
Contents
0.1. Prerequisites ........................................................................................................ 2
1. Divisibility in rings ................................................................................................. 2
1.1. Every ED is a PID ............................................................................................... 2
1.2. Every PID is a UFD ............................................................................................ 2
2. Finite field extensions ............................................................................................. 3
2.1. Fields generated by elements ............................................................................... 4
2.2. Norm and trace .................................................................................................... 5
2.3. Characteristic polynomials .................................................................................. 6
3. Algebraic number fields and algebraic integers ....................................................... 6
3.1. Algebraic numbers ............................................................................................... 6
3.2. Algebraic integers ................................................................................................ 7
3.3. Quadratic fields and their integers ....................................................................... 8
4. Units in quadratic rings .......................................................................................... 8
4.1. Proof of the main theorem ................................................................................... 9
4.2. Computing fundamental units ............................................................................. 9
4.3. Pell’s equation and norm equations ................................................................... 10
5. Discriminants and integral bases .......................................................................... 11
5.1. Discriminant of an 𝑛-tuple ................................................................................. 11
5.2. Full lattices and integral bases ........................................................................... 12
5.3. When is 𝑅 = ℤ[𝜃]? ............................................................................................. 13
6. Unique factorisation of ideals ............................................................................... 14
6.1. The norm of an ideal ......................................................................................... 15
6.2. Ideals are invertible ............................................................................................ 15
6.3. Arithmetic with ideals ....................................................................................... 16
7. Splitting of primes and the Kummer-Dedekind theorem ...................................... 17
7.1. Properties of the ideal norm .............................................................................. 17
7.2. The Kummer-Dedekind theorem ....................................................................... 17
8. The ideal class group ............................................................................................ 19
8.1. Finiteness of the class group .............................................................................. 20
8.2. The Minkowski bound ....................................................................................... 20
9. Diophantine applications ...................................................................................... 23
9.1. Mordell equations .............................................................................................. 23
9.2. Generalised Pell equations ................................................................................. 24

1



0.1. Prerequisites
Definition 0.1  𝐼 ⊂ 𝑅 is prime ideal if ∀𝑎, 𝑏 ∈ 𝑅, 𝑎𝑏 ∈ 𝐼 ⟹ 𝑎 ∈ 𝐼 ∨ 𝑏 ∈ 𝐼 .

Definition 0.2  Ideal 𝐼 is maximal if 𝐼 ≠ 𝑅 and there is no ideal 𝐽 ⊂ 𝑅 such that
𝐼 ⊂ 𝐽 .

Example 0.3
• 𝑝 ∈ ℤ is prime iff ⟨𝑝⟩ = 𝑝ℤ is prime ideal.
• ⟨0⟩ is prime ideal iff 𝑅 is integral domain.

Lemma 0.4  If 𝐼 is maximal ideal, then it is prime.

Proposition 0.5  For commutative ring 𝑅, ideal 𝐼 :
• 𝐼 ⊂ 𝑅 is prime ideal iff 𝑅/𝐼 is an integral domain.
• 𝐼 is maximal iff 𝑅/𝐼 is field.

Proposition 0.6  Let 𝑅 be PID and 𝑎 ∈ 𝑅 irreducible. Then ⟨𝑎⟩ = ⟨𝑎⟩𝑅 is maximal.

Theorem 0.7  Let 𝐹  be field, 𝑓(𝑥) ∈ 𝐹 [𝑥] irreducible. Then 𝐹[𝑥]/⟨𝑓(𝑥)⟩ is a field
and a vector space over 𝐹  with basis 𝐵 = {1, 𝑥, …, 𝑥𝑛−1} where 𝑛 = deg(𝑓). That is,
every element in 𝐹[𝑥]/⟨𝑓(𝑥)⟩ can be uniquely written as linear combination

𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ +𝑎𝑛−1𝑥𝑛−1, 𝑎𝑖 ∈ 𝐹

1. Divisibility in rings
1.1. Every ED is a PID
Definition 1.1  Let 𝑅 integral domain. 𝜑 : 𝑅 − {0} → ℕ0 is Euclidean function
(norm) on 𝑅 if:
• ∀𝑥, 𝑦 ∈ 𝑅 − {0}, 𝜑(𝑥) ≤ 𝜑(𝑥𝑦).
• ∀𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 − {0}, ∃𝑞, 𝑟 ∈ 𝑅 : 𝑥 = 𝑞𝑦 + 𝑟 with either 𝑟 = 0 or 𝜑(𝑟) < 𝜑(𝑦).

𝑅 is Euclidean domain (ED) if Euclidean function is defined on it.

Example 1.2
• ℤ is ED with 𝜑(𝑛) = |𝑛|.
• 𝐹[𝑥] is ED for field 𝐹  with 𝜑(𝑓) = deg(𝑓).

Lemma 1.3  ℤ[−
√

2] is ED with Euclidean function

𝜑(𝑎 + 𝑏
√

−2) = 𝑁(𝑎 + 𝑏
√

−2) ≔ 𝑎2 + 2𝑏2

Proposition 1.4  Every ED is a PID.

1.2. Every PID is a UFD
Definition 1.5  Integral domain 𝑅 is unique factorisation domain (UFD) if
every non-zero non-unit in 𝑅 can be written uniquely (up to order of factors and
multiplication by units) as product of irreducible elements in 𝑅.

Example 1.6  Let 𝑅 = {𝑓(𝑥) ∈ ℚ[𝑥] : 𝑓(0) ∈ ℤ}. Its units are ±1. Any factorisation
of 𝑥 ∈ 𝑅 must be of the form 𝑓(𝑥)𝑔(𝑥) where deg 𝑓 = 1, deg 𝑔 = 0, so 𝑥 = (𝑎𝑥 + 𝑏)𝑐,
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𝑎 ∈ ℚ, 𝑏, 𝑐 ∈ ℤ. We have 𝑏𝑐 = 0 and 𝑎𝑐 = 1 hence 𝑥 = 𝑥
𝑐 ⋅ 𝑐. So 𝑥 is not irreducible if

𝑐 ≠ ±1. Also, any factorisation of 𝑥
𝑐  in 𝑅 is of the form 𝑥

𝑐 = 𝑥
𝑐𝑑 ⋅ 𝑑, 𝑑 ∈ ℤ, 𝑑 ≠ 0.

Again, neither factor is a unit when 𝑑 ≠ ±1. So 𝑥 = 𝑥
𝑐 ⋅ 𝑐 = 𝑥

𝑐𝑑 ⋅ 𝑑 ⋅ 𝑐 = ⋅ ⋅ ⋅ can never
be decomposed into irreducibles (the first factor is never irreducible).

Lemma 1.7  Let 𝑅 be PID. Then every irreducible element is prime in 𝑅.

Theorem 1.8  Every PID is a UFD.

Example 1.9  ℤ[
√

−2] is ED so by the above theorem it is a UFD. Let 𝑥, 𝑦 ∈ ℤ such
that 𝑦2 + 2 = 𝑥3.
• 𝑦 must be odd, since if 𝑦 = 2𝑎, 𝑎 ∈ ℤ then 𝑥 = 2𝑏, 𝑏 ∈ ℤ but then 2𝑎2 + 1 = 4𝑏3.
• 𝑦 ±

√
−2 are relatively prime: if 𝑎 + 𝑏

√
−2 divides both, then it divides their

difference 2
√

−2, so norm 𝑎2 + 2𝑏2 | 𝑁(2
√

−2) = 8. Only possible case is 𝑎 =
±1, 𝑏 = 0 so 𝑎 + 𝑏

√
−2 is unit. Other cases 𝑎 = 0, 𝑏 = ±1, 𝑎 = ±2, 𝑏 = 0 and 𝑎 =

0, 𝑏 = ±2 are impossible since 𝑦 not even.
• If 𝑎 + 𝑏

√
−2 is unit, ∃𝑥, 𝑦 ∈ ℤ : (𝑎 + 𝑏

√
−2)(𝑥 + 𝑦

√
−2) = 1. If 𝑏 ≠ 0 then (−𝑎2 −

2𝑏2)𝑦 = 1 ⟹ 𝑏 = 0: contradiction. If 𝑏 = 0, 𝑎 = ±1. So only units in ℤ[
√

−2] are
±1.

2. Finite field extensions
Definition 2.1  Let 𝐹 , 𝐿 fields. If 𝐹 ⊆ 𝐿 and 𝐹  and 𝐿 share the same operations
then 𝐹  is a subfield of 𝐿 and 𝐿 is field extension of 𝐹  (denoted 𝐿/𝐹 ). 𝐿 is vector
space over 𝐹 :
• 0 ∈ 𝐿 (zero vector).
• 𝑢, 𝑣 ∈ 𝐿 ⟹ 𝑢 + 𝑣 ∈ 𝐿 (additivity).
• 𝑎 ∈ 𝐹, 𝑢 ∈ 𝐿 ⟹ 𝑎𝑢 ∈ 𝐿 (scalar multiplication).

Definition 2.2  Let 𝐿/𝐹  field extension. Degree of 𝐿 over 𝐹  is dimension of 𝐿 as
vector space over 𝐹 :

[𝐿 : 𝐹 ] ≔ dim𝐹 (𝐿)

If [𝐿 : 𝐹 ] finite, 𝐿/𝐹  is finite field extension.

Example 2.3  ℚ(
√

−2) = {𝑎 + 𝑏
√

−2 : 𝑎, 𝑏 ∈ ℚ} is isomorphic as a vector space to
ℚ2 so is 2-dimensional vector space over ℚ. Isomorphism is 𝑎 + 𝑏

√
−2 ⟷ (𝑎, 𝑏).

Standard basis {𝑒1, 𝑒2} in ℚ2 corresponds to the basis {1,
√

−2} in ℚ(
√

−2).
[ℚ(

√
−2) : ℚ] = 2.

Example 2.4  [ℂ : ℝ] = 2 (a basis is {1, 𝑖}). [ℝ : ℚ] is not finite, due to the existence
of transcendental numbers (if 𝛼 transcendental, then {1, 𝛼, 𝛼2, …} is linearly
independent).

Definition 2.5  Let 𝐿/𝐹  field extension. 𝛼 ∈ 𝐿 is algebraic over 𝐹  if

∃0 ≠ 𝑓(𝑥) ∈ 𝐹 [𝑥] : 𝑓(𝛼) = 0

If all elements in 𝐿 are algebraic, then 𝐿/𝐹  is algebraic field extension.
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Example 2.6  𝑖 ∈ ℂ is algebraic over ℝ since 𝑖 is root of 𝑥2 + 1. ℂ/ℝ is algebraic
since 𝑧 = 𝑎 + 𝑏𝑖 is root of (𝑥 − 𝑧)(𝑥 − 𝑧) = 𝑥2 − 2𝑎𝑥 + 𝑎2 + 𝑏2.

Proposition 2.7  If 𝐿/𝐹  is finite field extension then it is algebraic.

Definition 2.8  Let 𝐿/𝐹  field extension, 𝛼 ∈ 𝐿 algebraic over 𝐹 . Minimal
polynomial 𝑝𝛼(𝑥) = 𝑝𝛼,𝐹 (𝑥) of 𝛼 over 𝐹  is the monic polynomial 𝑓 of smallest
degree such that 𝑓(𝛼) = 0. Degree of 𝛼 over 𝐹  is deg(𝑝𝛼).

Proposition 2.9  𝑝𝛼(𝑥) is unique and irreducible. Also, if 𝑓(𝑥) ∈ 𝐹 [𝑥] is monic,
irreducible and 𝑓(𝛼) = 0, then 𝑓 = 𝑝𝛼.

Example 2.10
• 𝑝𝑖,ℝ(𝑥) = 𝑝𝑖,ℚ(𝑥) = 𝑥2 + 1, 𝑝𝑖,ℚ(𝑖)(𝑥) = 𝑥 − 𝑖.
• Let 𝛼 = 7

√
5. 𝑓(𝑥) = 𝑥7 − 5 is minimal polynomial of 𝛼 over ℚ by above

proposition, as it is irreducible by Eisenstein’s criterion with 𝑝 = 5.
• Let 𝛼 = 𝑒2𝜋𝑖/𝑝, 𝑝 prime. 𝛼 is algebraic as root of 𝑥𝑝 − 1 which isn’t irreducible as

𝑥𝑝 − 1 = (𝑥 − 1)Φ(𝑥) where Φ(𝑥) = (𝑥𝑝−1 + ⋅ ⋅ ⋅ +1). Φ(𝛼) = 0 since 𝛼 ≠ 1, Φ(𝑥) is
monic and Φ(𝑥 + 1) = ((𝑥 + 1)𝑝 − 1)/𝑥 irreducible by Eisenstein’s criterion with
𝑝 = 𝑝, hence Φ(𝑥) irreducible. So 𝑝𝛼(𝑥) = Φ(𝑥).

2.1. Fields generated by elements
Definition 2.11  Let 𝐿/𝐹  field extension, 𝛼 ∈ 𝐿. The field generated by 𝛼 over
𝐹  is the smallest subfield of 𝐿 containing 𝐹  and 𝛼:

𝐹(𝛼) ≔ ⋂
𝐾 field,

𝐹⊆𝐾⊆𝐿,
𝛼∈𝐾

𝐾

Generally, 𝐹(𝛼1, …, 𝛼𝑛) is smallest field extension of 𝐹  containing 𝛼1, …, 𝛼𝑛.

