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0.1. Prerequisites
Definition 0.1 I C R is prime ideal if Va,be R,abe ] = acIVbe .

Definition 0.2 Ideal I is maximal if I # R and there is no ideal J C R such that
IcJ.

Example 0.3
o p € Zis prime iff (p) = pZ is prime ideal.
o (0) is prime ideal iff R is integral domain.

Lemma 0.4 If [ is maximal ideal, then it is prime.

Proposition 0.5 For commutative ring R, ideal I:
o I C R is prime ideal iff R/I is an integral domain.
o I is maximal iff R/I is field.

Proposition 0.6 Let R be PID and a € R irreducible. Then (a) = (a)p is maximal.

Theorem 0.7 Let F be field, f(z) € F|z] irreducible. Then F[z]/(f(z)) is a field
and a vector space over F with basis B = {1,Z, ..., "1} where n = deg(f). That is,
every element in F[z]/(f(z)) can be uniquely written as linear combination

(1:0 + alw + AR +an_1$n_1, ai E F
1. Divisibility in rings

1.1. Every ED is a PID

Definition 1.1 Let R integral domain. ¢ : R — {0} — N, is Euclidean function
(norm) on R if:

« Va,y € R—{0}, p(z) < p(zy).
e Vz € Ryye R—{0},3¢q,r € R: x = qy + r with either r = 0 or ¢(r) < ¢(y).

R is Euclidean domain (ED) if Euclidean function is defined on it.

Example 1.2
e Zis ED with ¢(n) = |n|.
o F[z] is ED for field F with (f) = deg(f).

Lemma 1.3 Z[—/2] is ED with Euclidean function
o(a+bvV—2) = N(a+ bV —2) := a® + 2b*
Proposition 1.4 Every ED is a PID.

1.2. Every PID is a UFD

Definition 1.5 Integral domain R is unique factorisation domain (UFD) if
every non-zero non-unit in R can be written uniquely (up to order of factors and
multiplication by units) as product of irreducible elements in R.

Example 1.6 Let R = {f(z) € Q[z] : f(0) € Z}. Its units are +1. Any factorisation
of £ € R must be of the form f(z)g(z) where deg f = 1,degg =0, so z = (az + b)c,



a€Q,b,c€Z. Wehave bc =0 and ac = 1 hence x = Z - c. So z is not irreducible if

¢ # £1. Also, any factorisation of £ in R is of the form £ = = -d, d € Z, d # 0.
Again, neither factor is a unit when d # +1. Sox =% -c= % -d-c=--- can never
be decomposed into irreducibles (the first factor is never irreducible).

Lemma 1.7 Let R be PID. Then every irreducible element is prime in R.
Theorem 1.8 Every PID is a UFD.

Example 1.9 Z[v/—2] is ED so by the above theorem it is a UFD. Let z,y € Z such

that y? +2 = 3.

« y must be odd, since if y = 2a,a € Z then x = 2b,b € Z but then 2a? + 1 = 4b3.

e y+ v/—2 are relatively prime: if a + byv/—2 divides both, then it divides their
difference 2\/—_2, so norm a? + 2b2 | N(2\/—_2> = 8. Only possible case is a =
+1,b =0 so a+ byv/—2 is unit. Other cases a = 0,b=+1, a = +2,b =0 and a =
0,b = 42 are impossible since y not even.

o Ifa+bV/—2is unit, dz,y € Z : (a—l—b\/—_2)(x—|—y\/—_2> = 1. If b # 0 then (—az—
2b%)y = 1 = b = 0: contradiction. If b = 0, a = £1. So only units in Z[v/—2] are
+1.

2. Finite field extensions

Definition 2.1 Let F', L fields. If F' C L and F and L share the same operations
then F' is a subfield of L and L is field extension of F' (denoted L/F'). L is vector
space over F"

e 0 € L (zero vector).

e u,v € L = u+ve L (additivity).

e a € F,u€ L= au € L (scalar multiplication).

Definition 2.2 Let L/F field extension. Degree of L over F' is dimension of L as
vector space over F':

[L: F]:=dimg(L)
If [L : F] finite, L/F is finite field extension.

Example 2.3 Q(v—2) = {a+ bv/—2:a,b € Q} is isomorphic as a vector space to
Q? so is 2-dimensional vector space over Q. Isomorphism is a + bv/—2 < (a, b).
Standard basis {e;, e,} in Q? corresponds to the basis {1,v/—2} in Q(v/—2).
[Q(v-2): Q] =2

Example 2.4 [C:R] =2 (a basis is {1,4}). [R : Q] is not finite, due to the existence
of transcendental numbers (if o transcendental, then {1, o, 2, ...} is linearly
independent).

Definition 2.5 Let L/F field extension. a € L is algebraic over F' if
30+ f(x) € Fla] : f(a) =0

If all elements in L are algebraic, then L/F is algebraic field extension.



Example 2.6 i € C is algebraic over R since i is root of 2 + 1. C/R is algebraic
since z = a + bi is root of (x — 2)(x — Z) = z? — 2az + a® + b2.

Proposition 2.7 If L/F is finite field extension then it is algebraic.

Definition 2.8 Let L/F field extension, o € L algebraic over F. Minimal
polynomial p,(z) = p, r(z) of a over F is the monic polynomial f of smallest
degree such that f(a) = 0. Degree of a over F' is deg(p,,).

Proposition 2.9 p_(x) is unique and irreducible. Also, if f(z) € F[z] is monic,

irreducible and f(a) =0, then f =p,,.

Example 2.10

d pi,R(x) = Pi,@(x) =z?+1, YZX010) (r) =2 —1.

o Let o = v/5. f(z) = 27 — 5 is minimal polynomial of a over Q by above
proposition, as it is irreducible by Eisenstein’s criterion with p = 5.

e Let a = e2™/P p prime. « is algebraic as root of P — 1 which isn’t irreducible as
P —1 = (z — 1)®(z) where ®(z) = (2P~ 1 +--- +1). ®(a) = 0 since a # 1, B(z) is
monic and ®(x 4+ 1) = ((z + 1) — 1) /x irreducible by Eisenstein’s criterion with
p = p, hence ®(z) irreducible. So p, (z) = ®(x).

2.1. Fields generated by elements

Definition 2.11 Let L/F field extension, a € L. The field generated by a over
F' is the smallest subfield of L containing F' and a:

Fla):== () K
K field,
FCKCL,
acK

Generally, F(ay, ..., a,,) is smallest field extension of F' containing ay, ..., a,,.

e We have F(ay,...,a,) = F(aq) - - - (a,,) (show F(a, ) C F(a)(8) and F(a)(B) C
F(a, 8) by minimality and use induction).

Definition 2.12 Flo] = {} 7 | a0’ a; € Fyn e N} ={f(a): f(z) € Flz]}.

Lemma 2.13 Let L/F field extension, a € L algebraic over F. Then F|qo] is field,
hence F(a) = Fla].

