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1. Introduction
Definition.  Epimorphism is surjective homomorphism.
Definition.  Embedding or monomorphism is injective homomorphism.

1.1. Cubic equations over ℂ
• For a polynomial equation, a solution by radicals is a formula for solutions

using only addition, subtraction, multiplication, division and radicals 𝑚
√

⋅ for 𝑚 ∈
ℕ.

• For general cubic equation 𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 = 0:
‣ Tschirnhaus transformation is substitution 𝑡 = 𝑥 + 𝑎2

3 , giving

𝑡3 + 𝑝𝑡 + 𝑞 = 0, 𝑝 ≔
−𝑎2

2 + 3𝑎1
3

, 𝑞 ≔
2𝑎3

2 − 9𝑎1𝑎2 + 27𝑎0
27

This is a reduced (or depressed) cubic equation.
‣ When 𝑡 = 𝑢 + 𝑣, 𝑡3 − (3𝑢𝑣)𝑡 − (𝑢3 + 𝑣3) = 0 which is in the reduced cubic form

with 𝑝 = −3𝑢𝑣, 𝑞 = −(𝑢3 + 𝑣3).
‣ We have

(𝑦 − 𝑢3)(𝑦 − 𝑣3) = 𝑦2 − (𝑢3 + 𝑣3)𝑦 + 𝑢3𝑣3 = 𝑦2 + 𝑞𝑦 −
𝑝3

27
= 0

so 𝑢3, 𝑣3 = − 𝑞
2 ± √𝑞2

4 + 𝑝3

27 .
‣ So a solution to 𝑡3 + 𝑝𝑡 + 𝑞 = 0 is

𝑡 = 𝑢 + 𝑣 =
3√−

𝑞
2

+ √𝑞2

4
+

𝑝3

27
+

3√−
𝑞
2

− √𝑞2

4
+

𝑝3

27

The other solutions are 𝜔𝑢 + 𝜔2𝑣 and 𝜔2𝑢 + 𝜔𝑣 where 𝜔 = 𝑒2𝜋𝑖/3 is the 3rd root
of unity. This is because 𝑢 and 𝑣 each have three solutions independently to 
𝑢3, 𝑣3 = − 𝑞

2 ± √𝑞2

4 + 𝑝3

27 , but also 𝑢𝑣 = −𝑝
3 .

Remark.  The above method doesn’t work for fields of characteristic 2 or 3 since the
formulas involve division by 2 or 3 (which is dividing by zero in these respective
fields).

1.2. Quartic equations over ℂ
• For general quartic equation 𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 = 0:

‣ Substitution 𝑡 = 𝑥 + 𝑎3
4  gives reduced quartic equation

𝑡4 + 𝑝𝑡2 + 𝑞𝑡 + 𝑟 = 0
‣ We then manipulate the polynomial so that it is the sum or difference of two

squares and use 𝑎2 + 𝑏2 = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) or 𝑎2 − 𝑏2 = (𝑎 + 𝑏)(𝑎 − 𝑏):

(𝑡2 + 𝑤)2 + (𝑝 − 2𝑤)𝑡2 + 𝑞𝑡 + (𝑟 − 𝑤2) = 0
‣ (𝑝 − 2𝑤)𝑡2 + 𝑞𝑡 + (𝑟 − 𝑤2) = 0 is a square iff its discriminant is zero:
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𝑞2 − 4(𝑝 − 2𝑤)(𝑟 − 𝑤2) = 0 ⟺ 𝑤3 −
1
2
𝑝𝑤2 − 𝑟𝑤 +

1
8
(4𝑝𝑟 − 𝑞2) = 0

‣ This cubic resolvent is solvable by radicals. Taking any of the solutions and
substituting for 𝑤 gives a sum or difference of two squares in 𝑡. The quadratic
factors can then be solved.

2. Fields and polynomials
2.1. Basic properties of fields
Definition.  Ring 𝑅 is field if every element of 𝑅 − {0} has mutliplicative inverse
and 1 ≠ 0 ∈ 𝑅.
Lemma.  Every field is integral domain.
Definition.  Field homomorphism is ring homomorphism 𝜑 : 𝐾 → 𝐿 between
fields:
• 𝜑(𝑎 + 𝑏) = 𝜑(𝑎) + 𝜑(𝑏)
• 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏)
• 𝜑(1) = 1

These imply 𝜑(0) = 0, 𝜑(−𝑎) = −𝜑(𝑎), 𝜑(𝑎−1) = 𝜑(𝑎)−1.
Lemma.  Let 𝜑 : 𝐾 → 𝐿 field homomorphism.
• im(𝜑) = {𝜑(𝑎) : 𝑎 ∈ 𝐾} is field.
• ker(𝜑) = {𝑎 ∈ 𝐾 : 𝜑(𝑎) = 0} = {0}, i.e. 𝜑 is injective.
Definition.  Subfield 𝐾 of field 𝐿 is subring of 𝐿 where 𝐾 is field. 𝐿 is field
extension of 𝐾.
• The above lemma shows image of 𝜑 : 𝐾 → 𝐿 is subfield of 𝐿.

Lemma.  Intersections of subfields are subfields.
Definition.  Prime subfield of 𝐿 is intersection of all subfields of 𝐿.
Definition.  Characteristic char(𝐾) of field 𝐾 is

char(𝐾) ≔ min{𝑛 ∈ ℕ : 𝜒(𝑛) = 0}

(or 0 if this does not exist) where 𝜒 : ℤ → 𝐾, 𝜒(𝑚) = 1 + ⋯ + 1 (𝑚 times).
Example.  char(ℚ) = char(ℝ) = char(ℂ) = 0, char(𝔽𝑝) = 𝑝 for 𝑝 prime.
Lemma.  For any field 𝐾, char(𝐾) is either 0 or prime.
Theorem.
• If char(𝐾) = 0 then prime subfield of 𝐾 is ≅ ℚ.
• If char(𝐾) = 𝑝 > 0 then prime subfield of 𝐾 is ≅ 𝔽𝑝.
Corollary.
• If ℚ is subfield of 𝐾 then char(𝐾) = 0.
• If 𝔽𝑝 is subfield of 𝐾 for prime 𝑝 then char(𝐾) = 𝑝.
Remark.  Let char(𝐾) = 𝑝, then 𝑝 | (𝑝

𝑖 ) so (𝑎 + 𝑏)𝑝 = 𝑎𝑝 + 𝑏𝑝 in 𝐾. Also in 𝐾[𝑥] for
𝑝 prime, 𝑥𝑝 − 1 = (𝑥 − 1)𝑝.
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Theorem (Fermat's little theorem).  ∀𝑎 ∈ 𝔽𝑝, 𝑎𝑝 = 𝑎.

2.2. Polynomials over fields
Definition.  Degree of 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛, 𝑎𝑛 ≠ 0, is deg(𝑓(𝑥)) = 𝑛.
• Degree of zero polynomial is deg(0) = −∞.
• deg(𝑓(𝑥)𝑔(𝑥)) = deg(𝑓(𝑥)) + deg(𝑔(𝑥)).
• deg(𝑓(𝑥) + 𝑔(𝑥)) ≤ max{deg(𝑓(𝑥)), deg(𝑔(𝑥))} with equality if deg(𝑓(𝑥)) ≠

deg(𝑔(𝑥)).
• Only invertible elements in 𝐾[𝑥] are non-zero constants 𝑓(𝑥) = 𝑎0 ≠ 0.
• Similarities between ℤ and 𝐾[𝑥] for field 𝐾:

‣ 𝐾[𝑥] is integral domain.
‣ There is a division algorithm for 𝐾[𝑥]: for 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐾[𝑥], ∃!𝑞(𝑥), 𝑟(𝑥) ∈ 𝐾[𝑥]

with deg(𝑟(𝑥)) < deg(𝑔(𝑥)) such that

𝑓(𝑥) = 𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥)
‣ Every 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐾[𝑥] have greatest common divisor gcd(𝑓(𝑥), 𝑔(𝑥)) unique up

to multiplication by non-zero constants. By Euclidean algorithm for polynomials,

∃𝑎(𝑥), 𝑏(𝑥) ∈ 𝐾[𝑥] : 𝑎(𝑥)𝑓(𝑥) + 𝑏(𝑥)𝑔(𝑥) = gcd(𝑓(𝑥), 𝑔(𝑥))
‣ Can construct field from 𝐾[𝑥]: field of fractions of 𝐾[𝑥] is

𝐾(𝑥) ≔ Frac(𝐾[𝑥]) = {
𝑓(𝑥)
𝑔(𝑥)

: 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐾[𝑥], 𝑔(𝑥) ≠ 0}

where 𝑓1(𝑥)/𝑔1(𝑥) = 𝑓2(𝑥)/𝑔2(𝑥) ⟺ 𝑓1(𝑥)𝑔2(𝑥) = 𝑓2(𝑥)𝑔1(𝑥). (We can construct
the field of fractions for any integral domain).

‣ 𝐾[𝑥] is PID and so UFD.

Definition.  For field 𝐾, 𝑓(𝑥) ∈ 𝐾[𝑥] irreducible in 𝐾[𝑥] (or 𝑓(𝑥) is irreducible
over 𝐾) if
• deg(𝑓(𝑥)) ≥ 1 and
• 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) ⟹ 𝑔(𝑥) or ℎ(𝑥) is constant

2.3. Tests for irreducibility
Proposition.  If 𝑓(𝑥) has linear factor in 𝐾[𝑥], it has root in 𝐾[𝑥].
Proposition (Rational root test).  If 𝑓(𝑥) = 𝑎0 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ[𝑥] has rational root 
𝑏
𝑐 ∈ ℚ with gcd(𝑏, 𝑐) = 1 then 𝑏 | 𝑎0 and 𝑐 | 𝑎𝑛. Note: this can’t be used to show 𝑓 is
irreducible for deg(𝑓(𝑥)) ≥ 4.
Theorem (Gauss's lemma).  Let 𝑓(𝑥) ∈ ℤ[𝑥], 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥), 𝑔(𝑥), ℎ(𝑥) ∈ ℚ[𝑥].
Then ∃𝑟 ∈ ℚ : 𝑟𝑔(𝑥), 𝑟−1ℎ(𝑥) ∈ ℤ[𝑥]. i.e. if 𝑓(𝑥) can be factored in ℚ[𝑥] it can be
factored in ℤ[𝑥].
Example.  Let 𝑓(𝑥) = 𝑥4 − 3𝑥3 + 1 ∈ ℚ[𝑥]. Using the rational root test, 𝑓(±1) ≠ 0
so no linear factors in ℚ[𝑥]. Checking quadratic factors, let

𝑓(𝑥) = (𝑎𝑥2 + 𝑏𝑥 + 𝑐)(𝑟𝑥2 + 𝑠𝑥 + 𝑡), 𝑎, 𝑏, 𝑐, 𝑟, 𝑠, 𝑡 ∈ ℤ by Gauss's lemma
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So 1 = 𝑎𝑟 ⇒ 𝑎 = 𝑟 = ±1. 1 = 𝑐𝑡 ⇒ 𝑐 = 𝑡 = ±1. −3 = 𝑏 + 𝑠 and 0 = 𝑐(𝑏 + 𝑠):
contradiction. So 𝑓(𝑥) irreducible in ℚ[𝑥].
Example.  Let 𝑓(𝑥) = 𝑥4 − 3𝑥2 + 1 ∈ ℚ[𝑥]. The rational root test shows there are no
linear factors. Checking quadratic factors, let

𝑓(𝑥) = (𝑎𝑥2 + 𝑏𝑥 + 𝑐)(𝑟𝑥2 + 𝑠𝑥 + 𝑡), 𝑎, 𝑏, 𝑐, 𝑟, 𝑠, 𝑡 ∈ ℤ by Gauss's lemma

As before, 𝑎 = 𝑟 = ±1, 𝑐 = 𝑡 = ±1. 0 = 𝑏 + 𝑠 ⇒ 𝑏 = −𝑠, −3 = 𝑎𝑡 + 𝑏𝑠 + 𝑐𝑟 = −𝑏2 ± 2.
𝑏 = 1 works. So 𝑓(𝑥) = (𝑥2 − 𝑥 − 1)(𝑥2 + 𝑥 − 1).
Proposition.  Let 𝑓(𝑥) = 𝑎0 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ[𝑥]. If exists prime 𝑝 ∤ 𝑎𝑛 such that 𝑓(𝑥)
is irreducible in 𝔽𝑝[𝑥], then 𝑓(𝑥) irreducible in ℚ[𝑥].
Example.  Let 𝑓(𝑥) = 8𝑥3 + 14𝑥 − 9. Reducing mod 7, 𝑓(𝑥) = 𝑥3 − 2 ∈ 𝔽7[𝑥]. No
roots exist for this, so 𝑓(𝑥) irreducible in ℚ[𝑥]. For some polynomials, no 𝑝 is
suitable, e.g. 𝑓(𝑥) = 𝑥4 + 1.
• Gauss’s lemma works with any UFD 𝑅 instead of ℤ and field of fractions Frac(𝑅)

instead of ℚ: e.g. let 𝐹  field, 𝑅 = 𝐹[𝑡], 𝐾 = 𝐹(𝑡), then 𝑓(𝑥) ∈ 𝑅[𝑥] irreducible in 
𝐾[𝑥] if 𝑓(𝑥) is irreducible in 𝑅[𝑥].

Proposition (Eisenstein's criterion).  Let 𝑓(𝑥) = 𝑎0 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ[𝑥], prime 𝑝 ∈ ℤ
such that 𝑝 | 𝑎0, …, 𝑝 | 𝑎𝑛−1, 𝑝 ∤ 𝑎𝑛, 𝑝2 ∤ 𝑎0. Then 𝑓(𝑥) irreducible in ℚ[𝑥].
Example.  Let 𝑓(𝑥) = 𝑥3 − 3𝑥 + 1. Consider 𝑓(𝑥 − 1) = 𝑥3 − 3𝑥2 + 3. Then by
Eisenstein’s criterion with 𝑝 = 3, 𝑓(𝑥 − 1) irreducible in ℚ[𝑥] so 𝑓(𝑥) is as well, since
factoring 𝑓(𝑥 − 1) is equivalent to factoring 𝑓(𝑥).
Example.  𝑝-th cyclotomic polynomial is

𝑓(𝑥) =
𝑥𝑝 − 1
𝑥 − 1

= 1 + ⋯ + 𝑥𝑝−1

Now

𝑓(𝑥 + 1) =
(1 + 𝑥)𝑝 − 1
1 + 𝑥 − 1

= 𝑥𝑝−1 + 𝑝𝑥𝑝−2 + ⋯ + (
𝑝

𝑝 − 2
)𝑥 + 𝑝

so can apply Eisenstein with 𝑝 = 𝑝.
Proposition (Generalised Eisenstein's criterion).  Let 𝑅 be integral domain, 𝐾 =
Frac(𝑅),

𝑓(𝑥) = 𝑎0 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ 𝑅[𝑥]

If there is irreducible 𝑝 ∈ 𝑅 with

𝑝 | 𝑎0, …, 𝑝 | 𝑎𝑛−1, 𝑝 ∤ 𝑎𝑛, 𝑝2 ∤ 𝑎0

then 𝑓(𝑥) is irreducible in 𝐾[𝑥].

3. Field extensions
3.1. Definitions and examples
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Definition.  Field extension 𝐿/𝐾 is field 𝐿 containing subfield 𝐾. Can specify
homomorphism 𝜄 : 𝐾 → 𝐿 (which is injective).
Example.
• ℂ/ℝ, ℂ/ℚ, ℝ/ℚ.
• 𝐿 = ℚ(

√
2) = {𝑎 + 𝑏

√
2 : 𝑎, 𝑏 ∈ ℚ} is field extension of ℚ. ℚ(𝜃) is field extension of

ℚ where 𝜃 is root of 𝑓(𝑥) ∈ ℚ[𝑥].
• 𝐿 = ℚ( 3

√
2) = {𝑎 + 𝑏 3

√
2 + 𝑐 3

√
4 : 𝑎, 𝑏, 𝑐 ∈ ℚ} is smallest subfield of ℝ containing ℚ

and 3
√

2.
• 𝐾(𝑡) is field extension of 𝐾.
Definition.  Let 𝐿/𝐾 field extension, 𝑆 ⊆ 𝐿. Then 𝐾 with 𝑆 adjoined, 𝐾(𝑆), is
minimal subfield of 𝐿 containing 𝐾 and 𝑆. If |𝑆| = 1, 𝐿/𝐾 is a simple extension.
Example.  ℚ(

√
2,

√
7) = {𝑎 + 𝑏

√
2 + 𝑐

√
7 + 𝑑

√
14 : 𝑎, 𝑏, 𝑐, 𝑑, ∈ ℚ} is ℚ with 𝑆 =

{
√

2,
√

7}.
Example.  ℝ/ℚ is not simple extension.
Definition.  Tower is chain of field extensions, e.g. 𝐾 ⊂ 𝑀 ⊂ 𝐿.

