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1. Metric spaces
1.1. Metrics
Definition.  Metric space is (𝑋, 𝑑), 𝑋 is set, 𝑑 : 𝑋 × 𝑋 → [0, ∞) is metric
satisfying:
• 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦
• Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
• Triangle inequality: 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)
Example.
• 𝑝-adic metric: for 𝑝 ∈ [1, ∞)

𝑑𝑝(𝑥, 𝑦) = (∑
𝑛

𝑖=1
|𝑥𝑖 − 𝑦𝑖|𝑝)

1
𝑝

• Extension of the 𝑝-adic metric:

𝑑∞(𝑥, 𝑦) = max{|𝑥𝑖 − 𝑦𝑖| : 𝑖 ∈ [𝑛]}
• Metric of 𝐶([𝑎, 𝑏]):

𝑑(𝑓, 𝑔) = sup{|𝑓(𝑥) − 𝑔(𝑥)| : 𝑥 ∈ [𝑎, 𝑏]}
• Discrete metric:

𝑑(𝑥, 𝑦) = {
0 if 𝑥 = 𝑦
1 if 𝑥 ≠ 𝑦

Definition.  Open ball of radius 𝑟 around 𝑥:

𝐵(𝑥; 𝑟) ≔ {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) < 𝑟}

Definition.  Closed ball of radius 𝑟 around 𝑥:

𝐷(𝑥; 𝑟) ≔ {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≤ 𝑟}

1.2. Open and closed sets
Definition.  𝑈 ⊆ 𝑋 is open if

∀𝑥 ∈ 𝑈, ∃𝜀 > 0 : 𝐵(𝑥; 𝜀) ⊆ 𝑈

Definition.  𝐴 ⊆ 𝑋 is closed if 𝑋 − 𝐴 is open.
Note.  It is possible for sets to be neither closed nor open, or both closed and open.
Example.  With standard metric on ℝ, any singleton {𝑥} ∈ ℝ is closed and not open
(same holds for ℝ𝑛).
Definition.  Let 𝑋 be metric space, 𝑥 ∈ 𝑁 ⊆ 𝑋. 𝑁  is neighbourhood of 𝑥 if

∃ open 𝑉 ⊆ 𝑋 : 𝑥 ∈ 𝑉 ⊆ 𝑁

Corollary.  Let 𝑥 ∈ 𝑋, then 𝑁 ⊆ 𝑋 neighbourhood of 𝑥 iff ∃𝜀 > 0 : 𝑥 ∈ 𝐵(𝑥; 𝜀) ⊆ 𝑁 .
Proposition.  Open balls are open, closed balls are closed.
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Lemma.  Let (𝑋, 𝑑) metric space.
• 𝑋 and ∅ are both open and closed.
• Arbitrary unions of open sets are open.
• Finite intersections of open sets are open.
• Finite unions of closed sets are closed.
• Arbitrary intersections of closed sets are closed.
Example.  If 𝑋 has discrete metric, any 𝐴 ⊆ 𝑋 is open and closed.

1.3. Continuity
Definition.
• Sequence in 𝑋 is 𝑎 : ℕ0 → 𝑋, written (𝑎𝑛)𝑛∈ℕ.
• (𝑎𝑛) converges to 𝑎, lim𝑛→∞ 𝑎𝑛 = 𝑎, if

∀𝜀 > 0, ∃𝑛0 ∈ ℕ : ∀𝑛 ≥ 𝑛0, 𝑑(𝑎, 𝑎𝑛) < 𝜀

Proposition.  Let 𝑋, 𝑌  metric spaces, 𝑎 ∈ 𝑋, 𝑓 : 𝑋 → 𝑌 . The following are
equivalent:
• ∀𝜀 > 0, ∃𝛿 > 0 : ∀𝑥 ∈ 𝑋, 𝑑𝑋(𝑎, 𝑥) < 𝛿 ⟹ 𝑑𝑌 (𝑓(𝑎), 𝑓(𝑥)) < 𝜀.
• For every sequence (𝑎𝑛) in 𝑋 with 𝑎𝑛 → 𝑎, 𝑓(𝑎𝑛) → 𝑓(𝑎).
• For every open 𝑈 ⊆ 𝑌  with 𝑓(𝑎) ∈ 𝑈 , 𝑓−1(𝑈) is a neighbourhood of 𝑎.

If 𝑓 satisfies these, it is continuous at 𝑎.
Definition.  𝑓 continuous if continuous at every 𝑎 ∈ 𝑋.
Proposition.  𝑓 : 𝑋 → 𝑌  continuous iff 𝑓−1(𝑈) open for every open 𝑈 ⊆ 𝑌 .
Example.  Let 𝑑 be discrete metric, 𝑑2 be 2-adic metric.
• Any 𝑓 : (𝑋, 𝑑) → (ℝ, 𝑑2) is continuous.
• id : (ℝ, 𝑑2) → (ℝ, 𝑑) is not continuous.

2. Topological spaces
2.1. Topologies
Definition.  Power set of 𝑋: 𝒫(𝑋) ≔ {𝐴 : 𝐴 ⊆ 𝑋}.
Definition.  Topology on set 𝑋 is 𝜏 ⊆ 𝒫(𝑋) with:
• ∅ ∈ 𝜏 , 𝑋 ∈ 𝜏 .
• Closure under arbitrary unions: if ∀𝑖 ∈ 𝐼, 𝑈𝑖 ∈ 𝜏 , then

⋃
𝑖∈𝐼

𝑈𝑖 ∈ 𝜏

• Closure under finite intersections: 𝑈1, 𝑈2 ∈ 𝜏 ⟹ 𝑈1 ∩ 𝑈2 ∈ 𝜏  (this is
equivalent to 𝑈1, …, 𝑈𝑛 ∈ 𝜏 ⟹ ⋂𝑖∈[𝑛] 𝑈𝑖 ∈ 𝜏).

(𝑋, 𝜏) is topological space. Elements of 𝜏  are open subsets of 𝑋. 𝐴 ⊆ 𝑋 closed if 
𝑋 − 𝐴 is open.
Definition.  𝜏 = 𝒫(𝑋) is the discrete topology on 𝑋.
Definition.  𝜏 = {∅, 𝑋} is the indiscrete topology on 𝑋.
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Example.
• For metric space (𝑀, 𝑑), let 𝜏𝑑 exactly contain sets which are open with respect to

𝑑. Then (𝑀, 𝜏𝑑) is a topological space. 𝑑 induces topology 𝜏𝑑.
• Let 𝑋 = ℕ0 and 𝜏 = {∅} ∪ {𝑈 ⊆ 𝑋 : 𝑋 − 𝑈 is finite}, then (𝑋, 𝜏) is topological

space.
Proposition.  For topological space 𝑋:
• 𝑋 and ∅ are closed
• Arbitrary intersections of closed sets are closed
• Finite unions of closed sets are closed
Proposition.  For topological space (𝑋, 𝜏) and 𝐴 ⊆ 𝑋, the induced (subspace)
topology on 𝐴

𝜏𝐴 = {𝐴 ∩ 𝑈 : 𝑈 ∈ 𝜏}

is a topology on 𝐴.
Example.  Let 𝑋 = ℝ with standard topology induced by metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|.
Let 𝐴 = [1, 5]. Then [1, 3) = 𝐴 ∩ (0, 3) and [1, 5] = 𝐴 ∩ (0, 6) are open in 𝐴.
Example.  Consider ℝ with standard topology 𝜏 . Then
• 𝜏ℤ is the discrete topology on ℤ.
• 𝜏ℚ is not the discrete topology on ℚ.
Proposition.  Metrics 𝑑𝑝 for 𝑝 ∈ [1, ∞) and 𝑑∞ all induce same topology on ℝ𝑛,
called the standard topology on ℝ𝑛.
Definition.  (𝑋, 𝜏) is Hausdorff if

∀𝑥 ≠ 𝑦 ∈ 𝑋, ∃𝑈, 𝑉 ∈ 𝜏 : 𝑈 ∩ 𝑉 = ∅ ∧ 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉

Lemma.  Any metric space (𝑀, 𝑑) with topology induced by 𝑑 is Hausdorff.
Example.  Let |𝑋| ≥ 2 with indiscrete topology. Then 𝑋 is not Hausdorff, since 𝜏 =
{𝑋, ∅} and if 𝑥 ≠ 𝑦 ∈ 𝑋, only open set containing 𝑥 is 𝑋 (same for 𝑦). But 𝑋 ∩ 𝑋 =
𝑋 ≠ ∅.
Definition.  Furstenberg’s topology on ℤ: define 𝑈 ⊆ ℤ to be open if

∀𝑎 ∈ 𝑈, ∃0 ≠ 𝑑 ∈ ℤ : 𝑎 + 𝑑ℤ ≔ {𝑎 + 𝑑𝑛 : 𝑛 ∈ ℤ} ⊆ 𝑈

Proposition.  Furstenberg’s topology is Hausdorff.