• We have 𝐹(𝛼1, …, 𝛼𝑛) = 𝐹(𝛼1) ⋅ ⋅ ⋅ (𝛼𝑛) (show 𝐹(𝛼, 𝛽) ⊆ 𝐹(𝛼)(𝛽) and 𝐹(𝛼)(𝛽) ⊆
𝐹(𝛼, 𝛽) by minimality and use induction).

Definition 2.12  𝐹[𝛼] = {∑𝑛
𝑖=0 𝑎𝑖𝛼𝑖 : 𝑎𝑖 ∈ 𝐹, 𝑛 ∈ ℕ} = {𝑓(𝛼) : 𝑓(𝑥) ∈ 𝐹 [𝑥]}.

Lemma 2.13  Let 𝐿/𝐹  field extension, 𝛼 ∈ 𝐿 algebraic over 𝐹 . Then 𝐹[𝛼] is field,
hence 𝐹(𝛼) = 𝐹[𝛼].

Lemma 2.14  Let 𝛼 algebraic over 𝐹 . Then [𝐹 (𝛼) : 𝐹 ] = deg(𝑝𝛼).

Definition 2.15  Let 𝐾/𝐹  and 𝐿/𝐾 field extensions, then 𝐹 ⊆ 𝐾 ⊆ 𝐿 is tower of
fields.

Theorem 2.16 (Tower theorem)  Let 𝐹 ⊆ 𝐾 ⊆ 𝐿 tower of fields. Then

[𝐿 : 𝐹 ] = [𝐿 : 𝐾] ⋅ [𝐾 : 𝐹 ]

Example 2.17  Let 𝐿 = ℚ(
√

2,
√

3). Show [𝐿 : ℚ] = 4.
• Let 𝐾 = ℚ(

√
2). Let 

√
3 = 𝑎 + 𝑏

√
2, 𝑎, 𝑏 ∈ ℚ so 3 = 𝑎2 + 2𝑏2 + 2𝑎𝑏

√
2. So 0 ∈

{𝑎, 𝑏}, otherwise 
√

2 ∈ ℚ. But if 𝑎 = 0, then 
√

6 = 2𝑏 ∈ ℚ, if 𝑏 = 0 then 
√

3 = 𝑎 ∈
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ℚ: contradiction. So 𝑥2 − 3 has no roots in 𝐾 so is irreducible over 𝐾 so
𝑝√

3,𝐾(𝑥) = 𝑥2 − 3.
• So [𝐿 : 𝐾] = 2 so by the tower theorem, [𝐿 : ℚ] = [𝐿 : 𝐾] ⋅ [𝐾 : ℚ] = 4.

2.2. Norm and trace
• Let 𝐿/𝐹  finite field extension, 𝑛 = [𝐿 : 𝐹 ]. For any 𝛼 ∈ 𝐿, there is 𝐹 -linear map

̂𝛼 : 𝐿 ⟶ 𝐿, 𝑥 ↦ 𝛼𝑥
• With basis {𝛼1, …, 𝛼𝑛} of 𝐿 over 𝐹 , let 𝑇𝛼 = 𝑇𝛼,𝐿/𝐹 ∈ 𝑀𝑛(𝐹) be the

corresponding matrix of the linear map 𝛼 with respect to the basis {𝛼𝑖}:

̂𝛼(𝛼1) = 𝛼𝛼1 = 𝑎1,1𝛼1 + ⋅ ⋅ ⋅ +𝑎1,𝑛𝛼𝑛,
⋮

̂𝛼(𝛼𝑛) = 𝛼𝛼𝑛 = 𝑎𝑛,1𝛼1 + ⋅ ⋅ ⋅ +𝛼𝑛,𝑛𝛼𝑛

with 𝑎𝑖,𝑗 ∈ 𝐹 , 𝑇𝛼 = (𝑎𝑖,𝑗), so 𝛼 is eigenvalue of 𝑇𝛼:

𝛼
[
[
[𝛼1

⋮
𝛼𝑛]

]
] = 𝑇𝛼

[
[
[𝛼1

⋮
𝛼𝑛]

]
]

Definition 2.18  Norm of 𝛼 is

𝑁𝐿/𝐹 (𝛼) ≔ det(𝑇𝛼)

Definition 2.19  Trace of 𝛼 is

tr𝐿/𝐹 (𝛼) ≔ tr(𝑇𝛼)

Remark 2.20  Norm and trace are independent of choice of basis so are well-defined
(uniquely determined by 𝛼).

Example 2.21  Let 𝐿 = ℚ(
√

𝑚), 𝑚 ∈ ℤ non-square, let 𝛼 = 𝑎 + 𝑏
√

𝑚 ∈ 𝐿. Fix basis
{1,

√
𝑚}. Now

̂𝛼(1) = 𝛼 ⋅ 1 = 𝑎 + 𝑏
√

𝑚,

̂𝛼(
√

𝑚) = 𝛼
√

𝑚 = 𝑏𝑚 + 𝑎
√

𝑚,

𝑇𝛼 = [ 𝑎
𝑏𝑚

𝑏
𝑎]

So 𝑁𝐿/𝐹 (𝛼) = 𝑎2 − 𝑏2𝑚, tr𝐿/𝐹 (𝛼) = 2𝑎.

Lemma 2.22  The map 𝐿 → 𝑀𝑛(𝐹) given by 𝛼 ↦ 𝑇𝛼 is injective ring
homomorphism. So if 𝑓(𝑥) ∈ 𝐹 [𝑥],

𝑇𝑓(𝛼) = 𝑓(𝑇𝛼)

(𝑓(𝑇𝛼) is a polynomial in 𝑇𝛼, not 𝑓 applied to each entry).

Proposition 2.23  Let 𝐿/𝐹  finite field extension. ∀𝛼, 𝛽 ∈ 𝐿,
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• 𝑁𝐿/𝐹 (𝛼) = 0 ⟺ 𝛼 = 0.
• 𝑁𝐿/𝐹 (𝛼𝛽) = 𝑁𝐿/𝐹 (𝛼)𝑁𝐿/𝐹 (𝛽).
• ∀𝑎 ∈ 𝐹, 𝑁𝐿/𝐹 (𝑎) = 𝑎[𝐿:𝐹] and tr𝐿/𝐹 (𝑎) = [𝐿 : 𝐹 ]𝑎.
• ∀𝑎, 𝑏 ∈ 𝐹 , tr𝐿/𝐹 (𝑎𝛼 + 𝑏𝛽) = 𝑎 tr𝐿/𝐹 (𝛼) + 𝑏 tr𝐿/𝐹 (𝛽) (so tr𝐿/𝐹  is 𝐹 -linear map).

2.3. Characteristic polynomials
• Let 𝐴 ∈ 𝑀𝑛(𝐹), then characteristic polynomial is 𝜒𝐴(𝑥) = det(𝑥𝐼 − 𝐴) ∈ 𝐹[𝑥] and

is monic, deg(𝜒𝐴) = 𝑛. If 𝜒𝐴(𝑥) = 𝑥𝑛 + ∑𝑛−1
𝑖=0 𝑐𝑖𝑥𝑖 then det(𝐴) = (−1)𝑛 det(0 −

𝐴) = (−1)𝑛𝜒𝐴(0) = (−1)𝑛𝑐0 and tr(𝐴) = −𝑐𝑛−1, since if 𝛼1, …, 𝛼𝑛 are eigenvalues
of 𝐴 (in some field extension of 𝐹 ), then tr(𝐴) = 𝛼1 + ⋅ ⋅ ⋅ +𝛼𝑛, 𝜒𝐴(𝑥) = (𝑥 − 𝛼1) ⋅
⋅ ⋅ (𝑥 − 𝛼𝑛) = 𝑥𝑛 − (𝛼1 + ⋅ ⋅ ⋅ 𝛼𝑛)𝑥𝑛−1 + ⋅ ⋅ ⋅.

• For finite extension 𝐿/𝐹 , 𝑛 = [𝐿 : 𝐹 ], 𝛼 ∈ 𝐿, characteristic polynomial 𝜒𝛼(𝑥) =
𝜒𝛼,𝐿/𝐹 (𝑥) is characteristic polynomial of 𝑇𝛼. So 𝑁𝐿/𝐹 (𝛼) = (−1)𝑛𝑐0, tr𝐿/𝐹 (𝛼) =
−𝑐𝑛−1. By the Cayley-Hamilton theorem, 𝜒𝛼(𝑇𝛼) = 0 so 𝑇𝜒𝛼(𝛼) = 𝜒𝛼(𝑇𝛼) = 0,
where 𝜒𝛼(𝑥) = 𝑥𝑛 + 𝑐𝑛−1𝑥𝑛−1 + ⋅ ⋅ ⋅ +𝑐0. Since 𝛼 → 𝑇𝛼 is injective, 𝜒𝛼(𝛼) = 0.

Lemma 2.24  Let 𝐿/𝐹  finite extension, 𝛼 ∈ 𝐿 with 𝐿 = 𝐹(𝛼). Then 𝜒𝛼(𝑥) = 𝑝𝛼(𝑥).

Proposition 2.25  Let 𝐹 ⊆ 𝐹(𝛼) ⊆ 𝐿, let 𝑚 = [𝐿 : 𝐹(𝛼)]. Then 𝜒𝛼(𝑥) = 𝑝𝛼(𝑥)𝑚.

Corollary 2.26  Let 𝐿/𝐹 , 𝛼 ∈ 𝐿, 𝑚 = [𝐿 : 𝐹(𝛼)], 𝑝𝛼(𝑥) = 𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋅ ⋅ ⋅ +𝑎0,
𝑎𝑖 ∈ 𝐹 . Then

𝑁𝐿/𝐹 (𝛼) = (−1)𝑚𝑑𝑎𝑚
0 , tr𝐿/𝐹 (𝛼) = −𝑚𝑎𝑑−1

3. Algebraic number fields and algebraic integers
3.1. Algebraic numbers
Definition 3.1  𝛼 ∈ ℂ is algebraic number if algebraic over ℚ.

Definition 3.2  𝐾 is (algebraic) number field if ℚ ⊆ 𝐾 ⊆ ℂ and [𝐾 : ℚ] < ∞.

• Every element of an algebraic number field is an algebraic number.

Example 3.3  Let 𝜃 =
√

2 +
√

3, then ℚ(𝜃) ⊆ ℚ(
√

2,
√

3) but also 𝜃3 = 11
√

2 + 9
√

3
so

√
2 = 𝜃3 − 9𝜃

2
,

√
3 = −𝜃3 + 11𝜃

2

so ℚ(
√

2,
√

3) ⊆ ℚ(𝜃) hence ℚ(
√

2,
√

3) = ℚ(𝜃).

Theorem 3.4 (Simple extension theorem)  Every number field 𝐾 has form 𝐾 = ℚ(𝜃)
for some 𝜃 ∈ 𝐾.

• Set of all algebraic numbers (union of all number fields) is denoted ℚ and is a
field, since if 𝛼 ≠ 0 algebraic over ℚ, [ℚ(𝛼) : ℚ] = deg(𝑝𝛼) < ∞ so ℚ(𝛼)/ℚ
algebraic, so −𝛼, 𝛼−1 ∈ ℚ(𝛼) algebraic, so 𝛼−1, −𝛼 ∈ ℚ, and if 𝛼, 𝛽 ∈ ℚ then
ℚ(𝛼, 𝛽) = ℚ(𝛼)(𝛽) is finite extension of ℚ by tower theorem so 𝛼 + 𝛽, 𝛼𝛽 ∈
ℚ(𝛼, 𝛽) so are algebraic.
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• [ℚ : ℚ] = ∞ since if [ℚ : ℚ] = 𝑑 ∈ ℕ then every algebraic number would have
degree ≤ 𝑑, but 𝑑+1√2 has degree 𝑑 + 1 since it is a root of 𝑥𝑑+1 − 2 which is
irreducible by Eisenstein’s criterion with 𝑝 = 2.

Definition 3.5  Let 𝛼 ∈ ℚ. Conjugates of 𝛼 are roots of 𝑝𝛼(𝑥) in ℂ.

Example 3.6

• Conjugate of 𝑎 + 𝑏𝑖 ∈ ℚ(𝑖) is 𝑎 − 𝑏𝑖.
• Conjugate of 𝑎 + 𝑏

√
2 ∈ ℚ(

√
2) is 𝑎 − 𝑏

√
2.

• Conjugates of 𝜃 do not always lie in ℚ(𝜃), e.g. for 𝜃 = 3
√

2, 𝑝𝜃(𝑥) = 𝑥3 − 2 has two
non-real roots not in ℚ(𝜃) ⊂ ℝ.

Notation 3.7  When base field is ℚ, 𝑁𝐾 and tr𝐾 denote 𝑁𝐾/ℚ and tr𝐾/ℚ.