Lemma 2.14 Let « algebraic over F. Then [F(«) : F] = deg(p,,)-

Definition 2.15 Let K/F and L/K field extensions, then F C K C L is tower of
fields.

Theorem 2.16 (Tower theorem) Let FF C K C L tower of fields. Then
[L:F]=|[L: K] [K:F]
Example 2.17 Let L = Q(v/2,v/3). Show [L : Q] = 4.

e Let K =Q(v2). Let V3=a+bv2, a,b € Q so 3 = a®+ 2b* + 2abv/2. So 0 €
{a,b}, otherwise v/2 € Q. But if a = 0, then V6 =20 € Q, if b= 0 then vV/3=a €



Q: contradiction. So z2 — 3 has no roots in K so is irreducible over K so

p3r(T) = z? — 3.
e So [L: K] =2 so by the tower theorem, [L: Q] =[L: K] [K : Q] = 4.

2.2. Norm and trace
o Let L/F finite field extension, n = [L : F|. For any « € L, there is F-linear map

a:L—L, rz ar
« With basis {ay,...,a,} of L over F,let T, =T, ,p € M, (F) be the
corresponding matrix of the linear map « with respect to the basis {«,}:

alag) = aay = ay 10 + - +ay o,

~

a(an) = a0, = 0, 10 +-e +an,nan

with a, ; € F, T, = (ai’j), so « is eigenvalue of T :

Definition 2.18 Norm of « is

NL/F(a) :=det(T),)
Definition 2.19 Trace of « is

trL/F(a) :=tr(T,)

Remark 2.20 Norm and trace are independent of choice of basis so are well-defined
(uniquely determined by «).

Example 2.21 Let L = Q(y/m), m € Z non-square, let @ = a + by/m € L. Fix basis
{1, /m}. Now

a(l) =a-1=a+bym,
&(\/ﬁ) = a/m = bm + ayv/m,

a b
|bm a

So Ny p(a) = a® — b*m, try p(a) = 2a.

N~
I

Lemma 2.22 The map L — M, (F) given by a + T, is injective ring
homomorphism. So if f(z) € F|z],

(f(T,) is a polynomial in T, not f applied to each entry).
Proposition 2.23 Let L/F finite field extension. Va, 5 € L,



¢ Npjp(a) =0+ a=0.

. NL/F(Oéﬂ) = NL/F(Q)NL/F(B)'
e Ya€ F,Nyp(a) = all*Fl and try r(a) =[L: Fla.
« Va,b€ F,tr plaa +bB) = atry,p(a) + btry p(B) (so try g is F-linear map).

2.3. Characteristic polynomials

o Let A€ M, (F), then characteristic polynomial is x 4(z) = det(zl — A) € F[z] and
is monic, deg(x 4) = n. If x4(x) = 2™ + Z;:Ol c;x* then det(A) = (—1)" det(0 —
A) = (—1)"x4(0) = (—1)"¢qy and tr(A4) = —¢,,_4, since if o, ..., a,, are eigenvalues
of A (in some field extension of F'), then tr(A) = a; + - - +a,,, xa(x) = (z — ay) -
c(z—ay) =2 —(ag a4

o For finite extension L/F, n = [L : F], « € L, characteristic polynomial x(z) =
Xa,r/F(T) is characteristic polynomial of T,,. So Ny /p(a) = (—1)"¢cy, trp p(a) =
—¢,,_1- By the Cayley-Hamilton theorem, x,(T,,) = 0 s0 T} (o) = Xa(Ts) =0,
where x,(z) = 2" + ¢, 2" + -+ +cy. Since a — T, is injective, x, (o) = 0.

Lemma 2.24 Let L/F finite extension, a € L with L = F(«). Then x,(z) = p, (z).

Proposition 2.25 Let FF C F(a) C L, let m = [L : F(«a)]. Then x,(z) = p,(z)™.

Corollary 2.26 Let L/F,a € L, m =[L: F(a)], p,(z) = 2% +ay, 12?1 + - +a,,
a; € F. Then

Ny p(e) = (=1)"%ag’, trp p(e) = —may_

3. Algebraic number fields and algebraic integers
3.1. Algebraic numbers

Definition 3.1 o € C is algebraic number if algebraic over Q.

Definition 3.2 K is (algebraic) number field if Q C K C C and [K : Q] < oc.
e Every element of an algebraic number field is an algebraic number.

Example 3.3 Let 0 = V2 + /3, then Q) C Q(\/ﬁ, \/g) but also 63 = 11v/2 + 9v/3
SO

3 63 4+ 11
o ? 299’ V3 9; 0

s0 Q(v/2, v3) € Q(6) hence Q(V2, v3) = Q(6).

Theorem 3.4 (Simple extension theorem) Every number field K has form K = Q(6)
for some 0 € K.

o Set of all algebraic numbers (union of all number fields) is denoted Q and is a
field, since if a # 0 algebraic over Q, [Q(«) : Q] = deg(p,,) < 00 so Q(«)/Q
algebraic, so —a,a™' € Q(a) algebraic, so o', —a € Q, and if o, 3 € Q then
Q(a, B) = Q()(P) is finite extension of Q by tower theorem so o+ 3, a8 €
Q(a, B) so are algebraic.



e [Q: Q] = oo since if [Q : Q] = d € N then every algebraic number would have
degree < d, but “v/2 has degree d + 1 since it is a root of z%*t! — 2 which is
irreducible by Eisenstein’s criterion with p = 2.

Definition 3.5 Let o € Q. Conjugates of « are roots of p,,(z) in C.
Example 3.6

o Conjugate of a + bi € Q(i) is a — bi.

« Conjugate of a + bv/2 € Q(v2) is a — bv/2.

« Conjugates of 6 do not always lie in Q(6), e.g. for § = v/2, py(z) = 2° — 2 has two
non-real roots not in Q(0) C R.

Notation 3.7 When base field is Q, N and try denote Ny g and try .

Lemma 3.8 Let K/Q number field, a € K, ay, ..., o, conjugates of a. Then
Nic(a) = (g - a) ¥ trpe(a) = (ag +- - +a,)[K : Qo)

3.2. Algebraic integers

Definition 3.9 a € Q is algebraic integer if it is root of a monic polynomial in
Z[z]. The set of algebraic integers is denoted Z. If K/Q is number field, set of
algebraic integers in K is denoted O, a € O is called integer in K.

Example 3.10 i, (1 + \/3)/2 € Z since they are roots of 22 +1 and 2 —z + 1
respectively.

Theorem 3.11 Let a € Q. The following are equivalent:

e acZ.

o p,(z) € Zlx].

o Zla] = {Zf;ol a;a' : a; € Z} where d = deg(p,,)-

e There exists non-trivial finitely generated abelian additive subgroup G C C such
that

aG CGieVgeG,ageG
(ag is complex multiplication).