2.2. Continuity
Definition.  Let 𝑋, 𝑌  topological spaces.
• 𝑓 : 𝑋 → 𝑌  is continuous if

∀𝑉 open in 𝑌 , 𝑓−1(𝑉 ) open in 𝑋
• 𝑓 is continuous at 𝑎 ∈ 𝑋 if

∀𝑉 open in 𝑌 with 𝑓(𝑎) ∈ 𝑉 , ∃𝑈 open in 𝑋 : 𝑎 ∈ 𝑈 ⊆ 𝑓−1(𝑉 )
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Lemma.  𝑓 : 𝑋 → 𝑌  continuous iff 𝑓 continuous at every 𝑎 ∈ 𝑋. (Key idea for proof:
∪𝑎∈𝑓−1(𝑉 ) 𝑈𝑎 ⊆ 𝑓−1(𝑉 ) = ∪𝑎∈𝑓−1(𝑉 ) {𝑎} ⊆ ∪𝑎∈𝑓−1(𝑉 ) 𝑈𝑎)
Example.  Inclusion 𝑖 : (𝐴, 𝜏𝐴) → (𝑋, 𝜏𝑋), 𝐴 ⊆ 𝑋, is always continuous.
Lemma.  Compositions of continuous functions are continuous.
Lemma.  Let 𝑓 : 𝑋 → 𝑌  be function between topological spaces. Then 𝑓 is
continuous iff

∀𝐴 closed in 𝑌 , 𝑓−1(𝐴) closed in 𝑋

Remark.  We can use continuous functions to decide that sets are open or closed.
Definition.  𝑛-sphere is

𝑆𝑛 ≔ {(𝑥1, …, 𝑥𝑛+1) ∈ ℝ𝑛+1 : ∑
𝑛+1

𝑖=1
𝑥2

𝑖 = 1}

Example.  In the standard topology, the 𝑛-sphere is a closed subset of ℝ𝑛+1.
(Consider the preimage of {1} which is closed in ℝ).
Example.
• Can consider set of square matrices 𝑀𝑛,𝑛(ℝ) ≅ ℝ𝑛2 and give it the standard

topology.
• Note

det(𝐴) = ∑
𝜎∈ sym(𝑛)

(sgn(𝜎) ∏
𝑛

𝑖=1
𝑎𝑖,𝜎(𝑖))

is a polynomial in the entries of 𝐴 so is continuous function from 𝑀𝑛(ℝ) to ℝ.
• GL𝑛(ℝ) = {𝐴 ∈ 𝑀𝑛(ℝ) : det(𝐴) ≠ 0} = det−1(ℝ − {0}) is open.
• SL𝑛(ℝ) = {𝐴 ∈ 𝑀𝑛(ℝ) : det(𝐴) = 1} = det−1({1}) is closed.
• 𝑂(𝑛) = {𝐴 ∈ 𝑀𝑛(ℝ) : 𝐴𝐴𝑇 = 𝐼} is closed: 𝑓𝑖,𝑗(𝐴) = (𝐴𝐴𝑇 )𝑖,𝑗 is continuous and

𝑂(𝑛) = ⋂
1≤𝑖,𝑗≤𝑛

(𝑓𝑖,𝑗)−1({𝛿𝑖,𝑗})

• SO(𝑛) = 𝑂(𝑛) ∩ SL𝑛(ℝ) is closed.
Definition.  For 𝑋, 𝑌  topological spaces, ℎ : 𝑋 → 𝑌  is homeomorphism if ℎ is
bĳective, continuous and ℎ−1 is continuous. 𝑋 and 𝑌  are homeomorphic, 𝑋 ≅ 𝑌 . ℎ
induces bĳection between 𝜏𝑋 and 𝜏𝑌  which commutes with unions and intersections.
Proposition.  Compositions of homeomorphisms are homeomorphisms.
Example.  In standard topology, (0, 1) is homeomorphic to ℝ. (Consider 𝑓 :
(−𝜋

2 , 𝜋
2) → (−∞, ∞), 𝑓 = tan, 𝑔 : (0, 1) → (−𝜋

2 , 𝜋
2), 𝑔(𝑥) = 𝜋(𝑥 − 1

2) and 𝑓 ∘ 𝑔).
Example.  ℝ with standard topology 𝜏st is not homoeomorphic to ℝ with the
discrete topology 𝜏𝑑. (Consider ℎ−1({𝑎}) = {ℎ−1(𝑎)}, {𝑎} ∈ 𝜏𝑑 but {ℎ−1(𝑎)} ∉ 𝜏st).
Example.  Let 𝑋 = ℝ ∪ {0}. Define 𝑓0 : ℝ → 𝑋, 𝑓0(𝑎) = 𝑎 and 𝑓0 : ℝ → 𝑋, 𝑓0(𝑎) =
𝑎 for 𝑎 ≠ 0, 𝑓0(0) = 0. Topology on 𝑋 has 𝐴 ⊆ 𝑋 open iff 𝑓−1

0 (𝐴) and 𝑓−1
0 (𝐴) open.

Every point in 𝑋 lies in open set: for 𝑎 ∉ {0, 0}, 𝑎 ∈ (𝑎 − |𝑎|
2 , 𝑎 + |𝑎|

2 ) and both pre-
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images of this are same open interval, for 0, set 𝑈0 = (−1, 0) ∪ {0} ∪ (0, 1) ⊆ 𝑋 then 
𝑓−1

0 (𝑈0) = (−1, 1) and 𝑓−1
0 (𝑈0) = (−1, 0) ∪ (0, 1) are both open. For 0, set 𝑈0 =

(−1, 0) ∪ {0} ∪ (0, 1) ⊆ 𝑋, then 𝑓−1
0 (𝑈0) = (−1, 1) and 𝑓−1

0 (𝑈0) = (−1, 0) ∪ (0, 1) are
both open. So 𝑈0 and 𝑈0 both open in 𝑋. 𝑋 is not Hausdorff since any open sets
containing 0 and 0 must contain “open intervals” such as 𝑈0 and 𝑈0.
Example (Furstenberg's proof of infinitude of primes).  Since 𝑎 + 𝑑ℤ is infinite, any
nonempty finite set is not open, so any set with finite complement is not closed. For
fixed 𝑑, sets 𝑑ℤ, 1 + 𝑑ℤ, …, (𝑑 − 1) + 𝑑ℤ partition ℤ. So the complement of each is the
union of the rest, so each is open and closed. Every 𝑛 ∈ ℤ − {−1, 1} is prime or
product of primes, so ℤ − {−1, 1} = ⋃𝑝 prime 𝑝ℤ, but finite unions of closed sets are
closed, and since ℤ − {−1, 1} has finite complement, the union must be infinite.

3. Limits, bases and products
3.1. Limit points, interiors and closures
Definition.  For topological space 𝑋, 𝑥 ∈ 𝑋, 𝐴 ⊆ 𝑋:
• Open neighbourhood of 𝑥 is open set 𝑁 , 𝑥 ∈ 𝑁 .
• 𝑥 is limit point of 𝐴 if every open neighbourhood 𝑁  of 𝑥 satisfies

(𝑁 − {𝑥}) ∩ 𝐴 ≠ ∅

Corollary.  𝑥 is not limit point of 𝐴 iff exists neighbourhood 𝑁  of 𝑥 with

𝐴 ∩ 𝑁 = {
{𝑥} if 𝑥 ∈ 𝐴
∅ if 𝑥 ∉ 𝐴

Example.  Let 𝑋 = ℝ with standard topology.
• 0 ∈ 𝑋, then (−1/2, 1/2) is open neighbourhood of 0.
• If 𝑈 ⊆ 𝑋 open, 𝑈  is open neighbourhood for any 𝑥 ∈ 𝑈 .
• Let 𝐴 = { 1

𝑛 : 𝑛 ∈ ℤ − {0}}, then only limit point in 𝐴 is 0.
Definition.  Let 𝐴 ⊆ 𝑋.
• Interior of 𝐴 is largest open set contained in 𝐴:

𝐴⚬ ≔ ⋃
𝑈 open
𝑈⊆𝐴

𝑈

• Closure of 𝐴 is smallest closed set containing 𝐴:

𝐴 ≔ ⋂
𝐹 closed
𝐴⊆𝐹

𝐹

If 𝐴 = 𝑋, 𝐴 is dense in 𝑋.
Lemma.
• 𝑋 − 𝐴 = 𝑋 − 𝐴⚬

• 𝐴 = 𝑋 − (𝑋 − 𝐴)⚬
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Example.  Let ℚ ⊂ ℝ with standard topology. Then ℚ⚬ = ∅ and ℚ = ℝ (since every
nonempty open set in ℝ contains rational and irrational numbers).
Lemma.  𝐴 = 𝐴 ∪ 𝐿 where 𝐿 is the set of limit points of 𝐴.
Theorem (Dirichlet prime number theorem).  Let 𝑎, 𝑑 coprime, then 𝑎 + 𝑑ℤ contains
infinitely many primes.
Example.  Let 𝐴 be set of primes in ℤ with Furstenberg topology. By above lemma,
only need to find limit points in ℤ − 𝐴 to find 𝐴. 10ℤ is an open neighbourhood of 0
for 0 inside ℤ − 𝐴. For 𝑎 ∉ {−1, 0, 1}, 𝑎 + 10𝑎ℤ is an open neighbourhood of 𝑎. These
sets have no primes so the corresponding points are not limit points of 𝐴. For ±1,
any open neighbourhood of ±1 contains a set ±1 + 𝑑ℤ for some 𝑑 ≠ 0, but by the
Dirichlet prime number theorem, this set contains at least one prime. So 𝐴 = 𝐴 ∪
{±1}.
Lemma.
• Let 𝐴 ⊆ 𝑀  for metric space 𝑀 . If 𝑥 is limit point of 𝐴 then exists sequence 𝑥𝑛 in 

𝐴 such that lim𝑛→∞ 𝑥𝑛 = 𝑥.
• If 𝑥 ∈ 𝑀 − 𝐴 and exists sequence 𝑥𝑛 in 𝐴 with lim𝑛→∞ 𝑥𝑛 = 𝑥 then 𝑥 is limit

point of 𝐴.

3.2. Bases
Definition.  A basis for topology 𝜏  on 𝑋 is collection ℬ ⊆ 𝜏  such that

∀𝑈 ∈ 𝜏, ∃𝐵 ⊆ ℬ : 𝑈 = ⋃
𝑏∈𝐵

𝑏

(every open 𝑈  is a union of sets in 𝐵).
Example.
• For metric space (𝑀, 𝑑), ℬ = {𝐵(𝑥; 𝑟) : 𝑥 ∈ 𝑀, 𝑟 > 0} is basis for the induced

topology. (Since if 𝑈  open, 𝑈 = ∪𝑢∈𝑈 {𝑢} ⊆ ∪𝑢∈𝑈 𝐵(𝑢, 𝑟𝑢) ⊆ 𝑈 .)
• In ℝ𝑛 with standard topology, ℬ = {𝐵(𝑞; 1/𝑚) : 𝑞 ∈ ℚ𝑛, 𝑚 ∈ ℕ} is a countable

basis. (Find 𝑚 ∈ ℕ such that 1
𝑚 < 𝑟

2  and 𝑞 ∈ ℚ𝑛 such that 𝑞 ∈ 𝐵(𝑝; 1
𝑚), then 

𝐵(𝑞; 1
𝑚) ⊆ 𝐵(𝑝; 𝑟) ⊆ 𝑈  using the triangle inequality).