Lemma 3.8  Let 𝐾/ℚ number field, 𝛼 ∈ 𝐾, 𝛼1, …, 𝛼𝑛 conjugates of 𝛼. Then

𝑁𝐾(𝛼) = (𝛼1 ⋅ ⋅ ⋅ 𝛼𝑛)[𝐾:ℚ(𝛼)], tr𝐾(𝛼) = (𝛼1 + ⋅ ⋅ ⋅ +𝛼𝑛)[𝐾 : ℚ(𝛼)]

3.2. Algebraic integers
Definition 3.9  𝛼 ∈ ℚ is algebraic integer if it is root of a monic polynomial in
ℤ[𝑥]. The set of algebraic integers is denoted ℤ. If 𝐾/ℚ is number field, set of
algebraic integers in 𝐾 is denoted 𝒪𝐾 , 𝛼 ∈ 𝒪𝐾 is called integer in 𝐾.

Example 3.10  𝑖, (1 +
√

3)/2 ∈ ℤ since they are roots of 𝑥2 + 1 and 𝑥2 − 𝑥 + 1
respectively.

Theorem 3.11  Let 𝛼 ∈ ℚ. The following are equivalent:
• 𝛼 ∈ ℤ.
• 𝑝𝛼(𝑥) ∈ ℤ[𝑥].
• ℤ[𝛼] = {∑𝑑−1

𝑖=0 𝑎𝑖𝛼𝑖 : 𝑎𝑖 ∈ ℤ} where 𝑑 = deg(𝑝𝛼).
• There exists non-trivial finitely generated abelian additive subgroup 𝐺 ⊂ ℂ such

that

𝛼𝐺 ⊆ 𝐺 i.e. ∀𝑔 ∈ 𝐺, 𝛼𝑔 ∈ 𝐺

(𝛼𝑔 is complex multiplication).

Remark 3.12
• For third statement, generally we have ℤ[𝛼] = {𝑓(𝛼) : 𝑓(𝑥) ∈ ℤ[𝑥]} and in this

case, ℤ[𝛼] = {𝑓(𝛼) : 𝑓(𝑥) ∈ ℤ[𝑥], deg(𝑓) < 𝑑}.
• Fourth statement means that

𝐺 = {𝑎1𝛾1 + ⋅ ⋅ ⋅ +𝑎𝑟𝛾𝑟 : 𝑎𝑖 ∈ ℤ} = 𝛾1ℤ + ⋅ ⋅ ⋅ +𝛾𝑟ℤ = ⟨𝛾1, …, 𝛾𝑟⟩ℤ

𝐺 is typically ℤ[𝛼]. E.g. if 𝛼 =
√

2, ℤ[
√

2] is generated by 1,
√

2 and 
√

2 ⋅ ℤ[
√

2] ⊆
ℤ[

√
2].

Proposition 3.13  ℤ is a ring. Also, for every number field 𝐾, 𝒪𝐾 is a ring.

Lemma 3.14  Let 𝛼 ∈ ℤ. For every number field 𝐾 with 𝛼 ∈ 𝐾,
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𝑁𝐾(𝛼) ∈ ℤ, tr𝐾(𝛼) ∈ ℤ

Lemma 3.15  Let 𝐾 number field. Then

𝐾 = { 𝛼
𝑚

: 𝛼 ∈ 𝒪𝐾 , 𝑚 ∈ ℤ, 𝑚 ≠ 0}

Lemma 3.16  Let 𝛼 ∈ ℤ, 𝐾 number field, 𝛼 ∈ 𝐾. Then

𝛼 ∈ 𝒪×
𝐾 ⟺ 𝑁𝐾(𝛼) = ±1

3.3. Quadratic fields and their integers
Definition 3.17  𝑑 ∈ ℤ is squarefree if 𝑑 ∉ {0, 1} and there is no prime 𝑝 such that
𝑝2 | 𝑑.

Definition 3.18  𝐾 = ℚ(
√

𝑑) is a quadratic field if 𝑑 is squarefree. If 𝑑 > 0 then it
is real quadratic. If 𝑑 < 0 it is imaginary quadratic.

Proposition 3.19  Let 𝐾/ℚ have degree 2. Then 𝐾 = ℚ(
√

𝑑) for some squarefree
𝑑 ∈ ℤ.

Lemma 3.20  Let 𝐾 = ℚ(
√

𝑑), 𝑑 ≡ 1 (mod 4). Then

ℤ[1 +
√

𝑑
2

] = {𝑟 + 𝑠
√

𝑑
2

: 𝑟, 𝑠 ∈ ℤ, 𝑟 ≡ 𝑠 (mod 2)}

Theorem 3.21  Let 𝐾 = ℚ(
√

𝑑) quadratic field, then

𝒪𝐾 = {
ℤ[

√
𝑑] if 𝑑 ≢ 1 (mod 4)

ℤ[1+
√

𝑑
2 ] if 𝑑 ≡ 1 (mod 4)

4. Units in quadratic rings
Notation 4.1  In this section, let 𝐾 = ℚ(

√
𝑑) be quadratic number field, 𝑑 ∈ ℤ −

{0}, |𝑑| is not a square. Let 𝒪𝑑 = 𝒪𝐾 . Let 𝑎 + 𝑏
√

𝑑 = 𝑎 − 𝑏
√

𝑑. The map 𝑥 → 𝑥 is a ℚ
-automorphism from 𝐾 to 𝐾.

Definition 4.2  𝑆 is quadratic number ring of 𝐾 if 𝑆 = 𝒪𝑑 or 𝑆 = ℤ[
√

𝑑].

• We have

𝛼 ∈ 𝑆× ⟹ ∃𝑥 ∈ 𝑆 : 𝛼𝑥 = 1 ⟹ 𝑁𝐾(𝛼)𝑁𝐾(𝑥) = 1 ⟹ 𝑁𝐾(𝛼) = ±1

and for 𝛼 ∈ 𝑆 − ℤ, since [ℚ(𝛼) : ℚ] = 2 and so [𝐾 : ℚ(𝛼)] = 1 by the Tower
Theorem,

𝑁𝐾(𝛼) = ±1 ⟹ 𝛼𝛼 = ±1 ⟹ 𝛼 ∈ 𝑆×

So 𝛼 ∈ 𝑆× ⟺ 𝑁𝐾(𝛼) = ±1.

Theorem 4.3  To determine the group of units for imaginary quadratic fields:
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•
‣ For 𝑑 < −1, ℤ[

√
𝑑]× = {±1}.

‣ 𝒪×
−1 = ℤ[𝑖]× = {±1, ±𝑖}.

•
‣ For 𝑑 ≡ 1 (mod 4) and 𝑑 < −3, ℤ[1+

√
𝑑

2 ]× = {±1}.
‣ ℤ[1+

√
−3

2 ]× = {±1, ±𝜔, ±𝜔2} where 𝜔 = 1+
√

−3
2 = 𝑒𝜋𝑖/3.

Theorem 4.4 (Main theorem)  Let 𝑑 > 1, 𝑑 non-square, 𝑆 be quadratic number ring
of 𝐾 = ℚ(

√
𝑑) (i.e. 𝑆 = 𝒪𝑑 or 𝑆 = ℤ[

√
𝑑]). Then

• 𝑆 has a smallest unit 𝑢 > 1 (smaller than all units except 1).
• 𝑆× = {±𝑢𝑟 : 𝑟 ∈ ℤ} = ⟨−1, 𝑢⟩.

Definition 4.5  The smallest unit 𝑢 > 1 above is the fundamental unit of 𝑆 (or of
𝐾, in the case 𝑆 = 𝒪𝑑).

4.1. Proof of the main theorem
Remark 4.6  If 𝛼 = 𝑎 + 𝑏

√
𝑑 is unit in ℤ[

√
𝑑], 𝑎, 𝑏 > 0, then 𝑁𝐾(𝛼) = 𝛼𝛼 = ±1, so

|𝛼| = |𝑎 − 𝑏
√

𝑑| = |𝑁𝐾(𝛼)|
|𝛼|

= 1
|𝛼|

< 1
𝑏
√

𝑑
< 1

𝑏

Define

𝐴 = {𝛼 = 𝑎 + 𝑏
√

𝑑 : 𝑎, 𝑏 ∈ ℕ0, |𝛼| < 1
𝑏
}

Lemma 4.7  |𝐴| = ∞.

Lemma 4.8  If 𝛼 ∈ 𝐴, then |𝑁𝐾(𝛼)| < 1 + 2
√

𝑑.

Lemma 4.9  ∃𝛼 = 𝑎 + 𝑏
√

𝑑, 𝛼′ = 𝑎′ + 𝑏′
√

𝑑 ∈ 𝐴 : 𝛼 > 𝛼′, |𝑁𝐾(𝛼)| = |𝑁𝐾(𝛼′)| ≕ 𝑛
and

𝛼 ≡ 𝛼′ (mod 𝑛), 𝑏 ≡ 𝑏′ (mod 𝑛)

Lemma 4.10  There exists a unit 𝑢 in ℤ[
√

𝑑] such that 𝑢 > 1.

Lemma 4.11  Let 0 ≠ 𝛼 = 𝑎 + 𝑏
√

𝑑 ∈ ℚ(
√

𝑑). Then 𝛼 > √|𝑁𝐾(𝛼)| iff 𝑎, 𝑏 > 0.

4.2. Computing fundamental units
Theorem 4.12  Let 𝑑 > 1 non-square.
• If 𝑆 = ℤ[

√
𝑑] and 𝑎 + 𝑏

√
𝑑 ∈ 𝑆×, 𝑎, 𝑏 > 0 such that 𝑏 is minimal, then 𝑎 + 𝑏

√
𝑑 is

the fundamental unit in 𝑆.
• If 𝑆 = ℤ[1+

√
𝑑

2 ] (so 𝑑 ≡ 1 (mod 4)), then
‣ 1+

√
5

2  is the fundamental unit in 𝒪5.
‣ If 𝑑 > 5 and 𝑠+𝑡

√
𝑑

2 ∈ 𝒪×
𝑑  with 𝑠, 𝑡 > 0 such that 𝑡 is minimal, then 𝑠+𝑡

√
𝑑

2  is the
fundamental unit in 𝒪𝑑.

Remark 4.13  Both 𝑢 = 1+
√

5
2  and 𝑢2 = 3+

√
5

2  have 𝑡 minimal (equal to 1), which is
why a separate case is needed for 𝑑 = 5.
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Example 4.14

• 1 +
√

2 is fundamental unit in ℤ[
√

2] = 𝒪2, since 𝑁𝐾(1 +
√

2) = −1 so is a unit,
and here 𝑏 = 1, so is minimal (as 𝑏 > 0).

• 2 +
√

5 is the fundamental unit in ℤ[
√

5] (since 𝑏 = 1 is minimal) but is not the
fundamental unit in 𝒪5.

Example 4.15  Find fundamental unit in 𝒪7. 7 ≢ 1 (mod 4) so 𝒪7 = ℤ[
√

7]. 𝑎 + 𝑏
√

7
is a unit iff 𝑎2 − 7𝑏2 = ±1. Also, by the above theorem, it is the fundamental unit if
𝑎, 𝑏 > 0 and 𝑏 is minimal. We use trial and error: for each 𝑏 = 1, 2, …, check whether
7𝑏2 ± 1 is a square

𝑏 7𝑏2 − 1 7𝑏2 + 1 𝑎2

1 6 8 −
2 27 29 −
3 62 64 64 = 82

So the unit with minimal 𝑏 such that 𝑎, 𝑏 > 0 is 8 + 3
√

7, so is the fundamental unit.

4.3. Pell’s equation and norm equations
Definition 4.16  Pell’s equation is 𝑥2 − 𝑑𝑦2 = 1 for nonsquare 𝑑, where solutions
are 𝑥, 𝑦 ∈ ℤ. Since LHS is norm of 𝑥 + 𝑦

√
𝑑, solutions are given by 𝑥 + 𝑦

√
𝑑 ∈ ℤ[

√
𝑑]

with norm 1.

Example 4.17  Consider 𝑥2 − 2𝑦2 = ±1. Fundamental unit in ℤ[
√

2] is 𝑢 = 1 +
√

2,
with norm −1. So if 𝑥 + 𝑦

√
2 ∈ ℤ[

√
2] is such that 𝑁ℤ(

√
2)(𝑥 + 𝑦

√
2) = 1, then 𝑥 +

𝑦
√

2 is an even power of 𝑢. Thus elements of norm ±1 are

±𝑢2𝑛 (RHS = 1), ±𝑢2𝑛+1 (RHS = −1)

To extract solutions 𝑥, 𝑦, note that if 𝑥 + 𝑦
√

2 = ±𝑢𝑟, then 𝑥 − 𝑦
√

2 = ±𝑢𝑟, hence

𝑥 = ±𝑢𝑟 + 𝑢𝑟

2
, 𝑦 = ±𝑢𝑟 − 𝑢𝑟

2
√

2

Solutions when RHS = 1 are given by even 𝑟, solutions when RHS = −1 are given by
odd 𝑟.