Remark 3.12
o For third statement, generally we have Z[a] = {f(«) : f(z) € Z[z]} and in this

case, Zla] = {f(a) : f(z) € Z[z],deg(f) < d}.
e Fourth statement means that

G={aym+ - +av 0, €Ly =nZ+- - +7,L =1, "),

G is typically Z[a]. E.g. if a = v/2, Z[v/2] is generated by 1,v/2 and v/2 - Z[v2] C
Z[V?2).
Proposition 3.13 Z is a ring. Also, for every number field K, O is a ring.

Lemma 3.14 Let o € Z. For every number field K with o € K,



Nyg(a) €Z, trg(a)eZ
Lemma 3.15 Let K number field. Then
o
Kz{—:aEOK,mEZ,m#O}
m

Lemma 3.16 Let o € Z, K number field, a € K. Then
a € 0f <= Ng(a)=+1
3.3. Quadratic fields and their integers

Definition 3.17 d € Z is squarefree if d ¢ {0,1} and there is no prime p such that
2
p° | d.

Definition 3.18 K = Q(+/d) is a quadratic field if d is squarefree. If d > 0 then it
is real quadratic. If d < 0 it is imaginary quadratic.

Proposition 3.19 Let K /Q have degree 2. Then K = Q(v/d) for some squarefree
deZ.

Lemma 3.20 Let K = Q(+v/d), d =1 (mod 4). Then

1+\/E]:{T+S\/E

Z|

5 5 :r,sGZ,rEs(mod2)}

Theorem 3.21 Let K = Q(v/d) quadratic field, then

0. _ Z[\Vd) if d # 1 (mod4)
Bz if d = 1 (mod 4)

4. Units in quadratic rings

Notation 4.1 In this section, let K = Q(\/E} be quadratic number field, d € Z —
{0}, |d| is not a square. Let Oy = Of. Let a4+ bv/d = a — bv/d. The map = — Z is a Q
-automorphism from K to K.

Definition 4.2 S is quadratic number ring of K if S = 0, or S = Z[/d].
e We have
aeS*=3JrxeS:ar=1= Ng(a)Ng(x) =1= Ng(a)==+1

and for o € S — Z, since [Q(a) : Q] = 2 and so [K : Q(a)] = 1 by the Tower
Theorem,

Ng(a)=+l=oca=+1= a € S~
So a € S <= Ng(a) = +1.

Theorem 4.3 To determine the group of units for imaginary quadratic fields:



For d < —1, Z[Vd]* = {+1}.
O = Z[i]* = {£1, £i}.

v

v

» For d =1 (mod 4) and d < —3, Z[H‘F]>< {£1}.
> Z[HF = {41, 4w, +w?} where w = 1+F = e™i/3,

Theorem 4.4 (Main theorem) Let d > 1, d non-square, S be quadratic number ring
of K = Q(vd) (ie. S =0, or S = Z[+/d]). Then

e S has a smallest unit u > 1 (smaller than all units except 1).

o S¥={4u":re€Z}=(—1u).

Definition 4.5 The smallest unit u > 1 above is the fundamental unit of S (or of
K, in the case S = 0,).

4.1. Proof of the main theorem
Remark 4.6 If a = a + bv/d is unit in Z[v/d], a,b > 0, then Ny (a) = aa@ = £1, so

Ne(@] 1 1 1
pva) = Nl _ 1 1
I="a "ol <ova <5

@l = la—

Define

1
A {a:a+b\/aza,b€NO,\a|<g}

Lemma 4.7 |A| =
Lemma 4.8 If a € A, then [Ny (a)| <1+ 2V4d.

Lemma 4.9 Ja=a+bVd, o/ =a’ +bVd e A:a>da, |[Ng(a)| = |Ng(a))| = n
and

a=a’ (modn), b=10b" (modn)
Lemma 4.10 There exists a unit u in Z[v/d] such that u > 1.
Lemma 4.11 Let 0 # a = a + bVd € Q(v/d). Then a > /|Ng(a)| iff a,b > 0.

4.2. Computing fundamental units

Theorem 4.12 Let d > 1 non-square.

o« If S= Z[\/E] and a 4+ bvd € S*, a,b > 0 such that b is minimal, then a + bv/d is

the fundamental unit in S.

e If S =Z[1%Y4] (so d = 1 (mod 4)), then

1+‘f is the fundamental unit in O5.

» If d > 5 and 5+t‘f € 0 with s,t > 0 such that ¢ is minimal, then M is the
fundamental umt in 0.

>

Remark 4.13 Both u = #g and u? = %5 have ¢t minimal (equal to 1), which is
why a separate case is needed for d = 5.



Example 4.14

1+ /2 is fundamental unit in Z[v/2] = O,, since NK<1 + \/5) = —1 so is a unit,
and here b = 1, so is minimal (as b > 0).

e 24 /5 is the fundamental unit in Z[v/5] (since b = 1 is minimal) but is not the
fundamental unit in Oy.

Example 4.15 Find fundamental unit in @,. 7 # 1 (mod 4) so O, = Z[/T]. a + b/7
is a unit iff a2 — 762 = £1. Also, by the above theorem, it is the fundamental unit if
a,b > 0 and b is minimal. We use trial and error: for each b = 1, 2, ..., check whether
7b2 £ 1 is a square

b 762 —1 |72 +1 a?
1 6 8 —
2| ot 29 —
3 62 64 64 = 82

So the unit with minimal b such that a,b > 0 is 8 + 3v/7, so is the fundamental unit.

4.3. Pell’s equation and norm equations

Definition 4.16 Pell’s equation is 2 — dy? = 1 for nonsquare d, where solutions
are &,y € Z. Since LHS is norm of z + y/d, solutions are given by = + yv/d € Z[\/d]
with norm 1.

Example 4.17 Consider 22 — 2y? = 41. Fundamental unit in Z[v/2] is u = 1 + /2,
with norm —1. So if z + yv/2 € Z[\/i] is such that NZ(\/E) (:zc + y\/§) =1, then = +

y\/§ is an even power of u. Thus elements of norm 41 are
+u? (RHS =1), 4+u?**! (RHS = —1)

To extract solutions z,y, note that if z + yv/2 = +u”, then z — y/2 = +a", hence

:l:ur +u" iur —u"
xr = y =
2 Y 2v2
Solutions when RHS = 1 are given by even r, solutions when RHS = —1 are given by

odd 7.

Example 4.18 Consider 2 — 75y% = 1. 75 = 3 - 52 is not square-free, so rewrite as
22 —322=1

where z = 5y. Fundamental unit in Z[x/ﬁ] is u =2+ /3 of norm 1 so solutions are

u™ +u" u —u"

x - :i:—y Z - :l:—7
2v/3

2
To get solution for (z,y), we need 5 | z (which doesn’t always hold). Note that

u? =T7+4V3 ¢ ZIVT5) = Z[5V3], u® = 26+ 3V75 € Z[VT5]

n €7

10



Thus when n = 2, (z, z) is not solution, but is when n = 3, and hence when n = 3k
for k € Z:

w3k 4 73k iusk _ 3k
2 ) y - 5 .2\/3 )

u**+1 and u3**+2 never give solutions, since if u3**! € Z[v/75], then u € Z[/75] (since
u~3* € Z[\/75]). Similarly, if u3**2 € Z[v/75], then u? € Z[/75]: contradiction. Note
Z[\/75] C Z[\/3] and any unit in Z[/75] is unit in Z[/3], so is +u" for some r € Z. So
by taking powers of u, eventually we find the fundamental unit in Z[v/75] (as it will
be smallest unit > 1 assuming we increment powers from 1).

keZ

Tr=

5. Discriminants and integral bases

5.1. Discriminant of an n-tuple

Definition 5.1 Let K number field of degree n. Discriminant of v = (v4,...,7,,) €
K™ is

Ak () :=det(Q(v))

where Q(v) = (trx (7;7;))1<i j<n € M, (Q).
Example 5.2 Let K = Q(v/d), d # 1 squarefree.