Theorem.  Let 𝑓 : 𝑋 → 𝑌  be map between topological spaces. The following are
equivalent:
• 𝑓 is continuous.
• If ℬ is basis for topology 𝜏  on 𝑌  then 𝑓−1(𝐵) is open for every 𝐵 ∈ ℬ.
• ∀𝐴 ⊆ 𝑋, 𝑓(𝐴) ⊆ 𝑓(𝐴).
• ∀𝑉 ⊆ 𝑌 , 𝑓−1(𝑉 ) ⊆ 𝑓−1(𝑉 ).
• 𝑓−1(𝐶) closed for any closed set 𝐶 ⊆ 𝑌 .
Theorem.  Let 𝑋 be a set and collection ℬ ⊆ 𝒫(𝑋) be such that:
• ∀𝑥 ∈ 𝑋, ∃𝐵 ∈ ℬ : 𝑥 ∈ 𝐵
• If 𝑥 ∈ 𝐵1 ∩ 𝐵2 with 𝐵1, 𝐵2 ∈ ℬ, then ∃𝐵3 ∈ ℬ : 𝑥 ∈ 𝐵3 ⊆ 𝐵1 ∩ 𝐵2.

Then there is unique topology 𝜏ℬ on 𝑋 for which ℬ is a basis. We say ℬ generates 
𝜏ℬ. We have 𝜏𝐵 = {∪𝑖∈𝐼 𝐵𝑖 : 𝐵𝑖 ∈ ℬ, 𝐼 indexing set}.
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3.3. Product topologies
Definition.  Cartesian product of topological spaces 𝑋, 𝑌  is 𝑋 × 𝑌 ≔ {(𝑥, 𝑦) :
𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 }. We give it the product topology which is generated by ℬ𝑋×𝑌 ≔
{𝑈 × 𝑉 : 𝑈 ∈ 𝜏𝑋, 𝑉 ∈ 𝜏𝑌 }.
Example.
• Let 𝑋 = 𝑌 = ℝ, then product topology is same as standard topology on ℝ2.
• Let 𝑋 = 𝑌 = 𝑆1, then 𝑋 × 𝑌 = 𝑇 2 = 𝑆1 × 𝑆1 is the 2-torus. 𝑛-torus is defined

for 𝑛 ≥ 3 by

𝑇 𝑛 ≔ 𝑆1 × 𝑇 𝑛−1

Definition.  If 𝜏1 ⊆ 𝜏2 are topologies, then 𝜏1 is smaller than 𝜏2 (𝜏2 is larger than 
𝜏1).
Definition.  For topological spaces 𝑋, 𝑌 , projection maps 𝜋𝑋 : 𝑋 × 𝑌 → 𝑋 and 
𝜋𝑌 : 𝑋 × 𝑌 → 𝑌  are

𝜋𝑋(𝑥, 𝑦) = 𝑥, 𝜋𝑌 (𝑥, 𝑦) = 𝑦

Proposition.  For 𝑋 × 𝑌  with product topology,
• 𝜋𝑋 and 𝜋𝑌  are continuous.
• 𝜋𝑋 and 𝜋𝑌  map open sets to open sets.
• Product topology is smallest topology for which 𝜋𝑋 and 𝜋𝑌  are continuous.
Proposition.  Let 𝑋, 𝑌 , 𝑍 topological spaces, then 𝑓 : 𝑍 → 𝑋 × 𝑌  (with product
topology on 𝑋 × 𝑌 ) continuous iff both 𝜋𝑋 ∘ 𝑓 : 𝑍 → 𝑋 and 𝜋𝑌 ∘ 𝑓 : 𝑍 → 𝑌  are
continuous.
Example.  Let 𝑓 : 𝑋 → ℝ𝑛, 𝜋𝑖 : ℝ𝑛 → ℝ, 𝜋𝑖(𝑥) = 𝑥𝑖, 𝑓𝑖 = 𝜋𝑖 ∘ 𝑓 , then 𝑓 is
continuous iff all 𝑓𝑖 are continuous.
Proposition.  Let 𝑋, 𝑌  nonempty topological spaces. Then 𝑋 × 𝑌  with product
topology is Hausdorff iff 𝑋 and 𝑌  are both Hausdorff.

4. Connectedness
4.1. Clopen sets and examples
Definition.  Let 𝑋 topological space, then 𝐴 ⊆ 𝑋 is clopen if 𝐴 is open and closed.
Definition.  𝑋 is connected if the only clopen sets in 𝑋 are 𝑋 and ∅.
Example.
• ℝ with standard topology is connected.
• ℚ with induced topology from ℝ is not connected (consider 𝐿 = ℚ ∩ (−∞,

√
2)

and ℚ − 𝐿 = ℚ ∩ (
√

2, ∞)).
• The connected subsets of ℝ are the intervals.
Definition.  𝐴 ⊆ ℝ is an interval iff ∀𝑥, 𝑦 ∈ 𝐴, ∀𝑧 ∈ ℝ, 𝑥 < 𝑧 < 𝑦 ⟹ 𝑧 ∈ 𝐴.
Example.
• 𝑋 = {0, 1} with discrete topology is not connected ({1} and {0} both open so

both closed).
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• 𝑋 = {0, 1} with 𝜏 = {∅, {1}, {0, 1}} is connected.
• ℤ with Furstenberg topology is not connected.
Theorem (continuity preserves connectedness).  If ℎ : 𝑋 → 𝑌  continuous and 𝑋
connected, then ℎ(𝑋) ⊆ 𝑌  is connected.
Corollary.  If ℎ : 𝑋 → 𝑌  is homeomorphism and 𝑋 is connected then 𝑌  is
connected.
Theorem.  Let 𝑋 topological space. The following are equivalent:
• 𝑋 is connected.
• 𝑋 cannot be written as disjoint union of two non-empty open sets.
• There exists no continuous surjective function from 𝑋 to a discrete space with

more than one point.
Example.
• GL𝑛(ℝ) is not connected (since det : GL𝑛(ℝ) → ℝ − {0} is continuous and

surjective and ℝ − {0} = (−∞, 0) ∪ (0, ∞)).
• 𝑂(𝑛) is not connected.
• (0, 1) is connected (since ℝ ≅ (0, 1) and ℝ is connected).
• 𝑋 = (0, 1] and 𝑌 = (0, 1) are not homeomorphic (consider ℎ(1) = 𝑝 ∈ 𝑌 ).
Definition.  Let 𝐴 = 𝐵 ∪ 𝐶, 𝐵 ∩ 𝐶 = ∅, then 𝐵 and 𝐶 are complementary
subsets of 𝐴.
Remark.  If complementary 𝐵 and 𝐶 open in 𝐴, then 𝐵 and 𝐶 clopen in 𝐴. So if 
𝐵, 𝐶 ≠ ∅ then 𝐴 not connected.

4.2. Constructing more connected sets, components, path-
connectedness
Proposition.  Let 𝑋 topological space, 𝑍 ⊆ 𝑋 connected. If 𝑍 ⊆ 𝑌 ⊆ 𝑍 then 𝑌  is
connected. In particular, with 𝑌 = 𝑍, the closure of a connected set is connected.
Proposition.  Let 𝐴𝑖 ⊆ 𝑋 connected, 𝑖 ∈ 𝐼 , 𝐴𝑖 ∩ 𝐴𝑗 ≠ ∅ and ∪𝑖∈𝐼 𝐴𝑖 = 𝑋. Then 𝑋
is connected.
Theorem.  If 𝑋 and 𝑌  are connected then 𝑋 × 𝑌  is connected.
Example.
• ℝ𝑛 is connected.
• 𝐵𝑛 = {𝑥 ∈ ℝ𝑛 : 𝑑2(0, 𝑥) < 1} is connected (𝐵𝑛 is homeomorphic to ℝ𝑛).
• 𝐷𝑛 = {𝑥 ∈ ℝ𝑛 : 𝑑2(0, 𝑥) ≤ 1} = 𝐵𝑛 is connected.
Example.
• ∀𝑛 ∈ ℕ, 𝑆𝑛 is connected.
• ∀𝑛 ∈ ℕ, 𝑇 𝑛 is connected.
Definition.  Component of topological space 𝑋 is maximal connected subset of 𝑋.
Proposition.  In a topological space 𝑋:
• Every 𝑝 ∈ 𝑋 is in a unique component.
• If 𝐶1 ≠ 𝐶2 are components, then 𝐶1 ∩ 𝐶2 = ∅.
• 𝑋 is the union of its components.
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• Every component is closed in 𝑋.
Example.
• If 𝑋 connected, then its only component is itself.
• If 𝑋 discrete, then each singleton in 𝜏𝑋 is a component.
• In ℚ with induced standard topology from ℝ, every singleton is a component.
Definition.  Path in topological space 𝑋 is continuous function 𝛾 : [0, 1] → 𝑋. 𝛾 is
said to be path from 𝛾(0) to 𝛾(1).
Definition.  𝑋 is path-connected if for every 𝑝, 𝑞 ∈ 𝑋, there is a path from 𝑝 to 𝑞.
Proposition.  Every path-connected topological space is connected.
Example.  Let

𝑍 = {(𝑥, sin(1/𝑥)) ∈ ℝ2 : 0 < 𝑥 ≤ 1}

𝑍 is path-connected, as a path from (𝑥1, sin(1/𝑥1)) to (𝑥2, sin(1/𝑥2)) is given by

𝛾(𝑡) = (𝑥1 + (𝑥2 − 𝑥1)𝑡, sin(
1

𝑥1 + (𝑥2 − 𝑥1)𝑡
))

So then 𝑍 is connected by the above proposition, and since the closure of a connected
set is connected, 𝑍 is connected.

Every point (0, 𝑦), 𝑦 ∈ [−1, 1] is a limit point of 𝑍. Assume 𝑍 is path-connected.
Then there is a path 𝛾 : [0, 1] → 𝑍 from (0, 0) to (1, sin(1)). Since (𝜋𝑋 ∘ 𝛾)(0) = 0 and
(𝜋𝑋 ∘ 𝛾)(1) = 1 and 𝜋𝑋 ∘ 𝛾 is continuous, by the Intermediate Value Theorem, ∃𝑡1 ∈
[0, 1] : (𝜋𝑋 ∘ 𝛾)(𝑡1) = 2/𝜋. By IVT again, ∃𝑡2 ∈ [0, 𝑡1] : (𝜋𝑋 ∘ 𝛾)(𝑡2) = 2

2𝜋 . We obtain a
strictly decreasing sequence (𝑡𝑛) ⊆ [0, 1] where (𝜋𝑋 ∘ 𝛾)(𝑡𝑛) = 2

𝑛𝜋  which is bounded
below by 0, so must converge with limit 𝑡∗.