Example 4.18  Consider 𝑥2 − 75𝑦2 = 1. 75 = 3 ⋅ 52 is not square-free, so rewrite as

𝑥2 − 3𝑧2 = 1

where 𝑧 = 5𝑦. Fundamental unit in ℤ[
√

3] is 𝑢 = 2 +
√

3 of norm 1 so solutions are

𝑥 = ±𝑢𝑛 + 𝑢𝑛

2
, 𝑧 = ±𝑢𝑛 − 𝑢𝑛

2
√

3
, 𝑛 ∈ ℤ

To get solution for (𝑥, 𝑦), we need 5 | 𝑧 (which doesn’t always hold). Note that

𝑢2 = 7 + 4
√

3 ∉ ℤ[
√

75] = ℤ[5
√

3], 𝑢3 = 26 + 3
√

75 ∈ ℤ[
√

75]
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Thus when 𝑛 = 2, (𝑥, 𝑧) is not solution, but is when 𝑛 = 3, and hence when 𝑛 = 3𝑘
for 𝑘 ∈ ℤ:

𝑥 = ±𝑢3𝑘 + 𝑢3𝑘

2
, 𝑦 = ±𝑢3𝑘 − 𝑢3𝑘

5 ⋅ 2
√

3
, 𝑘 ∈ ℤ

𝑢3𝑘+1 and 𝑢3𝑘+2 never give solutions, since if 𝑢3𝑘+1 ∈ ℤ[
√

75], then 𝑢 ∈ ℤ[
√

75] (since
𝑢−3𝑘 ∈ ℤ[

√
75]). Similarly, if 𝑢3𝑘+2 ∈ ℤ[

√
75], then 𝑢2 ∈ ℤ[

√
75]: contradiction. Note

ℤ[
√

75] ⊂ ℤ[
√

3] and any unit in ℤ[
√

75] is unit in ℤ[
√

3], so is ±𝑢𝑟 for some 𝑟 ∈ ℤ. So
by taking powers of 𝑢, eventually we find the fundamental unit in ℤ[

√
75] (as it will

be smallest unit > 1 assuming we increment powers from 1).

5. Discriminants and integral bases
5.1. Discriminant of an 𝑛-tuple
Definition 5.1  Let 𝐾 number field of degree 𝑛. Discriminant of 𝛾 = (𝛾1, …, 𝛾𝑛) ∈
𝐾𝑛 is

Δ𝐾(𝛾) ≔ det(𝑄(𝛾))

where 𝑄(𝛾) = (tr𝐾(𝛾𝑖𝛾𝑗))1≤𝑖,𝑗≤𝑛 ∈ 𝑀𝑛(ℚ).

Example 5.2  Let 𝐾 = ℚ(
√

𝑑), 𝑑 ≠ 1 squarefree.

𝛾 = (1,
√

𝑑) ⟹ 𝑄(𝛾) = [2
0

0
2𝑑] ⟹ Δ𝐾(𝛾) = 4𝑑

𝛾 = (1, 1 +
√

𝑑
2

) ⟹ 𝑄(𝛾) = [
2
1

1
1+𝑑

2
] ⟹ Δ𝐾(𝛾) = 𝑑

Proposition 5.3

• Δ𝐾(𝛾) ∈ ℚ and if every 𝛾𝑖 ∈ 𝒪𝐾 , then Δ𝐾(𝛾) ∈ ℤ.
• Let 𝑀 ∈ 𝑀𝑛(ℚ), then Δ𝐾(𝑀𝛾) = det(𝑀)2Δ𝐾(𝛾).
• Δ𝐾(𝛾) is invariant under permutations of 𝛾1, …, 𝛾𝑛.

Lemma 5.4  Let 𝜃1, …, 𝜃𝑛 ∈ ℂ, let

𝐷 =
[
[
[1

⋮
1

𝜃1
⋮

𝜃𝑛

…
⋱
…

𝜃𝑛−1
1
⋮

𝜃𝑛−1
𝑛 ]

]
]

then

det(𝐷) = (−1)(𝑛
2 ) ∏

1≤𝑟<𝑠≤𝑛
(𝜃𝑟 − 𝜃𝑠)

Theorem 5.5  Let 𝐾 = ℚ(𝜃) be number field. Let 𝜃1, …, 𝜃𝑛 be roots of 𝑝𝜃(𝑥), let 𝛾 =
(1, …, 𝜃𝑛−1). Then
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Δ𝐾(𝛾) = ∏
1≤𝑖<𝑗≤𝑛

(𝜃𝑖 − 𝜃𝑗)2 = (−1)(𝑛
2 ) ∏

𝑛

𝑖=1
𝑝′

𝜃(𝜃𝑖) = (−1)(𝑛
2 )𝑁𝐾(𝑝′

𝜃(𝜃))

Example 5.6

• Let 𝐾 = ℚ(
√

𝑑), 𝑑 square-free, 𝜃 = 1+
√

𝑑
2 , then

Δ𝐾((1, 𝜃)) = (1 +
√

𝑑
2

− 1 −
√

𝑑
2

)
2

= 𝑑

• Let 𝜃 =
√

𝑑, so 𝑝𝜃(𝑥) = 𝑥2 − 𝑑, 𝑝′
𝜃(𝑥) = 2𝑥, so

Δ𝐾(1, 𝜃) = (−1)(2
2)𝑁𝐾(2𝜃) = −4𝑁𝑘(𝜃) = 4𝑑

• Let 𝜃 = 3
√

𝑑, so 𝑝𝜃(𝑥) = 𝑥3 − 𝑑, 𝑝′
𝜃(𝑥) = 3𝑥2 so

Δ𝐾(1, 𝜃, 𝜃2) = (−1)(3
2)𝑁𝐾(3𝜃2) = −27𝑑2

• Let 𝜃 be root of 𝑝𝜃(𝑥) = 𝑥3 − 𝑥 + 2, so 𝑝′
𝜃(𝑥) = 3𝑥2 − 1.

Δ𝐾(1, 𝜃, 𝜃2) = (−1)(3
2)𝑁𝐾(3𝜃2 − 1)

Now 𝜃3 = 𝜃 − 2 so

𝑁𝐾(3𝜃2 − 1) = 𝑁𝐾(2)𝑁𝐾(𝜃 − 3)
𝑁𝐾(𝜃)

= 8
2
𝑁𝐾(3 − 𝜃) = 4(3 − 𝜃1)(3 − 𝜃2)(3 − 𝜃3) = 4𝑝𝜃(3) = 104

so Δ𝐾(1, 𝜃, 𝜃2) = −104. Note: in general, this method doesn’t work, and generally
we have to compute matrix 𝑇𝜃 and det(𝑓(𝑇𝜃)). As a generalisation,

𝑁ℚ(𝜃)(𝑎 − 𝑏𝜃) = 𝑏𝑛𝑝𝜃(𝑎/𝑏)

Lemma 5.7

• Roots 𝜃1, …, 𝜃𝑛 of 𝑝𝜃(𝑥) are distinct.
• ∀𝑓(𝑥) ∈ ℚ[𝑥], tr𝐾(𝑓(𝜃)) = ∑𝑛

𝑖=1 𝑓(𝜃𝑖).
• ∀𝑓(𝑥) ∈ ℚ[𝑥], 𝑁𝐾(𝑓(𝜃)) = ∏𝑛

𝑖=1 𝑓(𝜃𝑖).

Proposition 5.8  Let 𝐾 = ℚ(𝜃) number field. Then Δ𝐾(𝛾) ≠ 0 iff 𝛾 is ℚ-basis of 𝐾.

5.2. Full lattices and integral bases
Definition 5.9  Let 𝐴 subgroup of ℚ-vector space 𝑉 . 𝐴 is full lattice in 𝑉  if there
are 𝛾1, …, 𝛾𝑛 ∈ 𝑉  such that
• {𝛾1, …, 𝛾𝑛} is basis for 𝑉 .
• 𝐴 = {𝑎1𝛾𝑖 + ⋯ + 𝑎𝑛𝛾𝑛 : 𝑎𝑖 ∈ ℤ} (i.e. 𝛾1, …, 𝛾𝑛 generate 𝐴 as a group). Note

𝑎1, …, 𝑎𝑛 are uniquely determined for each 𝑎 ∈ 𝐴.

{𝛾1, …, 𝛾𝑛} is generating basis for 𝐴.

Example 5.10  Let 𝐾 = ℚ(𝜃), 𝜃 ∈ 𝒪𝐾 , [𝐾 : ℚ] = 𝑛, then ℤ[𝜃] has generating basis
{1, …, 𝜃𝑛−1} and is full lattice in 𝐾.

Example 5.11  ℤ, ℤ[
√

2/2] are not full lattices in ℚ(
√

2).
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Proposition 5.12  Let 𝐾 number field. Every non-zero ideal 𝐼 ⊆ 𝒪𝐾 is full lattice in
𝐾.

Definition 5.13  Generating basis for 𝒪𝐾 is integral basis for 𝐾.

Example 5.14  Let 𝐾 = ℚ(
√

𝑑), then an integral basis for 𝐾 is {1,
√

𝑑} if 𝑑 ≢
1 mod 4, {1, (1 +

√
𝑑)/2} if 𝑑 ≡ 1 mod 4.

Theorem 5.15  If 𝑉  is ℚ-vector space, dim(𝑉 ) = 𝑛, and 𝐵 ⊂ 𝐴 ⊂ 𝑉 , 𝐴 and 𝐵 full
lattices, {𝛽1, …, 𝛽𝑛} is generating basis for 𝐵, {𝛼1, …, 𝛼𝑛} is generating basis for 𝐴,
where 𝛽 = 𝑀𝛼, 𝑀 ∈ 𝑀𝑛(ℤ), then
• |𝐴/𝐵| = | det(𝑀)| (in particular, 𝐴/𝐵 is finite)
• If 𝑉 = 𝐾 is number field, these satisfy index-discriminant formula: Δ𝐾(𝐵) =

|𝐴/𝐵|2 Δ𝐾(𝐴).

(Note 𝑀  exists since 𝛼 is generating basis for 𝐴 so spans 𝐵 over ℤ).

Lemma 5.16  If 𝐴 ⊂ 𝐾 is full lattice and {𝛾1, …, 𝛾𝑛}, {𝛿1, …, 𝛿𝑛} are generating
bases for 𝐴, then Δ𝐾(𝛾1, …, 𝛾𝑛) = Δ𝐾(𝛿1, …, 𝛿𝑛). We define discriminant of 𝐴 to be
Δ𝐾(𝐴) = Δ𝐾(𝛾1, …, 𝛾𝑛) for any generating basis {𝛾1, …, 𝛾𝑛}.

Definition 5.17  Disciminant of number field 𝐾 is

Δ𝐾 = Δ𝐾(𝒪𝐾) = Δ𝐾(𝛾1, …, 𝛾𝑛)

for any integral basis {𝛾1, …, 𝛾𝑛}.

5.3. When is 𝑅 = ℤ[𝜃]?
Proposition 5.18  If 𝑆 ⊆ 𝒪𝐾 is full lattice in 𝐾 = ℚ(𝜃), {𝛾1, …, 𝛾𝑛} is generating
basis for 𝑆, and 𝑝 prime, 𝑝 | |𝒪𝐾/𝑆|, then
• 𝑝2 | Δ𝐾(𝑆)
• There exists 𝛼 = 𝑚1𝛾1 + ⋯ + 𝑚𝑛𝛾𝑛 ∈ 𝑆, 𝑚𝑖 ∈ ℤ, such that 𝛼/𝑝 ∈ 𝒪𝐾 − 𝑆 and

{0 ≤ |𝑚𝑖| < 𝑝/2 if 𝑝 is odd
𝑚𝑖 ∈ {0, 1} if 𝑝 = 2

Example 5.19  If 𝐾 = ℚ(
√

𝑑),

Δ𝐾 = {4𝑑 if 𝑑 ≢ 1 mod 4
𝑑 if 𝑑 ≡ 1 mod 4

Example 5.20  Let 𝜃 be root of 𝑥3 + 4𝑥 + 1, 𝐾 = ℚ(𝜃). We have ℤ[𝜃] ⊆ 𝒪𝐾 and
Δ𝐾(ℤ[𝜃]) = Δ𝐾(1, 𝜃, 𝜃2) = 281 = |𝒪𝐾/ℤ[𝜃]|2 Δ𝐾(𝒪𝐾). As 281 is squarefree,
|𝒪𝐾/ℤ[𝜃]| = 1 so 𝒪𝐾 = ℤ[𝜃].

