𝑥]/⟨𝑓(𝑥)⟩, then 𝑓(𝑥)
is primitive polynomial over 𝔽𝑞.

20

Theorem. Let 𝑞 = 𝑝𝑟, 𝑝 prime, 𝑟 ≥ 2 integer. Then there exists monic, irreducible
𝑓(𝑥) ∈ 𝔽𝑝[𝑥] with deg(𝑓) = 𝑟. In particular, 𝔽𝑞 = 𝔽𝑝[𝑥]/⟨𝑓(𝑥)⟩ is field with 𝑞 = 𝑝𝑟

elements. Moreover, we can choose 𝑓(𝑥) to be primitive.

10.2. Cyclic codes
Definition. Code 𝐶 is cyclic if it is linear and

(𝑎0, …, 𝑎𝑛−1) ∈ 𝐶 ⟺ (𝑎𝑛−1, 𝑎0, …, 𝑎𝑛−2) ∈ 𝐶

i.e. any cyclic shift of a codeword is also a codeword.
Notation. Let 𝑅𝑛 = 𝔽𝑞[𝑥]/(𝑥𝑛 − 1). Note 𝑅𝑛 is not field. There is correspondence
between elements in 𝑅𝑛 and vectors in 𝔽𝑛

𝑞 :

𝑎(𝑥) = 𝑎0 + ⋯ + 𝑎𝑛−1𝑥𝑛−1 ⟷ 𝒂 = (𝑎0, …, 𝑎𝑛−1)

Lemma. If 𝑎(𝑥) ⟷ 𝒂, then 𝑥𝑎(𝑥) ⟷ (𝑎𝑛−1, 𝑎0, …, 𝑎𝑛−2).
Proposition. 𝐶 ⊆ 𝑅𝑛 is cyclic iff 𝐶 is ideal in 𝑅𝑛, i.e. 𝑎(𝑥), 𝑏(𝑥) ∈ 𝐶 ⟹ 𝑎(𝑥) +
𝑏(𝑥) ∈ 𝐶 and 𝑎(𝑥) ∈ 𝐶, 𝑟(𝑥) ∈ 𝑅𝑛 ⟹ 𝑟(𝑥)𝑎(𝑥) ∈ 𝐶.
Definition. For 𝑓(𝑥) ∈ 𝑅𝑛, the code generated by 𝑓(𝑥) is

⟨𝑓(𝑥)⟩ ≔ {𝑟(𝑥)𝑓(𝑥) : 𝑟(𝑥) ∈ 𝑅𝑛}

Proposition. For any 𝑓(𝑥) ∈ 𝑅𝑛, ⟨𝑓(𝑥)⟩ is cyclic code.
Example. Let 𝑅3 = 𝔽2[𝑥]/(𝑥3 − 1), 𝑓(𝑥) = 𝑥2 + 1 ∈ 𝑅3. Then

⟨𝑓(𝑥)⟩ = {0, 1 + 𝑥, 1 + 𝑥2, 𝑥 + 𝑥2} ⊆ 𝑅3

⟷ {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} ⊆ 𝔽3
2

Theorem. Let 𝐶 cyclic code in 𝑅𝑛 over 𝔽𝑞, 𝐶 ≠ {0}. Then
• There is unique monic polynomial 𝑔(𝑥) of smallest degree in 𝐶.
• 𝐶 = ⟨𝑔(𝑥)⟩.
• 𝑔(𝑥) | 𝑥𝑛 − 1.
Remark. Converse of above theorem holds: every monic factor 𝑔(𝑥) of 𝑥𝑛 − 1 is the
unique generator polynomial of ⟨𝑔(𝑥)⟩, so distinct factors generate distinct codes. So
to find all cyclic codes in 𝑅𝑛, find each monic divisor 𝑔(𝑥) of 𝑥𝑛 − 1 to give cyclic
code ⟨𝑔(𝑥)⟩.
Remark. If 𝐶 = {0}, then setting 𝑔(𝑥) = 𝑥𝑛 − 1, we have 𝐶 = ⟨𝑔(𝑥)⟩.
Definition. In cyclic code 𝐶, monic polynomial of minimal degree is the generator-
polynomial of 𝐶.
Example. To find all binary cyclic codes of block-length 3, consider 𝑅3 =
𝔽2[𝑥]/⟨𝑥3 − 1⟩. In 𝔽2[𝑥], 𝑥3 − 1 = (𝑥 + 1)(𝑥2 + 𝑥 + 1) and 𝑥2 + 𝑥 + 1 is irreducible.
So the possible candidates for the generator-polynomial are