Now 𝜋𝑌 ∘ 𝛾 is continuous, so lim𝑛→∞(𝜋𝑌 ∘ 𝛾)(𝑡𝑛) = (𝜋𝑌 ∘ 𝛾)(𝑡∗). But (𝜋𝑌 ∘ 𝛾)(𝑡𝑛) =
sin(𝑛𝜋

2 ), and as 𝑛 → ∞, this oscillates between −1 and 1 and does not converge, so
contradiction.

5. Compactness
Definition.  Let 𝑋 topological space, cover of 𝑋 is collection (𝑈𝑖)𝑖∈𝐼 of subsets of 𝑋
with

⋃
𝑖∈𝐼

𝑈𝑖 = 𝑋

If every 𝑈𝑖 is open, it is an open cover. If 𝐽 ⊆ 𝐼 , then (𝑈𝑖)𝑖∈𝐽  is a subcover of 
(𝑈𝑖)𝑖∈𝐼 if it is also a cover.
Definition.  𝑋 is compact if every open cover of 𝑋 admits a finite subcover.
Example.
• If 𝑋 is finite then 𝑋 is compact.
• ℝ is not compact.
• If 𝑋 infinite with 𝜏 = {𝑈 ⊆ 𝑋 : 𝑋 − 𝑈 is finite} ∪ {∅}, then 𝑋 is compact.
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Proposition.  Let 𝑋 have topology with basis ℬ. Then 𝑋 is compact iff every cover 
(𝐵𝑖)𝑖∈𝐼 of 𝑋, 𝐵𝑖 ∈ ℬ, admits a finite subcover of 𝑋.
Remark.  To determine compactness of 𝑌 ⊆ 𝑋 with induced topology, consider open
covers 𝑌 = ∪𝑖∈𝐼 (𝑈𝑖 ∩ 𝑌 ) for 𝑈𝑖 open in 𝑋, which is equivalent to 𝑌 ⊆ ∪𝑖∈𝐼 𝑈𝑖.
Example.  [0, 1] is compact.
Proposition.  If 𝑓 : 𝑋 → 𝑌  continuous, 𝑋 compact, then 𝑓(𝑋) is compact.
Proposition.  If 𝑋 compact, 𝐴 ⊆ 𝑋 closed in 𝑋, then 𝐴 is compact.
Theorem.  If 𝑋 is Hausdorff and 𝐴 ⊆ 𝑋 is compact then 𝐴 is closed.
Corollary.  If 𝑋 compact, 𝑌  is Hausdorff, 𝑓 : 𝑋 → 𝑌  continuous bĳection, then 𝑓 is
homeomorphism.
Theorem.  If 𝑋, 𝑌  compact, then 𝑋 × 𝑌  is compact.
Definition.  𝑆 ⊆ ℝ𝑛 is bounded if

∃𝑟 ∈ ℝ : 𝑆 ⊆ 𝐵(0; 𝑟)

Theorem (Heine-Borel).  𝐴 ⊆ ℝ𝑛 is compact iff it is closed and bounded.
Example.
• 𝑆𝑛 is compact.
• 𝑇 𝑛 is compact.
• 𝑋 = {𝒙 ∈ ℝ3 : 𝑥2

1 + 𝑥2
2 − 𝑥3

3 = 1} is not compact, since ∀𝑛 ∈ ℕ, (𝑛, 0, (𝑛2 −
1)1/3) ∈ 𝑋, so 𝑋 ⊈ 𝐵(𝑛), so is unbounded, so not compact by Heine-Borel.

Corollary.  Let 𝑓 : 𝑋 → ℝ, 𝑋 compact, 𝑓 continuous. Then 𝑓 attains its maximum
and minimum.
Theorem (Bolzano-Weierstrass).  An infinite subset 𝐴 of a compact space 𝑋 has a
limit point in 𝑋.

6. Quotient spaces
Definition.  Let 𝑋 topological space, ∼ equivalence relation on 𝑋. Write 𝑋/ ∼ for
the set of equivalence classes of ∼: for 𝑥 ∈ 𝑋,

[𝑥] ≔ {𝑦 ∈ 𝑋 : 𝑦 ∼ 𝑥}, 𝑋/ ∼ ≔ {[𝑥] : 𝑥 ∈ 𝑋}

There is a surjective map, the quotient map, 𝜋 : 𝑋 → 𝑋/ ∼, 𝜋(𝑥) = [𝑥].
Example.  Let 𝑋 = ℝ3, define equivalence relation

(𝑥1, 𝑦1, 𝑧1) ∼ (𝑥2, 𝑦2, 𝑧2) ⇔ 𝑧1 = 𝑧2

Then 𝜋(𝑎, 𝑏, 𝑐) = [(𝑎, 𝑏, 𝑐)] = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 : 𝑧 = 𝑐}. Elements of ℝ3/ ∼ are horizontal
planes.
Definition.  Let 𝑋 topological space, ∼ equivalence relation on 𝑋. Then 𝑋/ ∼ is
given quotient topology defined by

𝑈 ⊆ 𝑋/ ∼ open ⟺ 𝜋−1(𝑈) open in 𝑋
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Proposition.  Quotient topology defines a topology on 𝑋/ ∼.
Proposition.  Quotient topology on 𝑋/ ∼ is largest such that 𝜋 is continuous.
Proposition.  Let 𝑋 topological space with equivalence relation ∼, 𝑌  topological
space. Then 𝑓 : 𝑋/ ∼ → 𝑌  continuous iff 𝑓 ∘ 𝜋 : 𝑋 → 𝑌  is continuous.
Example.  In ℝ, let 𝑥 ∼ 𝑦 ⟺ 𝑥 − 𝑦 ∈ ℤ. Define exp : ℝ → 𝑆1 ⊆ ℂ, exp(𝑡) = 𝑒2𝜋𝑖𝑡

and exp : ℝ/ ∼ → 𝑆1, exp([𝑡]) = exp(𝑡). Then

[𝑠] = [𝑡] ⟺ 𝑠 − 𝑡 = 𝑘 ∈ ℤ ⟺ exp(𝑠) = 𝑒2𝜋𝑖𝑘𝑒2𝜋𝑖𝑡 = 𝑒2𝜋𝑖𝑡 = exp(𝑡)

Hence exp is well-defined and injective, and is surjective since exp is. Also, exp is
continuous since exp = exp ∘ 𝜋 is. ℝ2 is a metric space and so is Hausdorff, so 𝑆1 ⊂
ℝ2 with the induced topology is Hausdorff. Now e.g. 𝜋([−10, 10]) = ℝ/ ∼, [−10, 10] is
compact and 𝜋 continuous so ℝ/ ∼ is compact. Since exp is a continuous bĳection,
these three properties imply exp is a homeomorphism. Hence ℝ/ ∼ ≅ 𝑆1.
Definition.  Let 𝐴 ⊆ 𝑋, define 𝑥 ∼ 𝑦 ⟺ 𝑥 = 𝑦 or 𝑥, 𝑦 ∈ 𝐴. Then define 𝑋/𝐴 ≔
𝑋/ ∼.
Example.  𝑆𝑛 ≅ 𝐷𝑛/𝑆𝑛−1. Any point in 𝐷𝑛 can be written as 𝑡 ⋅ 𝜑, 𝑡 ∈ [0, 1], 𝜑 ∈
𝑆𝑛−1. Define

𝑓 : 𝐷𝑛 → 𝑆𝑛, 𝑓(𝑡 ⋅ 𝜑) ≔ (cos(𝜋𝑡), 𝜑 sin(𝜋𝑡)) ∈ ℝ × ℝ𝑛 = ℝ𝑛+1

⟹ 𝑓(0 ⋅ 𝜑) = (1, 𝟎), 𝑓(1/2 ⋅ 𝜑) = (0, 𝜑), 𝑓(1 ⋅ 𝜑) = (−1, 0)

Define 𝑓 : 𝐷𝑛/𝑆𝑛−1 → 𝑆𝑛, 𝑓([𝑡 ⋅ 𝜑]) = 𝑓(𝑡 ⋅ 𝜑). If 𝑡1 ⋅ 𝜑1 ≠ 𝑡2 ⋅ 𝜑2, then

[𝑡1 ⋅ 𝜑1] = [𝑡2 ⋅ 𝜑2] ⟺ 𝑡1 ⋅ 𝜑1, 𝑡2 ⋅ 𝜑2 ∈ 𝑆𝑛−1 ⟺ 𝑡1 = 𝑡2 = 1
⟺ 𝑓(𝑡1 ⋅ 𝜑1) = (−1, 𝟎) = 𝑓(𝑡2 ⋅ 𝜑2)

⟺ 𝑓([𝑡1 ⋅ 𝜑1]) = 𝑓([𝑡2 ⋅ 𝜑2])

𝑓 is surjective, so 𝑓 is also. Now 𝑓 ∘ 𝜋 = 𝑓 which is continuous, so by above
proposition, 𝑓 is continuous. 𝑆𝑛 ⊂ ℝ𝑛+1 is Hausdorff, 𝐷𝑛 ⊂ ℝ𝑛 is closed and bounded
so is compact by Heine-Borel, and so 𝐷𝑛/𝑆𝑛−1 is compact (since 𝜋 continuous). Also,
𝑓 is a continuous bĳection. These imply that 𝑓 is homeomorphism.

7. Topological groups
7.1. Examples
Definition.  A topological group 𝐺 is Hausdorff space which is also a group such
that

∙ : 𝐺 × 𝐺 → 𝐺, ∙ (𝑔, ℎ) = 𝑔ℎ and 𝑖 : 𝐺 → 𝐺, 𝑖(𝑔) = 𝑔−1

are continuous.
Example.
• ℝ𝑛 with addition is topological group.
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• GL𝑛(ℝ) with multiplication and its subgroups 𝑂(𝑛) and SO(𝑛) are topological
groups (each entry in 𝐴𝐵 is sum of products of entries of 𝐴 and 𝐵, so matrix
multiplication is continuous, matrix inversion also continuous).