3.2. Algebraic elements and minimal polynomials
Definition.  Let 𝐿/𝐾 field extension, 𝜃 ∈ 𝐿. Then 𝜃 is algebraic over 𝐾 if

∃0 ≠ 𝑓(𝑥) ∈ 𝐾[𝑥] : 𝑓(𝜃) = 0

Otherwise, 𝜃 is transcendental over 𝐾.
Example.  For 𝑛 ≥ 1, 𝜃 = 𝑒2𝜋𝑖/𝑛 is algebraic over ℚ (root of 𝑥𝑛 − 1).
Example.  𝑡 ∈ 𝐾(𝑡) is transcendental over 𝐾.
Lemma.  The algebraic elements in 𝐾(𝑡)/𝐾 are precisely 𝐾.
Lemma.  Let 𝐿/𝐾 field extension, 𝜃 ∈ 𝐿. Define 𝐼𝐾(𝜃) ≔ {𝑓(𝑥) ∈ 𝐾[𝑥] : 𝑓(𝜃) = 0}.
Then 𝐼𝐾(𝜃) is ideal in 𝐾[𝑥] and
• If 𝜃 transcendental over 𝐾, 𝐼𝐾(𝜃) = {0}
• If 𝜃 algebraic over 𝐾, then exists unique monic irreducible polynomial 𝑚(𝑥) ∈

𝐾[𝑥] such that 𝐼𝐾(𝜃) = ⟨𝑚(𝑥)⟩.
Definition.  For 𝜃 ∈ 𝐿 algebraic over 𝐾, minimal polynomial of 𝜃 over 𝐾 is the
unique monic polynomial 𝑚(𝑥) ∈ 𝐾[𝑥] such that 𝐼𝐾(𝜃) = ⟨𝑚(𝑥)⟩. The degree of 𝜃
over 𝐾 is deg(𝑚(𝑥)).
Remark.  If 𝑓(𝑥) ∈ 𝐾[𝑥] irreducible over 𝐾, monic and 𝑓(𝜃) = 0 then 𝑓(𝑥) = 𝑚(𝑥).
Example.
• Any 𝜃 ∈ 𝐾 has minimal polynomial 𝑥 − 𝜃 over 𝐾.
• 𝑖 ∈ ℂ has minimal polynomial 𝑥2 + 1 over ℝ.
•

√
2 has minimal polynomial 𝑥2 − 2 over ℚ. 3

√
2 has minimal polynomial 𝑥3 − 2

over ℚ.

3.3. Constructing field extensions
Lemma.  Let 𝐾 field, 𝑓(𝑥) ∈ 𝐾[𝑥] non-zero. Then
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𝑓(𝑥) irreducible over 𝐾 ⟺ 𝐾[𝑥]/⟨𝑓(𝑥)⟩ is a field

Definition.  Let 𝐿1/𝐾, 𝐿2/𝐾 field extensions, 𝜑 : 𝐿1 → 𝐿2 field homomorphism. 𝜑
is 𝐾-homomorphism if ∀𝑎 ∈ 𝐾, 𝜑(𝑎) = 𝑎 (𝜑 fixes elements of 𝐾).
• If 𝜑 is isomorphism then it is 𝐾-isomorphism.
• If 𝐿1 = 𝐿2 and 𝜑 is bĳective then 𝜑 is 𝐾-automorphism.
Theorem.  Let 𝑚(𝑥) ∈ 𝐾[𝑥] irreducible, monic, 𝐾𝑚 ≔ 𝐾[𝑥]/⟨𝑚(𝑥)⟩. Then
• 𝐾𝑚/𝐾 is field extension.
• Let 𝜃 = 𝜋(𝑥) where 𝜋 : 𝐾[𝑥] → 𝐾𝑚 is canonical projection, then 𝜃 has minimal

polynomial 𝑚(𝑥) and 𝐾𝑚 ≅ 𝐾(𝜃).
Proposition (Universal property of simple extension).  Let 𝐿/𝐾 field extension, 𝜏 ∈
𝐿 with 𝑚(𝜏) = 0 and 𝐾𝐿(𝜏) be minimal subfield of 𝐿 containing 𝐾 and 𝜏 . Then
exists unique 𝐾-isomorphism 𝜑 : 𝐾𝑚 → 𝐾𝐿(𝜏) such that 𝜑(𝜃) = 𝜏 .
Example.
• Complex conjugation ℂ → ℂ is ℝ-automorphism.
• Let 𝐾 field, char(𝐾) ≠ 2, 

√
2 ∉ 𝐾, so 𝑥2 − 2 is minimal polynomial of 

√
2 over 𝐾,

then 𝐾(
√

2) ≅ 𝐾[𝑥]/⟨𝑥2 − 2⟩ is field extension of 𝐾 and 𝑎 + 𝑏
√

2 ↦ 𝑎 − 𝑏
√

2 is 𝐾-
automorphism.

Proposition.  Let 𝜃 transcendental over 𝐾, then exists unique 𝐾-isomorphism 𝜑 :
𝐾(𝑡) → 𝐾(𝜃) such that 𝜑(𝑡) = 𝜃:

𝜑(
𝑓(𝑡)
𝑔(𝑡)

) = 𝜑(
𝑓(𝜃)
𝑔(𝜃)

)

3.4. Explicit examples of simple extensions
Example.
• Let 𝑟 ∈ 𝐾× non-square in 𝐾, char(𝐾) ≠ 2, then 𝑥2 − 𝑟 irreducible in 𝐾[𝑥]. E.g.

for 𝐾 = ℚ(𝑡), 𝑥2 − 𝑡 ∈ 𝐾[𝑥] is irreducible. Then 𝐾(
√

𝑡) = ℚ(
√

𝑡) ≅ 𝐾[𝑥]/⟨𝑥2 − 𝑡⟩.
• Define 𝔽9 = 𝔽3[𝑥]/⟨𝑥2 − 2⟩ ≅ 𝔽3(𝜃) = {𝑎 + 𝑏𝜃 : 𝑎, 𝑏 ∈ 𝔽3} for 𝜃 a root of 𝑥2 − 2.
Proposition.  Let 𝐾(𝜃)/𝐾 where 𝜃 has minimal polynomial 𝑚(𝑥) ∈ 𝐾[𝑥] of degree 
𝑛. Then

𝐾[𝑥]/⟨𝑚(𝑥)⟩ ≅ 𝐾(𝜃) = {𝑐0 + 𝑐1𝜃 + ⋯ + 𝑐𝑛−1𝜃𝑛−1 : 𝑐𝑖 ∈ 𝐾}

and its elements are written uniquely: 𝐾(𝜃) is vector space over 𝐾 of dimension 𝑛
with basis {1, 𝜃, …, 𝜃𝑛−1}.
Example.  ℚ( 3

√
2) = {𝑎 + 𝑏 3

√
2 + 𝑐 3

√
4 : 𝑎, 𝑏, 𝑐 ∈ ℚ} ≅ ℚ[𝑥]/⟨𝑥3 − 2⟩. ℚ(𝜔 3

√
2) and 

ℚ(𝑤2 3
√

2) where 𝜔 = 𝑒2𝜋𝑖/3 are isomorphic to ℚ( 3
√

2) as 𝜔 3
√

2, 𝜔 3
√

4 have same
minimal polynomial.

3.5. Degrees of field extensions
Definition.  Degree of field extension 𝐿/𝐾 is

[𝐿 : 𝐾] ≔ dim𝐾(𝐿)
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Example.
• When 𝜃 algebraic over 𝐾 of degree 𝑛, [𝐾(𝜃) : 𝐾] = 𝑛.
• Let 𝜃 transcendental over 𝐾, then [𝐾(𝜃) : 𝐾] = ∞, so [𝐾(𝑡) : 𝐾] = ∞, [ℚ(𝜋) : ℚ], 

[ℝ : ℚ] = ∞.
Definition.  𝐿/𝐾 is algebraic extension if every element in 𝐿 is algebraic over 𝐾.
Proposition.  Let [𝐿 : 𝐾] < ∞, then 𝐿/𝐾 is algebraic extension and 𝐿 =
𝐾(𝛼1, …, 𝛼𝑛) for some 𝛼1, …, 𝛼𝑛 ∈ 𝐿. The converse also holds.
Theorem (Tower law).  Let 𝐾 ⊆ 𝑀 ⊆ 𝐿 tower of field extensions. Then
• [𝐿 : 𝐾] < ∞ ⟺ [𝐿 : 𝑀] < ∞ ∧ [𝑀 : 𝐾] < ∞.
• [𝐿 : 𝐾] = [𝐿 : 𝑀][𝑀 : 𝐾].
Example.
• 𝐾 = ℚ ⊂ 𝑀 = ℚ(

√
2) ⊂ 𝐿 = ℚ(

√
2,

√
7). 𝑀/𝐾 has basis {1,

√
2} so [𝑀 : 𝐾] = 2.

Let 
√

7 ∈ ℚ(
√

2), then 
√

7 = 𝑐 + 𝑑
√

2, 𝑐, 𝑑 ∈ ℚ so 7 = (𝑐2 + 2𝑑2) + 2𝑐𝑑
√

2 so 7 =
𝑐2 + 2𝑑2, 0 = 2𝑐𝑑 so 𝑑2 = 7

2  or 𝑐2 = 7, which are both contradictions. So [𝐿 : 𝐾] =
4 with basis {1,

√
2,

√
7,

√
14}.

• Let 𝐾 = ℚ ⊂ 𝑀 = ℚ(𝑖) ⊂ ℚ(𝑖,
√

2). We know [ℚ(𝑖) : ℚ] = 2, and [ℚ(
√

2) : ℚ] = 2, 
[ℚ(𝑖,

√
2) : ℚ] = 4 (since 𝑖 ∉ ℝ) so [ℚ(𝑖,

√
2) : ℚ(

√
2)] = 2.

• Let 𝐾 = ℚ ⊂ 𝑀 = ℚ(
√

2) ⊂ 𝐿 = ℚ(
√

2, 3
√

3). Then [ℚ(
√

2) : ℚ] = 2, [ℚ( 3
√

3) :
ℚ] = 3 so 2 | [𝐿 : 𝐾] and 3 | [𝐿 : 𝐾] so 6 | [𝐿 : 𝐾] so [𝐿 : 𝐾] ≥ 6. But [𝐿 : 𝑀] ≤ 3
and [𝑀 : 𝐾] ≤ 2 so [𝐿 : 𝐾] ≤ 6 hence [𝐿 : 𝐾] = 6.

• More generally, we have [𝐾(𝛼, 𝛽) : 𝐾] ≤ [𝐾(𝛼) : 𝐾][𝐾(𝛽) : 𝐾].

Example.
• Let 𝜃 = 3

√
4 + 1. ℚ(𝜃) = ℚ( 3

√
4) so minimal polynomial over ℚ, 𝑚, has deg(𝑚) = 3.

(𝜃 − 1)3 = 4 so minimal polynomial is 𝑥3 − 3𝑥2 + 3𝑥 − 5.
• Let 𝜃 =

√
2 +

√
3. ℚ(

√
2, 𝜃) = ℚ(

√
2,

√
3) which has degree 2 over ℚ(

√
2) so

minimal polynomial of 𝜃 over ℚ(
√

2) has degree 2, 𝜃 −
√

2 =
√

3 so minimal
polynomial is 𝑥2 − 2

√
2𝑥 − 1.

• Let 𝜃 =
√

2 +
√

3. ℚ ⊂ ℚ(𝜃) ⊂ ℚ(
√

2,
√

3) so [ℚ(𝜃) : ℚ] | [ℚ(
√

2,
√

3) : ℚ] = 4 so 
[ℚ(𝜃) : ℚ] ∈ {1, 2, 4}. Can’t be 1 as 𝜃 ∉ ℚ. If it was 2 then 1, 𝜃, 𝜃2 are linearly
dependent over ℚ which leads to a contradiction. So degree of minimal polynomial
of 𝜃 over ℚ is 4. 𝜃2 = 5 + 2

√
6 ⇒ (𝜃2 − 5)2 = 24 so minimal polynomial is 𝑥4 −

10𝑥2 + 1.

4. Galois extensions
4.1. Splitting fields
Definition.  For field 𝐾, 0 ≠ 𝑓(𝑥) ∈ 𝐾[𝑥], 𝐿/𝐾 is splitting field of 𝑓(𝑥) over 𝐾 if
• ∃𝑐 ∈ 𝐾×, 𝜃1, …, 𝜃𝑛 ∈ 𝐿 : 𝑓(𝑥) = 𝑐(𝑥 − 𝜃1) ⋯ (𝑥 − 𝜃𝑛) (𝑓(𝑥) splits over 𝐿).
• 𝐿 = 𝐾(𝜃1, …, 𝜃𝑛).
Example.
• ℂ is splitting field of 𝑥2 + 1 over ℝ, since 𝑥2 + 1 = (𝑥 + 𝑖)(𝑥 − 𝑖) and ℂ =

ℝ(𝑖, −𝑖) = ℝ(𝑖).
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• ℂ is not splitting field of 𝑥2 + 1 over ℚ as ℂ ≠ ℚ(𝑖, −𝑖).
• ℚ is splitting field of 𝑥2 − 36 over ℚ.
• ℂ is splitting of 𝑥4 + 1 over ℝ.
• ℚ(𝑖,

√
2) is splitting field of 𝑥4 − 𝑥2 − 2 = (𝑥2 + 1)(𝑥2 − 2) = (𝑥 + 𝑖)(𝑥 − 𝑖)(𝑥 +√

2)(𝑥 −
√

2) over ℚ.
• 𝔽2(𝜃) where 𝜃3 + 𝜃 + 1 = 0 is splitting field of 𝑥3 + 𝑥 + 1 over 𝔽2.
• Consider splitting field of 𝑥3 − 2 over ℚ. Let 𝜔 = 𝑒2𝜋𝑖/3 = (−1 +

√
−3)/2 then 

ℚ( 3
√

2, 𝜔) is splitting field since it must contain 3
√

2, 𝜔 3
√

2, 𝜔2 3
√

2.
Theorem.  Let 0 ≠ 𝑓(𝑥) ∈ 𝐾[𝑥], deg(𝑓) = 𝑛. Then there exists a splitting field 𝐿 of 
𝑓(𝑥) over 𝐾 with

[𝐿 : 𝐾] ≤ 𝑛!

Notation.  For field homomorphism 𝜑 : 𝐾 → 𝐾′ and 𝑓(𝑥) = 𝑎0 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ 𝐾[𝑥],
write

𝜑∗(𝑓(𝑥)) ≔ 𝜑(𝑎0) + ⋯ + 𝜑(𝑎𝑛)𝑥𝑛 ∈ 𝐾′[𝑥]

Lemma.  Let 𝜎 : 𝐾 → 𝐾′ isomorphism and 𝐾(𝜃)/𝐾, 𝜃 has minimal polynomial 
𝑚(𝑥) ∈ 𝐾[𝑥], 𝜃′ be root of 𝜎∗(𝑚(𝑥)). Then there exists unique 𝐾-isomorphism 𝜏 :
𝐾(𝜃) → 𝐾′(𝜃′) such that 𝜏(𝜃) = 𝜃′.
Theorem.  For field isomorphism 𝜎 : 𝐾 → 𝐾′ and 0 ≠ 𝑓(𝑥) ∈ 𝐾[𝑥], let 𝐿 be splitting
field of 𝑓(𝑥) over 𝐾, 𝐿′ be splitting field of 𝜎∗(𝑓(𝑥)) over 𝐾′. Then there exists a
field isomorphism 𝜏 : 𝐿 → 𝐿′ such that ∀𝑎 ∈ 𝐾, 𝜏(𝑎) = 𝜎(𝑎).
Corollary.  Setting 𝐾 = 𝐾′ and 𝜎 = id implies that splitting fields are unique.