Example 5.21  Let 𝐾 = ℚ(𝜃), 𝜃 = 3
√

5. let 𝑅 = 𝒪𝐾 , 𝑆 = ℤ[𝜃]. Δ𝐾(𝑆) = −33 ⋅ 52. If
𝑝 prime and 𝑝 | |𝑅/𝑆|, then 𝑝 ∈ {3, 5} and there is 𝛼 = 𝑎 + 𝑏𝜃 + 𝑐𝜃2 such that 𝛼/𝑝 ∈
𝑅 − 𝑆, |𝑎|, |𝑏|, |𝑐| < 𝑝/2. Note 𝛼 ≠ 0, as otherwise 𝛼 ∈ 𝑆.
• If 5 | |𝑅/𝑆|, then |𝑎|, |𝑏|, |𝑐| ∈ {0, 1, 2}. Then tr𝐾/ℚ(𝛼/5) = 3𝑎/5 ∈ ℤ so 5 | 𝑎 so 𝑎 =

0. 𝜃𝛼/5 = 𝑐 + (𝑏𝜃2)/5 ∈ 𝒪𝐾 so (𝑏𝜃2)/5 ∈ 𝒪𝐾 so
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𝑁𝐾((𝑏𝜃2)/5) = 𝑁𝐾(𝑏)𝑁𝐾(𝜃)2

𝑁𝐾(5)
= 𝑏3

5
∈ ℤ

so 5 | 𝑏, so 𝑏 = 0. Finally,

𝑁𝐾(𝛼
5

) = 𝑁𝐾(𝑐𝜃2

5
) = 𝑐3(−5)2

53 = 𝑐3

5
∈ ℤ ⟹ 𝑐 = 0

Contradiction.
• If 3 | |𝑅/𝑆|, then |𝑎|, |𝑏|, |𝑐| ∈ {0, 1} and can assume 𝑎 ≥ 0 (by possibly multiplying

by −1). Then

𝑁𝐾(𝑎 + 𝑏𝜃 + 𝑐𝜃2

3
) ∈ ℤ ⟹ 𝑎3 + 5𝑏3 + 25𝑐3 − 15𝑎𝑏𝑐 ≡ 0(mod 33)

If 𝑎 = 0, then 5𝑏3 + 25𝑐3 ≡ 2𝑏 + 𝑐 ≡ 0(mod 3) (as 𝑏, 𝑐 ∈ {0, 1, −1}), so if 𝑏 = 0,
then 𝑐 ≡ 0(mod 3) ⟹ 𝑐 = 0: contradiction. So 𝑏 = 1 (by possibly multiplying by
−1) hence 𝑐 = 1. But then

𝑁𝐾(𝛼/3) = 𝑁𝐾(𝜃 + 𝜃2

3
) = 𝑁𝐾(𝜃)𝑁𝐾(1 + 𝜃)

33 = 5 ⋅ 6
27

∉ ℤ

Contradiction. If 𝑎 = 1, then

1 + 5𝑏3 + 25𝑐3 ≡ 1 + 2𝑏 + 𝑐 ≡ 0(mod 3)

which also leads to a contradiction.
• So 5 ∤ |𝑅/𝑆|, 3 ∤ |𝑅/𝑆|, so |𝑅/𝑆| = 1, so ℤ[𝜃] = 𝒪𝐾 .

6. Unique factorisation of ideals
Definition 6.1  Product of ideals 𝐼, 𝐽 ⊆ 𝑅 is

𝐼𝐽 ≔ {∑
𝑘

𝑖=1
𝑥𝑖𝑦𝑖 : 𝑘 ∈ ℕ, 𝑥𝑖 ∈ 𝐼, 𝑦𝑖 ∈ 𝐽}

If 𝐼 = ⟨𝑎1, …, 𝑎𝑚⟩, 𝐽 = (𝑏1, …, 𝑏𝑛) then

𝐼𝐽 = ⟨𝑎𝑖𝑏𝑗 | 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛]⟩

Definition 6.2  𝐼 divides 𝐽 , 𝐼 | 𝐽 , if there is ideal 𝐾 such that that 𝐼𝐾 = 𝐽 .

Note 6.3  to divide is to contain: 𝐼 | 𝐽 ⟹ 𝐽 ⊆ 𝐼 .

Example 6.4  Let 𝑅 = ℤ[
√

−6], 𝐼 = ⟨5, 1 + 3
√

−6⟩, 𝐽 = ⟨5, 1 − 3
√

−6⟩, then

𝐼𝐽 = ⟨25, 5(1 + 3
√

−6), 5(1 − 3
√

−6), 55⟩ ⊆ ⟨5⟩

But also 5 = 55 − 2 ⋅ 25 ∈ 𝐼 , ⟨5⟩ ⊆ 𝐼𝐽 , so 𝐼𝐽 = ⟨5⟩.

Lemma 6.5  Let 𝐼, 𝐽  ideals, 𝑃  prime ideal. Then
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𝐼𝐽 ⊆ 𝑃 ⟺ (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)

Example 6.6  ⟨5, 1 + 3
√

−6⟩ ⊂ ℤ[
√

−6] is prime: define 𝜑 : ℤ[
√

−6] → 𝔽5, 𝜑(𝑎 +
𝑏
√

−6) = 𝑎 − 2𝑏. 𝜑 is surjective homomorphism. Also, 5, 1 + 3
√

−6 ∈ ker(𝜑), and

𝑎 + 𝑏
√

−6 ∈ ker(𝜑) ⟹ 𝑏 ≡ 3𝑎 mod 5

⟹ (𝑎 + 𝑏
√

−6) − 𝑎(1 + 3
√

−6) = (𝑏 − 3𝑎)
√

−6 ∈ ⟨5⟩

so ker(𝜑) = (5, 1 + 3
√

−6). So by first isomorphism theorem, 𝑅/⟨5, 1 +
√

−6⟩ ≅ 𝔽5
which is field, so ⟨5, 3 +

√
−6⟩ is maximal, so prime.

Definition 6.7  Let 𝐾 number field, 𝑅 = 𝒪𝐾 . Fractional ideal of 𝑅 is subset of 𝐾
of the form

𝜆𝐼 = {𝜆𝑥 : 𝑥 ∈ 𝐼}

where ⟨0⟩ ≠ 𝐼 ⊆ 𝑅 and 𝜆 ∈ 𝐾×. If 𝐼 = 𝑅, 𝜆𝐼 is principal fractional ideal. Set of
fractional ideals in 𝑅 is denoted ℐ(𝑅), set of principal fractional ideals is denoted
𝒫(𝑅). Multiplication of fractional ideals is defined similarly to that of ideals.

Example 6.8
• 𝑛

𝑚ℤ is fractional ideal in ℚ for all 𝑚, 𝑛 ∈ ℤ − {0}.
• Every non-zero ideal is fractional ideal (take 𝜆 = 1).
• If 𝜆𝐼 is fractional ideal, then 𝜆−1𝜆𝐼 = 𝐼 is ideal.

Definition 6.9  A fractional ideal 𝐴 is invertible if there is fractional ideal 𝐵 such
that 𝐴𝐵 = 𝒪𝐾 . 𝐵 is the inverse of 𝐴. The invertible fractional ideals form a group.

Example 6.10  In ℤ[
√

−6] = 𝒪𝐾 , ⟨5, 1 + 3
√

−6⟩⟨5, 1 − 3
√

−6⟩ = ⟨5⟩ so

⟨5, 1 + 3
√

−6⟩ ⋅ 1
5
⟨5, 1 − 3

√
−6⟩ = 𝒪𝐾

so inverse of ⟨5, 1 + 3
√

−6⟩ is 1
5⟨5, 1 − 3

√
−6⟩.

6.1. The norm of an ideal
Definition 6.11  Let ⟨0⟩ ≠ 𝐼 ideal of 𝒪𝐾 . Norm of 𝐼 is

𝑁(𝐼) ≔ |𝒪𝐾/𝐼|

We have 𝑁(𝐼) ∈ ℕ, 𝑁(𝑅) = 1, and 𝐼 ⊊ 𝐽 ⟹ 𝑁(𝐼) > 𝑁(𝐽) (in fact, 𝑁(𝐼) =
𝑁(𝐽) |𝐽/𝐼|).

Proposition 6.12  Every non-zero prime ideal in 𝒪𝐾 is maximal.

Lemma 6.13  Every nonzero ideal in 𝒪𝐾 contains product of one or more non-zero
prime ideals.

6.2. Ideals are invertible
Theorem 6.14  Every non-zero prime ideal in 𝒪𝐾 is invertible.

Lemma 6.15  If 𝜆𝐼 is fractional ideal and 𝜆𝐼 ⊆ 𝒪𝐾 , then 𝜆𝐼 is ideal in 𝒪𝐾 .
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Lemma 6.16  Let 𝐽 ⊆ 𝐼 ideals in 𝒪𝐾 with 𝐼 invertible. Then
• 𝐼−1𝐽  is ideal in 𝒪𝐾 and so 𝐼 | 𝐽 .
• 𝐽 ⊆ 𝐼−1𝐽  with equality iff 𝐼 = 𝑅.

Theorem 6.17  Let 𝐼 ⊊ 𝒪𝐾 be non-zero ideal. Then 𝐼 is unique (up to reordering)
product of prime ideals.

Definition 6.18  A ring where every proper non-zero ideal can be uniquely
factorised into prime ideals is a Dedekind domain. So rings of integers are
Dedekind domains.

Example 6.19  In ℤ[
√

−6], (1 + 3
√

−6)(1 − 3
√

−6) = 55 = 5 ⋅ 11. 𝑃5 = ⟨5, 1 +
3
√

−6⟩ and 𝑃5 = ⟨5, 1 − 3
√

−6⟩ are prime, as are 𝑃11 = ⟨11, 1 + 3
√

−6⟩ and 𝑃11 =
⟨11, 1 −

√
−6⟩. 𝑃5𝑃5 = ⟨5⟩, 𝑃11𝑃11 = ⟨11⟩, 𝑃5𝑃11 = ⟨1 + 3

√
−6⟩, 𝑃5 𝑃11 = ⟨1 − 3

√
−6⟩

so

(𝑃5𝑃11)(𝑃5 𝑃11) = (𝑃5𝑃5)(𝑃11𝑃11)

Corollary 6.20  Let 𝑅 = 𝒪𝐾 .
• Every fractional ideal (and hence every nonzero ideal) in 𝑅 is invertible.
• ℐ(𝑅) is abelian group under multiplication, with identity element 𝑅.

Corollary 6.21 (to divide is to contain and to contain is to divide)  𝐼 | 𝐽 ⟺ 𝐽 ⊆ 𝐼 .

Theorem 6.22  If 𝒪𝐾 is UFD, then it is also PID.

6.3. Arithmetic with ideals
Definition 6.23  Let 𝐼, 𝐽  be non-zero ideals of 𝑅,

𝐼 = 𝑃 𝑎1
1 ⋯𝑃 𝑎𝑟𝑟 ,

𝐽 = 𝑃 𝑏1
1 ⋯𝑃 𝑏𝑟𝑟

with 𝑃1, …, 𝑃𝑟 distinct prime ideals of 𝑅 and 𝑎𝑖, 𝑏𝑖 ≥ 0. gcd and lcm of 𝐼 and 𝐽  are

gcd(𝐼, 𝐽) ≔ 𝑃min{𝑎1,𝑏1}
1 ⋯𝑃min{𝑎𝑟,𝑏𝑟}

𝑟 ,

lcm(𝐼, 𝐽) ≔ 𝑃max{𝑎1,𝑏1}
1 ⋯𝑃max{𝑎𝑟,𝑏𝑟}

𝑟

Definition 6.24  𝐼 and 𝐽  are coprime if gcd(𝐼, 𝐽) = ⟨1⟩ = 𝑅.

Proposition 6.25
• For 𝑚, 𝑛 ∈ ℤ, gcd(⟨𝑚⟩ℤ, ⟨𝑛⟩ℤ) = ⟨gcd(𝑚, 𝑛)⟩ℤ and lcm(⟨𝑚⟩ℤ, ⟨𝑛⟩ℤ) = ⟨lcm(𝑚, 𝑛)⟩ℤ.
• gcd(𝐼, 𝐽) divides 𝐼 and 𝐽 , and if any 𝐾 divides 𝐼 and 𝐽 , then 𝐾 | gcd(𝐼, 𝐽).
• 𝐼, 𝐽 | lcm(𝐼, 𝐽) and for any ideal 𝐾, if 𝐼, 𝐽 | 𝐾 then lcm(𝐼, 𝐽) | 𝐾.

Proposition 6.26
• In any ring, the smallest ideal containing ideals 𝐼 and 𝐽  is 𝐼 + 𝐽 . So if 𝐼 =

⟨𝑎1, …, 𝑎𝑛⟩ and 𝐽 = (𝑏1, …, 𝑏𝑚) then smallest ideal containing 𝐼 and 𝐽  is
⟨𝑎1, …, 𝑎𝑛, 𝑏1, …, 𝑏𝑚⟩.

• In any ring, the largest ideal contained in both 𝐼 and 𝐽  is 𝐼 ∩ 𝐽 .
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Proposition 6.27  If 𝐼 and 𝐽  are non-zero ideals in 𝒪𝐾 then

gcd(𝐼, 𝐽) = 𝐼 + 𝐽, lcm(𝐼, 𝐽) = 𝐼 ∩ 𝐽

Theorem 6.28 (Chinese remainder theorem for ideals)  Let 𝐼1, …, 𝐼𝑘 be pairwise
coprime ideals of 𝒪𝐾 , then there is an isomorphism

𝑅/(𝐼1⋯𝐼𝑘) → 𝑅/𝐼1 × ⋯ × 𝑅/𝐼𝑘,
𝑥 + (𝐼1⋯𝐼𝑘) ↦ (𝑥 + 𝐼1, …, 𝑥 + 𝐼𝑘)

7. Splitting of primes and the Kummer-Dedekind
theorem

7.1. Properties of the ideal norm
Lemma 7.1  For every non-zero ideal 𝐼 of 𝒪𝐾 , 𝑁(𝐼) ∈ 𝐼 , hence 𝐼 ∩ ℤ ≠ ⟨0⟩.

Notation 7.2  For 0 ≠ 𝛼 ∈ 𝒪𝐾 , define 𝑁(𝛼) ≔ 𝑁(⟨𝛼⟩𝒪𝐾
).