Proposition.
• Any group with discrete topology is topological group.
• Any subgroup of topological group is also topological group.
Example.
• ℂ − {0} with multiplication has topological subgroup 𝑆1 ⊂ ℂ − {0}.
• Define quaternions as vector space ℍ ≔ ⟨1, 𝑖, 𝑗, 𝑘⟩, with topology taken from ℝ4. 

ℍ − {0} is a multiplicative group with 𝑆3 a topological subgroup. For 𝑞 = 𝑎 + 𝑏𝑖 +
𝑐𝑗 + 𝑑𝑘 ∈ ℍ, 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ, we have 𝑖𝑗 ≔ 𝑘, 𝑗𝑘 ≔ 𝑖, 𝑘𝑖 ≔ 𝑗, 𝑗𝑖 ≔ −𝑘, 𝑘𝑗 ≔ −𝑖, 𝑖𝑘 ≔
−𝑗. For 𝑞 ≠ 0,

𝑞−1 =
𝑎 − 𝑏𝑖 − 𝑐𝑗 − 𝑑𝑘
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2

• Note however that 𝑆2 is not a topological group.
Definition.  For topological group 𝐺, 𝑥 ∈ 𝐺, define left translation by 𝑥 as

𝐿𝑥 : 𝐺 → 𝐺, 𝐿𝑥(𝑔) ≔ 𝑥𝑔

Similarly, right translation by 𝑥 is

𝑅𝑥 : 𝐺 → 𝐺, 𝑅𝑥(𝑔) ≔ 𝑔𝑥

Proposition.  𝐿𝑥 has inverse (𝐿𝑥)−1 = 𝐿𝑥−1 and is homeomorphism. Similarly for 
𝑅𝑥.
Notation.  A specified inclusion 𝐺 ↪

𝑥
𝐺 × 𝐺 is the map 𝐺 → {𝑥} × 𝐺 composed

with the inclusion map {𝑥} × 𝐺 → 𝐺 × 𝐺. (similarly for 𝐺 × {𝑥}).
Proposition.  Let 𝐺 topological group, 𝐾 the component containing identity of 𝐺.
Then 𝐾 is normal subgroup of 𝐺.
Example.  𝑂(𝑛) is not connected, but SO(𝑛) is connected and contains 𝐼𝑛, so is a
normal subgroup of 𝑂(𝑛)

7.2. Actions, orbits, orbit spaces
Definition.  Action of group 𝐺 on topological space 𝑋 is map ∙ : 𝐺 × 𝑋 → 𝑋 such
that ∀𝑔, ℎ ∈ 𝐺, ∀𝑥 ∈ 𝑋,
• (ℎ𝑔) ∙ 𝑥 = ℎ ∙ (𝑔 ∙ 𝑥).
• 1 ∙ 𝑥 = 𝑥.
• 𝑔 : 𝑋 → 𝑋 defined by 𝑔(𝑥) = 𝑔 ∙ 𝑥 is continous. Note: 𝑔 has inverse map 𝑔−1 which

is also continuous, so both are homeomorphisms.
Definition.  Action of topological group 𝐺 on topological space 𝑋 is continuous
map ∙ : 𝐺 × 𝑋 → 𝑋 such that ∀𝑔, ℎ ∈ 𝐺, ∀𝑥 ∈ 𝑋,
• (ℎ𝑔) ∙ 𝑥 = ℎ ∙ (𝑔 ∙ 𝑥).
• 1 ∙ 𝑥 = 𝑥.
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Remark.  For the above definition, the condition 𝑔(𝑥) = 𝑔 ∙ 𝑥 being continuous isn’t
required since 𝑔 is the composition of continuous maps:

𝑋 ↪
𝑔

𝐺 × 𝑋 ⟶∙ 𝑋, 𝑥 → (𝑔, 𝑥) → 𝑔 ∙ 𝑥

Example.
• Trivial action: (𝑔, 𝑥) ↦ 𝑔 ∙ 𝑥 = 𝑥, so ∙ = 𝜋𝑋.
• Let 𝐺 = GL𝑛(ℝ), 𝑋 = ℝ𝑛, let the action be matrix multiplication: (𝐴, 𝒙) → 𝐴 ∙

𝒙 = 𝐴𝒙. This induces an action of subgroups 𝑂(𝑛) or SO(𝑛) on 𝑋 = ℝ𝑛.
• Let 𝐻 subgroup of topological group 𝐺, left translation action of 𝐻 on 𝐺 is ∙ :

𝐻 × 𝐺 → 𝐺, ℎ ∙ 𝑔 = ℎ𝑔. Equivalently, 𝜑(ℎ) = 𝐿ℎ.
• Let 𝑁  normal subgroup of topological group 𝐺, conjugation action of 𝐺 on 𝑁  is

∙ : 𝐺 × 𝑁 → 𝑁 , 𝑔 ∙ 𝑛 = 𝑔𝑛𝑔−1.
Definition.  Let 𝐺 act on topological space 𝑋, define equivalence relation ∼ on 𝑋 by

𝑥 ∼ 𝑦 ⟺ ∃𝑔 ∈ 𝐺 : 𝑔(𝑥) ≔ 𝑔 ∙ 𝑥 = 𝑦

An equivalence class for this relation is an orbit, denoted 𝐺𝑥. Orbit space, 𝑋/𝐺, is
quotient space 𝑋/ ∼. Action is transitive if 𝑋/𝐺 is a singleton.
Example.
• If 𝐺 acts trivially, every orbit is singleton and 𝑋/𝐺 = 𝑋.
• ℝ𝑛/GL𝑛(ℝ) contains two points and has neither discrete nor indiscrete topology.
• Action of 𝑂(𝑛) on 𝑆𝑛−1 is transitive for 𝑛 ∈ ℕ. Action of SO(𝑛) on 𝑆𝑛−1 is

transitive for 𝑛 ≥ 2.
Lemma.  If connected topological group 𝐺 acts on topological space 𝑋, then the
orbits are connected in 𝑋.
Theorem.  Let 𝐺 connected topological group act on topological space 𝑋. If 𝑋/𝐺 is
connected, then 𝑋 is connected.

Notation.  Define specified inclusion 𝑖1 : 𝑀𝑛(ℝ) ↪
1

𝑀𝑛+1(ℝ) by 𝐴 → [1
0

0
𝐴
]. So 

𝑀𝑛(ℝ) can be regarded as subspace of 𝑀𝑛+1(ℝ).
Proposition.
• Using the inclusion ↪

1
, SO(𝑛) is subgroup of SO(𝑛 + 1).

• Viewing these as topological groups, if subgroup SO(𝑛) acts on SO(𝑛 + 1), orbit
space is SO(𝑛 + 1)/SO(𝑛) ≅ 𝑆𝑛.

Corollary.  The topological group SO(𝑛) is connected for 𝑛 ∈ ℕ.

8. Introduction
Notation.  Let 𝐼 = [0, 1].
Definition.  Closed 𝑛-disc is

𝐷𝑛 ≔ {𝒙 ∈ ℝ𝑛 : ‖𝑥‖ ≤ 1}

Definition.  Open 𝑛-disc is
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𝐸𝑛 ≔ {𝒙 ∈ ℝ𝑛 : ‖𝑥‖ < 1}

Definition.  𝑛-sphere is

𝑆𝑛 ≔ {𝒙 ∈ ℝ𝑛+1 : ‖𝑥‖ = 1}

Definition.  Cylinder is 𝑆1 × 𝐼 .
Definition.  The 2-torus (torus) can be defined as 𝕋 ≔ 𝑆1 × 𝑆1 or 𝕋 ≔ (𝐼 × 𝐼)/ ∼
where

∀𝑥 ∈ 𝐼, (𝑥, 0) ∼ (𝑥, 1), ∀𝑦 ∈ 𝐼, (0, 𝑦) ∼ (1, 𝑦)

Definition.  Klein bottle is given by 𝕂 ≔ (𝐼 × 𝐼)/ ∼ where

∀𝑥 ∈ 𝐼, (𝑥, 0) ∼ (𝑥, 1), ∀𝑦 ∈ 𝐼, (0, 𝑦) ∼ (1, 1 − 𝑦)

Definition.  Map is continuous 𝑓 : 𝑋 → 𝑌  where 𝑋, 𝑌  are topological spaces.

9. Simplicial complexes
9.1. Simplicial complexes and triangulations
Definition.  Let 𝑣0, …, 𝑣𝑛 ∈ ℝ𝑁 , 𝑛 ≤ 𝑁 .
• 𝑣0, …, 𝑣𝑛 are in general position if {𝑣1 − 𝑣0, …, 𝑣𝑛 − 𝑣0} are linearly independent.
• Convex hull of 𝑣0, …, 𝑣𝑛 is set of all convex linear combinations of 𝑣0, …, 𝑣𝑛:

⟨𝑣0, …, 𝑣𝑛⟩ ≔ {∑
𝑛

𝑖=0
𝜆𝑖𝑣𝑖 : ∑

𝑛

𝑖=0
𝜆𝑖 = 1, ∀𝑖 ∈ {0, …, 𝑛}, 𝜆𝑖 ≥ 0}

• An 𝑛-simplex, 𝜎𝑛 = ⟨𝑣0, …, 𝑣𝑛⟩, is convex hull of 𝑣0, …, 𝑣𝑛 in general position. The
vertices 𝑣0, …, 𝑣𝑛 span 𝜎𝑛 and 𝜎𝑛 is 𝑛-dimensional.

Example.
• 0-simplex is a point.
• 1-simplex is a closed line segment.
• 2-simplex is closed triangle including its interior.
• 3-simplex is closed tetrahedron including its interior.
Definition.  If 𝜎𝑛 = ⟨𝑣0, …, 𝑣𝑛⟩ is 𝑛-simplex and {𝑖0, …, 𝑖𝑟} ⊆ {0, …, 𝑛}, then 
⟨𝑣𝑖0

, …, 𝑣𝑖𝑟
⟩ is 𝑟-simplex and ⟨𝑣𝑖0

, …, 𝑣𝑖𝑟
⟩ ⊆ 𝜎𝑛. Any such sub-simplex is called 𝑟-face

of 𝜎𝑛. A proper face is an (𝑛 − 1)-face. The 𝑖th face of 𝜎𝑛 is the (𝑛 − 1)-simplex 
⟨𝑣0, …, 𝑣𝑖−1, 𝑣𝑖+1, …, 𝑣𝑛⟩.
Definition.  A finite simplicial complex 𝐾 ⊂ ℝ𝑁  is finite union of simplices in 
ℝ𝑁  such that
• If 𝜎𝑛 is simplex in 𝐾 and 𝜏𝑟 is 𝑟-face of 𝜎𝑛, then 𝜏𝑟 is simplex in 𝐾.
• If 𝜎𝑛

1  and 𝜎𝑚
2  are simplices in 𝐾 with 𝜎𝑛

1 ∩ 𝜎𝑚
2 ≠ ∅, then there exists 𝑟 ∈

{0, …, min(𝑛, 𝑚)} and 𝑟-simplex 𝜏𝑟 in 𝐾 such that 𝜏𝑟 is 𝑟-face of both 𝜎𝑛
1  and 𝜎𝑚

2
and 𝜎𝑛

1 ∩ 𝜎𝑚
2 = 𝜏𝑟.