4.2. Normal extensions
Definition.  𝐿/𝐾 is normal if: for all 𝑓(𝑥) ∈ 𝐾[𝑥], if 𝑓 is irreducible and has a root
in 𝐿 then all its roots are in 𝐿. In particular, 𝑓(𝑥) splits completely as product of
linear factors in 𝐿[𝑥]. So the minimal polynomial of 𝜃 ∈ 𝐿 over 𝐾 has all its roots in 
𝐿 and can be written as product of linear factors in 𝐿[𝑥].
Example.
• If [𝐿 : 𝐾] = 1 then 𝐿/𝐾 is normal.
• If [𝐿 : 𝐾] = 2 then 𝐿/𝐾 is normal: let 𝜃 ∈ 𝐿 have minimal polynomial 𝑚(𝑥) ∈

𝐾[𝑥], then 𝐾 ⊆ 𝐾(𝜃) ⊆ 𝐿 so deg(𝑚(𝑥)) = [𝐾(𝜃) : 𝐾] ∈ {1, 2}:
‣ If deg(𝑚(𝑥)) = 1 then 𝑚(𝑥) is already linear.
‣ If deg(𝑚(𝑥)) = 2 then 𝑚(𝑥) = (𝑥 − 𝜃)𝑚1(𝑥), 𝑚1(𝑥) ∈ 𝐿[𝑥] is linear so 𝑚(𝑥)

splits completely in 𝐿[𝑥].
• If [𝐿 : 𝐾] = 3 then 𝐿/𝐾 is not necessarily normal. Let 𝜃 be root of 𝑥3 − 2 ∈ ℚ[𝑥].

Other two roots are 𝜔𝜃, 𝜔2𝜃 where 𝜔 = 𝑒2𝜋𝑖/3. If 𝜔𝜃 ∈ ℚ(𝜃) then 𝜔 = 𝜔𝜃
𝜃 ∈ 𝐿 so 

ℚ ⊂ ℚ(𝜔) ⊂ ℚ(𝜃) but [ℚ(𝜔) : ℚ] = 2 which doesn’t divide [ℚ(𝜃) : ℚ] = 3.
• Let 𝜃 ∈ ℂ be root of irreducible 𝑓(𝑥) = 𝑥3 − 3𝑥 − 1 ∈ ℚ[𝑥]. Let 𝜃 = 𝑢 + 𝑣, then 

(𝑢 + 𝑣)3 − 3𝑢𝑣(𝑢 + 𝑣) − (𝑢3 + 𝑣3) ≡ 0 implies 𝑢𝑣 = 1 = 𝑢3𝑣3, 𝑢3 + 𝑣3 = 1. So (𝑦 −
𝑢3)(𝑦 − 𝑣3) = 𝑦2 − 𝑦 + 1 has roots 𝑢3 and 𝑣3. So the three roots of 𝑓 are
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𝜃1 = 𝑢 + 𝑣 = 𝑒𝜋𝑖/9 + 𝑒−𝜋𝑖/9 = 2 cos(𝜋/9)

𝜃2 = 𝜔𝑢 + 𝜔2𝑣 = 𝑒7𝜋𝑖/9 + 𝑒−7𝜋𝑖/9 = 2 cos(7𝜋/9)

𝜃3 = 𝜔2𝑢 + 𝜔𝑣 = 𝑒13𝜋𝑖/9 + 𝑒−13𝜋𝑖/9 = 2 cos(13𝜋/9)

Furthermore, for each 𝑖, 𝑗, 𝜃𝑖 ∈ ℚ(𝜃𝑗), e.g.

𝜃2 = 2 cos(𝜋 −
2𝜋
9

) = −2 cos(
2𝜋
9

) = −2(2cos(
𝜋
9
)

2
− 1) = 2 − 𝜃2

1

Also 𝜃1 + 𝜃2 + 𝜃3 = 0 so 𝜃3 ∈ ℚ(𝜃1). So ℚ(𝜃1) contains all roots of 𝑓(𝑥).
Theorem (normality criterion).  𝐿/𝐾 is finite and normal iff 𝐿 is splitting field for
some 0 ≠ 𝑓(𝑥) ∈ 𝐾[𝑥] over 𝐾.
Example.
• ℚ(

√
2,

√
3,

√
5,

√
7)/ℚ is normal as it is the splitting field of 𝑓(𝑥) = (𝑥2 − 2)(𝑥2 −

3)(𝑥2 − 5)(𝑥2 − 7) ∈ ℚ[𝑥].
• ℚ( 3

√
2)/ℚ is not normal but ℚ( 3

√
2, 𝜔)/ℚ is normal as it is the splitting field of 

𝑥3 − 2 ∈ ℚ.
• ℚ( 4

√
2)/ℚ is not normal but ℚ( 4

√
2, 𝑖)/ℚ is normal.

• Let 𝜃 root of 𝑓(𝑥) = 𝑥3 − 3𝑥 − 1 ∈ ℚ[𝑥]. Then ℚ(𝜃)/ℚ is normal as is splitting
field of 𝑓(𝑥) over ℚ.

• 𝔽2(𝜃)/𝔽2 where 𝜃3 + 𝜃2 + 1 = 0 is normal, as 𝔽2(𝜃) contains all roots of 𝑥3 + 𝑥2 +
1.

• 𝔽𝑝(𝜃)/𝔽𝑝(𝑡) where 𝜃𝑝 = 𝑡 is normal as it is the splitting field of 𝑥𝑝 − 𝑡 = 𝑥𝑝 − 𝜃𝑝 =
(𝑥 − 𝜃)𝑝 so 𝑓(𝑥) splits into linear factors in 𝐿[𝑥].

Definition.  Field 𝑁  is normal closure of 𝐿/𝐾 if 𝐾 ⊆ 𝐿 ⊆ 𝑁 , 𝑁/𝐾 is normal, and
if 𝐾 ⊆ 𝐿 ⊆ 𝑁 ′ ⊆ 𝑁  with 𝑁 ′/𝐾 normal then 𝑁 = 𝑁 ′.
Theorem.  Every finite extension 𝐿/𝐾 has normal closure, unique up to a 𝐾-
isomorphism.
Definition.  Aut(𝐿/𝐾) is group of 𝐾-automorphisms of 𝐿/𝐾 with composition as
the group operation.
Example.
• Aut(ℂ/ℝ) contains at least two elements: complex conjugation: 𝜎(𝑎 + 𝑏𝑖) = 𝑎 − 𝑏𝑖

and the identity map id = 𝜎2. If 𝜏 ∈ Aut(ℂ/ℝ) then 𝜏(𝑎 + 𝑏𝑖) = 𝑎 + 𝑏𝜏(𝑖). But 
𝜏(𝑖)2 = 𝜏(𝑖2) = 𝜏(−1) = −1 hence 𝜏(𝑖) = ±𝑖. So there are only two choices for 𝜏 .
So Aut(ℂ/ℝ) = {id, 𝜎}.

• Let 𝑓(𝑥) = 𝑥2 + 𝑝𝑥 + 𝑞 ∈ ℚ[𝑥] irreducible with distinct roots 𝜃, 𝜃′. Then 
Aut(ℚ(𝜃)/ℚ) = {id, 𝜎} ≅ ℤ/2 where 𝜎(𝑎 + 𝑏𝜃) = 𝑎 + 𝑏𝜃′.

• Let 𝜃 root of 𝑥3 − 2, let 𝜎 ∈ Aut(ℚ(𝜃)/ℚ). Now 𝜎(𝜃)3 = 𝜎(𝜃3) = 𝜎(2) = 2 so 
𝜎(𝜃) ∈ {𝜃, 𝜔𝜃, 𝜔2𝜃} but 𝜔𝜃, 𝜔2𝜃 ∉ ℚ(𝜃) so 𝜎(𝜃) = 𝜃 ⟹ 𝜎 = id.

• Let 𝜃𝑝 = 𝑡, 𝜎 ∈ Aut(𝔽𝑝(𝜃)/𝔽𝑝(𝑡)). Then

𝜎(𝜃)𝑝 = 𝜎(𝜃𝑝) = 𝜎(𝑡) = 𝑡 = 𝜃𝑝
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so (𝜎(𝜃) − 𝜃))𝑝 = 𝜎(𝜃)𝑝 − 𝜃𝑝 = 0 ⟹ 𝜎(𝜃) = 𝜃 ⟹ 𝜎 = id.
• Let 𝜎 ∈ Aut(ℝ/ℚ). Then 𝛼 ≤ 𝛽 ∈ ℝ ⟹ 𝛽 − 𝛼 = 𝛾2, 𝛾 ∈ ℝ, so 𝜎(𝛽) − 𝜎(𝑎) =

𝜎(𝛾)2 ≥ 0 so 𝜎(𝛼) ≤ 𝜎(𝛽). Given 𝛼 ∈ ℝ, there exist sequences (𝑟𝑛), (𝑠𝑛) ⊂ ℚ with 
𝑟𝑛 ≤ 𝛼 ≤ 𝑠𝑛 and 𝑟𝑛 → 𝛼, 𝑠𝑛 → 𝛼 as 𝑛 → ∞. Hence 𝑟𝑛 = 𝜎(𝑟𝑛) ≤ 𝜎(𝛼) ≤ 𝜎(𝑠𝑛) =
𝑠𝑛 so 𝜎(𝛼) = 𝛼 by squeezing. Hence Aut(ℝ/ℚ) = {id}.

Theorem.  Let 𝐿 = 𝐾(𝜃), 𝜃 root of irreducible 𝑓(𝑥) ∈ 𝐾[𝑥], deg(𝑓) = 𝑛. Then 
|Aut(𝐿/𝐾)| ≤ 𝑛, with equality iff 𝑓(𝑥) has 𝑛 distinct roots in 𝐿.
Theorem.  Let 𝐿/𝐾 be finite extension. Then |Aut(𝐿/𝐾)| ≤ [𝐿 : 𝐾], with equality
iff 𝐿/𝐾 is normal and minimal polynomial of every 𝜃 ∈ 𝐿 over 𝐾 has no repeated
roots (in a splitting field).

4.3. Separable extensions
Definition.  Let 𝐿/𝐾 finite extension.
• 𝜃 ∈ 𝐿 is separable over 𝐾 if its minimal polynomial over 𝐾 has no repeated

roots (in its splitting field).
• 𝐿/𝐾 is separable if every 𝜃 ∈ 𝐿 is separable over 𝐾.
Example.  Let 𝐾 = 𝔽𝑝(𝑡), then 𝑓(𝑥) = 𝑥𝑝 − 𝑡 ∈ 𝐾[𝑥] is irreducible by Eisenstein’s
criterion with 𝑝 = 𝑡, and 𝑓(𝑥) = 𝑥𝑝 − 𝜃𝑝 = (𝑥 − 𝜃)𝑝 so 𝜃 is root of multiplicity 𝑝 ≥ 2.
So 𝔽𝑝(𝜃)/𝔽𝑝(𝑡) is normal but not separable.
Definition.  Let 𝑓(𝑥) = ∑𝑛

𝑖=0 𝑎𝑖𝑥𝑖 ∈ 𝐾[𝑥]. Formal derivative of 𝑓(𝑥) is

𝐷𝑓(𝑥) = 𝐷(𝑓) ≔ ∑
𝑛

𝑖=1
𝑖𝑎𝑖𝑥𝑖−1 ∈ 𝐾[𝑥]

Note.  Formal derivative satisfies:

𝐷(𝑓 + 𝑔) = 𝐷(𝑓) + 𝐷(𝑔), 𝐷(𝑓𝑔) = 𝑓 ⋅ 𝐷(𝑔) + 𝐷(𝑓) ⋅ 𝑔, ∀𝑎 ∈ 𝐾, 𝐷(𝑎) = 0

Also deg(𝐷(𝑓)) < deg(𝑓). But if char(𝐾) = 𝑝, then 𝐷(𝑥𝑝) = 𝑝𝑥𝑝−1 = 0 so it is not
always true that deg(𝐷(𝑓)) = deg(𝑓) − 1.
Note.  If 𝑓(𝑥) has a repeated root 𝛼, then 𝐷𝑓(𝛼) = 0.
Theorem (sufficient conditions for separability).  Finite extension 𝐿/𝐾 is separable
if any of the following hold:
• char(𝐾) = 0,
• char(𝐾) = 𝑝 and 𝐾 = {𝑏𝑝 : 𝑏 ∈ 𝐾} = 𝐾𝑝 for prime 𝑝,
• char(𝐾) = 𝑝 and 𝑝 ∤ [𝐿 : 𝐾]
Definition.  𝐾 is perfect field if either of first two of above properties hold.
Remark.  All finite extensions of any perfect extension (e.g. ℚ, 𝔽𝑝) are separable
(recall Fermat’s little theorem: ∀𝑎 ∈ 𝔽𝑝, 𝑎 = 𝑎𝑝). So to find a non-separable extension 
𝐿/𝐾, we need char(𝐾) = 𝑝 > 0, 𝐾 infinite and 𝑝 | [𝐿 : 𝐾]. For example, 𝐿 = 𝔽𝑝(𝜃), 
𝐾 = 𝔽𝑝(𝑡) where 𝜃𝑝 = 𝑡.
Theorem.  Let 𝛼1, …, 𝛼𝑛 algebraic over 𝐾, then 𝐾(𝛼1, …, 𝛼𝑛)/𝐾 is separable iff
every 𝛼𝑖 is separable over 𝐾.
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Remark.  For tower 𝐾 ⊆ 𝑀 ⊆ 𝐿, 𝐿/𝐾 is separable iff 𝐿/𝑀  and 𝑀/𝐾 are separable.
However, the same statement for normality does not hold.
Theorem (Theorem of the Primitive Element).  Let 𝐿/𝐾 finite and separable. Then 
𝐿/𝐾 is simple, i.e. ∃𝛼 ∈ 𝐿 : 𝐿 = 𝐾(𝛼).

4.4. The fundamental theorem of Galois theory
Definition.  Finite extension 𝐿/𝐾 is Galois extension if it is normal and
separable. Equivalently, |Aut(𝐿/𝐾)| = [𝐿 : 𝐾]. When 𝐿/𝐾 is Galois, the Galois
group is Gal(𝐿/𝐾) ≔ Aut(𝐿/𝐾).
Definition.  Let ℱ ≔ {intermediate fields of 𝐿/𝐾} and 𝒢 ≔
{subgroups of Gal(𝐿/𝐾)}. Define the map Γ : ℱ → 𝒢, Γ(𝑀) = Gal(𝐿/𝑀).
Definition.  Let 𝐿 field, 𝐺 a group of automorphisms of 𝐿. Fixed field 𝐿𝐺 of 𝐺 is
set of elements in 𝐿 which are invariant under all automorphisms in 𝐺:

𝐿𝐺 ≔ {𝛼 ∈ 𝐿 : ∀𝛼 ∈ 𝐺, 𝜎(𝛼) = 𝛼}

Theorem.  If 𝐺 is finite group of automorphisms of 𝐿 then 𝐿𝐺 is subfield of 𝐿 and 
[𝐿 : 𝐿𝐺] = |𝐺|.
Corollary.  If 𝐿/𝐾 is Galois then
• 𝐿Gal(𝐿/𝐾) = 𝐾.
• If 𝐿𝐺 = 𝐾 for some group 𝐺 of 𝐾-automorphisms of 𝐿, then 𝐺 = Gal(𝐿/𝐾).
Note.  Let 𝜎 ∈ Gal(𝐿/𝐾). If 𝛼 ∈ 𝐿 has minimal polynomial 𝑓(𝑥) ∈ 𝐾[𝑥] over 𝐾,
then 𝑓(𝛼) = 0, and

𝑓(𝜎(𝛼)) = 𝜎(𝑓(𝛼))

by properties of field homomorphisms. Hence 𝜎(𝛼) is also a root of 𝑓(𝑥) for any 𝜎 ∈
Gal(𝐿/𝐾), i.e. 𝜎 permutes the roots of 𝑓(𝑥).
Remark.  If 𝐿/𝐾 is Galois and 𝛼 ∈ 𝐿 but 𝛼 ∉ 𝐾, then there exists an automorphism
𝜎 ∈ Gal(𝐿/𝐾) such that 𝜎(𝛼) ≠ 𝛼.
Definition.  For 𝐻 subgroup of Gal(𝐿/𝐾), set 𝐿𝐻 ≔ {𝛼 ∈ 𝐿 : ∀𝜎 ∈ 𝐻, 𝜎(𝛼) = 𝛼},
then 𝐾 ⊆ 𝐿𝐻 ⊆ 𝐿. Define Φ : 𝒢 → ℱ, Φ(𝐻) = 𝐿𝐻 .
• Γ and Φ are inclusion-reversing: 𝑀1 ⊆ 𝑀2 ⟹ Γ(𝑀2) ⊆ Γ(𝑀1), and 𝐻1 ⊆ 𝐻2 ⟹

Φ(𝐻2) ⊆ Φ(𝐻1).