Lemma 7.3  ∀0 ≠ 𝛼 ∈ 𝒪𝐾 , 𝑁(𝛼) = |𝑁𝐾(𝛼)|.

Lemma 7.4  Ideal norm is multiplicative: for any non-zero ideals 𝐼 , 𝐽  in 𝒪𝐾 ,

𝑁(𝐼𝐽) = 𝑁(𝐼)𝑁(𝐽)

7.2. The Kummer-Dedekind theorem
Definition 7.5  If 𝑝 ∈ ℤ prime, and ⟨𝑝⟩𝑂𝐾

= 𝑃 𝑒1
1 ⋯𝑃 𝑒𝑟𝑟  then 𝑃1, …, 𝑃𝑟 are the prime

ideals lying above 𝑝. Equivalently, 𝑃  lies above 𝑝 if 𝑃 ∩ ℤ = ⟨𝑝⟩ℤ.

Remark 7.6  If 𝑃 ⊂ 𝒪𝐾 nonzero prime ideal, then 𝑁(𝑃) ∈ 𝑃 ∩ ℤ so 𝑃 ∩ ℤ ≠ ⟨0⟩.
But 𝑃 ∩ ℤ is prime ideal of ℤ so 𝑃 ∩ ℤ = ⟨𝑝⟩ℤ for some prime 𝑝 ∈ ℤ. Hence 𝑝 ∈ 𝑃 ,
⟨𝑝⟩𝒪𝐾

⊆ 𝑃  so 𝑃 | ⟨𝑝⟩𝒪𝐾
. Hence every 𝑃  lies over some prime 𝑝.

Lemma 7.7  Prime ideal 𝑃  of 𝒪𝐾 lies above 𝑝 iff 𝑁(𝑃) = 𝑝𝑟 for some 1 ≤ 𝑟 ≤ 𝑛 =
[𝐾 : ℚ].

Theorem 7.8 (Kummer Dedekind)  Let 𝑝 prime. Suppose 𝒪𝐾 = ℤ[𝜃] for some 𝜃 ∈
𝒪𝐾 with minimal polynomial 𝑝𝜃. Let 𝑓(𝑥) be reduction of 𝑓(𝑥) ∈ ℤ[𝑥] mod 𝑝, so
𝑓(𝑥) ∈ 𝔽𝑝[𝑥]. Let

𝑝𝜃(𝑥) = 𝑓1(𝑥)𝑒1⋯𝑓𝑟(𝑥)𝑒𝑟

be factorisation of 𝑝𝜃 where 𝑓𝑖 are distinct, monic, irreducible. For each 𝑖, let 𝑓𝑖(𝑥) ∈
ℤ[𝑥] be monic polynomial whose reduction mod 𝑝 is 𝑓𝑖(𝑥). Let 𝑃𝑖 = (𝑝, 𝑓𝑖(𝜃))𝒪𝐾

. Then
𝑃𝑖 are distinct prime ideals, 𝑁(𝑃𝑖) = 𝑝deg(𝑓𝑖) and

⟨𝑝⟩𝒪𝐾
= 𝑃 𝑒1

1 ⋯𝑃 𝑒𝑟𝑟

Theorem 7.9 (Strong Kummer-Dedekind)  Let 𝐾 = ℚ(𝜃), 𝜃 ∈ 𝑅 = 𝒪𝐾 , 𝑝 ∤ |𝑅/ℤ[𝜃]|
then ⟨𝑝⟩𝑅 can be factorised by considering 𝑝𝜃(𝑥) ∈ 𝔽𝑝[𝑥] as in usual Kummer-
Dedekind when |𝑅/ℤ[𝜃]| = 1.
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Example 7.10  Let 𝐾 = ℚ(
√

6), so 𝒪𝐾 = ℤ[
√

6]. 𝑝𝜃(𝑥) = 𝑥2 − 6 factorises modulo
small primes as:

𝑥2 − 6 = 𝑥2 in 𝔽2[𝑥]

𝑥2 − 6 = 𝑥2 in 𝔽3[𝑥]

𝑥2 − 6 = 𝑥2 − 1 = (𝑥 − 1)(𝑥 + 1) in 𝔽5[𝑥]

𝑥2 − 6 irreducible in 𝔽7[𝑥]

𝑥2 − 6 irreducible in 𝔽11[𝑥]

Since 6 is not square mod 7 or 11. By Kummer-Dedekind,

⟨2⟩𝒪𝐾
= ⟨2,

√
6⟩

2
, ⟨3⟩𝒪𝐾

= ⟨3,
√

6⟩
2
,

⟨5⟩𝒪𝐾
= ⟨5,

√
6 + 1⟩⟨5,

√
6 − 1⟩,

⟨7⟩𝒪𝐾
= ⟨7,

√
6

2
− 6⟩ = ⟨7, 0⟩ = ⟨7⟩,

⟨11⟩𝒪𝐾
= ⟨11,

√
6

2
− 6⟩ = ⟨11, 0⟩ = ⟨11⟩

Definition 7.11  When 𝐾 is quadratic, Kummer-Dedekind implies there are 3
mutually exclusive possibilities for prime 𝑝 ∈ ℤ:
• If ⟨𝑝⟩𝒪𝐾

 is prime ideal, 𝑝 is inert.
• If ⟨𝑝⟩𝒪𝐾

= 𝑃 2 for prime ideal 𝑃 , then 𝑝 ramifies (or is ramified) (otherwise, it is
unramified).

• If ⟨𝑝⟩𝒪𝐾
= 𝑃1𝑃2 for distinct prime ideals 𝑃1, 𝑃2, then 𝑝 splits (or is split).

Remark 7.12  If 𝐾/ℚ is quadratic, 𝐾 = ℚ(
√

𝑑), then Kummer-Dedekind always
applies since 𝑅 = ℤ[𝜃] for some 𝜃 ∈ 𝐾.

Notation 7.13  Let 𝐾 quadratic extension. If 𝐼 ⊆ 𝒪𝐾 ideal, let 𝐼 = {𝑥 : 𝑥 ∈ 𝐼}
where 𝑎 + 𝑏

√
𝑑 = 𝑎 − 𝑏

√
𝑑. We have 𝐼 prime iff 𝐼 prime and 𝑁(𝐼) = 𝑁(𝐼).

Lemma 7.14  Let 𝐾 quadratic number field, 𝑝 ∈ ℤ prime, 𝑃  non-zero prime ideal in
𝒪𝐾 lying above 𝑝. Then 𝑃  is prime ideal lying above 𝑝 and:
• If 𝑝 inert, then 𝑃 = 𝑃  and 𝑁(𝑃) = 𝑝2.
• If 𝑝 ramifies, then 𝑃 = 𝑃  and 𝑁(𝑃) = 𝑝.
• If 𝑝 splits, then ⟨𝑝⟩𝒪𝐾

= 𝑃𝑃 , 𝑃 ≠ 𝑃  and 𝑁(𝑃) = 𝑁(𝑃) = 𝑝.

In all cases, 𝑃𝑃 = ⟨𝑁(𝑃)⟩𝒪𝐾
.

Example 7.15  Let 𝜃3 + 3𝜃 − 1 = 0, 𝐾 = ℚ(𝜃). We have 𝒪𝐾 = ℤ[𝜃]. To factorise
⟨5⟩𝒪𝐾

 and ⟨11⟩𝒪𝐾
: −1 and 2 are roots of 𝑥3 + 3𝑥 − 1 mod 5, so we get 𝑥3 + 3𝑥 − 1 ≡

(𝑥 + 1)(𝑥 + 2)2 mod 5. So by Kummer-Dedekind,

⟨5⟩𝒪𝐾
= ⟨5, 𝜃 + 1⟩⟨5, 𝜃 + 2⟩2

Only root in 𝑝𝜃 in 𝔽11 is −4, so 𝑝𝜃(𝑥) = (𝑥 + 4)(𝑥2 − 4𝑥 + 8) mod 11 and 𝑥2 − 4𝑥 +
8 = (𝑥 − 2)2 + 4 is irreducible as −4 is not square mod 11. So by Kummer-Dedekind,
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⟨11⟩𝒪𝐾
= ⟨11, 𝜃 + 4⟩⟨11, 𝜃2 − 4𝜃 + 8⟩

To factorise ⟨2𝜃 − 3⟩𝒪𝐾
:

𝑁𝐾(2𝜃 − 3) = −𝑁𝐾(2)𝑁𝐾(3
2

− 𝜃) = −8 ⋅ 𝑝𝜃(
3
2
) = −8(27

8
+ 9

2
− 1) = −55

So ⟨2𝜃 − 3⟩ = 𝑃5𝑃11 where 𝑁(𝑃5) = 5, 𝑁(𝑃11) = 11, 𝑃5, 𝑃11 prime. So 𝑃5 | ⟨5⟩, so
𝑃5 = ⟨5, 𝜃 + 1⟩ or ⟨5, 𝜃 + 2⟩. Now 2𝜃 − 3 = 2(𝜃 + 1) − 5 ∈ ⟨5, 𝜃 + 1⟩, so ⟨5, 𝜃 +
1⟩ | ⟨2𝜃 − 3⟩, hence 𝑃5 = ⟨5, 𝜃 + 1⟩. Now 𝑃11 | ⟨11⟩ so 𝑃11 = ⟨11, 𝜃 + 4⟩ or ⟨11, 𝜃2 −
4𝜃 + 8⟩. But by Kummer-Dedekind, the latter has norm 112 which is a contradiction
(since 112 ∤ 𝑁(⟨2𝜃 − 3⟩) = 55). So 𝑃11 = ⟨11, 𝜃 + 4⟩.

8. The ideal class group
Notation 8.1  Let 𝑅 = 𝒪𝐾 for number field 𝐾.

Definition 8.2  (Ideal) class group of 𝑅 (or of 𝐾) is Cl(𝑅) ≔ ℐ(𝑅)/𝒫(𝑅). For
fractional ideal 𝐼 ∈ ℐ(𝑅), let [𝐼] = 𝐼 ⋅ 𝒫(𝑅) = {⟨𝜆⟩𝑅𝐼 : 𝜆 ∈ 𝐾×} = {𝜆𝐼 : 𝜆 ∈ 𝐾×}
denote class of 𝐼 in Cl(𝑅).

Proposition 8.3
• [𝐼] = 𝑒 iff 𝐼 ∈ 𝒫(𝑅) iff 𝐼 is principal.
• [𝐼] = [𝐽] iff 𝐼 = ⟨𝜆⟩𝑅𝐽  for some 𝜆 ∈ 𝐾× iff 𝛼𝐼 = 𝛽𝐽  for some 𝛼, 𝛽 ∈ 𝑅 − {0}.
• [𝐼] ⋅ [𝐽 ] = 𝐼𝐽 ⋅ 𝒫(𝑅) = [𝐼𝐽].
• [𝐼]−1 = [𝐼−1].

Proposition 8.4  Cl(𝑅) is the trivial group (Cl(𝑅) = 𝑒) iff 𝑅 is a UFD iff 𝑅 is a
PID.

Remark 8.5  If ⟨𝛼⟩𝑅 = 𝑃𝑄 then 𝑒 = [⟨𝛼⟩𝑅] = [𝑃𝑄] = [𝑃 ][𝑄] so [𝑃 ] = [𝑄]−1.

Proposition 8.6  If 𝐾 is quadratic number field, 𝐼 , 𝐽  ideals, then [𝐼] = [𝐼]−1 and 𝐼𝐽
is principal iff [𝐼] = [𝐽].

Example 8.7
• Let 𝐾 = ℚ(

√
−29) so 𝒪𝐾 = ℤ[

√
−29] = 𝑅. 𝑝√

−29(𝑥) = 𝑥2 + 29 so by Kummer-
Dedekind and Lemma 7.14,

⟨2⟩𝑅 = 𝑃 2
2 , 𝑃2 = ⟨2, 1 +

√
−29⟩𝑅, 𝑁(𝑃2) = 2,

⟨3⟩𝑅 = 𝑃3𝑃3, 𝑃3 = ⟨3, 1 −
√

−29⟩𝑅, 𝑁(𝑃3) = 3,

⟨5⟩𝑅 = 𝑃5𝑃5, 𝑃5 = ⟨5, 1 −
√

−29⟩𝑅, 𝑁(𝑃5) = 5

• If 𝑃2 were principal, then 𝑃2 = ⟨𝑎 + 𝑏
√

−29⟩ but 𝑁(𝑃2) = 2 = 𝑎2 + 29𝑏2:
contradiction. So [𝑃2] ≠ 𝑒 but [𝑃2]

2 = 𝑒 as 𝑃 2
2 = ⟨2⟩𝑅 is principal.