Dimension of 𝐾 is maximum value of 𝑛 for which there is an 𝑛-simplex in 𝐾.
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Remark.  A finite simplicial complex 𝐾 ⊂ ℝ𝑁  is a topological space when equipped
with subspace topology from ℝ𝑁 .
Remark.  Second condition implies that two simplices can meet in at most one
common face (this is important when considering quotient topologies and identifying
edges with each other). It also implies that any set of 𝑛 vertices defines either only
one or no 𝑛-simplices in 𝐾.
Definition.  Triangulation of topological space 𝑋 is homeomorphism ℎ : 𝑋 → 𝐾
for some finite simplicial complex 𝐾. We say 𝐾 triangulates 𝑋. 𝑋 is triangulable
if it has at least one triangulation.
Remark.  If a triangulation exists, it is not unique.
Example.  The black and blue figures are simplicial complexes that triangulate 𝑆1:

9.2. Simplicial maps
Definition.  A map 𝑓 : 𝐾 → 𝐿 between finite simplicial complexes 𝐾 and 𝐿 is
simplicial if
• For every vertex 𝑣 of 𝐾, 𝑓(𝑣) is a vertex of 𝐿.
• If 𝜎 = ⟨𝑣0, …, 𝑣𝑛⟩ is simplex 𝜎 in 𝐾, 𝑓(𝜎) is simplex of 𝐿 with vertices 

𝑓(𝑣0), …, 𝑓(𝑣𝑛), where map 𝑓|𝜎 is defined linearly as

𝑓(∑
𝑛

𝑖=0
𝜆𝑖𝑣𝑖) = ∑

𝑛

𝑖=0
𝜆𝑖𝑓(𝑣𝑖)

Remark.  Vertices 𝑓(𝑣0), …, 𝑓(𝑣𝑛) of simplex 𝑓(𝜎) may not be distinct, so 𝑓(𝜎) may
be simplex of lower dimension than 𝜎.
Remark.  For triangulations ℎ𝑋 : 𝑋 → 𝐾𝑋 and ℎ𝑌 : 𝑌 → 𝐾𝑌  of topological spaces 
𝑋 and 𝑌 , a simplicial map 𝑓 : 𝐾𝑋 → 𝐾𝑌  induces a map 𝐹 : 𝑋 → 𝑌  by 𝐹 = ℎ−1

𝑌 ∘ 𝑓 ∘
ℎ𝑋.
Example.  𝐹 : 𝑆1 → 𝑆1, 𝐹(𝑒𝑖𝜋𝑡) = 𝑒2𝑖𝜋𝑡 is the 2 times map. Let 𝑓 : 𝐾1 → 𝐾2, 
𝑓(𝑣𝑖) = 𝑤𝑖 mod 3, 𝑓 is simplicial map. Then 𝐹  is induced by 𝑓 , where 𝐾1 and 𝐾2 are as
below:
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𝑣0

𝑣1𝑣2

𝑣3

𝑣4 𝑣5

𝑤0

𝑤1

𝑤2

9.3. Barycentric subdivision and simplicial approximation
Definition.  Barycentre of 𝜎𝑘 = ⟨𝑣0, …, 𝑣𝑘⟩ ⊂ ℝ𝑁  is

𝜎𝑘 =
1

𝑘 + 1
(𝑣0 + ⋯ + 𝑣𝑘) ∈ ℝ𝑁

Example.
• Barycentre of 0-simplex is itself.
• Barycentre of 1-simplex is midpoint of the line.
Definition.  Let 𝐾 ⊂ ℝ𝑁  be finite simplicial complex. First barycentric
subdivision of 𝐾 is the simplicial complex 𝐾(1) such that:
• The vertices of 𝐾(1) are the barycentres 𝜎𝑘 for every simplex 𝜎𝑘 in 𝐾.
• The vertices 𝜎𝑘0 , …, 𝜎𝑘𝑚 ∈ 𝐾(1) span an 𝑚-simplex in 𝐾(1) if the original simplices

𝜎𝑘0 , …, 𝜎𝑘𝑚 in 𝐾 are (up to relabelling) strictly nested:

𝜎𝑘0 ≺ ⋯ ≺ 𝜎𝑘𝑚

where 𝜎𝑖 ≺ 𝜎𝑗 iff 𝜎𝑖 is 𝑖-face of 𝜎𝑗 with 𝑖 < 𝑗 (thus 𝑘0 < ⋯ < 𝑘𝑚).
Definition.  The 𝑟th barycentric subdivision of 𝐾 is defined inductively for 𝑟 > 1 by 
𝐾(𝑟) ≔ (𝐾(𝑟−1))(1).
Proposition.  Let 𝐾 be finite simplicial complex.
• If 𝐾 is triangulation of topological space 𝑋, then so is 𝐾(𝑟) for all 𝑟 ∈ ℕ.
• Each simplex in 𝐾(1) is contained in a simplex of 𝐾.
• If dim(𝐾) = 𝑛, then length of longest 1-simplex in 𝐾(1) is at most 𝑛/(𝑛 + 1) times

length of longest 1-simplex in 𝐾.
Theorem (Simplicial approximation theorem).  For each 𝑖 ∈ {1, 2}, let ℎ𝑖 : 𝑋𝑖 → 𝐾𝑖
be triangulation of topological space 𝑋𝑖 by finite simplicial complex 𝐾𝑖. Let 𝑓 :
𝑋1 → 𝑋2 be map. Then ∀𝜀 > 0 there exist 𝑛, 𝑚 ∈ ℕ and a simplicial map 𝑠 : 𝐾(𝑛)

1 →
𝐾(𝑚)

2  such that for 𝐹 ≔ ℎ2 ∘ 𝑓 ∘ ℎ−1
1 ,

𝑠 ≃ 𝐹 and ∀𝑥 ∈ 𝐾1, |𝐹 (𝑥) − 𝑠(𝑥)| < 𝜀

10. Surfaces
10.1. Surfaces
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Definition.  Let 𝑆 be Hausdorff, compact, connected topological space.
• 𝑆 is surface if for all 𝑥 ∈ 𝑆, there exists 𝑈 ⊆ 𝑆 such that 𝑥 ∈ 𝑈  and 𝑈 ≅ 𝐸2 or 

𝑈 ≅ 𝐸2 ∩ (ℝ × ℝ≥0) ≕ 𝐸2 ∩ ℝ2
+.

• Boundary of 𝑆, 𝜕𝑆, is set of all 𝑥 ∈ 𝑆 such that there is not a 𝑈 ⊆ 𝑆 with 𝑥 ∈ 𝑈
and 𝑈 ≅ 𝐸2.

• Interior of 𝑆 is int(𝑆) ≔ 𝑆 − 𝜕𝑆.
• 𝑆 is closed surface if 𝜕𝑆 = ∅ (𝑆 is locally Euclidean of dimension 2).
• 𝑆 is surface with boundary if 𝜕𝑆 ≠ ∅. Surface with boundary is closed surface

from which interiors of finite number of pairwise disjoint closed discs have been
removed.

Definition.  Let 𝐾 be finite simplicial complex, 𝑥 ∈ 𝐾. Open star of 𝑥 in 𝐾, 
St(𝑥, 𝐾), is union of {𝑥} and interiors of all simplices containing 𝑥.
Example.  Let 𝐾 be 2d finite simplicial complex, 𝑥 ∈ 𝐾.
• If there exists a 2-simplex 𝜎2 ⊆ 𝐾 such that 𝑥 ∈ int(𝜎2), then St(𝑥, 𝐾) =

int(𝜎2) ≅ 𝐸2.
• If there exists a 1-simplex 𝜎1 ⊆ 𝐾 such that 𝑥 ∈ int(𝜎1), then

St(𝑥, 𝐾) = int(𝜎1) ∪ {int(𝜎2) : 𝜎1 is face of 𝜎2 ⊆ 𝐾, 𝜎2 is 2-simplex}

Here, St(𝑥, 𝐾) ≅ 𝐸2 iff there are exactly two 2-simplices meeting along 𝜎1.
• If 𝑥 ∈ 𝐾 is vertex, then

St(𝑥, 𝐾) = {𝑥} ∪ {int(𝜎1) : 𝑥 vertex of 𝜎1 ⊆ 𝐾, 𝜎1 is 1-simplex}

∪ {int(𝜎2) : 𝑥 vertex of 𝜎2 ⊆ 𝐾, 𝜎2 is 2-simplex}

Here St(𝑥, 𝐾) ≅ 𝐸2 iff 𝑥 is vertex of 𝑛 ≥ 3 2-simplices, and along any of its edges
containing 𝑥, each of these 2-simplices meets precisely one other 2-simplex (from
the remaining 𝑛 − 1).