21

generator code in 𝑅3 code in 𝔽3
2

1 𝑅3 𝔽3
2

𝑥 + 1 {0, 1 + 𝑥, 1 + 𝑥2, 𝑥 + 𝑥2} {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}
𝑥2 + 𝑥 + 1 {0, 1 + 𝑥 + 𝑥2} {(0, 0, 0), (1, 1, 1)}

𝑥3 − 1 {0} {(0, 0, 0)}

10.3. Matrices for cyclic codes
Proposition. If 𝐶 is cyclic code with generator-polynomial 𝑔(𝑥) = 𝑔0 + ⋯ + 𝑔𝑟𝑥𝑟,
then dim(𝐶) = 𝑛 − 𝑟 and 𝐶 has generator-matrix

𝐺 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑔0

0
0
0
0

𝑔1
𝑔0
0
⋯
⋯

⋯
𝑔1
𝑔0
0
⋯

𝑔𝑟
⋯
𝑔1
⋱
0

0
𝑔𝑟
⋯
⋱
𝑔0

⋯
0
𝑔𝑟
⋱
𝑔1

⋯
⋯
0
⋱
⋯

0
0
⋯
⋱
𝑔𝑟⎦

⎥
⎥
⎥
⎥
⎥
⎤

∈ 𝑀𝑛−𝑟,𝑛(𝔽𝑞)

Example. Let 𝐶 = {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)} ∈ 𝔽3
2. 𝐶 = ⟨1 + 𝑥⟩ so

dim(𝐶) = 3 − 1 = 2,

𝐺 = [1
0

1
1

0
1]

Definition. Let 𝐶 ⊆ 𝑅𝑛 be [𝑛, 𝑘] cyclic code with generator polynomial 𝑔(𝑥), let
𝑔(𝑥)ℎ(𝑥) = 𝑥𝑛 − 1 ∈ 𝔽𝑞[𝑥]. Then ℎ(𝑥) is the check-polynomial of 𝐶.
Lemma. Check-polynomial of cyclic [𝑛, 𝑘] code is monic of degree 𝑘.
Proposition. Let 𝐶 be cyclic code in 𝑅𝑛 with check-polynomial ℎ(𝑥). Then 𝑐(𝑥) ∈
𝐶 iff 𝑐(𝑥)ℎ(𝑥) = 0 in 𝑅𝑛.
Definition. The reciprocal polynomial of ℎ(𝑥) = ℎ0 + ℎ1𝑥 + ⋯ + ℎ𝑘𝑥𝑘 is

ℎ(𝑥) = ℎ𝑘 + ℎ𝑘−1𝑥 + ⋯ + ℎ0𝑥𝑘 = 𝑥𝑘ℎ(𝑥−1)

Proposition. Let 𝐶 cyclic [𝑛, 𝑘] code with check-polynomial ℎ(𝑥) = ℎ0 + ⋯ + ℎ𝑘𝑥𝑘.
Then
• 𝐶 has check-matrix

𝐻 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ℎ𝑘

0
0
0
0

ℎ𝑘−1

ℎ𝑘

0
⋯
⋯

⋯
ℎ𝑘−1

ℎ𝑘
0
⋯

ℎ0

⋯
ℎ𝑘−1

⋱
0

0
ℎ0

⋯
⋱
ℎ𝑘

⋯
0
ℎ0
⋱

ℎ𝑘−1

⋯
⋯
0
⋱
⋯

0
0
⋯
⋱
ℎ0⎦

⎥
⎥
⎥
⎥
⎥
⎤

• 𝐶⟂ is cyclic and generated by ℎ(𝑥) (i.e. ℎ−1
0 ℎ(𝑥) is generator-polynomial for 𝐶⟂).

11. MDS and perfect codes
11.1. Reed-Solomon codes

22

Notation. Let 𝑷𝑘 = 𝔽𝑞[𝑧]<𝑘 be vector space of polynomials of degree < 𝑘 in 𝔽𝑞:

𝔽𝑞[𝑧]<𝑘 = {𝑎0 + ⋯ + 𝑎𝑘−1𝑧𝑘−1 : 𝑎𝑖 ∈ 𝔽𝑞}

Dimension of 𝔽𝑞[𝑧]<𝑘 is 𝑘.