• Similarly, 𝑃5 is not principal, but also 𝑃 2
5  is not principal, as if it was, then 𝑃 2

5 =
⟨𝑎 + 𝑏

√
−29⟩ so 25 = 𝑎2 + 29𝑏2 ⟹ 𝑎 = ±5, but then 𝑃 2

5 = ⟨5⟩ = 𝑃5𝑃5, but 𝑃5 ≠
𝑃5.
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• But 𝑁(3 + 2
√

−29) = 53, so ⟨3 + 2
√

−29⟩𝑅 | (53)
𝑅

 by Lemma 7.1, so ⟨3 +
2
√

−29⟩ = 𝑃 𝑎
5 𝑃5

3−𝑎; but 5 ∤ 3 + 2
√

−29, so we can’t have 𝑃5𝑃5 | ⟨3 + 2
√

−29⟩. So
⟨3 + 2

√
−29⟩ = 𝑃 3

5  or 𝑃5
3, and 3 + 2

√
−29 ∈ 𝑃5 so ⟨3 + 2

√
−29⟩ = 𝑃 3

5 , hence
[𝑃5]

3 = 𝑒, so [𝑃5] has order 3.
• Again, [𝑃3] ≠ 𝑒. As 𝑁(1 +

√
−29) = 30, ⟨1 +

√
−29⟩ | ⟨30⟩ = ⟨2⟩⟨3⟩⟨5⟩, so we see

⟨1 +
√

−29⟩ = 𝑃2𝑃3𝑃5, hence 𝑒 = [𝑃2][𝑃3]
−1[𝑃5]

−1 and so [𝑃3] = [𝑃2][𝑃5]
−1. Since

product of two elements of coprime orders 𝑚, 𝑛 in abelian group has order 𝑚𝑛, we
have

ord([𝑃3]) = ord([𝑃2][𝑃5]) = 2 ⋅ 3 = 6

Also, [𝑃3]
2 = [𝑃5]2 = [𝑃5] so [𝑃3]

3 = [𝑃2] and [𝑃3]
4 = [𝑃5]

−1. Hence Cl(𝑅) contains
a cyclic subgroup of order 6 generated by [𝑃3].

8.1. Finiteness of the class group
Lemma 8.8  Let 𝐶 > 0, then there are finitely many ideals of 𝑅 of norm ≤ 𝐶.

Lemma 8.9  For any number field 𝐾, there is 𝐶𝐾 ∈ ℕ such that for any nonzero
ideal 𝐽 ⊆ 𝑅,

∃0 ≠ 𝑠 ∈ 𝐽 : 𝑁(𝑠) ≤ 𝐶𝐾 ⋅ 𝑁(𝐽)

Corollary 8.10  Let 𝑐 ∈ Cl(𝑅), then there is ideal 𝐼 ⊆ 𝑅 with [𝐼] = 𝑐 and 𝑁(𝐼) ≤
𝐶𝐾 .

Theorem 8.11  Let 𝐾 number field, 𝑅 = 𝒪𝐾 , then Cl(𝑅) is finite.

Definition 8.12  Class number of 𝐾 is ℎ𝐾 ≔ |Cl(𝑅)|.

8.2. The Minkowski bound
Theorem 8.13 (Minkowski bound)  If 𝐾 = ℚ(𝜃) and 𝑝𝜃 has 𝑠 real roots, 2𝑡 complex
roots, 𝑛 ≔ 𝑠 + 2𝑡, then for every 𝑐 ∈ Cl(𝑅), we can find a (non-fractional) ideal 𝐼
with [𝐼] = 𝑐 and

𝑁(𝐼) ≤ 𝐵𝐾 ≔ (4
𝜋

)
𝑡 𝑛!
𝑛𝑛

√|Δ𝐾 |

i.e. we can take 𝐶𝐾 = 𝐵𝐾 .

Example 8.14  Let 𝐾 = ℚ(
√

−29), so 𝑅 = ℤ[
√

−29], then every ideal class has
representative of norm ≤ (4/𝜋)

√
29 < 7 so of norm 1, 2, …, 6, so is product of 𝑃2, 𝑃3,

𝑃3, 𝑃5, 𝑃5, so Cl(𝑅) = ⟨[𝑃3]⟩ is cyclic of order 6.

Example 8.15  Let 𝐾 = ℚ(
√

−19), so 𝑅 = 𝒪𝐾 = ℤ[1+
√

−19
2 ], Δ𝐾 = −19, then

𝐵𝐾 = (4
𝜋

) 2!
22

√
19 = 2

√
19

𝜋
< 3

So every element in Cl(𝒪𝐾) is represented by an ideal of norm 1 or 2. Let 𝑁(𝐼) = 2,
then 𝐼 is prime and 𝐼 | ⟨2⟩𝑅. But minimal polynomial of 1+

√
−19

2  is 𝑥2 − 𝑥 + 5 and
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𝑥2 − 𝑥 + 4 = 𝑥2 + 𝑥 + 1 irreducible in 𝔽2[𝑥] so 2 is inert in 𝑅, hence 𝐼 = ⟨2⟩𝑅 and
𝑁(⟨2⟩𝑅) = 4: contradiction. So Cl(𝒪𝐾) = {𝑒}, i.e. 𝒪𝐾 is PID, and in particular a
UFD. Note that it is not an ED though.

Example 8.16  Let 𝐾 = ℚ(
√

−14), so 𝑅 = 𝒪𝐾 = ℤ[
√

−14]. Δ𝐾 = 4 ⋅ −14 = −56, so

𝐵𝐾 = (4
𝜋

)
1 2!
22

√
56 = 4

√
14

𝜋
< 5

In general, Cl(𝒪𝐾) is generated by classes of prime ideals of norm ≤ 𝐵𝐾 . By
Kummer-Dedekind, (2)𝑅 = (2,

√
−14)

2
= 𝑃 2

2  and (3)𝑅 = (3,
√

−14 − 1)(3,
√

−14 + 1).
Hence if 𝑁(𝐼) = 4, then 𝐼 | (2)2

𝑅 = 𝑃 4
2  so 𝐼 = 𝑃 2

2 = (2)𝑅. So as a set,

Cl(𝑅) = {𝑒, [𝑃2], [𝑃3], [𝑃3] = [𝑃3]
−1, [𝑃 2

2 ] = 𝑒}

The norm of a principal ideal is 𝑁(⟨𝑎 + 𝑏
√

−14⟩) = 𝑎2 + 14𝑏2 ≠ 2, 3, 6 hence 𝑃2, 𝑃3,
𝑃3, 𝑃2𝑃3, 𝑃2𝑃3 are not principal. We have [𝑃2][𝑃3] ≠ 𝑒 ⟹ [𝑃2] ≠ [𝑃3], similarly
[𝑃2] ≠ [𝑃3]. We have [𝑃3] ≠ [𝑃3], since otherwise [𝑃3]

2 = 𝑒, so 𝑃 2
3  is principal and so

𝑃 2
3 = ⟨3⟩ but then 𝑃3 = 𝑃3. Thus 𝑒, [𝑃2], [𝑃3], [𝑃3] are distinct, so | Cl(𝑅)| = 4, so

Cl(𝑅) ≅ ℤ/2 × ℤ/2 or ℤ/4. But [𝑃3]
2 ≠ 𝑒 so [𝑃3] has order 4, hence Cl(𝑅) ≅ ℤ/4 is

generated by [𝑃3]. Note [𝑃3]
2 and [𝑃2] have order 2, so [𝑃3]

2 = [𝑃2], so [𝑃2𝑃 2
3 ] = 𝑒,

hence 𝑃2𝑃 2
3  is principal and there exists element in 𝒪𝐾 of norm 2 ⋅ 32 = 18.

Example 8.17  Let 𝐾 = ℚ(
√

79). Prove that Cl(𝑅) ≅ ℤ/3.
• 79 ≢ 1(mod 4) so Δ𝐾 = 4 ⋅ 79 so by the Minkowski bound, any element in Cl(𝑅)

contains an ideal of norm at most

𝐵𝐾 = (4
𝜋

)
0 2!
22

√|Δ𝐾 | =
√

79 ∈ (8, 9)

Hence Cl(𝑅) is generated by the ideal classes of prime ideals dividing 2, 3, 5 and
7. By Kummer-Dedekind,

𝑝 𝑥2 − 79 ∈ 𝔽𝑝[𝑥] ⟨𝑝⟩𝑅 norm of prime ideals above 𝑝

2 𝑥2 − 1 = (𝑥 + 1)2 𝑃 2
2 2

3 𝑥2 − 1 = (𝑥 + 1)(𝑥 − 1) 𝑃3𝑃3 3

5 𝑥2 − 4 = (𝑥 + 2)(𝑥 − 2) 𝑃5𝑃5 5

7 𝑥2 − 9 = (𝑥 + 3)(𝑥 − 3) 𝑃7𝑃7 7

Thus Cl(𝑅), as a set, is

Cl(𝑅) = {𝑒, [𝑃2], [𝑃3], [𝑃5], [𝑃7], [𝑃2]
2 = 𝑒, [𝑃2]

3 = [𝑃2], [𝑃2𝑃3]}

∪ {[𝑃3], [𝑃5], [𝑃7], [𝑃2𝑃3]}
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(since the ideals representing these classes have norm ≤ 8). Computing norms of some
principal ideals ⟨𝑎 +

√
79⟩, letting 𝑎 increase up to 

√
79 ≈ 9 to find mimimal value

and other small values of the norm:

𝑎 𝑁(⟨𝑎 +
√

79⟩𝑅) = |𝑎2 − 79|
0 79
1 2 ⋅ 3 ⋅ 13
2 3 ⋅ 52

3 2 ⋅ 5 ⋅ 7
4 32 ⋅ 7
5 2 ⋅ 33

6 43
7 2 ⋅ 3 ⋅ 5
8 3 ⋅ 5
9 2
10 3 ⋅ 7

• So 𝑁(⟨9 +
√

79⟩) = 2 ⟹ ⟨7 +
√

79⟩ = 𝑃2 so [𝑃2] = 𝑒.
• 𝑁(⟨8 +

√
79⟩) = 3 ⋅ 5 so [𝑃3][𝑃5] = 𝑒 (⇔ [𝑃3][𝑃5] = 𝑒) or [𝑃3][𝑃5] = 𝑒 (⇔

[𝑃3][𝑃5] = 𝑒). In both cases,

{[𝑃5], [𝑃5]} = {[𝑃3], [𝑃3]}
• Similarly, since 𝑁(⟨10 +

√
79⟩) = 3 ⋅ 7, we have

{[𝑃7], [𝑃7]} = {[𝑃3], [𝑃3]}
• Thus Cl(𝑅) is generated by [𝑃3] and as a set, Cl(𝑅) = {𝑒, [𝑃3], [𝑃3]

−1}.
• Since 𝑁(⟨5 +

√
79⟩) = 2 ⋅ 27, we have

⟨5 +
√

79⟩ = 𝑃2𝑃 𝑎
3 𝑃3

3−𝑎 for some 𝑎 ∈ {0, 1, 2, 3}
• If 𝑎 ∈ {1, 2}, then 𝑃3𝑃3 = ⟨3⟩𝑅 | ⟨5 +

√
79⟩: contradiction, since 3 ∤ 5 +

√
79. So

WLOG assume 𝑎 = 3 (if 𝑎 = 0, swap 𝑃3 and 𝑃3. So ⟨5 +
√

79⟩ = 𝑃2𝑃 3
3 , hence 𝑒 =

[𝑃3]
3, so [𝑃3] has order 1 or 3.

• Assume that 𝑃3 = ⟨𝛼⟩𝑅, then

𝑃2𝑃 3
3 = ⟨9 +

√
79⟩⟨𝛼3⟩ = ⟨5 +

√
79⟩

and so

𝛼3 = 5 +
√

79
9 +

√
79

𝑢 = (−17 + 2
√

79)𝑢 for some 𝑢 ∈ 𝑅×

• For any 𝑎 ∈ 𝑅×, ⟨±𝑎𝛼⟩𝑅 = ⟨𝛼⟩𝑅 and (±𝑎𝛼)3 = (−17 + 2
√

79)𝑢(±𝑎)3. So without
changing 𝑃3, we can rescale 𝛼 by a unit and so rescale 𝑢 by a unit cube.

• The fundamental unit of 𝑅 (by trial and error) is 𝑣 = 80 + 9
√

79. By Main
theorem,
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𝑅×/⟨±𝑣3⟩ ≅ ℤ/3

(consider the map 𝑅× → ℤ/3, ±𝑣𝑟 = 𝑟 mod 3 and use FIT). Thus, up to
multiplication by unit cubes, there are only three possible units 1, 𝑣, 𝑣2 (can take
𝑣−1 instead of 𝑣2). So we can choose 𝛼 such that 𝑢 is 1, 𝑣 or 𝑣−1.