Theorem (Fundamental theorem of Galois theory - Theorem A).  For finite Galois
extension 𝐿/𝐾,
• Γ : ℱ → 𝒢 and Φ : 𝒢 → ℱ are mutually inverse bĳections (the Galois

correspondence).
• For 𝑀 ∈ ℱ, 𝐿/𝑀  is Galois and |Gal(𝐿/𝑀)| = [𝐿 : 𝑀].
• For 𝐻 ∈ 𝒢, 𝐿/𝐿𝐻 is Galois and Gal(𝐿/𝐿𝐻) = 𝐻.
Remark.  Gal(𝐿/𝐾) acts on ℱ: given 𝜎 ∈ Gal(𝐿/𝐾) and 𝐾 ⊆ 𝑀 ⊆ 𝐿, consider 
𝜎(𝑀) = {𝜎(𝛼) : 𝛼 ∈ 𝑀} which is a subfield of 𝐿 and contains 𝐾, since 𝜎 fixes
elements of 𝐾. Given another automorphism 𝜏 : 𝐿 → 𝐿,
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𝜏 ∈ Gal(𝐿/𝜎(𝑀)) ⟺ ∀𝛼 ∈ 𝑀, 𝜏(𝜎(𝛼)) = 𝜎(𝛼)

⟺ ∀𝛼 ∈ 𝑀, 𝜎−1(𝜏(𝜎(𝛼))) = 𝛼

⟺ 𝜎−1𝜏𝜎 ∈ Gal(𝐿/𝑀)

⟺ 𝜏 ∈ 𝜎 Gal(𝐿/𝑀)𝜎−1

Hence 𝜎 Gal(𝐿/𝑀)𝜎−1 and Gal(𝐿/𝑀) are conjugate subgroups of Gal(𝐿/𝐾). Now

[𝑀 : 𝐾] =
[𝐿 : 𝐾]
[𝐿 : 𝑀]

=
|Gal(𝐿/𝐾)|
|Gal(𝐿/𝑀)|

Theorem (Fundamental theorem of Galois theory - Theorem B).  Let 𝐿/𝐾 be finite
Galois extension, 𝐺 = Gal(𝐿/𝐾) and 𝐾 ⊆ 𝑀 ⊆ 𝐿. Then the following are equivalent:
• 𝑀/𝐾 is Galois.
• ∀𝜎 ∈ 𝐺, 𝜎(𝑀) = 𝑀 .
• 𝐻 = Gal(𝐿/𝑀) is normal subgroup of 𝐺 = Gal(𝐿/𝐾).

When these conditions hold, we have Gal(𝑀/𝐾) ≅ 𝐺/𝐻.
Example.  Let 𝐿/𝐾 be Galois, [𝐿 : 𝐾] = 𝑝 prime.
• By the tower law, any 𝐾 ⊆ 𝑀 ⊆ 𝐿 has [𝐿 : 𝑀] ∈ {1, 𝑝}, [𝑀 : 𝐾] ∈ {𝑝, 1}, so 𝑀 =

𝐿 or 𝐾. In both cases, 𝑀/𝐾 is normal.
• |Gal(𝐿/𝐾)| = [𝐿 : 𝐾] = 𝑝 so Gal(𝐿/𝑀) ≅ ℤ/𝑝, so the only subgroups are 

Gal(𝐿/𝐾) and {id}. In both cases, 𝐻 is normal subgroup of Gal(𝐿/𝐾).

4.5. Computations with Galois groups
Example (quadratic extension).  ℚ(

√
2)/ℚ is normal (since degree is 2) and

separable (since characteristic is zero). Any element of 𝜑 ∈ 𝐺 = Gal(ℚ(
√

2)/ℚ) is
determined by the image of 

√
2. But 𝜑(

√
2)2 = 𝜑(2) = 2 so 𝜑(

√
2) = ±

√
2. This gives

two automorphisms id(
√

2) =
√

2 and 𝜎(
√

2) = −
√

2. So 𝐺 = {id, 𝜎} = ⟨𝜎⟩ ≅ ℤ/2.
Subgroup {id} corresponds to ℚ(

√
2), 𝐺 corresponds to ℚ.

Example (biquadratic extension).  𝐿 = ℚ(
√

2,
√

3) over ℚ is normal (as splitting
field of (𝑥2 − 2)(𝑥2 − 3) over ℚ) and separable (as char(ℚ) = 0), so is Galois
extension. Let 𝜎 be given as before.
• Suppose 

√
3 ∈ ℚ(

√
2), then 𝜎(

√
3)2 = 𝜎(3) = 3, so 𝜎(

√
3) = ±

√
3.

• If 𝜎(
√

3) =
√

3, then 
√

3 ∈ ℚ(
√

2){id,𝜎} = ℚ: contradiction.
• If 𝜎(

√
3) = −

√
3, then 𝜎(

√
2)𝜎(

√
3) = 𝜎(

√
6) = (−

√
2)(−

√
3) =

√
6, so 

√
6 ∈

ℚ(
√

2){id,𝜎} = ℚ: contradiction.
• So 

√
3 ∉ ℚ(

√
2), hence [𝐿 : ℚ] = [𝐿 : ℚ(

√
2)][ℚ(

√
2) : ℚ] = 4.

• Now 𝐺 = Gal(𝐿/ℚ) has order [𝐿 : ℚ] = 4, so 𝐺 ≅ ℤ/4 or ℤ/2 × ℤ/2.
• For 𝜑 ∈ 𝐺, 𝜑(

√
2)2 = 2 ⟹ 𝜑(

√
2) = ±

√
2, 𝜑(

√
3)2 = 3 ⟹ 𝜑(

√
3) = ±

√
3. So there

are four choices, corresponding to choices of ± signs.
• Define 𝜎, 𝜏  by 𝜎(

√
2) = −

√
2, 𝜎(

√
3) =

√
3, 𝜏(

√
2) =

√
2, 𝜏(

√
3) = −

√
3. Now 𝜎2 =

𝜏2 = id, 𝜎𝜏(
√

2) = −
√

2, 𝜎𝜏(
√

3) = −
√

3 and 𝜎𝜏 = 𝜏𝜎.
• So 𝐺 = ⟨𝜎, 𝜏 : 𝜎2 = 𝜏2 = id, 𝜎𝜏 = 𝜏𝜎⟩ = ⟨𝜎⟩ × ⟨𝜏⟩ ≅ ℤ/2 × ℤ/2.
• 𝐺 has proper subgroups 𝐻1 = ⟨𝜎⟩, 𝐻2 = ⟨𝜏⟩, 𝐻3 = ⟨𝜎𝜏⟩.
• So the intermediate fields are 𝐿𝐻1 , 𝐿𝐻2 , 𝐿𝐻3 .
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• 𝜎(
√

3) =
√

3 ⟹
√

3 ∈ 𝐿𝐻1 so ℚ(
√

3) ⊆ 𝐿𝐻1 , but [𝐿 : ℚ(
√

3)] = 2 = |𝐻1| = [𝐿 :
𝐿𝐻1]. Hence 𝐿𝐻1 = ℚ(

√
3). Similarly 𝐿𝐻2 = ℚ(

√
2).

• 𝜎𝜏(
√

6) =
√

6 ⟹
√

6 ∈ 𝐿𝐻3 , so 𝐿𝐻3 = ℚ(
√

6).
Remark.  It is not generally true that [𝐾(

√
𝑎,

√
𝑏) : 𝐾] = 4, e.g. ℚ(

√
2,

√
8) =

ℚ(
√

2).
Remark.  Can generalise above example to arbitrary 𝐾(

√
𝑎,

√
𝑏)/𝐾 where 

char(𝐾) ≠ 2, and 𝑎, 𝑏 ∈ 𝐾, 𝑎, 𝑏, 𝑎𝑏 ∉ (𝐾×)2 where (𝐾×)2 is set of squares of 𝐾×.
Example (degree 8 extension).
• Consider 𝐿 = ℚ(

√
2,

√
3,

√
5) over ℚ. 𝐿 is splitting field of (𝑥2 − 2)(𝑥2 − 3)(𝑥2 −

5), so is normal, and char(ℚ) = 0, so is separable, so is Galois.
• Let 𝑀 = ℚ(

√
2,

√
3). By above, Gal(𝑀/𝑄) = ⟨𝜎⟩ × ⟨𝜏⟩ ≅ ℤ/2 × ℤ/2.

• Suppose 
√

5 ∈ 𝑀 . Then 𝜎(
√

5)2 = 𝜏(
√

5)2 = 5, so 𝜎(
√

5) = ±
√

5, 𝜏(
√

5) = ±
√

5.
• If 𝜎(

√
5) =

√
5, then 

√
5 ∈ 𝑀 ⟨𝜎⟩ = ℚ(

√
3).

‣ If 𝜏(
√

5) =
√

5, 
√

5 ∈ 𝑀 ⟨σ,τ⟩ = ℚ: contradiction.
‣ If 𝜏(

√
5) = −

√
5, then since 

√
15 ∈ 𝑀 ⟨𝜎⟩, 𝜏(

√
15) =

√
15, so 

√
15 ∈ 𝑀 ⟨σ,τ⟩ = ℚ:

contradiction.
• If 𝜎(

√
5) = −

√
5, then 𝜎(

√
10) = 𝜎(

√
2)𝜎(

√
5) = (−

√
2)(−

√
5) =

√
10, so 

√
10 ∈

𝑀 ⟨𝜎⟩ = ℚ(
√

3).
‣ If 𝜏(

√
5) =

√
5, 𝜏(

√
10) =

√
10 ∈ 𝑀 ⟨σ,τ⟩ = ℚ: contradiction.

‣ If 𝜏(
√

5) = −
√

5, 𝜏(
√

30) = 𝜏(
√

5)𝜏(
√

3)𝜏(
√

2) =
√

30 ∈ 𝑀 ⟨σ,τ⟩ = ℚ:
contradiction.

• So 
√

5 ∉ 𝑀 , so [𝐿 : ℚ] = [𝐿 : 𝑀][𝑀 : ℚ] = 8. The 8 elements in Gal(𝐿/ℚ) are
determined by choices of 

√
𝑎 ↦ ±

√
𝑎 where 𝑎 ∈ {2, 3, 5}.

• Gal(𝐿/ℚ) = ⟨𝜎1, 𝜎2, 𝜎3⟩ ≅ ℤ/2 × ℤ/2 × ℤ/2 where 𝜎1(
√

2) = −
√

2, 𝜎2(
√

3) = −
√

3,
𝜎1(

√
5) = −

√
5 and the 𝜎𝑖 fix all other square roots.

• More generally, write 𝜎(
√

5) = (−1)𝑗√5, 𝜏(
√

5) = (−1)𝑘√
5, 𝑗, 𝑘 ∈ {0, 1}. Define 

𝑚 = 2𝑗3𝑘, then 𝜎(
√

𝑚) = (−1)𝑗√𝑚 ⇒ 𝜎(
√

5𝑚) =
√

5𝑚 and 𝜏(
√

𝑚) =
(−1)𝑘√

𝑚 ⇒ 𝜏(
√

5𝑚) =
√

5𝑚, so 
√

5𝑚 ∈ 𝑀 ⟨σ,τ⟩ = ℚ: contradiction.
Example (cubic extension and its normal closure).
• Let 𝐿 = ℚ(𝜃), 𝜃3 − 2 = 0. 𝐿/ℚ isn’t Galois since not normal. Take the normal

closure 𝑁 = ℚ(𝜃, 𝜔) = ℚ(𝜃,
√

−3).
• Let 𝑀 = ℚ(𝜔) so [𝑀 : ℚ] = 2, [𝐿 : ℚ] = 3 and [𝑁 : ℚ] = 6. Let 𝐺 = Gal(𝑁/ℚ).
• Since |𝐺| = [𝑁 : ℚ] = 6, 𝐺 ≅ ℤ/6 or 𝐺 ≅ 𝐷3 ≅ 𝑆3.
• 𝐺 contains Gal(𝑁/𝐿). Since 𝑁 = 𝐿(𝜔),

Gal(𝑁/𝐿) = {id, 𝜏} = ⟨𝜏⟩ ≅ ℤ/2

where 𝜏(
√

−3) = −
√

−3 (i.e. 𝜏(𝑤) = 𝜔2) and 𝜏(𝜃) = 𝜃 as 𝜃 ∈ 𝐿.
• 𝐺 contains 𝐻 = Gal(𝑁/𝑀). 𝑁 = 𝑀(𝜃), |𝐻| = [𝑁 : 𝑀] = 3 so Gal(𝑁/𝑀) is cyclic

so

𝐻 = {id, 𝜎, 𝜎2} = ⟨𝜎⟩ ≅ ℤ/3
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where 𝜎(𝜃) = 𝜔𝜃, also 𝜎(𝜔) = 𝜔 as 𝜔 ∈ 𝑀  and 𝜎2(𝜃) = 𝜔2𝜃, so 𝐻 permutes the
three roots of 𝑥3 − 2.

• 𝜏 ∉ 𝐻 so 𝐻 = {id, 𝜎, 𝜎2} and 𝜏𝐻 = {𝜏, 𝜏𝜎, 𝜏𝜎2} are disjoint cosets. So 𝐺 = 𝐻 ∪
𝜏𝐻 = ⟨τ,σ⟩ so |𝐺| = 6. 𝜏2 = 𝜎3 = id and 𝜎𝜏 = 𝜏𝜎2. So 𝐺 ≅ 𝑆3 ≅ 𝐷3.

• 𝐺 has one subgroup of order 3, 𝐻 = ⟨𝜎⟩. Fixed field is 𝑁𝐻 = 𝑀 . 𝐻 is only proper
normal subgroup of 𝐺. Correspondingly, 𝑀  is only normal extension of 𝑄 in 𝑁 .

• There are 3 order 2 subgroups: ⟨𝜏⟩, ⟨𝜏𝜎⟩, ⟨𝜏𝜎2⟩. 𝑁 ⟨𝜏⟩ = ℚ(𝜃) = 𝐿, 𝑁 ⟨𝜏𝜎⟩ =
ℚ(𝜔𝜃) = 𝜎(𝐿), 𝑁 ⟨𝜏𝜎2⟩ = ℚ(𝜔2𝜃) = 𝜎2(𝐿).

Example.  Show 3
√

3 ∉ ℚ( 3
√

2).
• Assume 3

√
3 ∈ ℚ( 3

√
2). Then 3

√
3 ∈ 𝑁 = ℚ(𝜔, 3

√
2), the normal closure.

• As above, let 𝜎 ∈ Gal(𝑁/ℚ), 𝜎( 3
√

2) = 𝜔 3
√

2 and 𝑁 ⟨𝜎⟩ = ℚ(𝜔). Also,

𝜎( 3√3)3 = 𝜎(3) = 3 ⟹ 𝜎( 3√3) ∈ { 3√3, 𝜔 3√3, 𝜔2 3√3}
• If 𝜎( 3

√
3) = 3

√
3, then 3

√
3 ∈ 𝑁 ⟨𝜎⟩ = ℚ(𝜔), so ℚ( 3

√
3) ⊆ ℚ(𝜔): contradiction.

• If 𝜎( 3
√

3) = 𝜔 3
√

3, then 𝜎( 3
√

3/ 3
√

2) = 3
√

3/ 3
√

2 hence 3√3/2 ∈ 𝑁 ⟨𝜎⟩ = ℚ(𝜔), so 
ℚ( 3√3/2) = ℚ( 3

√
12) ⊆ ℚ(𝜔): contradiction.