1= 1V = Q) = [ gy = Axl) = 4d
= Y o) - lf ;] — Agly)=d

Proposition 5.3

o Ag(v) € Q and if every v, € Ok, then Ag(v) € Z.
o Let M € M, (Q), then A (M~y) = det(M)?A k(7).
o Ay (y) is invariant under permutations of vy, ..., 7,

Lemma 5.4 Let 6,,...,0, € C, let

16, ..0p71
D=|: : ~
16, ..60n1

n

then

det(D) = (-1 [ (6,6,

1<r<s<n

Theorem 5.5 Let K = Q(#) be number field. Let 64, ..., 6, be roots of py(z), let v =
(1,...,6"1). Then

11



Ae = T 6n—06,7 = (10O [[h(0:) = (~1) Ny p(0))

1<i<j<n i=1
Example 5.6
o Let K = Q(v/d), d square-free, § = %ﬁ, then

<1+¢31¢3)2_d

A((1,6) = [ =5 5

o Let 0 = Vd, so py(z) = 2% — d, py(z) =
Ay (1,0) = (—1)3) N (20) = —4N, (0) = 4d
e Let = V/d, so py(z) = 23 — d, pjy(x) = 322 so
Ay (1,6,6%) = (—1)3) N (36%) = —27d?
o Let 0 be root of py(x) = 23 — x + 2, so py(z) = 3z? — 1.
Ay (1,6,60%) = (—1)3) N (362 — 1)
Now 62 =6 — 2 so

Ng(2)Ng(0—3) _ §NK<3 —0) =4(3—10,)(3—0,)(3 — 05) = 4p,(3) = 104

N (362 —1) = N0 5

so Ag(1,60,6%) = —104. Note: in general, this method doesn’t work, and generally
we have to compute matrix T, and det(f(7y)). As a generalisation,

Ngg)(a — b)) = b"py(a/b)
Lemma 5.7

o Roots 04, ...,0,, of py(z) are distinct.
o« Vf(z) € Qla], trg (f(0)) =37, f(6,).
o« Vf(z) € Qlz], Nk (f(0)) =TI;_, f(6,)-

Proposition 5.8 Let K = Q(#) number field. Then Ay () # 0 iff v is Q-basis of K.

5.2. Full lattices and integral bases

Definition 5.9 Let A subgroup of Q-vector space V. A is full lattice in V if there

are vy, ...,7, € V such that

o {V1,-syVp,} is basis for V.

o A={ayy, ++a,y,:q; €Z} (ie. vy,...,7, generate A as a group). Note
ay,...,a, are uniquely determined for each a € A.

{71, -,V } is generating basis for A.

Example 5.10 Let K = Q(0), 0 € Ok, [K : Q] = n, then Z[f] has generating basis
{1,...,6" 1} and is full lattice in K.

Example 5.11 Z, Z[v/2/2] are not full lattices in Q(v/2).
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Proposition 5.12 Let K number field. Every non-zero ideal I C O is full lattice in
K.

Definition 5.13 Generating basis for 0y is integral basis for K.

Example 5.14 Let K = Q(+/d), then an integral basis for K is {1,v/d} if d #
1mod4, {1,(1++/d)/2} if d = 1 mod 4.

Theorem 5.15 If V is Q-vector space, dim(V) =n, and BC A C V, A and B full

lattices, {f, ..., B, } is generating basis for B, {aq,...,, } is generating basis for A,

where 8 = Mo, M € M, (Z), then

o |A/B| = |det(M)]| (in particular, A/B is finite)

o If V = K is number field, these satisfy index-discriminant formula: A, (B) =
|A/B|* Ak (A).

(Note M exists since « is generating basis for A so spans B over Z).

Lemma 5.16 If A C K is full lattice and {v4,...,7,}, {01, ...,0,,} are generating
bases for A, then Ag(vq,..,Y,) = Ag (6, ...,0,). We define discriminant of A to be

Ap(A) = Ag(vqy ey 7y,) for any generating basis {7y, ..., ¥, }-

Definition 5.17 Disciminant of number field K is
A = AK(OK) = AK(%, ~~-,7n)

for any integral basis {71, ...,7, }

5.3. When is R = Z[0]?

Proposition 5.18 If S C Oy is full lattice in K = Q(0), {7, ---, 7, } is generating
basis for S, and p prime, p | |Ox/S|, then

« p? | Ag(S)

o There exists a = myy, + - +m,7, € S, m; € Z, such that a/p € O — S and

0 <|m;| <p/2if pis odd
m; € {0,1} ifp=2

Example 5.19 If K = Q(Vd),

A — 4d if d # 1 mod 4
K™ 1d ifd=1mod4

Example 5.20 Let 6 be root of 3 + 4z + 1, K = Q(#). We have Z[f] C O and
Ag(Z[0]) = A (1,0,602%) = 281 = |0k /Z[0]]? Ag(OF). As 281 is squarefree,

Example 5.21 Let K = Q(6), § = v/5. let R = O, S = Z[0]. Ag(S) = —3-52. If

p prime and p | |R/S|, then p € {3,5} and there is a = a + bf + c6? such that a/p €

R — S, |al,|b],|c| < p/2. Note a # 0, as otherwise o € S.

o« If5[|R/S|, then |al, [b], |c[ € {0,1,2}. Then trg q(a/5) =3a/5 € Zso b |asoa=
0. 0a/5 = c+ (b8?)/5 € O so (b8?)/5 € O so

13



Nic((00%)5) = IS 2 e

so 5 | b, so b = 0. Finally,

o' c6? 3(-5)?2 ¢
Ve (5) ”K(?) =T g er=e=0

Contradiction.

o If 3| |R/S|, then |al,|b|,|c| € {0,1} and can assume a > 0 (by possibly multiplying

by —1). Then

bo 02
Ny (%) € Z = a3 + 5b® + 25¢3 — 15abc = 0(mod 33)

If a = 0, then 5b% + 25¢3 = 2b+ ¢ = 0(mod 3) (as b,c € {0,1,—1}), so if b =0,
then ¢ = 0(mod 3) = ¢ = 0: contradiction. So b =1 (by possibly multiplying by
—1) hence ¢ = 1. But then

0+62\ _ Ng(®)N(1+6) 56
33 27

NK(a/3):NK( 3 = ¢ Z

Contradiction. If a = 1, then
1+ 5b3 +25¢ =1+ 2b+ ¢ = 0(mod 3)
which also leads to a contradiction.