• So 𝛼3 is one of

−17 + 2
√

79, (−17 + 2
√

79)𝑣 = 62 + 7
√

79, (−17 + 2
√

79)𝑣−1 = −2782 + 313
√

79
• Let 𝛼 = 𝑎 + 𝑏

√
79, 𝑎, 𝑏 ∈ ℤ, then 𝛼3 = 𝑎(𝑎2 + 3 ⋅ 79𝑏2) + 𝑏(3𝑎2 + 79𝑏2)

√
79. We

have 3 = 𝑁(𝑃3) = |𝑁(𝛼)| = |𝑎2 − 79𝑏2| so 𝑎, 𝑏 ≠ 0 so coefficient in 
√

79 in 𝛼3

satisfies |𝑏(3𝑎2 + 79𝑏2)| ≥ 3 + 79 = 82, hence 𝛼3 = −2782 + 313
√

79. So 𝑏(3𝑎2 +
79𝑏2) = 313 which is prime, hence 𝑏 = 1 and so 𝑎2 = 78: contradiction.

• So 𝑃3 is not principal so has order 3, so Cl(𝑅) ≅ ℤ/3.

9. Diophantine applications
9.1. Mordell equations
Definition 9.1  A Mordell equation is of the form 𝑥2 + 𝑑 = 𝑦3, 𝑑 ∈ ℤ, with
solutions 𝑥, 𝑦 ∈ ℤ sought.

Example 9.2  Find all solutions to the Mordell equation 𝑦3 = 𝑥2 + 5.

• Let 𝐾 = ℚ(
√

−5), then 𝑅 = 𝒪𝐾 = ℤ[
√

−5]. By the Minkowski bound, every
element in Cl(𝑅) has representative ideal of norm at most

(4
𝜋

)
√

5 < 3

so as a set, Cl(𝑅) = {𝑒, [𝑃2]} where 𝑃2 = ⟨2, 1 +
√

−5⟩ by Kummer-Dedekind.
• 𝑃2 is not principal as 𝑎2 + 5𝑏2 = 2 has no solutions, hence Cl(𝑅) ≅ ℤ/2.
• Let ⟨𝛼⟩ = ⟨𝑥 +

√
−5⟩, so ⟨𝛼⟩ = ⟨𝑥 −

√
−5⟩. If a prime ideal 𝑃  divides ⟨𝛼⟩ and ⟨𝛼⟩,

then 𝑃 | ⟨𝛼 − 𝛼⟩ = ⟨2
√

−5⟩ = ⟨2⟩𝑅⟨
√

−5⟩𝑅 = 𝑃 2
2 𝑃5. 2 and 5 ramify, so 𝑃2 = 𝑃2

and 𝑃5 = 𝑃5.
• Hence

⟨𝛼⟩ = 𝑃 𝑎
2 𝑃 𝑏

5 𝑄𝑟1
1 ⋯𝑄𝑟𝑛𝑛 ,

⟨𝛼⟩𝑅 = 𝑃 𝑎
2 𝑃 𝑏

5 𝑄1
𝑟1⋯𝑄𝑛

𝑟𝑛

where 𝑎, 𝑏, 𝑟𝑖 ≥ 0, all 𝑄𝑖, 𝑄𝑖 are distinct and different from 𝑃2, 𝑃5.
• Then

⟨𝑦⟩3 = ⟨𝑦3⟩ = ⟨𝛼𝛼⟩ = ⟨𝛼⟩⟨𝛼⟩ = 𝑃 2𝑎
2 𝑃 2𝑏

5 (𝑄1𝑄1)
𝑟1⋯(𝑄𝑛𝑄𝑛)

𝑟𝑛

By uniqueness of prime ideal factorisation, all exponents in RHS are divisible by 3,
so let 𝐼 = 𝑃 𝑎/3

2 𝑃 𝑏/3
5 𝑄𝑟1/3

1 ⋯𝑄𝑟𝑛/3
𝑛 , so that 𝐼3 = ⟨𝛼⟩𝑅.
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• Since ℎ𝐾 = 2, the square of any fractional ideal of 𝑅 is principal, so (𝐼−1)2 is
principal, hence 𝐼 = 𝐼3(𝐼−1)2 = 𝛼(𝐼−1)2 is principal, so let 𝐼 = ⟨𝛽⟩𝑅, for 𝛽 = 𝑠 +
𝑡
√

−5 ∈ 𝑅.
• Now ⟨𝛽3⟩ = 𝐼3 = ⟨𝛼⟩ so 𝛽3 = 𝑢𝛼 for some 𝑢 ∈ 𝑅×. But only units in 𝑅 are ±1.

Since 𝐼 = ⟨−𝛽⟩, can assume that 𝛽3 = 𝛼. Then

𝑠3 + 3𝑠𝑡2(−5) + (3𝑠2𝑡 + 𝑡3(−5))
√

−5 = 𝑥 +
√

−5
• So 𝑠3 − 15𝑠𝑡2 = 𝑥, 3𝑠2𝑡 − 5𝑡3 = 1. Hence 𝑡 = ±1, and both possibilities yield no

integer solutions to the second equation, so 𝑥2 + 5 = 𝑦3 has no integer solutions.

Example 9.3  Let 𝐾 = ℚ(
√

−31), it can be shown with Minkowski bound that
ℎ𝐾 = 3 so Cl(𝑅) = ⟨[𝑃2]⟩ ≅ ℤ/3 where 𝑃2 = ⟨2, (1 +

√
−31)/2⟩. Show that

𝑥2 + 31 = 𝑦3

has no solutions 𝑥, 𝑦 ∈ ℤ.
• Assume 𝑥, 𝑦 is a solution. 31 ∤ 𝑥, as otherwise 312 | (𝑦3 − 𝑥2) = 31 (since 31 is

prime): contradiction.
• 𝑥 is odd and 𝑦 is even:

‣ If 𝑥 even, 𝑦 is odd and 𝑦3 ≡ 31 ≡ −1 mod 4 so 𝑦 ≡ −1 mod 4. Now 𝑥2 + 4 = 𝑦3 −
27 = (𝑦 − 3)(𝑦2 + 3𝑦 + 9).

‣ 𝑦2 + 3𝑦 + 9 ≡ −1 mod 4. Hence 𝑦2 + 3𝑦 + 9 is divisible by prime 𝑝 ≡ 3 mod 4
(since product two numbers of form 4𝑛 + 1 is also of this form). So 𝑥2 + 4 ≡
0 mod 𝑝. Hence (𝑥/2)2 ≡ −1 mod 𝑝 so (𝑥/2)𝑝−1 ≡ (−1)

𝑝−1
2 ≡ −1 as 𝑝 ≡ 3 mod 4

which contradicts Fermat’s little theorem. Hence 𝑥 is odd so 𝑦 is even.
• Now (𝑥 +

√
−31)(𝑥 −

√
−31) = 𝑦3. 𝑥 is odd, so 𝛼 ≔ (𝑥 +

√
−31)/2 ∈ 𝑅. Let 𝑦 =

2𝑧, 𝑧 ∈ ℤ, then 𝛼𝛼 = 2𝑧3 and ⟨𝛼⟩⟨𝛼⟩ = ⟨2⟩⟨𝑧⟩3.
• If 𝑃 | ⟨𝛼⟩, ⟨𝛼⟩, then 𝛼, 𝛼 ∈ 𝑃 , so 

√
−31 = 𝛼 − 𝛼 ∈ 𝑃 , hence 𝑃 = ⟨

√
−31⟩ (this is

prime since norm is 31, a prime).
• But then 𝑥 = 𝛼 + 𝛼 ∈ 𝑃 ∩ ℤ = ⟨31⟩ℤ, but 31 ∤ 𝑥, so we have a contradiction. So

⟨𝛼⟩, ⟨𝛼⟩ are coprime ideals.
• WLOG, ⟨𝛼⟩ = 𝑃 𝑎

2 𝑄𝑟1
1 ⋯𝑄𝑟𝑛𝑛  and ⟨𝛼⟩ = 𝑃2

𝑎𝑄1
𝑟1⋯𝑄𝑛

𝑟𝑛 with 𝑃2, 𝑃2, all 𝑄𝑖, 𝑄𝑖
distinct.

• Then ⟨𝛼⟩⟨𝛼⟩ = ⟨2⟩𝑎(𝑄1𝑄1)
𝑟1⋯(𝑄𝑛𝑄𝑛)

𝑟𝑛 = ⟨2⟩⟨𝑧⟩3.
• Hence 𝑎 ≡ 1 mod 3 and for all 𝑖, 3 | 𝑟𝑖. So ⟨𝛼⟩ = 𝑃2𝐼3 for some ideal 𝐼 .
• Now [⟨𝛼⟩] = 𝑒 and [𝐼3] = [𝐼]3 = 𝑒 as ℎ𝐾 = 3. Hence [𝑃2] = 𝑒 so 𝑃2 is principal.
• So 𝑃2 = ⟨(𝑢 + 𝑣

√
−31)/2⟩, 𝑢, 𝑣 ∈ ℤ, 𝑢 ≡ 𝑣 mod 2.

• Then 2 = 𝑁(𝑃2) = (𝑢2 + 31𝑣2)/4 hence 8 = 𝑢2 + 31𝑣2: contradiction.

9.2. Generalised Pell equations
Definition 9.4  A generalised Pell equation is of the form

𝑥2 − 𝑑𝑦2 = 𝑛, 𝑛 ∈ ℤ, 𝑑 ∈ ℕ square-free

i.e. determine whether 𝑛 is a norm from ℤ[
√

𝑑].
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Definition 9.5  Let 𝐾 = ℚ(
√

14). Solve 𝑥2 − 14𝑦2 = ±5. We can assume 𝑅 = ℤ[
√

14]
is PID and so a UFD (can be proven using Minkowski bound by showing ℎ𝐾 = 1).
• By trial and error, fundamental unit is 𝑢 = 15 + 4

√
14 and 𝑁(𝑢) = 152 − 14 ⋅ 16 =

1.
• We have 𝑁(3 −

√
14) = −5 so ⟨5⟩ = ⟨3 +

√
14⟩⟨3 −

√
14⟩ by Kummer-Dedekind.

• Now ⟨𝑥 + 𝑦
√

14⟩⟨𝑥 − 𝑦
√

14⟩ = ⟨3 +
√

14⟩⟨3 −
√

14⟩. The ideals on the LHS are
conjugate, and ideals on RHS are prime so ⟨𝑥 + 𝑦

√
14⟩ = ⟨3 ±

√
14⟩.

• Hence 𝑥 + 𝑦
√

14 = ±(15 + 4
√

14)𝑛(3 ±
√

14) for some 𝑛 ∈ ℤ and 𝑥 − 𝑦
√

14 =
±(15 − 4

√
14)𝑛(3 ∓

√
14) which gives all solutions 𝑥, 𝑦 ∈ ℤ.

• Note: 𝑁(𝑥 + 𝑦
√

14) = 𝑥2 − 14𝑦2 = 𝑁(𝑢)𝑛𝑁(3 ±
√

14) = 1𝑛 ⋅ −5 = −5 so all
solutions must have −5 on RHS.

Example 9.6  Solve 𝑥2 − 79𝑦2 = ±15 for 𝑥, 𝑦 ∈ ℤ.

• Let 𝐾 = ℚ(
√

79), so 𝑅 = 𝒪𝐾 = ℤ[
√

79]. We have that Cl(𝑅) ≅ ℤ/3, generated by
[𝑃3].

• 𝑥2 − 79 ≡ (𝑥 + 1)(𝑥 − 1) mod 3 so ⟨3⟩𝑅 = 𝑃3𝑃3 = ⟨3, 1 +
√

79⟩⟨3, 1 −
√

79⟩ by
Kummer-Dedekind.

• 𝑥2 − 79 ≡ (𝑥 + 2)(𝑥 − 2) mod 5 so ⟨5⟩𝑅 = 𝑃5𝑃5 = ⟨2 +
√

79⟩⟨2 −
√

79⟩ by Kummer-
Dedekind.

• We have ⟨𝑥 + 𝑦
√

79⟩⟨𝑥 −
√

79⟩ = ⟨15⟩𝑅 = 𝑃3𝑃3𝑃5𝑃5. Since ⟨𝑥 + 𝑦
√

79⟩ = ⟨𝑥 −
𝑦
√

79⟩, we have 𝑥 ± 𝑦
√

79 = 𝑃3𝑃5 or 𝑃3𝑃5.
• Note 82 − 79 = −15, thus ⟨8 +

√
79⟩ = 𝑃3𝑃5 as 8 +

√
79 = 9 − (1 −

√
79) = 10 −

(2 −
√

79). Hence [𝑃3][𝑃5] = 𝑒 so [𝑃5] = [𝑃3]
−1 ≠ [𝑃3].

• So 𝑃3𝑃5 is principal and 𝑃3𝑃5 isn’t. Hence ⟨𝑥 ± 𝑦
√

79⟩ = 𝑃3𝑃5 = ⟨8 −
√

79⟩.
• Therefore, 𝑥 ± 𝑦

√
79 = ±𝑢𝑛(8 −

√
79) where 𝑢 = 80 + 9

√
79 is fundamental unit in

𝑅, 𝑛 ∈ ℤ and this gives all solutions to 𝑥, 𝑦 ∈ ℤ.
• Since 𝑁(𝑢) = 1, 𝑥2 − 79𝑦2 = 𝑁(LHS) = 𝑁(8 −

√
79) = −15 so the only solutions

are for −15, there are none for 15.
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