Definition. Let 0 ≤ 𝑘 ≤ 𝑛 ≤ 𝑞, 𝒂 = (𝑎1, …, 𝑎𝑛), 𝒃 = (𝑏1, …, 𝑏𝑛) ∈ 𝔽𝑛
𝑞 with all 𝑎𝑗

distinct and all 𝑏𝑗 non-zero. Define the linear map

𝜑𝒂,𝒃 : 𝑷𝑘 → 𝔽𝑛
𝑞 , 𝜑𝒂,𝒃(𝑓(𝑧)) ≔ (𝑏1𝑓(𝑎1), …, 𝑏𝑛𝑓(𝑎𝑛)) ∈ 𝔽𝑛

𝑞

The 𝑞-ary Reed-Solomon code RS𝑘(𝒂, 𝒃) is the image of 𝜑𝒂,𝒃:

RS𝑘(𝒂, 𝒃) = 𝜑𝒂,𝒃(𝑷𝑘) ⊆ 𝔽𝑛
𝑞

Proposition.
• RS𝑘(𝒂, 𝒃) is a 𝑞-ary [𝑛, 𝑘, 𝑛 − 𝑘 + 1] code. In particular, it is an MDS code.
• A generator-matrix for RS𝑘(𝒂, 𝒃) is

𝐺 = (𝑏𝑗𝑎𝑖−1
𝑗)𝑖,𝑗 =

⎣
⎢⎢
⎡ 𝜑𝒂,𝒃(1)

⋮
𝜑𝒂,𝒃(𝑧𝑘−1)⎦

⎥⎥
⎤

∈ 𝑀𝑘,𝑛(𝔽𝑞)

where 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑛.
Remark. We have

{0} = RS0(𝒂, 𝒃) ⊂ RS1(𝒂, 𝒃) ⊂ ⋯ ⊂ RS𝑛(𝒂, 𝒃) = 𝔽𝑛
𝑞

(since a row is added to the generator matrix each time).
Example. Let 𝑞 = 7, 𝑛 = 5, 𝑘 = 3, 𝒂 = (0, 1, 6, 2, 3), 𝒃 = (5, 4, 3, 2, 1). Then

𝜑𝒂,𝒃 : 𝑷3 → 𝔽5
7,

𝑓(𝑧) ↦ (5𝑓(0), 4𝑓(1), 3𝑓(6), 2𝑓(2), 1𝑓(3))

So a generator matrix for RS3(𝒂, 𝒃) is

𝐺 =
⎣
⎢
⎡5

0
0

4
4
4

3
4
3

2
4
1

1
3
2⎦
⎥
⎤

Definition. 𝛼 ∈ 𝔽𝑞 is primitive 𝑛-th root of unity if 𝛼𝑛 = 1 and ∀0 < 𝑗 < 𝑛,
𝛼𝑗 ≠ 1.
Proposition. Let 𝛼 ∈ 𝔽𝑞 primitive 𝑛-th root of unity, 𝑚 ∈ ℤ, define

𝒂(𝑚) = ((𝛼0)𝑚, …, (𝛼𝑛−1)𝑚) ∈ 𝔽𝑛
𝑞

Then for 0 ≤ 𝑘 ≤ 𝑛, RS𝑘(𝜶(1), 𝜶(𝑚)) is cyclic.
Example. In 𝔽5, 21 = 2, 22 = 4, 23 = 3, 24 = 1 so 2 is primitive 4th root of unity in
𝔽5 so 𝜶𝑚 = (1𝑚, 2𝑚, 4𝑚, 3𝑚). We have 𝜶(1) = (1, 2, 4, 3), 𝜶(2) = (1, 4, 1, 4), so a
generator matrix for RS2(𝜶(1), 𝜶(2)) is

23

𝐺 = [1
1

4
3

1
4

4
2]

By performing ERO’s, we obtain another generator matrix

𝐺′ = [3
0

1
3

1
1

0
1]

This is generator matrix for the cyclic code with generator polynomial 𝑔(𝑥) = (𝑥 −
1)(𝑥 − 3) = 𝑥2 + 𝑥 + 3. So RS2(𝜶(1), 𝜶(2)) is cyclic with generator polynomial 𝑔(𝑥).
Note 𝑥4 − 1 = (𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 4) so 𝑔(𝑥) | 𝑥4 − 1.
Proposition. For 𝒂, 𝒃 ∈ 𝔽𝑛

𝑞 with 𝑎𝑗 all distinct and 𝑏𝑗 all non-zero,
• There exists 𝒄 with all 𝑐𝑗 ≠ 0 such that for 1 ≤ 𝑘 ≤ 𝑛 − 1,

(RS𝑘(𝒂, 𝒃))⟂ = RS𝑛−𝑘(𝒂, 𝒄)
• 𝒄 is given by the 1 × 𝑛 check-matrix for RS𝑛−1(𝒂, 𝒃).