• If 𝜎( 3
√

3) = 𝜔2 3
√

3, ℚ( 3√3/4) = ℚ( 3
√

6) ⊆ ℚ(𝜔): contradiction.
Remark.  In the above example, 𝑁 = ℚ(𝜃1, 𝜃2, 𝜃3) = ℚ( 3

√
2, 𝜔) where 𝜃𝑖 are the roots

of 𝑥3 − 2. Plotting these roots on Argand diagram gives the symmetry group 𝑆3 ≅ 𝐷3
of an equilateral triangle. 𝜏  reflects the 𝜃𝑖 (complex conjugation), 𝜎 rotates the roots
(but doesn’t rotate all of 𝑁 , as it fixes ℚ). For 𝑔 ∈ 𝐺, 𝑔(𝜃𝑗) = 𝜃𝜋(𝑗) where 𝜋 is
permutation of {1, 2, 3}. So there is a group homomorphism 𝜑 : 𝐺 → 𝑆3, 𝜑(𝑔) = 𝜋. 
ker(𝜑) = {id}, so 𝜑 is injective and also surjective, since |𝐺| = |𝑆3| = 6, so 𝜑 is
isomorphism.
Definition.  For 𝑓(𝑥) ∈ 𝐾[𝑥], deg(𝑓) = 𝑛 ≥ 1, with 𝑛 distinct roots, the Galois
group of 𝑓(𝑥), 𝐺𝑓 , is Galois group of splitting field of 𝑓(𝑥) over 𝐾 (provided it is
separable).
Remark.  Elements of 𝐺𝑓  permute roots of 𝑓 , so 𝐺𝑓  is subgroup of 𝑆𝑛. If 𝑓(𝑥)
irreducible over 𝐾, then 𝐺𝑓  is transitive subgroup, i.e. given 2 roots 𝛼, 𝛽 of 𝑓 , there
is a 𝑔 ∈ 𝐺𝑓  with 𝑔(𝛼) = 𝛽. This gives a general pattern

polynomial ⟶ field extension ⟶ permutation group

Example.  Consider ℚ ⊂ 𝐿 = ℚ(𝜃) ⊂ 𝑁 = ℚ(𝜃, 𝑖) where 𝜃 = 4
√

2. 𝑁  is normal closure
of ℚ(𝜃), [𝑁 : ℚ] = 8 so |Gal(𝑁/ℚ)| = 8.
• Define 𝜎(𝜃) = 𝑖𝜃, 𝜎(𝑖) = 𝑖, 𝜏(𝜃) = 𝜃, 𝜏(𝑖) = −𝑖. Then 𝜏2 = 𝜎4 = id. We have

id 𝜎 𝜎2 𝜎3 𝜏 𝜏𝜎 𝜏𝜎2 𝜏𝜎3

𝜃 𝜃 𝑖𝜃 −𝜃 −𝑖𝜃 𝜃 −𝑖𝜃 −𝜃 𝑖𝜃

𝑖 𝑖 𝑖 𝑖 𝑖 −𝑖 −𝑖 −𝑖 −𝑖

so 𝐺 = Gal(𝑁/ℚ) = ⟨𝜎, 𝜏 : 𝜎4 = 𝜏2 = id, 𝜎𝜏 = 𝜏𝜎3⟩ ≅ 𝐷4.
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• Order 2 subgroups are ⟨𝜏⟩, ⟨𝜏𝜎⟩, ⟨𝜏𝜎2⟩, ⟨𝜏𝜎3⟩, ⟨𝜎2⟩.
• Order 4 subgroups are ⟨𝜎2, 𝜏⟩ ≅ (ℤ/2)2, ⟨𝜎⟩ ≅ ℤ/4, ⟨𝜎2, 𝜏𝜎⟩ ≅ (ℤ/2)2.
• Respectively, intermediate field extensions of degree 4 are ℚ( 4

√
2), ℚ(𝑖 4

√
2), 

ℚ(
√

2, 𝑖), ℚ((1 − 𝑖) 4
√

2), ℚ((1 + 𝑖) 4
√

2).
• Respectively, intermediate field extensions of degree 2 are ℚ(

√
2), ℚ(𝑖), ℚ(𝑖

√
2).

5. Cyclotomic field extensions
5.1. Roots of unity
Definition.  𝜁 ∈ 𝐾∗ is 𝑛-th primitive root of unity if 𝜁𝑛 = 1 and ∀0 < 𝑚 < 𝑛, 
𝜁𝑚 ≠ 1, i.e. order of 𝜁 in 𝐾∗ is 𝑛.
Example.
• 𝜁 is primitive 1-st root of unity iff 𝜁 = 1.
• −1 is primitive 2-nd root of unity iff char(𝐾) ≠ 2.
• If char(𝐾) = 𝑝 prime, then 𝐾 contains no 𝑝-th primitive roots of unity (since 

𝜁𝑝 = 1 ⟺ (𝜁 − 1)𝑝 = 0 ⟺ 𝜁 = 1).
• If 𝐾 = ℂ, exp(2𝜋𝑖/𝑛) is 𝑛-th primitive root of unity.
Proposition.  Let 𝜁 ∈ 𝐾∗ primitive 𝑛-th root of unity, let 𝑑 = gcd(𝑚, 𝑛). Then 𝜁𝑚 is
primitive (𝑛/𝑑)-th root of unity.
Corollary.  Let 𝜁 ∈ 𝐾∗ primitive 𝑛-th root of unity.
• 𝜁𝑚 = 1 ⟺ 𝑚 ≡ 0 mod 𝑛.
• 𝜁𝑚 is primitive 𝑛-th root of unity iff gcd(𝑚, 𝑛) = 1.
Definition.  Let 𝜇(𝐾) denote subgroup of all roots of unity in 𝐾∗.
Theorem.  Let 𝐾 field, 𝐻 finite subgroup of 𝐾∗, then 𝐻 is cyclic.
Remark.  This implies that any finite field 𝔽𝑞 can be written 𝔽𝑞 = 𝔽𝑝𝑛 = 𝔽𝑝(𝛼)
where 𝛼 is generator of 𝔽×

𝑞 .
Corollary.  Let 𝐾 field, 𝑛 ∈ ℕ be largest such that 𝐾 contains primitive 𝑛-th root of
unity 𝜁. Then 𝜇(𝐾) is cyclic subgroup in 𝐾∗ generated by 𝜁.

5.2. 𝑛-th cyclotomic field extensions
Notation.  Let 𝜁𝑛 = exp(2𝜋𝑖/𝑛) ∈ ℂ.
Definition.  ℚ(𝜁𝑛)/ℚ is 𝑛-th cyclotomic field extension.
Proposition.  ℚ(𝜁𝑛)/ℚ is Galois.
Definition.  Φ𝑛(𝑥) ≔ ∏𝑎∈𝐴(𝑥 − 𝜁𝑎

𝑛) where 𝐴 = {𝑎 ∈ ℕ : 0 < 𝑎 < 𝑛, gcd(𝑎, 𝑛) = 1}.

Proposition.  Φ𝑛(𝑥) ∈ ℚ[𝑥] is irreducible and so is minimal polynomial of a
primitive 𝑛-th root of unity over ℚ. In particular, [ℚ(𝜁𝑛) : ℚ] = 𝜑(𝑛), where 𝜑(𝑛) =
|(ℤ/𝑛)×| is Euler function.
Proposition.  Properties of 𝜑 function:
• For prime 𝑝, 𝜑(𝑝) = 𝑝 − 1.
• For prime 𝑝, 𝜑(𝑝𝑘) = 𝑝𝑘 − 𝑝𝑘−1.
• If gcd(𝑛, 𝑚) = 1, then 𝜑(𝑛𝑚) = 𝜑(𝑛)𝜑(𝑚).
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• If 𝑛 = ∏𝑟
𝑖=1 𝑝𝑘𝑖

𝑖  is prime factorisation of 𝑛, then

𝜑(𝑛) = 𝑛 ∏
𝑟

𝑖=1
(1 −

1
𝑝𝑖

)

Proposition.  ∀𝑛 ∈ ℕ, 𝑥𝑛 − 1 = ∏𝑛1∣𝑛 Φ𝑛1
(𝑥).

Example.
• Φ1(𝑥) = 𝑥 − 1.
• Φ1(𝑥)Φ2(𝑥) = 𝑥2 − 1 ⟹ Φ2(𝑥) = 𝑥 + 1.
• Φ1(𝑥)Φ3(𝑥) = 𝑥3 − 1 ⟹ Φ3(𝑥) = 𝑥2 + 𝑥 + 1.
Proposition.
• For 𝑝 prime, Φ𝑝(𝑥) = 𝑥𝑝−1 + ⋯ + 𝑥 + 1.
• For 𝑝 prime, Φ𝑝𝑘(𝑥) = Φ𝑝(𝑥𝑝𝑘−1).
• For every 𝑛 ∈ ℕ, Φ𝑛(𝑥) has integer coefficients.

5.3. Galois properties of cyclotomic extensions
Theorem.  Gal(ℚ(𝜁𝑛)/ℚ) ≅ (ℤ/𝑛)×.
Remark.  To compute (ℤ/𝑛)×, note that for 𝑚, 𝑛 coprime, (ℤ/𝑚𝑛)× ≅ (ℤ/𝑚)× ×
(ℤ/𝑛)× and
• If 𝑝 ≠ 2 prime, then (ℤ/𝑝𝑟)× is cyclic of order 𝜑(𝑝𝑟).
• (ℤ/4)× ≅ ℤ/2 and for 𝑟 ≥ 3, (ℤ/2𝑟)× ≅ ℤ/2 × ℤ/2𝑟−2.
Corollary.  Gal(ℚ(𝜁𝑛)/ℚ) is abelian so every subgroup is normal, so any subfield of 
ℚ(𝜁𝑛) is Galois over ℚ.
Corollary.  For 𝑝 prime, 𝐺 = Gal(ℚ(𝜁𝑝)/ℚ) ≅ (ℤ/𝑝)× ≅ ℤ/(𝑝 − 1). In particular, for
𝑑 | (𝑝 − 1), ℚ(𝜁𝑝) contains exactly one subfield of degree 𝑑 and there are no other
subfields.
Remark.  For 𝑑 = 2 in above corollary, ℚ(𝜁𝑝) contains unique quadratic subfield 
ℚ(√𝐷𝑝), where 𝐷𝑝 = (−1)(𝑝−1)/2𝑝
Example.  Gal(ℚ(𝜁𝑛)/ℚ) not always cyclic, e.g. Gal(ℚ(𝜁8)/ℚ) ≅ ℤ/2 × ℤ/2.
Proposition.
• If 𝑛 odd, 𝜇(ℚ(𝜁𝑛)) is cyclic of order 2𝑛 and is generated by −𝜁𝑛.
• If 𝑛 even, 𝜇(ℚ(𝜁𝑛)) is cyclic of order 𝑛 and is generated by 𝜁𝑛.
• If gcd(𝑚, 𝑛) = 𝑑, then ℚ(𝜁𝑚, 𝜁𝑛) = ℚ(𝜁𝑚𝑛/𝑑).

5.4. Special properties of ℚ(𝜁𝑝), where 𝑝 > 2 is prime
Example.  Gal(ℚ(𝜁5)/ℚ) ≅ (ℤ/5)× has generator 𝜏 : 𝜁5 ↦ 𝜁2

5 . ℚ-basis {1, 𝜁5, 𝜁2
5 , 𝜁3

5}
is not invariant under action of 𝜏  or any power of 𝜏  (since 𝜏(𝜁2

5) = 𝜁4
5 ) but 

{𝜁, 𝜁2
5 , 𝜁3

5 , 𝜁4
5} is invariant. The same holds for general 𝑝 > 2 prime. For 𝛼𝑖 ∈ ℚ, 

𝛼1𝜁𝑝 + ⋯ + 𝛼𝑝−1𝜁𝑝−1
𝑝 ∈ ℚ iff 𝛼1 = ⋯ = 𝛼𝑝−1.

Example.  If 𝑥 ∈ ℚ(𝜁𝑝), [ℚ(𝑥) : ℚ] = |{𝜎(𝑥) : 𝜎 ∈ Gal(ℚ(𝜁𝑝)/ℚ)}| In particular, if 𝜏
is generator of 𝐺 = Gal(ℚ(𝜁𝑝)/ℚ) and 𝑥 = 𝛼1𝜁𝑝 + ⋯ + 𝛼𝑝−1𝜁𝑝−1

𝑝  then set of all
conjugates of 𝑥 is equal to (note not all elements are distinct)
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{𝜏𝑎(𝑥) : 𝑎 ∈ [𝑝 − 1]} = {∑
𝑝−1

𝑖=1
𝛼𝑖𝜁𝑎𝑖

𝑝 : 𝑎 ∈ [𝑝 − 1]}

Example.  Let 𝑥 = 𝜁5 + 𝜁4
5 , 𝜏 : 𝜁5 ↦ 𝜁2

5  is a generator of Gal(ℚ(𝜁5)/ℚ). 𝜏(𝑥) = 𝜁2
5 +

𝜁3
5 ≠ 𝑥 but 𝜏2(𝑥) = 𝑥, so [ℚ(𝑥) : ℚ] = 2, i.e. ℚ(𝜁5 + 𝜁4

5) is unique quadratic subfield in
ℚ(𝜁5).
Definition.  Let 𝑥 ∈ ℚ(𝜁𝑝), let minimal polynomial of 𝑥 over ℚ be 𝑚(𝑡) = (𝑡 −
𝑥(1))⋯(𝑡 − 𝑥(𝑑)). Conjugates of 𝑥 over ℚ are 𝑥(1) = 𝑥, …, 𝑥(𝑑).
Example.  Minimal polynomial of 𝜁5 + 𝜁4

5 = 2 cos(2𝜋/5) over ℚ is 𝑚(𝑥) = (𝑥 − 𝜁5 −
𝜁4
5)(𝑥 − 𝜁2

5 − 𝜁3
5) = 𝑥2 + 𝑥 − 1, with roots (−1 ±

√
5)/2. So cos(2𝜋/5) = (−1 +√

5)/4, and unique quadratic subfield of ℚ(𝜁5) over ℚ is ℚ(
√

5).
Example.  Let 𝜏 ∈ 𝐺 be generator of 𝐺 = Gal(ℚ(𝜁𝑝)/ℚ), i.e. 𝜏(𝜁𝑝) = 𝜁𝑎

𝑝 , 𝑎 mod 𝑝
generates (ℤ/𝑝)×. Let

Θ𝑝 = 𝜁𝑝 − 𝜏(𝜁𝑝) + 𝜏2(𝜁𝑝) − ⋯ + 𝜏𝑝−3(𝜁𝑝) − 𝜏𝑝−2(𝜁𝑝)

Θ𝑝 behaves like √𝐷𝑝: 𝜏(Θ𝑝) = −Θ𝑝, 𝜏2(Θ𝑝) = Θ𝑝. So Θ𝑝 ∈ ℚ(𝜁𝑝)⟨𝜏2⟩. Also, 𝜏(Θ2
𝑝) =

Θ2
𝑝 so Θ2

𝑝 ∈ ℚ(𝜁𝑝)⟨𝜏⟩ = ℚ. In fact, Θ2
𝑝 = 𝐷𝑝. Therefore

Θ2
𝑝 = 𝐴 + 𝐵(𝜁𝑝 + ⋯ + 𝜁𝑝−1

𝑝 ) = 𝐴 − 𝐵

So when computing Θ2
𝑝, only need to consider coefficients for 1 and 𝜁𝑝.

6. Cyclic field extensions
6.1. Cyclic extensions of degree 2
Example.  Let 𝐿/𝐾 cyclic of degree 2, so Gal(𝐿/𝐾) = {𝑒, 𝜏}, 𝜏2 = 𝑒. Let 𝜃 ∈ 𝐿 − 𝐾,
then 𝜏(𝜃) ≠ 𝜃 (as otherwise 𝜃 ∈ 𝐿⟨𝜏⟩ = 𝐾). Let 𝜃1 = 𝜏(𝜃) − 𝜃, so 𝜏(𝜃1) = 𝜏2(𝜃) −
𝜏(𝜃) = −𝜃1. If char(𝐾) ≠ 2, then 𝜃1 ≠ −𝜃1 and so 𝜃1 ∉ 𝐾, 𝐿 = 𝐾(𝜃1). 𝜃1 is “better”
than 𝜃, since 𝜏(𝜃1) = −𝜃1. Now if 𝑎 = 𝜃2

1, then 𝜏(𝑎) = 𝑎, so 𝐿 = 𝐾(
√

𝑎).
Theorem.  If char(𝐾) ≠ 2 and 𝐿/𝐾 is cyclic quadratic extension, then

∃𝑎 ∈ 𝐾× − 𝐾×2 : 𝐿 = 𝐾(
√

𝑎)

Definition.  𝑎1, …, 𝑎𝑛 are independent modulo 𝐾×2 (independent modulo
squares) if

𝑎𝜀1
1 ⋯𝑎𝜀𝑛𝑛 ∈ 𝐾×2 ⟺ all 𝜀𝑖 are even

Proposition.  If char(𝐾) ≠ 2:
• 𝐾(√𝑎1) = 𝐾(√𝑎2) ⟺ 𝑎1 ≡ 𝑎2 mod 𝐾×2 , i.e. 𝑎1 = 𝑎2 ⋅ 𝑏2, 𝑏 ∈ 𝐾×.
• If 𝑎1, …, 𝑎𝑛 ∈ 𝐾× are independent modulo 𝐾×2 then 𝐾(√𝑎1, …, √𝑎𝑛) has degree 

2𝑛 over 𝐾 with Galois group ≅ (ℤ/2)𝑛.
• If 𝐿/𝐾 Galois with Galois group (ℤ/2)𝑛, then

∃𝑎1, …, 𝑎𝑛 ∈ 𝐾× : 𝐿 = 𝐾(√𝑎1, …, √𝑎𝑛)
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Remark.  Let char(𝐾) = 2, then ∀𝑎 ∈ 𝐾×, 𝐿 = 𝐾(
√

𝑎) is normal but not separable
(since minimal polynomial of e.g. 