« So54|R/S|,3¢4|R/S|,s0|R/S|=1,s0Z[f] = 0.

6. Unique factorisation of ideals
Definition 6.1 Product of ideals I, J C R is

k
1J = {szyz ckeN,z, el,y € J}
i=1

If I ={ay,..,a,,), J =(by,..,b,) then
IJ = (a;b, | i€ [m],j € [n])
Definition 6.2 I divides J, I | J, if there is ideal K such that that IK = J.
Note 6.3 to divide is to contain: I | J = J C I.
Example 6.4 Let R = Z[v/—6], I = (5,1 +3v/—6), J = (5,1 — 3v/—6), then
IJ = (25,5(1 4 3v/—6),5(1 — 3v/—6), 55) C (5)
But also 5=55—2-25¢€ I, (5) C1J,so IJ = (5).
Lemma 6.5 Let I,J ideals, P prime ideal. Then

14



IJCP<= (ICPVJCP)

Example 6.6 (5,1 + 3v—6) C Z[v/—6] is prime: define ¢ : Z[v—6] — Fy, p(a +
bv/—6) = a — 2b. ¢ is surjective homomorphism. Also, 5,1 4 3v/—6 € ker(y), and

a + bvV—6 € ker(p) = b = 3amod 5
— (a+bvV—6) —a(1 4+ 3vV—6) = (b — 3a)V—6 € (5)

so ker(p) = (5,1 4 3v/—6). So by first isomorphism theorem, R/(5,1 4+ v/—6) = F,
which is field, so (5,3 + v/—6) is maximal, so prime.

Definition 6.7 Let K number field, R = 0. Fractional ideal of R is subset of K
of the form

M={ x:zel}

where (0) #1 C Rand A € K*. If I = R, A\ is principal fractional ideal. Set of
fractional ideals in R is denoted J(R), set of principal fractional ideals is denoted
P(R). Multiplication of fractional ideals is defined similarly to that of ideals.

Example 6.8

o 7 is fractional ideal in Q for all m,n € Z — {0}.

o Every non-zero ideal is fractional ideal (take A = 1).
e If M is fractional ideal, then A™*A\I = I is ideal.

Definition 6.9 A fractional ideal A is invertible if there is fractional ideal B such

that AB = Og. B is the inverse of A. The invertible fractional ideals form a group.

Example 6.10 In Z[v—6] = O, (5,1 + 3v/—6)(5,1 — 3v/—6) = (5) so
(5,14 3vV—6) - %(5,1 —3vV—6) = O

so inverse of (5,1 + 3v/—6) is £ (5,1 — 3v/—6).
6.1. The norm of an ideal
Definition 6.11 Let (0) # I ideal of Of. Norm of I is
N(I) =[O /1]
We have N(I) e N, N(R)=1,and I C J = N(I) > N(J) (in fact, N(I) =
N(J) [J/1]).
Proposition 6.12 Every non-zero prime ideal in O is maximal.

Lemma 6.13 Every nonzero ideal in O contains product of one or more non-zero
prime ideals.

6.2. Ideals are invertible

Theorem 6.14 Every non-zero prime ideal in O is invertible.

Lemma 6.15 If AI is fractional ideal and AI C O, then AI is ideal in O.

15



Lemma 6.16 Let J C I ideals in O with I invertible. Then
o I"'Jisideal in Ok and so I | J.
e J C I7'J with equality iff T = R.

Theorem 6.17 Let I C O be non-zero ideal. Then I is unique (up to reordering)
product of prime ideals.

Definition 6.18 A ring where every proper non-zero ideal can be uniquely
factorised into prime ideals is a Dedekind domain. So rings of integers are
Dedekind domains.

Example 6.19 In Z[v—6], (1 + 3v/—6)(1 —3v—6) =55=15-11. P, = (5,1 +
3v/—6) and P = (5,1 — 3v/—6) are prime, as are P;; = (11,1 + 3v/—6) and P;; =
(11,1 = v=6). PyP; = (5), P Py, = (11), PPy, = (14 3vV—6), P; P;; = (1 —3V—6)
SO

(P5P11)(F5 P_n) = (P5F5)(P11P_11)

Corollary 6.20 Let R = Og-.
o Every fractional ideal (and hence every nonzero ideal) in R is invertible.
o J(R) is abelian group under multiplication, with identity element R.

Corollary 6.21 (to divide is to contain and to contain is to divide) I | J < J C I.
Theorem 6.22 If O is UFD, then it is also PID.

6.3. Arithmetic with ideals
Definition 6.23 Let I, J be non-zero ideals of R,

I=PpBe
J = Ph..pbr
with P, ..., P, distinct prime ideals of R and a;,b; > 0. gcd and lcm of I and J are
ged(I, J) = plivtevtid | pminfa,.b,}
lem(1, J) = prextonhu. pmax{a, b}
Definition 6.24 I and J are coprime if ged([,J) = (1) = R.

Proposition 6.25

o For m,n € Z, ged({m)y, (n);) = (ged(m,n)), and lem((m),, (n);) = (lem(m,n)),.
o ged(l,J) divides I and J, and if any K divides I and J, then K |ged(Z, J).

o I,J |lem(I,J) and for any ideal K, if I,J | K then lem(I,J) | K.

Proposition 6.26

e In any ring, the smallest ideal containing ideals I and J is I 4+ J. So if I =
(aqy,...,a,) and J = (by,...,b,,) then smallest ideal containing I and J is
(A, ey @y by, ey b))

e In any ring, the largest ideal contained in both I and J is I N J.
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Proposition 6.27 If I and J are non-zero ideals in O then
ged(I,J)=1+J, lem(I,J)=1INJ

Theorem 6.28 (Chinese remainder theorem for ideals) Let I, ..., I}, be pairwise
coprime ideals of O, then there is an isomorphism

R/(Iy+I}) = R/} x -+ x R/},
X + (I]_"'Ik) = (.T + I].’ ...,.’L' + Ik)

7. Splitting of primes and the Kummer-Dedekind
theorem

7.1. Properties of the ideal norm
Lemma 7.1 For every non-zero ideal I of Oy, N(I) € I, hence I NZ + (0).

Notation 7.2 For 0 # a € Ok, define N(a) := N({(a)o, )-
Lemma 7.3 V0 # a € Ok, N(a) = |[Ng(a)].
Lemma 7.4 Ideal norm is multiplicative: for any non-zero ideals I, J in O,

N(IJ) = N(I)N(J)

7.2. The Kummer-Dedekind theorem

Definition 7.5 If p € Z prime, and (p)p, = P['.--P¢r then Py, ..., P, are the prime
ideals lying above p. Equivalently, P lies above p if PNZ = (p),.