Lemma.  Let 𝑀  be topological space triangulated by connected, finite simplicial
complex 𝐾. Then 𝑀  is closed surface iff

∀𝑥 ∈ 𝐾, St(𝑥, 𝐾) ≅ 𝐸2

and the ways that this can happen are as listed above, with exactly two 2-simplices
meeting along each 1-simplex.
Remark.  If ℎ : 𝑀 → 𝐾 is triangulation of topological space 𝑀  and dim(𝐾) ≠ 2,
then 𝑀  is not closed surface. It is enough to check the open star condition (in above
example) at all vertices of 𝐾: if there is 𝑥 ∈ 𝐾 such that St(𝑥, 𝐾) ≇ 𝐸2, then there
exists vertex 𝑣 of 𝐾 such that St(𝑣, 𝐾) ≇ 𝐸2.
Corollary.  Let 𝑋 topological space, triangulated by connected finite simplicial
complex 𝐾, dim(𝐾) = 2. Then 𝑋 is closed surface iff for every vertex 𝑣 ∈ 𝐾, 
St(𝑣, 𝐾) ≅ 𝐸2.
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Remark.  This means 𝑋 is closed surface if open star of every vertex of triangulation
of 𝑋 is homeomorphic to union of two copies of 𝐸2 ∩ ℝ2

+ glued along the parts of
their boundaries that are contained in 𝐸2 ∩ ℝ2

+.
Remark.  If we remove an edge from the open star of a vertex, and this produces a
disjoint union of open sets, the original space cannot be a surface, since removing a
segment from 𝐸2 yields a connected space and removing a segment from 𝐸2 ∩ ℝ2

+
yields either a connected space or a disjoint union of two non-open sets.
Definition.  Real projective plane is closed surface arising from identifying the
edges of the unit square with the following:

ℙ ≔ (𝐼 × 𝐼)/ ∼, (𝑥, 0) ∼ (1 − 𝑥, 1), (0, 𝑦) ∼ (1, 1 − 𝑦)

It may also be defined as quotient of 𝑆2 by identifying diametrically opposite points:

ℙ = 𝑆2/ ∼, ∀𝑥 ∈ 𝑆2, 𝑥 ∼ −𝑥

10.2. Orientations on surfaces
Definition.  An orientation on ℝ2 is choice of direction in which to travserse
circles around the origin. There are exactly two choices.
Definition.  Simple closed curve in topological space is subspace homeomorphic
to circle, i.e. connected curve with no self-intersections and ends where it begins.
Definition.  Surface 𝑆 is orientable if for all 𝑥 ∈ int(𝑆), any choice of local
orientation at 𝑥 is preserved after translation along any simple closed curve in int(𝑆)
containing 𝑥. 𝑆 is non-orientable if there exists 𝑥 ∈ int(𝑆) and simple closed curve 
𝐶 ⊆ int(𝑆) through 𝑥 such that translation along 𝐶 reverses any choice of local
orientation at 𝑥. Every surface is either orientable or non-orientable.
Remark.  Orientability or non-orientability respectively correspond to the surface
having two sides or one side.
Example.  𝑆2, 𝕋 are orientable. Mobius band and Klein bottle are non-orientable.
Lemma.  𝑆 is non-orientable iff it contains subspace homeomorphic to Mobius band.
Theorem.  Let 𝑆1, 𝑆2 be homeomorphic surfaces. 𝑆1 is orientable iff 𝑆2 is orientable.
Remark.  2-simplex can be given orientation by drawing a direction around it
(anticlockwise or clockwise) or by drawing direction around its boundary. A 2-simplex
can be oriented in 2 ways, which can be represented by ordering of the vertices: 
⟨𝑣0, 𝑣1, 𝑣2⟩, ⟨𝑣1, 𝑣2, 𝑣0⟩ and ⟨𝑣2, 𝑣0, 𝑣1⟩ represent same orientation, ⟨𝑣1, 𝑣0, 𝑣2⟩
represents different orientation.
Definition.  Let 𝐾 finite simplicial complex that triangulates surface 𝑆 such that all 
2-simplices in 𝐾 are oriented.
• The orientations of two 2-simplices in 𝐾 which share an edge are compatible if

they induce opposite orientations on the shared edge.
• 𝐾 is Δ-orientable if there exists choice of orientations on its 2-simplices such

that any two 2-simplices which share an edge have compatible orientations. Such a
choice, if it exists, is a Δ-orientation on 𝐾.
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Theorem.  Surface is orientable iff one (and so every) finite simplicial complex which
triangulates it is Δ-orientable.

10.3. Constructions on surfaces
Definition.  For surfaces 𝑆1, 𝑆2, their connected sum, 𝑆1#𝑆2, is obtained by
removing the interiors of one small open disc from interior of each surface, and
identifying the two newly formed boundary circles. If 𝑆1, 𝑆2 oriented, directions
around the boundary circles induced by the respective orientations must be identified
such that the directions are opposite to each other. Then 𝑆1#𝑆2 inherits an
orientation which agrees (upon restriction) with those of the original surfaces 𝑆1 and 
𝑆2.
Proposition.
• Since 𝑆1, 𝑆2 connected, it does not matter which two open discs are removed, the

result is the same up to homeomorphism.
• # is commutative and associative.
• 𝑆2 is the identity for # operation: 𝑀#𝑆2 ≅ 𝑀 .
Definition.  For 𝑔 ∈ ℕ0, closed orientable surface of genus 𝑔 (𝑔-holed torus) is

𝑀𝑔 = 𝑆2#𝑇#⋯#𝑇⏟
𝑔 times

Example.  The Klein bottle is given by 𝕂 ≅ ℙ#ℙ.
Definition.  Adding handle to surface 𝑆 is as follows: remove two open discs from 
𝑆. Attach the ends of cylinder 𝑆1 × 𝐼 to the resulting boundary circles. If 𝑆 (and
cylinder) are oriented, require that the two resulting boundary circles are glued to
those of the cylinder with opposite orientations, which ensures the new surface is still
oriented. But if 𝑆 is not orientable, this doesn’t matter, as all possible results are
homeomorphic.
Example.
• 𝑆2 with handle added is homeomorphic to the torus.
• 𝑆2 with 𝑔 handles added is homeomorphic to 𝑀𝑔.
• 𝑀𝑛 with handle added is homeomorphic to 𝑀𝑛+1.
Definition.  Attaching a cross cap (Mobius band) to surface 𝑆 is as follows:
remove open disc from 𝑆, and identify resulting boundary circle with boundary circle
of Mobius band. Attaching a cross-cap always makes the surface non-orientable.
Example.  Adding cross-cap to 𝑆2 gives real projective plane ℙ.
Remark.  Connected sums of surfaces, surfaces with handles and surfaces with cross
caps are always surfaces.

11. Homotopy and the fundamental group
11.1. Homotopy
Definition.  The stereographic projection is the bĳection
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𝜑 : 𝑆𝑛 − (0, …, 0, 1) → ℝ𝑛, (𝑦1, …, 𝑦𝑛+1) ↦ (
𝑦1

1 − 𝑦𝑛+1
, …,

𝑦𝑛
1 − 𝑦𝑛+1

)

Definition.  Let 𝑋, 𝑌  topological spaces. Homotopy between maps 𝑓 : 𝑋 → 𝑌  and 
𝑔 : 𝑋 → 𝑌  is map 𝐻 : 𝑋 × [0, 1] → 𝑌  with

∀𝑥 ∈ 𝑋, 𝐻(𝑥, 0) = 𝑓(𝑥) ∧ 𝐻(𝑥, 1) = 𝑔(𝑥)

𝑓 and 𝑔 are homotopic, 𝑓 ≃ 𝑔, if there is a homotopy between them. We can think
of homotopy as “path of maps” starting at 𝑓 : 𝑋 → 𝑌  and ending at 𝑔 : 𝑋 → 𝑌 : for 
𝑡 ∈ [0, 1], define ℎ𝑡 : 𝑋 → 𝑌 , ℎ𝑡(𝑥) = 𝐻(𝑥, 𝑡), which varies continuously from 𝑓 at 𝑡 =
0 to 𝑔 at 𝑡 = 1.
Example.  Let 𝑓, 𝑔 : ℝ → ℝ maps, then

𝐻 : ℝ × [0, 1] → ℝ, (𝑥, 𝑡) ↦ (1 − 𝑡)𝑓(𝑥) + 𝑡𝑔(𝑥)

is homotopy between 𝑓 and 𝑔.

𝑥

𝑦

𝑓(𝑥)
𝑔(𝑥)

0.3𝑓(𝑥) + 0.7𝑔(𝑥)
0.8𝑓(𝑥) + 0.2𝑔(𝑥)

Example.  Consider 𝑆1 ⊂ ℂ, so 𝑆1 = {𝑒𝑖𝜋𝑠 : 𝑠 ∈ [0, 2)}. Let 𝑎 : 𝑆1 → 𝑆1 be the
antipodal map, 𝑎(𝑒𝑖𝜋𝑠) = −𝑒𝑖𝜋𝑠. Then 𝑎 ≃ id, with homotopy given by 𝐻 : 𝑆1 ×
𝐼 → 𝑆1, 𝐻(𝑒𝑖𝜋𝑠) = 𝑒𝑖𝜋(𝑠+𝑡).
Lemma.  Homotopy is equivalence relation between maps.
Definition.  Map 𝑓 : 𝑋 → 𝑌  is null homotopic if it is homotopic to a constant
map, i.e. to map 𝑐 : 𝑋 → 𝑌  with 𝑐(𝑥) = 𝑦0, 𝑦0 ∈ 𝑌  fixed.
Example.  Identity map id𝐷2 : 𝐷2 → 𝐷2 is null homotopic: let 𝑐 : 𝐷2 → 𝐷2, 𝑐(𝑥) =
0. Consider 𝐻 : 𝐷2 × [0, 1] → 𝐷2, 𝐻(𝑥, 𝑡) = (1 − 𝑡)𝑥, then 𝐻 is homotopy between 
id𝐷2 and 𝑐, since 𝐻 is continuous and 𝐻(𝑥, 0) = 𝑥 = id𝐷2(𝑥), 𝐻(𝑥, 1) = 0 = 𝑐(𝑥).
Definition.  Map 𝑓 : 𝑋 → 𝑌  is homotopy equivalence if there exists a map 𝑔 :
𝑌 → 𝑋 (a homotopy inverse) such that 𝑔 ∘ 𝑓 ≃ id𝑋 and 𝑓 ∘ 𝑔 ≃ id𝑌 . 𝑋 and 𝑌  are
homotopy equivalent, 𝑋 ≃ 𝑌  if there exists homotopy equivalence between them.
If 𝑋 ≃ 𝑌 , we say they have the same homotopy type.
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Theorem.  Homotopy equivalence is equivalence relation on topological spaces.
Example.  Let 𝑃 = {𝒑} be the one point space, then 𝐷2 ≃ 𝑃 : let 𝑓 : 𝐷2 → 𝑃 , 
𝑓(𝑥) = 𝒑, 𝑔 : 𝑃 → 𝐷2, 𝑔(𝒑) = 0. Then 𝑓 ∘ 𝑔 = id𝑃 ≃ id𝑃 . Now ∀𝑥 ∈ 𝐷2, (𝑔 ∘ 𝑓)(𝑥) = 0
so 𝑔 ∘ 𝑓 ≃ id𝐷2 as 𝑔 ∘ 𝑓 is constant map.
Definition.  Topological space 𝑋 is contractible if it is homotopy equivalent to a
one-point space.
Example.  Let 𝑋 topological space. The cone on 𝑋 is