11.2. Hamming codes
Definition. Let 𝑟 ≥ 2, 𝑛 = 2𝑟 − 1, let 𝐻 ∈ 𝑀𝑟,𝑛(𝔽2) have columns corresponding to
all non-zero vectors in 𝔽𝑟

2. The binary Hamming code of redundancy 𝑟 is

Ham2(𝑟) = {𝒙 ∈ 𝔽𝑛
2 : 𝒙𝐻𝑡 = 𝟎}

Note the order of columns is not specified, so we have a collection of permutation-
equivalent codes.
Example. For 𝑟 = 2, 3, we can take

𝐻2 = [0
1

1
0

1
1], 𝐻3 =

⎣
⎢
⎡0

0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1⎦
⎥
⎤

Proposition. For 𝑟 ≥ 2, Ham2(𝑟) is perfect [2𝑟 − 1, 2𝑟 − 𝑟 − 1, 3] code with check-
matrix 𝐻.
Definition. Can define Hamming codes for 𝑞 > 2. Consider 𝔽𝑟

𝑞 for 𝑟 ≥ 2. 𝒗, 𝒘 ∈
𝔽𝑟

𝑞 − {0} are equivalent if 𝒗 = 𝜆 ⋅ 𝒘 for some 𝜆 ∈ 𝔽×
𝑞 . For 𝒗 ∈ 𝔽𝑟

𝑞 − {0}, set

𝐿𝒗 = {𝒘 ∈ 𝔽𝑟
𝑞 : 𝒘 equivalent to 𝒗} = {𝜆𝒗 : 𝜆 ∈ 𝔽×

𝑞 }

Note |𝐿𝒗| = 𝑞 − 1 and 𝑤 ∈ 𝐿𝒗 iff 𝐿𝒘 = 𝐿𝒗. Also, if 𝐿𝒗 ≠ 𝐿𝒘 then 𝐿𝒗 ∩ 𝐿𝒘 = ∅.
Hence the 𝐿𝒗 partition 𝔽𝑟

𝑞 − {0} and there are (𝑞𝑟 − 1)/(𝑞 − 1) of them.
Example. For 𝑞 = 3, 𝑟 = 2 there are (32 − 1)/(3 − 1) = 4 sets:

𝐿(0,1) = {(0, 1), (0, 2)}, 𝐿(1,0) = {(1, 0), (2, 0)},

𝐿(1,1) = {(1, 1), (2, 2)}, 𝐿(1,2) = {(1, 2), (2, 1)}

Definition. For 𝑟 ≥ 2, 𝑛 = (𝑞𝑟 − 1)/(𝑞 − 1), construct 𝐻 ∈ 𝑀𝑟,𝑛(𝔽𝑞) by taking one
column from each of the 𝑛 different 𝐿𝑣. The Hamming code of redundancy 𝑟 is

24

Ham𝑞(𝑟) = {𝒙 ∈ 𝔽𝑛
𝑞 : 𝒙𝐻𝑡 = 𝟎}

Note that different choices of 𝐻 give monomially equivalent codes.
Example. For Ham3(2), we can choose e.g.

𝐻 = [0
1

2
2

2
0

2
1] or 𝐻 = [2

1
1
1

2
0

0
1]

Proposition. For 𝑟 ≥ 2, Ham𝑞(𝑟) is perfect [𝑛, 𝑛 − 𝑟, 3] code, with check-matrix 𝐻.

25

	Introduction
	Symmetric key ciphers
	Public key encryption and RSA
	Factorisation

	Diffie-Hellman key exchange
	Elliptic curves
	Torsion points
	Rational points

	Basic coding theory
	First definitions
	Nearest-neighbour decoding
	Probabilities
	Bounds on codes

	Linear codes
	Finite vector spaces
	Weight and minimum distance

	Codes as images
	Generator-matrices
	Encoding and channel decoding
	Equivalence and standard form

	Codes as kernels
	Dual codes
	Check-matrices
	Minimum distance from a check-matrix

	Polynomials and cyclic codes
	Non-prime finite fields
	Cyclic codes
	Matrices for cyclic codes

	MDS and perfect codes
	Reed-Solomon codes
	Hamming codes