Remark 7.6 If P C Of nonzero prime ideal, then N(P) € PNZ so PNZ # (0).
But PN Z is prime ideal of Z so P NZ = (p), for some prime p € Z. Hence p € P,
(P)o,, € Pso P | (p)g,- Hence every P lies over some prime p.

Lemma 7.7 Prime ideal P of O lies above p iff N(P) = p" for some 1 <r <mn =
(K : Q).

Theorem 7.8 (Kummer Dedekind) Let p prime. Suppose O = Z[6)] for some 0 €

O with minimal polynomial p,. Let f(z) be reduction of f(z) € Z[x] mod p, so
f(z) € F[x]. Let

Po(w) = fr(x) - f(2)

be factorisation of py where TZ are distinct, monic, irreducible. For each i, let f;(z) €
Z[z] be monic polynomial whose reduction modp is f;(x). Let P, = (p, f;(f)).. . Then
K

P, are distinct prime ideals, N(P;) = pds(/i) and
<p>0K = Pfl...prer

Theorem 7.9 (Strong Kummer-Dedekind) Let K = Q(60), 6 € R = O, p t |R/Z[0]|
then (p)p can be factorised by considering py(z) € F,[z] as in usual Kummer-
Dedekind when |R/Z[0]| = 1.

O
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Example 7.10 Let K = Q(+/6), so O = Z[V6]. py(z) = x> — 6 factorises modulo

small primes as:

72 — 6 = z2 in Fy[x

T2 — 6 = 22 in Fy[z

[z]
[z]
22—6=22—1=(zx—1)(z+1) inF[z]
22 — 6 irreducible in . [z]

[z]

x2 — 6 irreducible in Fy; [z

Since 6 is not square mod 7 or 11. By Kummer-Dedekind,
(20, = 2.V6) . (3o, = 3.V6) ,
(5)o, = (5,V6+1)(5,v6—1),
(o, = (7,6 —6) = (7,0) = (7),
(1), = (11, VB —6) = (11,0) = (11)

Definition 7.11 When K is quadratic, Kummer-Dedekind implies there are 3

mutually exclusive possibilities for prime p € Z:

o If (), is prime ideal, p is inert.

o If (p)o, = P? for prime ideal P, then p ramifies (or is ramified) (otherwise, it is
unramified).

o If (p)p, = P P, for distinct prime ideals P, P, then p splits (or is split).

Remark 7.12 If K/Q is quadratic, K = Q(v/d), then Kummer-Dedekind always
applies since R = Z[6] for some 0 € K.

Notation 7.13 Let K quadratic extension. If I C Oy ideal, let I = {z : x € I}
where a 4+ bv/d = a — bv/d. We have I prime iff T prime and N(I) = N(I).

Lemma 7.14 Let K quadratic number field, p € Z prime, P non-zero prime ideal in
O lying above p. Then P is prime ideal lying above p and:

o If p inert, then P = P and N(P) = p2.

o If p ramifies, then P = P and N(P) = p.

« If p splits, then (p)y = PP, P # P and N(P) = N(P) = p.

In all cases, PP = (N(P))o,.-

Example 7.15 Let 63 +30—1=0, K = Q(0). We have Oy = Z[6]. To factorise
(5)p, and (11)y : —1 and 2 are roots of * 4 3z — 1mod 5, so we get ° + 3z — 1 =
(x 4+ 1)(x + 2)2mod 5. So by Kummer-Dedekind,

(5)o, = (5,0 +1)(5,0 + 2)?2
Only root in p, in Fy; is —4, so pg(z) = (z + 4)(2? — 4z + 8) mod 11 and z? — 4z +
8 = (x — 2)? + 4 is irreducible as —4 is not square mod 11. So by Kummer-Dedekind,
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(11)p, = (11,0 + 4)(11,6% — 460 + 8)

To factorise (20 —3)p, :
3 3 27 9
N (20— 3) = —N(2) Ny (5 _ 9) _ 3 -p9(§) - —8(§ +o- 1) _ 55

So (20 — 3) = P, P;; where N(P;) =5, N(Py;) = 11, P;, P;; prime. So P; | (5), so
P, =(5,0+1) or (5,0 +2). Now 20 —3=2(0+1)—5€ (5,0 +1),s0 (5,0+

1) | (20 — 3), hence Py = (5,6 + 1). Now P;; | (11) so P;; = (11,6 4+ 4) or (11,62 —
46 + 8). But by Kummer-Dedekind, the latter has norm 112 which is a contradiction
(since 112 } N ({20 — 3)) = 55). So P;; = (11,0 + 4).

8. The ideal class group
Notation 8.1 Let R = O for number field K.

Definition 8.2 (Ideal) class group of R (or of K) is CI(R) := J(R)/P(R). For
fractional ideal I € J(R), let [I]=1-P(R)={(\N)gl: A€ K*} ={A\[: A€ K*}
denote class of I in CI(R).

Proposition 8.3

o [I]=ceiff I € P(R) iff I is principal.

o [I]=[J]iff I = (\)gJ for some A € K* iff al = pJ for some o, 8 € R — {0}.
o Il [J]=1J-P(R)=I[IJ].

e[ = Y

Proposition 8.4 CI(R) is the trivial group (CI(R) =e) iff Ris a UFD iff R is a
PID.

Remark 8.5 If (a)p = PQ then e = [(a)g] = [PQ] = [P][Q] so [P] = [Q] .
Proposition 8.6 If K is quadratic number field, I, J ideals, then [I] = [I]~! and I.J
is principal iff [I] = [J].

Example 8.7
e Let K = Q(V—29) so O = Z[V—29] = R. p s=55(z) = z* + 29 so by Kummer-
Dedekind and Lemma 7.14,

(2)p = P3, Py=(2,14vV=-29),, N(P)=2,
<3>R:P3F37 P3:<371_V_29>R7 N(P3):3a

(5)p = PsPs, Py=(51—V-29),, N(P;)=5

o If P, were principal, then P, = (a + bv/—29) but N(P,) = 2 = a® + 29b%:
contradiction. So [P,] # e but [P,]* = e as P2 = (2)p is principal.

o Similarly, Py is not principal, but also P2 is not principal, as if it was, then P? =
(a + bv/—29) so 25 = a? + 29b? = a = 45, but then P2 = (5) = P, P, but Py #

2
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e But N(3+2v-29) = 5%, 50 (3 +2v-29) _ | (5%) , by Lemma 7.1, so (3 +
2v/—29) = P5"’F53_a; but 5 4 3 4+ 2v/—29, so we can’t have P Ps | (3 4+ 2v/—29). So
(3 +2v—29) = P3 or EB, and 3 +2v/—29 € P; so (3 +2v/—29) = P2, hence
[P.]? = e, so [P] has order 3.

o Again, [Py] #e. As N(1 ++/—29) = 30, (1 ++/—29) | (30) = (2)(3)(5), so we see
(14 v/—=29) = P,P,P;, hence e = [P,][P3] '[Ps] " and so [Py] = [P,][Ps]". Since
product of two elements of coprime orders m,n in abelian group has order mn, we
have

ord([Py)) = ord([P,[F)) = 2-3 =6

Also, [Ps]* = [P;]2 = [Py] so [Ps]® = [P,] and [Ps]* = [P,]". Hence CI(R) contains
a cyclic subgroup of order 6 generated by [Ps].