√
𝑎 is 𝑥2 − 𝑎 = (𝑥 +

√
𝑎)(𝑥 −

√
𝑎) = (𝑥 −

√
𝑎)2 so

has repeated roots).

6.2. Cyclic extensions of degree 𝑛 (the Kummer theory)
Definition.  𝐿/𝐾 is cyclic of degree 𝑛 if it is Galois and Gal(𝐿/𝐾) is cyclic of
order 𝑛.
Theorem.  If 𝐾 contains primitive 𝑛-th root of unity and for all divisors 𝑑 > 1 of 𝑛, 
𝑎 ∈ 𝐾× is not 𝑑-th power in 𝐾, then 𝐿 = 𝐾( 𝑛

√
𝑎) is cyclic extension of 𝐾 of degree 𝑛.

In particular, 𝑥𝑛 − 𝑎 ∈ 𝐾[𝑥] is irreducible.
Proposition.  If 𝜁𝑝 ∈ 𝐾, 𝑎 ∈ 𝐾× − 𝐾×𝑝 , then 𝐾( 𝑝√𝑎)/𝐾 is cyclic of degree 𝑝. In
particular, 𝑥𝑝 − 𝑎 ∈ 𝐾[𝑥] is irreducible.
Theorem.  Let 𝐾 contain primitive 𝑛-th root of unity 𝜁𝑛, 𝐿/𝐾 is cyclic extension of
degree 𝑛, Gal(𝐿/𝐾) = ⟨𝜎⟩. Then

∃𝑎 ∈ 𝐾× : 𝐿 = 𝐾( 𝑛
√

𝑎)

Such an 𝑎 is given by 𝜃𝑛
𝑏  for some 𝑏 ∈ 𝐿, where

𝜃𝑏 = 𝑏 + 𝜁−1
𝑛 𝜎(𝑏) + ⋯ + 𝜁−(𝑛−1)

𝑛 𝜎𝑛−1(𝑏)

is Lagrange resolvent for 𝑏, i.e. 𝐿 = 𝐾(𝜃𝑏).
Lemma (Artin's lemma).  There exists 𝑏 ∈ 𝐿 such that 𝜃𝑏 ≠ 0.

7. Finite fields
7.1. Existence and uniqueness
Lemma.  Let 𝐾 finite field, then 𝐾 is field extension of 𝔽𝑝 for some prime 𝑝 and 
|𝐾| = 𝑝𝑛 where 𝑛 = [𝐾 : 𝔽𝑝].
Theorem.  Let 𝑝 prime. Then ∀𝑛 ∈ ℕ, there is field 𝐾 with |𝐾| = 𝑝𝑛.
Theorem.  Let 𝐾 finite field with |𝐾| = 𝑞 = 𝑝𝑛. Then
• ∀𝛼 ∈ 𝐾, 𝛼𝑞 = 𝛼.
• 𝑥𝑞 − 𝑥 = ∏𝛼∈𝐾(𝑥 − 𝛼)
• 𝐾 is splitting field of 𝑥𝑞 − 𝑥 over 𝔽𝑝.
Corollary.  If 𝐾1, 𝐾2 finite fields, |𝐾1| = |𝐾2|, then 𝐾1 ≅ 𝐾2.
Definition.  Let 𝑞 = 𝑝𝑛, then 𝔽𝑞 is the unique (up to isomorphism) field containing 𝑞
elements.
Definition.  For 𝑞 = 𝑝𝑛, the Frobenius automorphism is

𝜎 : 𝔽𝑞 → 𝔽𝑞, 𝜎(𝛼) = 𝛼𝑝

which is an 𝔽𝑝-automorphism by Fermat’s little theorem.
Theorem.  Let 𝑞 = 𝑝𝑛, 𝑝 prime.
• 𝔽𝑞/𝔽𝑝 is Galois of degree 𝑛.
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• Frobenius automorphism generates Gal(𝔽𝑞/𝔽𝑝) and there is group isomorphism

Gal(𝔽𝑞/𝔽𝑝) ↔ ℤ/𝑛, 𝜎 ⟷ 1 mod 𝑛

7.2. Counting irreducible polynomials over finite fields
Notation.  Let Irr𝔽𝑝

(𝑚) denote set of all irreducible polynomials in 𝔽𝑝[𝑥] of degree 
𝑚. Let 𝑁𝑝(𝑚) = |Irr𝔽𝑝

(𝑚)|.

Theorem.  Let 𝑞 = 𝑝𝑚, then 𝑚𝑁𝑝(𝑚) = |{𝛼 ∈ 𝔽𝑞 : 𝔽𝑝(𝛼) = 𝔽𝑞}|.
Remark.  To use above theorem, note that 𝔽𝑝(𝛼) ≠ 𝔽𝑝𝑚 iff 𝛼 belongs to proper
subfield of 𝔽𝑝𝑚 .
Example.
• If 𝑚 is prime, then 𝔽𝑝𝑚 has only one proper subfield 𝔽𝑝, so 𝑚𝑁𝑝(𝑚) = |𝔽𝑝𝑚 | −

|𝔽𝑝| = 𝑝𝑚 − 𝑝.
• The proper subfields of 𝔽𝑝4 are 𝔽𝑝 and 𝔽𝑝2 , but 𝔽𝑝 ⊂ 𝔽𝑝2 , so 4𝑁𝑝(4) = |𝔽𝑝4 | −

|𝔽𝑝2 |.
• 𝔽𝑝(𝛼) ≠ 𝔽𝑝6 iff 𝛼 ∈ 𝔽𝑝3 ∪ 𝔽𝑝2 . Since 𝔽𝑝3 ∩ 𝔽𝑝2 = 𝔽𝑝, we have 6𝑁𝑝(6) = |𝔽𝑝6 | −

|𝔽𝑝3 | − |𝔽𝑝2 | + |𝔽𝑝| = 𝑝6 − 𝑝3 − 𝑝2 + 𝑝.
Proposition.  We have

𝑝𝑛 = ∑
𝑚 | 𝑛

𝑚𝑁𝑝(𝑚)

which we can use recursively to compute any 𝑁𝑝(𝑚).
Example.  We construct 𝐿 = 𝔽316 by finding irreducible polynomial of degree 16 in 
𝔽3[𝑥].
• 𝔽9 = 𝔽3(𝜃) where 𝜃2 + 1 = 0, 𝔽9 = {𝑎 + 𝑏𝜃 : 𝑎, 𝑏 ∈ 𝔽3}. 𝐾 ≔ 𝔽9 contains primitive 

8-th root of unity since 𝔽×
9 ≅ ℤ/8.

• 𝐿/𝐾 is cyclic extension of degree 8, so by Kummer theory there exists 𝛼 ∈ 𝐾 such
that 𝐿 = 𝐾( 8

√
𝛼). 𝛼 must be element that is not square or fourth power in 𝔽9, so

we can look for elements that have order 8.
• 𝛼 = 𝜃 doesn’t work since 𝜃2 = −1 ⟹ 𝜃4 = 1. 𝛼 = 1 + 𝜃 works since

(1 + 𝜃)2 = 𝜃2 + 𝜃 + 1 = −𝜃, (1 + 𝜃)4 = 𝜃2 = −1, (1 + 𝜃)8 = 1

so 𝛼 = 1 + 𝜃 has order 8 in 𝔽9.
• So 𝐿 = 𝐾( 8

√
𝑎) = 𝔽9(

8
√

1 + 𝜃) = 𝔽3(𝜃,
8
√

1 + 𝜃) = 𝔽3(𝜂) where 𝜂8 = 1 + 𝜃. Now [𝐿 :
𝔽3] = 16 by tower law, so 𝐿 = 𝔽316 by uniqueness of finite fields.

• 𝜂8 = 1 + 𝜃 ⟹ (𝜂8 − 1)2 = 𝜃2 = −1 ⟹ 𝜂16 + 𝜂8 + 2 = 0 so 𝑓(𝑥) = 𝑥16 + 𝑥8 + 2 ∈
𝔽3[𝑥] is irreducible.

8. Galois groups of polynomials
8.1. Symmetric functions
Definition.  Define action of 𝑆𝑛 on 𝐿 = 𝑘(𝑥1, …, 𝑥𝑛) by 𝜏 : 𝑥𝑗 ↦ 𝑥𝜋(𝑗) where 𝜋 ∈ 𝑆𝑛,
which gives 𝑘-automorphism
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𝜏 : 𝐿 → 𝐿,
𝑓(𝑥1, …, 𝑥𝑛)
𝑔(𝑥1, …, 𝑥𝑛)

↦
𝑓(𝑥𝜋(1), …, 𝑥𝜋(𝑛))
𝑔(𝑥𝜋(1), …, 𝑥𝜋(𝑛))

The symmetric functions in 𝐿 are elements of fixed field 𝐿𝑆𝑛 .
Definition.  The elementary symmetric polynomials 𝑒𝑟 ∈ 𝐿 for 𝑟 ∈ [𝑛] are

𝑒1 = ∑
1≤𝑖≤𝑛

𝑥𝑖

𝑒2 = ∑
1≤𝑖<𝑗≤𝑛

𝑥𝑖𝑥𝑗

⋮
𝑒𝑟 = ∑

1≤𝑖1<⋯<𝑖𝑟≤𝑛
𝑥𝑖1

⋯𝑥𝑖𝑟

⋮
𝑒𝑛 = 𝑥1⋯𝑥𝑛

Define 𝐾 = 𝑘(𝑒1, …, 𝑒𝑛).
Theorem.  𝐾 = 𝐿𝑆𝑛 and 𝐿/𝐾 is Galois with Gal(𝐿/𝐾) ≅ 𝑆𝑛.

Proof.
• Note that 𝑓(𝑥) = (𝑥 − 𝑥1)⋯(𝑥 − 𝑥𝑛) = 𝑥𝑛 − 𝑒1𝑥𝑛−1 + ⋯ + (−1)𝑛𝑒𝑛.
• Show 𝐿 splitting field of 𝑓(𝑥) over 𝐾 and [𝐿 : 𝐾] ≤ 𝑛!.
• Show [𝐿 : 𝐾] ≥ 𝑛!.

□

Remark.  Every finite group 𝐺 is subgroup of 𝑆𝑛 for some 𝑛, so there is always
Galois extension with Galois group 𝐺: let 𝐿 = 𝑘(𝑥1, …𝑥𝑛), let 𝐺 ⊆ 𝑆𝑛 act on 𝐿 as
above, then Gal(𝐿/𝐿𝐺) = 𝐺.
Definition.  For 𝑓(𝑥) ∈ 𝐾[𝑥], Galois group of 𝑓(𝑥), 𝐺𝑓 , is Galois group of splitting
field of 𝑓(𝑥) over 𝐾 (provided this extension is separable). If deg(𝑓) = 𝑛, 𝐺𝑓  acts by
permuting roots 𝜃1, …, 𝜃𝑛 of 𝑓 , so is subgroup of 𝑆𝑛. There can be non-trivial
relationships between roots, so 𝐺𝑓  may be proper subgroup.
Corollary.  Any symmetric polynomial in 𝑘[𝑥1, …, 𝑥𝑛] can be expressed as
polynomial in elementary symmetric polynomials, i.e.

𝑘[𝑥1, …, 𝑥𝑛]𝑆𝑛 = 𝑘[𝑒1, …, 𝑒𝑛]

where LHS is set of symmetric polynomials, RHS is set of polynomials in elementary
symmetric polynomials.
Example.
• When 𝑛 = 2, 𝑥2

1 + 𝑥2
2 = 𝑒2

1 − 2𝑒2 and 𝑥3
1 + 𝑥3

2 = 𝑒3
1 − 3𝑒1𝑒2.

• When 𝑛 = 3, 𝑥2
1𝑥2 + 𝑥1𝑥2

2 + 𝑥2
2𝑥3 + 𝑥2𝑥2

3 + 𝑥2
3𝑥1 + 𝑥3𝑥2

1 = 𝑒1𝑒2 − 3𝑒3.
Definition.  Lexicographic ordering of monomials, >lex (or ≻𝐿), is

𝑥𝑎1
1 ⋯𝑥𝑎𝑛𝑛 >lex 𝑥𝑏1

1 ⋯𝑥𝑏𝑛𝑛
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iff ∃0 ≤ 𝑗 ≤ 𝑛 − 1 such that 𝑎1 = 𝑏1, …, 𝑎𝑗 = 𝑏𝑗 and 𝑎𝑗+1 > 𝑏𝑗+1.
Example.  𝑥2

1𝑥3
2𝑥3 >lex 𝑥2

1𝑥2
2𝑥4

3.
Definition.  Leading term of 𝑓(𝑥1, …, 𝑥𝑛) ∈ 𝑘[𝑥1, …, 𝑥𝑛] is largest monomial 
𝑐𝑥𝑎1

1 ⋯𝑥𝑎𝑛𝑛  with 𝑐 ≠ 0, 𝑎𝑖 ≠ 0 for some 𝑖, appearing in 𝑓 with respect to lexicographic
ordering.
Note.  If 𝑓 is symmetric, then 𝑎1 ≥ ⋯ ≥ 𝑎𝑛.
Algorithm.  Given 𝑓(𝑥1, …, 𝑥𝑛) ∈ 𝑘[𝑥1, …, 𝑥𝑛]𝑆𝑛 , express 𝑓 as polynomial in
elementary symmetric polynomials:
1. Find leading term 𝑐𝑥𝑎1

1 ⋯𝑥𝑎𝑛𝑛  of 𝑓 , compute

𝑓1 = 𝑓 − 𝑐𝑒𝑎1−𝑎2
1 ⋯𝑒𝑎𝑛−1−𝑎𝑛

𝑛−1 𝑒𝑎𝑛𝑛

Note leading term of 𝑐𝑒𝑎1−𝑎2
1 ⋯𝑒𝑎𝑛−1−𝑎𝑛

𝑛−1 𝑒𝑎𝑛𝑛  is also 𝑐𝑥𝑎1
1 ⋯𝑥𝑎𝑛𝑛  so leading term of 𝑓1 is

strictly smaller than leading term of 𝑓 . Also, 𝑓1 is symmetric.
2. If 𝑓1 ≠ 0, apply step 1 to get 𝑓2, 𝑓3, …. Since leading term of 𝑓1, 𝑓2, … is strictly

decreasing, eventually 𝑓𝑖 = 0.
Example.  Express 𝑓(𝑥1, 𝑥2) = 𝑥3

1 + 𝑥3
2 in elementary symmetric polynomials:

• Leading term of 𝑓 is 𝑥3
1 = 𝑥3

1𝑥0
2, so

𝑓1 = 𝑓 − 𝑒3−0
1 𝑒0

2 = −3𝑥2
1𝑥2 − 3𝑥1𝑥2

2

• Leading term of 𝑓1 is −3𝑥2
1𝑥2, so

𝑓2 = 𝑓1 − (−3)𝑒2−1
1 𝑒1

2 = −3𝑥2
1𝑥2 − 3𝑥1𝑥2

2 + 3(𝑥1 + 𝑥2)𝑥1𝑥2 = 0
• So 𝑓1 = 𝑓2 + (−3)𝑒2−1

1 𝑒1
2 = −3𝑒1𝑒2 and 𝑓 = 𝑒3

1 + 𝑓1 = 𝑒3
1 − 3𝑒1𝑒2.

Example.
• Let 𝜃1 = 1

3(𝑥1 + 𝜔𝑥2 + 𝜔2𝑥3), 𝜃2 = 1
3(𝑥1 + 𝜔2𝑥2 + 𝜔𝑥3), where 𝜔 = 𝜁3.

• Let 𝜎 = (1 2 3) ∈ 𝑆3, then 𝜎(𝜃1) = 𝜔2𝜃1, 𝜎(𝜃2) = 𝜔𝜃2, hence

𝜎(𝜃3
1 + 𝜃3

2) = 𝜔6𝜃3
1 + 𝜔3𝜃3

2 = 𝜃3
1 + 𝜃3

2

• Let 𝜏 = (2 3) ∈ 𝑆3, then 𝜏(𝜃1) = 𝜃2, 𝜏(𝜃2) = 𝜃1 so 𝜏(𝜃3
1 + 𝜃3

2) = 𝜃3
1 + 𝜃3

2.
• Since 𝑆3 = ⟨σ,τ⟩, 𝑓(𝑥1, 𝑥2, 𝑥3) = 27(𝜃3

1 + 𝜃3
2) ∈ ℚ[𝑥1, 𝑥2, 𝑥3]

𝑆3 . Applying the
algorithm:
‣ 𝑓1 = 𝑓 − 2𝑒3

1 = 9(𝑥2
1𝑥2 + ⋯).

‣ 𝑓2 = 𝑓1 − (−9)𝑒1𝑒2 = 27𝑥1𝑥2𝑥3.
‣ 𝑓3 = 𝑓2 − 27𝑒3 = 0.
‣ So 𝑓 = 2𝑒3

1 − 9𝑒1𝑒2 + 27𝑒3.
• By a similar process, 9𝜃1𝜃2 = 𝑒2

1 − 3𝑒2.

8.2. Galois theory for cubic polynomials
Example (Solving quadratic).  Let char(𝑘) ≠ 2. General quadratic polynomial can be
written as

𝑓(𝑥) = 𝑥2 − 𝑒1𝑥 + 𝑒2 = (𝑥 − 𝑥1)(𝑥 − 𝑥2) ∈ 𝐾[𝑥]
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where 𝑒1 = 𝑥1 + 𝑥2, 𝑒2 = 𝑥1𝑥2 ∈ 𝐾 = 𝑘(𝑒1, 𝑒2). Let 𝐿 = 𝑘(𝑥1, 𝑥2) = 𝐾(𝑥1), then 𝐿/𝐾
is Galois and Gal(𝐿/𝐾) = {id, 𝜎} ≅ 𝑆2 ≅ ℤ/2 where 𝜎(𝑥1) = 𝑥2, 𝜎(𝑥2) = 𝑥1. Since 
𝐿/𝐾 cyclic and 𝜁2 = −1 ∈ 𝐾, by Theorem 6.2.4, Lagrange resolvent of 𝑥1 is

𝜃 = 𝜃𝑥1
= 𝑥1 + 𝜁−1

2 𝜎(𝑥1) = 𝑥1 − 𝑥2

So 𝜎(𝜃) = −𝜃 and 𝜃2 = 𝑒2
1 − 4𝑒2. Δ = 𝜃2 is discriminant of 𝑓(𝑥). So we have 𝑥1 =

(𝑒1 +
√

Δ)/2, 𝑥2 = (𝑒1 −
√

Δ)/2. If 𝑓(𝑥) is irreducible, it has distinct roots, and so
Galois group 𝐺𝑓 ≅ ℤ/2.
Example (Solving cubic).
• Let char(𝑘) ≠ 2, 3, let

𝑓(𝑥) = 𝑥3 − 𝑒1𝑥2 + 𝑒2𝑥 − 𝑒3 = (𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3) ∈ 𝐾[𝑥]

where 𝑒1 = 𝑥1 + 𝑥2 + 𝑥3, 𝑒2 = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3, 𝑒3 = 𝑥1𝑥2𝑥3 ∈ 𝐾 =
𝑘(𝑒1, 𝑒2, 𝑒3) ⊂ 𝐿 = 𝐾(𝑥1, 𝑥2, 𝑥3).

• By Theorem 8.1.3, Gal(𝐿/𝐾) = 𝑆3 with normal subgroup 𝐴3 ≅ ℤ/3. We have
tower 𝐾 ⊂ 𝑀 = 𝐿𝐴3 ⊂ 𝐿. So Gal(𝐿/𝑀) ≅ 𝐴3 ≅ ℤ/3, Gal(𝑀/𝐾) ≅ 𝑆3/𝐴3 ≅ ℤ/2.

• Assume 𝑘 contains primitive 3rd root of unity 𝜔, so 𝑤2 is also primitive 3rd root of
unity. Define

𝜃1 =
1
3
(𝑥1 + 𝜔𝑥2 + 𝜔2𝑥3), 𝑡1 = 𝜃3

1,

𝜃2 =
1
3
(𝑥1 + 𝜔2𝑥2 + 𝜔𝑥3), 𝑡2 = 𝜃3

2

then 𝑡1, 𝑡2 ∈ 𝑀  and 𝐿 = 𝑀(𝜃1) = 𝑀(𝜃2). By Example 8.1.14, 27(𝜃3
1 + 𝜃3

2) = 2𝑒3
1 −

9𝑒1𝑒2 + 27𝑒3, 9𝜃1𝜃2 = 𝑒2
1 − 3𝑒2, so 𝑡1, 𝑡2 are roots of quadratic resolvent of 𝑓(𝑥):

(𝑡 − 𝑡1)(𝑡 − 𝑡2) = 𝑡2 − (
2𝑒3

1 − 9𝑒1𝑒2 + 27𝑒3
27

)𝑡 + (
𝑒2

1 − 3𝑒2
9

)
3

• To find roots 𝑥1, 𝑥2, 𝑥3 of 𝑓 :
‣ Solve quadratic resolvent to find 𝑡1, 𝑡2.
‣ Choose 𝜃1 = 3

√
𝑡1, find 𝜃2 from 9𝜃1𝜃2 = 𝑒2

1 − 3𝑒2.
‣ Solve the linear system

⎩
{
⎨
{
⎧𝑥1 + 𝑥2 + 𝑥3 = 𝑒1

𝑥1 + 𝜔𝑥2 + 𝜔2𝑥3 = 3𝜃1

𝑥1 + 𝜔2𝑥2 + 𝜔𝑥3 = 3𝜃2

⟹

⎩{
{⎨
{{
⎧𝑥1 = 𝑒1/3 + 𝜃1 + 𝜃2

𝑥2 = 𝑒1/3 + 𝜔2𝜃1 + 𝜔𝜃2

𝑥3 = 𝑒1/3 + 𝜔𝜃1 + 𝜔2𝜃2

Remark.  To solve general cubic 𝑓(𝑥) = 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐, first perform shift:

𝑓(𝑥 − 𝑎/3) = 𝑥3 + 𝑝𝑥 + 𝑞

then quadratic resolvent is (memorise)

𝑡2 + 𝑞𝑡 −
𝑝3

27
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with roots 𝑡1 = 𝜃3
1, 𝑡2 = 𝜃3

2, choose 𝜃1, 𝜃2 such that 𝜃1𝜃2 = −𝑝
3 , then roots of 𝑓(𝑥 −

𝑎/3) are 𝑥1 = 𝜃1 + 𝜃2, 𝑥2 = 𝜔2𝜃1 + 𝜔𝜃2, 𝜔𝜃1 + 𝜔2𝜃2.
Example (Galois groups of cubic polynomials).  Let char(𝐾) ≠ 2, 3, 𝑓(𝑥) = 𝑥3 +
𝑎𝑥2 + 𝑏𝑥 + 𝑐 ∈ 𝐾[𝑥], let 𝐿 be splitting field for 𝑓(𝑥) over 𝐾, then 𝐺𝑓 = Gal(𝐿/𝐾).
Let 𝛼1, 𝛼2, 𝛼3 be roots of 𝑓(𝑥) in 𝐿.
• If 𝛼1, 𝛼2, 𝛼3 ∈ 𝐾, then 𝐿 = 𝐾, 𝐺𝑓 = {id}.
• If 𝑓(𝑥) = (𝑥 − 𝛼𝑗)𝑔(𝑥) where 𝛼𝑗 ∈ 𝐾, 𝑔(𝑥) ∈ 𝐾[𝑥] irreducible quadratic, then [𝐿 :

𝐾] = 2, 𝐺𝑓 ≅ ℤ/2.
• If 𝑓(𝑥) irreducible in 𝐾[𝑥], then 𝐾 ⊂ 𝐾(𝛼1) ⊆ 𝐾(𝛼1, 𝛼2, 𝛼3) = 𝐿, then either [𝐿 :

𝐾(𝛼1)] = 1, so [𝐿 : 𝐾] = 3 and 𝐺𝑓 ≅ 𝐴3 ≅ ℤ/3, or [𝐿 : 𝐾(𝛼1)] = 2, so [𝐿 : 𝐾] = 6
and 𝐺𝑓 ≅ 𝑆3.

Definition.  Discriminant of 𝑓(𝑥) = (𝑥 − 𝛼1)(𝑥 − 𝛼2)(𝑥 − 𝛼3) is Δ = 𝛿2 where

𝛿 = (𝛼1 − 𝛼2)(𝛼2 − 𝛼3)(𝛼3 − 𝛼1)

Note Δ ≠ 0 if 𝑓 has distinct roots.
Note.  If 𝐺𝑓 ≅ 𝐴3, then 𝐺𝑓 = ⟨𝜏⟩ where 𝜏 : 𝛼1 ↦ 𝛼2, 𝛼2 ↦ 𝛼3, 𝛼3 ↦ 𝛼1, then 
𝜏(𝛿) = 𝛿 so 𝛿 ∈ 𝐿𝐺𝑓 = 𝐾 and Δ ∈ 𝐾×2 . But if 𝐺𝑓 ≅ 𝑆3, then if 𝜏 ∈ 𝐴3, 𝜏(𝛿) = 𝛿 and
if 𝜏 ∈ 𝑆3 − 𝐴3, then 𝜏(𝛿) = −𝛿 so 𝛿 ∉ 𝐾 but Δ ∈ 𝐾.
Theorem.  Let 𝑓(𝑥) ∈ 𝐾[𝑥] irreducible, deg(𝑓) = 3. Then
• 𝐺𝑓 ≅ 𝐴3 ⟺ Δ ∈ 𝐾×2 ,
• 𝐺𝑓 ≅ 𝑆3 ⟺ Δ ∈ 𝐾× − 𝐾×2 .
Theorem.  Let 𝑓(𝑥) = 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 ∈ 𝐾[𝑥], then

Δ = 18𝑎𝑏𝑐 − 4𝑎3𝑐 + 𝑎2𝑏2 − 4𝑏3 − 27𝑐2

For reduced cubic 𝑓(𝑥) = 𝑥3 + 𝑝𝑥 + 𝑞, (memorise)

Δ = −4𝑝3 − 27𝑞2

Note.  The reduced form of 𝑓(𝑥) has same discriminant as 𝑓(𝑥).

8.3. Galois theory for quartic polynomials
Example.  Let char(𝑘) ≠ 2, 3, 𝐾 = 𝑘(𝑒1, 𝑒2, 𝑒3, 𝑒4) ⊆ 𝐿 = 𝑘(𝑥1, 𝑥2, 𝑥3, 𝑥4), so 𝐿 is
splitting field over 𝐾 of 𝑓(𝑥) = 𝑥4 − 𝑒1𝑥3 + 𝑒2𝑥2 − 𝑒3𝑥 + 𝑥4 and Gal(𝐿/𝐾) ≅ 𝑆4.
Remark.  𝑆4 can be visualised as symmetries of regular tetrahedron with vertices
labelled {1, 2, 3, 4}. Consider three pairs of opposite edges

𝑃1 = {(1, 2), (3, 4)}, 𝑃2 = {(1, 3), (2, 4)}, 𝑃3 = {(1, 4), (2, 3)}

Any permutation in 𝑆4 of the four vertices permutes 𝑃1, 𝑃2, 𝑃3, which gives map 𝜋 :
𝑆4 → 𝑆3.
• 𝜋 is surjective group homomorphism.
• 𝜋 has kernel ker(𝜋) = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} = 𝑉4 ≅ ℤ/2 × ℤ/2.
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• 𝐴4 ⊂ 𝑆4 is subgroup of even permutations (orientation-preserving symmetries).
Restriction of 𝜋 to 𝐴4 gives another surjective homomorphism 𝐴4 → 𝐴3 (and 
𝜋−1(𝐴3) = 𝐴4) also with kernel 𝑉4.

• 𝑉4 is kernel so is normal subgroup of 𝑆4 and of 𝐴4. Note that 𝑉4 is only subgroup
of 𝐴4 isomorphic to ℤ/2 × ℤ/2, but there are four subgroups of 𝑆4, isomorphic to 
ℤ/2 × ℤ/2, with 𝑉4 the only normal one.

• This gives increasing sequence of subgroups in 𝑆4

{id} ⊂ ℤ/2 ⊂ 𝑉4 ⊂ 𝐴4 ⊂ 𝑆4

and 𝑉4 ≅ ℤ/2 × ℤ/2, 𝐴4/𝑉4 ≅ 𝐴3 ≅ ℤ/3, 𝑆4/𝐴4 ≅ ℤ/2.
• Each 𝐺𝑖 in this sequence is normal subgroup of 𝐺𝑖+1 and 𝐺𝑖+1/𝐺𝑖 is cyclic,

meaning that 𝑆4 is solvable (soluble) group.
• We have tower

𝐾 = 𝐿𝑆4 ⊂ 𝐿𝑉4 ⊂ 𝐿 = 𝐿{𝑒}

By fundamental theorem, Gal(𝐿/𝐿𝑉4) = 𝑉4 ≅ ℤ/2 × ℤ/2, so 𝐿/𝐿𝑉4 appears as
biquadratic extension.

• 𝑉4 is normal in 𝑆4 so by fundamental theorem, Gal(𝐿𝑉4/𝐾) ≅ 𝑆4/𝑉4 ≅ 𝑆3 by first
isomorphism theorem. Hence 𝐿𝑉4 appears as splitting field of a cubic polynomial
over 𝐾.

Example (Solving quartic equations).  Define

𝜃1 =
1
2
(𝑥1 + 𝑥2 − 𝑥3 − 𝑥4),

𝜃2 =
1
2
(𝑥1 − 𝑥2 + 𝑥3 − 𝑥4),

𝜃3 =
1
2
(𝑥1 − 𝑥2 − 𝑥3 + 𝑥4)

Then ∀𝑗 ∈ [3], ∀𝜎 ∈ 𝑉4, 𝜎(𝜃𝑗) = ±𝜃𝑗. The 𝜃𝑗 arise from Lagrange resolvents for the
three quadratic subextensions of 𝐿𝑉4 in 𝐿. They behave like 

√
2, 

√
3, 

√
6 in 

ℚ(
√

2,
√

3). Each 𝑡𝑖 = 𝜃2
𝑖  is fixed by 𝑉4 and are permuted by 𝑆4/𝑉4 ≅ 𝑆3. They are

roots of cubic resolvent of 𝑓(𝑥):

(𝑡 − 𝑡1)(𝑡 − 𝑡2)(𝑡 − 𝑡3) = 𝑡3 + 𝑠1𝑡2 + 𝑠2𝑡 + 𝑠3

which has coefficients in (𝐿𝑉4)𝑆3 = 𝐿𝑆4 = 𝐾. To find roots 𝑥1, 𝑥2, 𝑥3, 𝑥4 of 𝑓(𝑥):
• Solve cubic resolvent to find 𝑡1, 𝑡2, 𝑡3.
• Set 𝜃𝑗 = ±√𝑡𝑗 where signs are chosen so that 𝜃1𝜃2𝜃3 = (𝑒3

1 − 4𝑒1𝑒2 + 8𝑒3)/8.
• Solve the linear system

⎩
{
{
⎨
{
{
⎧𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 𝑒1

𝑥1 + 𝑥2 − 𝑥3 + 𝑥4 = 2𝜃1

𝑥1 − 𝑥2 + 𝑥3 − 𝑥4 = 2𝜃2

𝑥1 − 𝑥2 − 𝑥3 + 𝑥4 = 2𝜃3

⟹

⎩{
{{
⎨
{{
{⎧𝑥1 = 𝑒1/4 + (𝜃1 + 𝜃2 + 𝜃3)/2

𝑥2 = 𝑒1/4 + (𝜃1 − 𝜃2 − 𝜃3)/4
𝑥3 = 𝑒1/4 + (−𝜃1 + 𝜃2 − 𝜃3)/2
𝑥4 = 𝑒1/4 + (−𝜃1 − 𝜃2 + 𝜃3)/2
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Remark.  In practice, perform shift to kill 𝑥3 coefficient to obtain reduced quartic:

𝑓(𝑥 − 𝑎/4) = 𝑥4 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟
• Cubic resolvent is (memorise)

𝑡3 + 2𝑝𝑡2 + (𝑝2 − 4𝑟)𝑡 − 𝑞2

• Choose 𝜃1, 𝜃2, 𝜃3 such that (memorise)

𝜃1𝜃2𝜃3 = −𝑞
• Roots of 𝑓(𝑥 − 𝑎/4) are (memorise)

𝑥1 =
1
2
(𝜃1 + 𝜃2 + 𝜃3),

𝑥2 =
1
2
(𝜃1 − 𝜃2 − 𝜃3),

𝑥3 =
1
2
(−𝜃1 + 𝜃2 − 𝜃3),

𝑥4 =
1
2
(−𝜃1 − 𝜃2 + 𝜃3)

• Recover roots of 𝑓(𝑥) by subtracting 𝑎/4.
Example.  Find all complex roots of 𝑓(𝑥) = 𝑥4 + 6𝑥3 + 18𝑥2 + 30𝑥 + 25.
• Eliminate 𝑥3 term:

𝑓(𝑥 − 6/4) = 𝑥4 +
9
2
𝑥2 + 3𝑥 +

85
16

• 𝑝 = 9/2, 𝑞 = 3, 𝑟 = 85/16, so cubic resolvent is

𝑡3 + 2𝑝𝑡2 + (𝑝2 − 4𝑟)𝑡 − 𝑞2 = 𝑡3 + 9𝑡2 − 𝑡 − 9 = (𝑡 − 1)(𝑡 + 1)(𝑡 + 9)

So roots are 𝑡1 = 1, 𝑡2 = −1, 𝑡3 = −9. Set 𝜃1 =
√

𝑡1 = 1, 𝜃2 =
√

𝑡2 = 𝑖, 𝜃3 =
±

√
𝑡3 = ±3𝑖 so that 𝜃1𝜃2𝜃3 = −𝑞 = −3, i.e. 𝜃3 = 3𝑖.