8.1. Finiteness of the class group
Lemma 8.8 Let C' > 0, then there are finitely many ideals of R of norm < C.

Lemma 8.9 For any number field K, there is C'; € N such that for any nonzero
ideal J C R,

d0#£s€J:N(s) <Cxg-N(J)
Corollary 8.10 Let ¢ € CI(R), then there is ideal I C R with [I] = ¢ and N(I) <
Ck.
Theorem 8.11 Let K number field, R = O, then CI(R) is finite.
Definition 8.12 Class number of K is hy := |CI(R)|.
8.2. The Minkowski bound
Theorem 8.13 (Minkowski bound) If K = Q(#) and py has s real roots, 2t complex

roots, n := s + 2t, then for every ¢ € CI(R), we can find a (non-fractional) ideal I
with [I] = ¢ and

4\ " n!

N(I) < By = (-) ARy

) n"

i.e. we can take Cx = By.

Example 8.14 Let K = Q(v/—29), so R = Z[V—29], then every ideal class has
representative of norm < (4/7)v/29 < 7 so of norm 1,2, ..., 6, so is product of P,, Pj,
P, P, P, so CI(R) = ([P;]) is cyclic of order 6.

Example 8.15 Let K = Q(v/—19), so R = 0 = Z[1412], A = —19, then
4\ 2 — 2V19
™

™

So every element in Cl(Of) is represented by an ideal of norm 1 or 2. Let N(I) = 2,
then I is prime and I | (2) 5. But minimal polynomial of 3¥=1 is 22 — z + 5 and
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r? —x+4=x?+x+1 irreducible in Fy[z] so 2 is inert in R, hence I = (2)p and
N((2) ) = 4: contradiction. So Cl(Of) = {e}, i.e. O is PID, and in particular a
UFD. Note that it is not an ED though.

Example 8.16 Let K = Q(v—14),s0 R=0x =Z[V—14]. A =4-—14 = —56, so

By = <§)12_!\/5—:4\/ﬁ<5

T/ 22 T

In general, C1(Of) is generated by claszses of prime ideals of norm < By.. By
Kummer-Dedekind, (2) = (2,vV=14)" = P and (3)5 = (3, V=14 — 1)(3, V=14 + 1).
Hence if N(I) =4, then I | (2)% = Py so I = P} = (2)g. So as a set,

CI(R) = {67 [P2]a [P3]a [?3] = [PS]_17 [P22] = e}

The norm of a principal ideal is N((a + b\/—14>> = a? + 14b? #+ 2, 3,6 hence P,, P;,
P;, PPy, P, P; are not principal. We have [P,] [Ps] # e => [P,] # [P], similarly

[P,] # [P;]. We have [Ps] # [P;], since otherwise [P;])° = e, so P2 is principal and so
P2 = (3) but then Py = P;. Thus e, [P,), [Ps], [P5] are distinct, so | CI(R)| = 4, so
CI(R)=Z/2 xZ/2 or Z/4. lgut [P;]? # e so [Ps] has order 42, hence Cl(R) = Z/4 is
generated by [Ps]. Note [P;]” and [P,] have order 2, so [Ps]” = [P,], so [P,P3] =,
hence P,PZ is principal and there exists element in O of norm 2 - 3% = 18.

Example 8.17 Let K = Q(+/79). Prove that Cl(R) = Z/3.
e 79 # 1(mod4) so Ay =4-79 so by the Minkowski bound, any element in Cl(R)
contains an ideal of norm at most

0
By = (%) VI = VT € (8.9)

Hence CI(R) is generated by the ideal classes of prime ideals dividing 2, 3, 5 and
7. By Kummer-Dedekind,

D 2> —79 € F[z] (p)p | norm of prime ideals above p
2 22 —1=(z+1)? P2 2
3|22 —1=(z+1)(z—1) | PP 3
5 22—4=(x+2)(x—2) | PP 5
7| 22-9=(x+3)(z—3) | PP, 7

Thus CI(R), as a set, is
Cl(R) = {e, [P, [P5], [Ps], [Pr], [Pz]z =e [Pz]s = [P,], [P2P3]}

UL{[Bs], [Bs], [Pr], [PoPs] }
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(since the ideals representing these classes have norm < 8). Computing norms of some
principal ideals (a + v/79), letting a increase up to V79 ~ 9 to find mimimal value
and other small values of the norm:

a | N((a+V79) ) =|a® — 79|
0 79

1 2.3.13
2 352
3 2.5.7
4 32.7
5 2.3
6 43
7 2.3-5
8 3.5
9 2
10 3.7

e So N((9++V79) =2 = (T+79) = P, s0 [Py] =e.
o N((8+V79)) =3-550 [B][Ps] = ¢ (& [B5] [B] =€) or [Py [F5] = ¢ (&
[P;][P;] = €). In both cases,

{(P5], [Ps] } = {[Ps], [P5] }
o Similarly, since N((lO + m)) =37, we have

{[P7), [Br]} = {[Ps], [Ps] }
o Thus CI(R) is generated by [Ps] and as a set, CI(R) = {e, [Ps], [P5] " }.
o Since N((5++/79)) = 2-27, we have

(5+V79) = PQP:?ES_G for some a € {0, 1, 2,3}

e Ifa € {1,2}, then PPy = (3)5 | (5+/79): contradiction, since 3 } 5+ +/79. So
WLOG assume a = 3 (if a = 0, swap Py and P;. So {5+ /79) = P,PJ, hence e =
[P5]*, so [Ps] has order 1 or 3.

o Assume that P; = (a)p, then

PyP} = (94 V79)(a®) = (5 + VT9)

and so
54+V79
ad = +—u = (—17 + 2\/79)u for some u € R*
94+ V79

« For any a € R*, (+aa)p = (@) and (+aa)® = (—17 + 2/79)u(4a)3. So without
changing P;, we can rescale o by a unit and so rescale u by a unit cube.

 The fundamental unit of R (by trial and error) is v = 80 4+ 94/79. By Main
theorem,
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R*/{+v3) >~ 7Z/3

(consider the map R* — Z/3, +v" = rmod 3 and use FIT). Thus, up to

multiplication by unit cubes, there are only three possible units 1, v,v? (can take

v~ ! instead of v?). So we can choose a such that u is 1, v or v™1.

e So a3 is one of

—17+2V79, (—17+2V79)v =62+ 7V79, (—17+2V79)v! = —2782 + 313V79
e Let a =a+bV79, a,b € Z, then o® = a(a? + 3 - 796%) + b(3a% + 796%)/79. We
have 3 = N(P;) = |N(a)| = |a® — 79b2| so a,b # 0 so coefficient in v/79 in o®
satisfies [b(3a? + 79b2)| > 3 + 79 = 82, hence a® = —2782 + 313v/79. So b(3a? +
79b2) = 313 which is prime, hence b = 1 and so a? = 78: contradiction.
e So P is not principal so has order 3, so Cl(R) = Z/3.