• So roots of 𝑓(𝑥 − 3/2) are

𝑥1 =
1
2
(𝜃1 + 𝜃2 + 𝜃3) =

1
2
(1 + 4𝑖),

𝑥2 =
1
2
(𝜃1 − 𝜃2 − 𝜃3) =

1
2
(1 − 4𝑖),

𝑥3 =
1
2
(−𝜃1 + 𝜃3 − 𝜃3) =

1
2
(−1 − 2𝑖),

𝑥4 =
1
2
(−𝜃1 − 𝜃2 + 𝜃3) =

1
2
(−1 + 2𝑖)

• So roots of 𝑓(𝑥) are −1 ± 2𝑖, −2 ± 𝑖.
Example (Galois groups of quartic polynomials).
• Let char(𝐾) ≠ 2, 3, 𝑓(𝑥) = 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 ∈ 𝐾[𝑥]. Galois group is 𝐺𝑓 =

Gal(𝐿/𝐾) where 𝐿 is splitting field for 𝑓(𝑥) over 𝐾, and 𝐺𝑓  is subgroup of 𝑆4.
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• Assume that 𝑓(𝑥) irreducible in 𝐾[𝑥]. It can be shown there are five possible
isomorphism classes of Galois groups: 𝑆4, 𝐴4, 𝑉4, ℤ/4 or 𝐷4.

• Let 𝑅(𝑡) ∈ 𝐾[𝑡] be cubic resolvent of 𝑓(𝑥) with roots 𝑡1 = 𝜃2
1, 𝑡2 = 𝜃2

2, 𝑡3 = 𝜃2
3. Let 

𝑀  be splitting field of 𝑅(𝑡) over 𝐾, so

𝐾 ⊂ 𝐾(𝑡1, 𝑡2, 𝑡3) ⊂ 𝑀 ⊂ 𝐿 = 𝑀(𝜃1, 𝜃2, 𝜃3)

Theorem.  Let 𝑓(𝑥) ∈ 𝐾[𝑥] irreducible and have irreducible cubic resolvent 𝑅(𝑡) ∈
𝐾[𝑡] with roots 𝑡1 = 𝜃2

1, 𝑡2 = 𝜃2
2, 𝑡3 = 𝜃3

2. Let 𝐿 be splitting field of 𝑓(𝑥) over 𝐾 (so 
𝐺𝑓 = Gal(𝐿/𝐾)) and let 𝑀  be splitting field of 𝑅(𝑡) over 𝐾 (so 𝐺𝑅 = Gal(𝑀/𝐾)).
• If Δ𝑅 ∈ 𝐾×2 (i.e. 𝐺𝑅 ≅ 𝐴3 and [𝑀 : 𝐾] = 3), then 𝐺𝑓 ≅ 𝐴4.
• If Δ𝑅 ∈ 𝐾× − 𝐾×2 (i.e. 𝐺𝑅 ≅ 𝑆3 and [𝑀 : 𝐾] = 6), then 𝐺𝑓 ≅ 𝑆4.

Proof.
• Sufficient to prove [𝐿 : 𝑀] = 4 since then [𝐿 : 𝐾] = 12 or 24 by Tower Law.
• Show 𝑀  does not contain 𝜃1, 𝜃2 or 𝜃3.

‣ Suppose it does, so WLOG 𝜃1 ∈ 𝑀 . Gal(𝑀/𝐾) ≅ 𝐴3 or 𝑆3, so must be order 3
element 𝜎 ∈ Gal(𝑀/𝐾). 𝜎(𝜃1) and 𝜎2(𝜃1) are the other two roots 𝜃2 and 𝜃3 since
𝑅(𝑡) is irreducible and 𝜃1, 𝜃2, 𝜃3 ∈ 𝑀 . But this implies 𝑀 = 𝐿 so [𝐿 : 𝐾] = 3 or 
6, but 4 | [𝐿 : 𝐾] since 𝐿 contains roots of irreducible quartic.

• 𝑀(𝜃1)/𝑀  is degree 2. Assume 𝜃2 ∈ 𝑀(𝜃1). Gal(𝑀(𝜃1)/𝑀) = {id, 𝜏} for some 𝜏 :
𝜃1 ↦ −𝜃1. Also 𝜃2

2 ∈ 𝑀  so 𝜏(𝜃2) = ±𝜃2.
‣ If 𝜏(𝜃2) = 𝜃2, then 𝜃2 ∈ 𝑀 : contradiction.
‣ If 𝜏(𝜃2) = −𝜃2, then 𝜏(𝜃1𝜃2) = (−𝜃1)(−𝜃2) = 𝜃1𝜃2 hence 𝜃1𝜃2 ∈ 𝑀 . But 𝜃1𝜃2𝜃3 ∈

𝐾 and 𝜃1𝜃2 ≠ 0 since 𝑅(𝑡) irreducible. But then 𝜃3 ∈ 𝑀 : contradiction.
• Hence [𝑀(𝜃1, 𝜃2) : 𝑀] ≥ 4, and 𝜃1𝜃2𝜃3 ∈ 𝑀  so 𝐿 = 𝑀(𝜃1, 𝜃2) and [𝐿 : 𝑀] = 4.

□

Example.
• If 𝑓(𝑥) ∈ 𝐾[𝑥] but cubic resolvent 𝑅(𝑡) ∈ 𝐾[𝑡] is reducible, it is possible that all

roots 𝑡1 = 𝜃2
1, 𝑡2 = 𝜃2

2, 𝑡3 = 𝜃2
3 are in 𝐾. Then 𝑀 = 𝐾 and 𝐿 = 𝐾(𝜃1, 𝜃2, 𝜃3). Since 

𝜃1𝜃2𝜃3 ∈ 𝐾, 𝐿/𝐾 is obtained by adjoining only two square roots to 𝐾. Since 𝑓(𝑥)
irreducible of degree 4, we have [𝐿 : 𝐾] ≥ 4, hence only option is biquadratic
extension 𝐺𝑓 = Gal(𝐿/𝐾) = 𝑉4 ≅ ℤ/2 × ℤ/2.

• If only one root 𝑡1, 𝑡2, 𝑡3 is in 𝐾 (say it is 𝑡1):
‣ 𝑀  is splitting field of irreducible quadratic over 𝐾. Hence 𝑀 = 𝐾(

√
𝑑) for some 

𝑑 ∈ 𝐾× − 𝐾×2 and Gal(𝑀/𝐾) = {id, 𝜑} ≅ ℤ/2 where 𝜑(
√

𝑑) = −
√

𝑑.
‣ We have

𝐾 ⊂ 𝑀 = 𝐾(
√

𝑑) = 𝐾(𝛼, 𝛼) ⊂ 𝐿 = 𝑀(
√

𝛼,
√

𝛼)

where 𝛼 and 𝛼 = 𝜑(𝛼) are conjugate elements in 𝑀× − 𝑀×2 (corresponding to 
𝑡2 and 𝑡3).

‣ In this case, 𝐿/𝐾 is normal extension, since if 𝛼, 𝛼 are roots of 𝑥2 + 𝑎𝑥 + 𝑏 ∈
𝐾[𝑥], then ±

√
𝛼, ±

√
𝛼 are roots of 𝑥4 + 𝑎𝑥2 + 𝑏 ∈ 𝐾[𝑥]. So 𝐿 is splitting field of 

𝑥4 + 𝑎𝑥2 + 𝑏 over 𝐾. For above tower of fields, we have Galois groups
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{id} ⊂ Gal(𝐿/𝑀) = 𝐻 ⊂ Gal(𝐿/𝐾) = 𝐺

and 𝐺/𝐻 ≅ Gal(𝑀/𝐾) = {id, 𝜑} ≅ ℤ/2.
Theorem.  Let 𝑀 = 𝐾(

√
𝑑), 𝑑 ∉ 𝐾×2 , Gal(𝑀/𝐾) = {id, 𝜑}. Let 𝛼, 𝛼 = 𝜑(𝛼) ∈

𝑀× − 𝑀×2 , and let 𝐿 = 𝑀(
√

𝛼,
√

𝛼), 𝐺 = Gal(𝐿/𝐾).
• If 𝛼𝛼 ∈ 𝐾×2 , then [𝐿 : 𝐾] = 4 and 𝐺 ≅ ℤ/2 × ℤ/2.
• If 𝛼𝛼 ∈ 𝑀×2 − 𝐾×2 then [𝐿 : 𝐾] = 4 and 𝐺 ≅ ℤ/4.
• If 𝛼𝛼 ∉ 𝑀×2 , then [𝐿 : 𝐾] = 8 and 𝐺 ≅ 𝐷4.
Note.  In the case that 𝐶 ≔ 𝛼𝛼 ∉ 𝑀×2 and so 𝐺 ≅ 𝐷4:
• We have Gal(𝑀/𝐾) = {id, 𝜑}, 𝜑 :

√
𝑑 ↦ −

√
𝑑.

• There are two lifts of 𝜑 to 𝐿:

𝜏 : (
√

𝑑,
√

𝐶,
√

𝛼) ↦ (−
√

𝑑,
√

𝐶,
√

𝛼),

𝜎 : (
√

𝑑,
√

𝐶,
√

𝛼) ↦ (−
√

𝑑, −
√

𝐶,
√

𝛼)

(so 𝜏(
√

𝛼) =
√

𝛼, 𝜎(
√

𝛼) = −
√

𝛼)
• Then 𝐺 = Gal(𝐿/𝐾) = ⟨τ,𝜎 | 𝜏2 = 𝜎4 = 𝑒, 𝜏𝜎 = 𝜎3𝜏⟩.

8.4. A criterion for solvability by radicals
Note.  Assume all fields in this section have characteristic 0.
Definition.  𝐿/𝐾 is radical extension if there is tower of field extensions

𝐾 = 𝐾0 ⊂ ⋯ ⊂ 𝐾𝑚 = 𝐿

where for each 1 ≤ 𝑖 ≤ 𝑚, 𝐾𝑖 = 𝐾𝑖−1( 𝑛𝑖
√𝛼𝑖) with 𝛼𝑖 ∈ 𝐾𝑖−1 and 𝑛𝑖 ∈ ℕ.

Example.  Let 𝛼 = 3√2 + 5√3 −
√

7. We have

𝐾0 = ℚ ⊂ 𝐾1 = ℚ(
√

7) ⊂ 𝐾2 = 𝐾1(
5√3 −

√
7) ⊂ 𝐾3 = 𝐾2(𝛼)

Definition.  𝑓(𝑥) ∈ 𝐾[𝑥] is solvable in radicals over 𝐾 if there is a radical
extension 𝐿 of 𝐾 containing at least one root of 𝑓(𝑥).
Lemma.  If 𝑓(𝑥) irreducible and solvable in radicals, then all its roots belong to the
radical field extension 𝐿.
Definition.  A finite group 𝐺 is solvable (soluble) if there exists decreasing
sequence of subgroups

𝐺 = 𝐺0 ⊃ ⋯ ⊃ 𝐺𝑚 = {id}

where for each 1 ≤ 𝑖 ≤ 𝑚, 𝐺𝑖 is normal subgroup of 𝐺𝑖−1 and 𝐺𝑖−1/𝐺𝑖 is cyclic.
Lemma (Properties of solvable groups).
• Every subgroup of finite solvable group is solvable.
• Abelian groups are solvable.
• 𝑆𝑛 is solvable iff 𝑛 ≤ 4.
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• Let 𝐺 finite group with normal subgroup 𝐻. Then 𝐺 is solvable iff both 𝐻 and 
𝐺/𝐻 are solvable.

Theorem (Galois' Theorem: Criterion for solvability in radicals).  Let 𝑓(𝑥) ∈ 𝐾[𝑥]
irreducible. Then 𝑓(𝑥) is solvable in radicals over 𝐾 iff Galois group 𝐺𝑓  is solvable.

8.5. Polynomials not solvable by radicals
Lemma.  𝐴𝑛 is generated by 3-cycles (𝑖 𝑗 𝑘).

Proof.
• 𝐴1 = 𝐴2 = {id}.
• For 𝑛 ≥ 3, any element in 𝐴𝑛 is product of even number of transpositions.
• Combine pairs of transpositions as follows:

‣ (𝑖𝑗)(𝑖𝑗) = id.
‣ (𝑖𝑗)(𝑖𝑘) = (𝑖𝑘𝑗).
‣ (𝑖𝑗)(𝑘𝑙) = (𝑖𝑘)(𝑗𝑘)(𝑗𝑘)(𝑘𝑙) = (𝑖𝑗𝑘)(𝑗𝑘𝑙).

□

Theorem.  For 𝑛 ≥ 5, 𝐴𝑛 and 𝑆𝑛 are not solvable.

Proof.
• Assume 𝐴𝑛 solvable, so there is decreasing sequence of subgroups

𝐴𝑛 = 𝐺0 ⊃ ⋯ ⊃ 𝐺𝑚 = {id}

with 𝐺𝑖 normal in 𝐺𝑖−1, 𝐺𝑖−1/𝐺𝑖 cyclic and so abelian. So we have canonical
projection homomorphism 𝜋 : 𝐴𝑛 → 𝑄 = 𝐴𝑛/𝐺1, 𝑄 is abelian and non-trivial.

• Let 𝑔 = (𝑖1𝑖2𝑖3) ∈ 𝐴𝑛. There are 𝑖4, 𝑖5 ∈ [𝑛] (since 𝑛 ≥ 5) such that 𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5
distinct. Let 𝑔1 = (𝑖1𝑖2𝑖4), 𝑔2 = (𝑖1𝑖3𝑖5), then 𝑔1𝑔2𝑔−1

1 𝑔−1
2 = 𝑔.

• Since 𝑄 abelian, 𝜋(𝑔) = 𝜋(𝑔1)𝜋(𝑔2)𝜋(𝑔1)
−1𝜋(𝑔2)

−1 = id.
• So 𝜋 sends 3-cycles to id, and 𝐴𝑛 is generated by 3-cycles, so 𝜋(𝐴𝑛) = {id} which

is the trivial group: contradiction.

□

Theorem.  Let 𝑓(𝑥) ∈ ℚ[𝑥] irreducible polynomial of degree 5 with exactly 3 real
roots. Then 𝑓(𝑥) has Galois group 𝐺𝑓 ≅ 𝑆5 (and so 𝑓(𝑥) is not solvable by radicals
over ℚ).
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