9. Diophantine applications

9.1. Mordell equations
Definition 9.1 A Mordell equation is of the form z? +d = 43, d € Z, with
solutions z,y € Z sought.

Example 9.2 Find all solutions to the Mordell equation y® = 22 + 5.

o Let K = Q(v/—5), then R = Oy = Z[v—5]. By the Minkowski bound, every
element in CI(R) has representative ideal of norm at most

(%)\/5<3

so as a set, CI(R) = {e, [P,]} where P, = (2,1 + +/—5) by Kummer-Dedekind.

o P, is not principal as a® + 5b% = 2 has no solutions, hence CI(R) = Z/2.

o Let (o) = (z 4+ vV=5), so (@) = (x —+/=5). If a prime ideal P divides (a) and (@),
then P | (o — @) = (2v/—5) = (2)R(\/—_5)R = P}P. 2 and 5 ramify, so P, = P,
and Py = P;.

o Hence

(o) = PFP3QY - Qrr,
(@r=PsPQ, ' Q,

where a,b,r; > 0, all Q;,Q, are distinct and different from P,, P;.
e Then

n

) = (v*) = (ad) = ()@ = PP (@) " (@ @)

By uniqueness of prime ideal factorisation, all exponents in RHS are divisible by 3,
so let I = P;/3P§/3Q;1/3---Q:ﬁ/3, so that I3 = (a)p.
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e Since hy = 2, the square of any fractional ideal of R is principal, so (I *1)2 is
principal, hence I = I3(I_1)2 = a(I_1)2 is principal, so let I = (B)p, for 8 = s+
tvV/—5 € R.

o Now (83) = I3 = (a) so 2 = ua for some u € R*. But only units in R are +1.
Since I = (—f), can assume that 82 = a. Then

s3 + 3st?(—5) + (3s*t + t3(—5))V-H5 =z + V-5
e So s® —15st? = x, 352t — 5t3 = 1. Hence t = +1, and both possibilities yield no
integer solutions to the second equation, so 2% + 5 = » has no integer solutions.

Example 9.3 Let K = Q(v/—31), it can be shown with Minkowski bound that
hy =3 s0 CI(R) = ([P,]) = Z/3 where P, = (2, (1+ v/=31)/2). Show that

2 4+ 31 =13

has no solutions z,y € Z.

o Assume z,y is a solution. 31 } z, as otherwise 31% | (y®> — z?) = 31 (since 31 is
prime): contradiction.

e x is odd and y is even:

» If 2 even, y is odd and 42 =31 = —1mod 4 so y = —1mod 4. Now z2 + 4 = ¢3 —
27 = (y—3)(y* + 3y +9).

» y? + 3y +9 = —1mod4. Hence y? + 3y + 9 is divisible by prime p = 3mod 4
(since product two numbers of form 4n + 1 is also of this form). So 2 +4 =
0mod p. Hence (z/2)2 = —1modp so (z/2)P~L = (1)’ = —1 as p = 3mod 4
which contradicts Fermat’s little theorem. Hence z is odd so y is even.

e Now (x4 v—=31)(z —v/—31) = 43. x is odd, so a = (:v+\/—_31)/2 €R. Let y =

2z, 2 € Z, then aa = 223 and (a)(a) = (2)(z)3.

« If P| (a), (@), then a,@ € P, s0 V=31 = a— @ € P, hence P = (v/—31) (this is
prime since norm is 31, a prime).
o But then x =a+a@€ PNZ = (31),, but 31 } z, so we have a contradiction. So

(o), (@) are coprime ideals.

e WLOG, (a) = P¢QT Q" and (@) = P,"Q, '--Q,, " with P,, P, all Q;,Q,
distinct.

+ Then (@)(@) = (2)*(@:Q1) "+ (@xQn) " = (2)(2)".

o Hence a = 1mod 3 and for all 4, 3 | r;. So (a) = P,I? for some ideal I.

o Now [{(a)] = e and [I?] = [I]3> = e as hx = 3. Hence [P,] = e so P, is principal.

e So P, = ((u+vv-31)/2), u,v € Z, u = vmod 2.

o Then 2 = N(P,) = (u? + 31v?) /4 hence 8 = u? + 31v?: contradiction.

9.2. Generalised Pell equations

Definition 9.4 A generalised Pell equation is of the form
22 —dy?> =n, n € Z,d < N square-free

i.e. determine whether n is a norm from Z[v/d].
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Definition 9.5 Let K = Q(v/14). Solve 2% — 14y? = 4+5. We can assume R = Z[v/14]
is PID and so a UFD (can be proven using Minkowski bound by showing hy = 1).

By trial and error, fundamental unit is v = 15 4 4v/14 and N(u) = 15> — 14 -16 =
1.

We have N (3 — v14) = —5 so (5) = (3 + v/14)(3 — v/14) by Kummer-Dedekind.
Now (z + yv14)(z — yv/14) = (3 +/14)(3 — v/14). The ideals on the LHS are
conjugate, and ideals on RHS are prime so (x + yv/14) = (3 4 v/14).

Hence z + yv/14 = 4(15 + 4v/14)"(3 £ /14) for some n € Z and = — yv/14 =

4 (15 — 4v/14)™(3 F v/14) which gives all solutions z,y € Z.

Note: N(z 4 yv14) = 22 — 14y> = N(u)"N(3 £ /14) = 1" - =5 = —5 50 all
solutions must have —5 on RHS.

Example 9.6 Solve 22 — 79y? = +15 for z,y € Z.

Let K = Q(v/79), so R = O = Z[/79]. We have that CI(R) = Z/3, generated by
P,

22 —79= (z+1)(z —1)mod 3 so (3)p = PyP; = (3,14 /79)(3,1 — V79) by
Kummer-Dedekind.

22 —79= (z +2)(z —2)mod5 so (5)z = PsPs = (24 v/79)(2 — v/79) by Kummer-
Dedekind.

We have (z + yv/79)(x — v/79) = (15) = Py P;P;P;. Since (z + yv/79) = (z —
y/79), we have z + y/79 = Py P; or PyP;.

Note 82 — 79 = —15, thus (8 + v/79) = P;P; as 8 + V79 =9 — (1 —/79) = 10 —
(2 —V/79). Hence [Fs] [Fs] = e so [Py] = [P3]_1 # [P5].

So P, P is principal and Py Py isn’t. Hence (x + yv/79) = P3Py = (8 — /79).
Therefore, z 4 yv/79 = +u™(8 — V/79) where v = 80 4 91/79 is fundamental unit in
R, n € Z and this gives all solutions to z,y € Z.

Since N(u) = 1, 22 — 79y? = N(LHS) = N(8 — v/7T9) = —15 so the only solutions
are for —15, there are none for 15.
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