𝐶𝑋 = (𝑋 × [0, 1])/ ∼

where ∼ identifies all points of the form (𝑥, 0) with each other, i.e. it collapses the
end 𝑋 × {0} to a single point. We have 𝐷𝑛 ≅ 𝐶𝑆𝑛−1.
Proposition.  For all topological spaces 𝑋, the cone 𝐶𝑋 is contractible.
Example.  For a finite simplicial complex 𝐾 ⊂ ℝ𝑁 , 𝐶𝐾 ⊂ ℝ𝑁+1 has vertices equal
to vertices of 𝐾 together with 𝑃 = (0, …, 0, 1) ∈ ℝ𝑁+1. Simplices in 𝐶𝐾 of dimension 
≥ 1 are those in 𝐾 together with all simplices ⟨𝑣0, …, 𝑣𝑟, 𝑃 ⟩ where ⟨𝑣0, …, 𝑣𝑟⟩ is
simplex in 𝐾.
Lemma.  Every contractible space is path connected.
Lemma.  If 𝑋 and 𝑌  are homeomorphic, they are homotopy equivalent (converse
does not hold).
Definition.
• It is useful to assume that every topological space 𝑋 has a particular distinguished

base point 𝑥0 ∈ 𝑋.
• We then require that all maps and homotopies between spaces map base points to

base points.
• The pair (𝑋, 𝑥0) is a based space.
• If 𝐾 is finite simplicial complex and 𝑣0 is vertex of 𝐾, then (𝐾, 𝑣0) is pointed.
• A based map 𝑓 : (𝑋, 𝑥0) → (𝑌 , 𝑦0) is a map 𝑋 → 𝑌  and satisfies 𝑓(𝑥0) = 𝑦0.
• A based homotopy 𝐻 : (𝑋, 𝑥0) × [0, 1] → (𝑌 , 𝑦0) between based maps 𝑓, 𝑔 :

(𝑋, 𝑥0) → (𝑌 , 𝑦0) is homotopy 𝐻 : 𝑋 × [0, 1] → 𝑌  with ∀𝑡 ∈ [0, 1], 𝐻(𝑥0, 𝑡) = 𝑦0.
• All results shown for homotopies are true for based homotopies.

11.2. The fundamental group
Remark.  We consider circle 𝑆1 as unit circle in ℂ and give it base point 1.
Definition.  A loop in based space (𝑋, 𝑥0) is based map

𝜆 : (𝑆1, 1) → (𝑋, 𝑥0)

Equivalently, a loop in (𝑋, 𝑥0) is path in 𝑋 beginning and ending at 𝑥0:

𝜆 : [0, 1] → (𝑋, 𝑥0), 𝜆(0) = 𝜆(1) = 𝑥0

Two loops 𝜆, 𝜇 : [0, 1] → (𝑋, 𝑥0) are homotopic if there exists based homotopy
between them, i.e. if there is map
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𝐻 : [0, 1] × [0, 1] → 𝑋,
∀𝑠 ∈ 𝐼, 𝐻(𝑠, 0) = 𝜆(𝑠),
∀𝑠 ∈ 𝐼, 𝐻(𝑠, 1) = 𝜇(𝑠),
∀𝑡 ∈ 𝐼, 𝐻(0, 𝑡) = 𝐻(1, 𝑡) = 𝑥0

This corresponds with 𝜆 being continuously deformed into 𝜇.
Remark.  It is useful to represent based homotopy 𝐻 between 𝜆 and 𝜇 on the unit
square. Bottom edge corresponds to 𝜆, top edge corresponds to 𝜇, right and left edges
are mapped entirely to 𝑥0. Horizontal line drawn across unit square represents loop in
(𝑋, 𝑥0) and homotopy 𝐻 describes path of loops from 𝜆 to 𝜇. Vertical line describes
path traced from 𝜆(𝑠) to 𝜇(𝑠) under 𝐻.

𝐻𝑥0 𝑥0

𝜆

𝜇

Definition.  Homotopy class of loop 𝜆 in (𝑋, 𝑥0) is

[𝜆] ≔ {𝜇 : 𝜇 loop in (𝑋, 𝑥0), 𝜇 ≃ 𝜆}

Fundamental group of (𝑋, 𝑥0) is set of homotopy classes of loops in (𝑋, 𝑥0):

𝜋1(𝑋, 𝑥0) ≔ {[𝜆] : 𝜆 loop in (𝑋, 𝑥0)}

with group operation ∗ defined by

∗ : 𝜋1(𝑋, 𝑥0) × 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑋, 𝑥0),
([𝜆1], [𝜆2]) → [𝜆1 ∗ 𝜆2]

where concatenation (product) of 𝜆1 and 𝜆2 is the loop in (𝑋, 𝑥0) given by

𝜆1 ∗ 𝜆2 : [0, 1] → 𝑋,

𝑠 ↦
⎩{
⎨
{⎧𝜆1(2𝑠) if 0 ≤ 𝑠 ≤ 1

2

𝜆2(2𝑠 − 1) if 1
2 ≤ 𝑠 ≤ 1

Group identity is 𝑒 : [0, 1] → 𝑋, 𝑒(𝑠) = 𝑥0, inverse of loop 𝜆 is 𝜆 : 𝑠 ↦ 𝜆(1 − 𝑠), then 
[𝜆] = [𝜆]−1 (equivalently, define [𝜆]−1 = [𝜆 ∘ 𝑤] where 𝑤 : [0, 1] → [0, 1], 𝑤(𝑠) = 1 − 𝑠).
Remark.  Group operation ∗ is well defined, since if 𝜆1 ≃ 𝜇1 by homotopy 𝐻1, 𝜆2 ≃
𝜇2 by homotopy 𝐻2, then 𝜆1 ∗ 𝜆2 ≃ 𝜇1 ∗ 𝜇2 by homotopy 𝐻 where

𝐻(𝑠, 𝑡) =
⎩{
⎨
{⎧𝐻1(2𝑠, 𝑡) if 0 ≤ 𝑠 ≤ 1

2

𝐻2(2𝑠 − 1, 𝑡) if 1
2 ≤ 𝑠 ≤ 1
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𝐻1𝑥0 𝑥0

𝜆1

𝜇1

𝐻2𝑥0 𝑥0

𝜆2

𝜇2

𝐻1𝑥0

𝜆1

𝜇1

𝐻2𝑥0

𝜆2

𝜇2

Associativity between (𝜆 ∗ 𝜇) ∗ 𝜅 and (𝜆 ∗ (𝜇 ∗ 𝜅)) is shown by homotopy diagram
with (𝜆 ∗ 𝜇) ∗ 𝜅 at bottom and 𝜆 ∗ (𝜇 ∗ 𝜅) at top. At any intermediate time, path
traverses 𝜆 at between 2 and 4 times speed, and correspondingly adjusts speed of 𝜅 to
finish path at 𝑡 = 1. 𝜇 is traversed at 4 times speed at all times.

𝜆

𝜆

𝜇

𝜇

𝜅

𝜅

𝑥0 𝑥0

Can show identity 𝑒(𝑠) = 𝑥0 satisfies [𝜆] ∗ [𝑒] = [𝑒] ∗ [𝜆] = [𝜆] with diagrams

𝜆 𝑒 𝑒 𝜆

𝑥0 𝑥0

𝜆

𝑥0 𝑥0

𝜆

Can show that [𝜆] ∗ [𝜆] = [𝜆] ∗ [𝜆] = 𝑒 by

𝜆 𝜆 𝜆 𝜆

𝑥0 𝑥0

𝑒

𝑥0 𝑥0

𝑒

where, for the first diagram, a horizontal path at fixed 𝑡 is given by

24



𝑠 ↦

⎩{
{⎨
{{
⎧𝜆(2𝑠) if 0 ≤ 𝑠 ≤ 1−𝑡

2

𝜆(1 − 𝑡) if 1−𝑡
2 ≤ 𝑠 ≤ 1+𝑡

2

𝜆(2𝑠 − 1) if 1+𝑡
2 ≤ 𝑠 ≤ 1

Definition.  Let 𝑓 : (𝑋, 𝑥0) → (𝑌 , 𝑦0) based map. Define a function

𝑓∗ : 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌 , 𝑦0), 𝑓∗([𝜆]) ≔ [𝑓 ∘ 𝜆]

Lemma.  𝑓∗ : 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌 , 𝑦0) is well-defined and group homomorphism.

Proof.
• Well-defined: show that 𝜆1 ≃ 𝜆2 ⟹ 𝑓 ∘ 𝜆1 ≃ 𝑓 ∘ 𝜆2 (use definition of 𝜆1 ≃ 𝜆2).
• Homomorphism: use that 𝑓 ∘ (𝜆 ∗ 𝜇) = (𝑓 ∘ 𝜆) ∗ (𝑓 ∘ 𝜇).

□

Lemma.  Let 𝑓, 𝑔 : (𝑋, 𝑥0) → (𝑌 , 𝑦0) based maps, 𝑓 ≃ 𝑔 (𝑓 and 𝑔 are based
homotopic), then 𝑓∗ = 𝑔∗.

Proof.   For loop 𝜆 in (𝑋, 𝑥0), find based homotopy between 𝑓 ∘ 𝜆 and 𝑔 ∘ 𝜆 in terms
of based homotopy 𝐻 between 𝑓 and 𝑔. □

Lemma.  The operation of passing from based map 𝑓 to induced homomorphism 𝑓∗
preserves/respects composition and the identity, i.e. if we have

(𝑋, 𝑥0) ⟶
𝑓

(𝑌 , 𝑦0) ⟶
𝑔

(𝑍, 𝑧0)

then (𝑔 ∘ 𝑓)∗ = 𝑔∗ ∘ 𝑓∗ and (id𝑋)∗ = id𝜋1(𝑋,𝑥0).

Proof.   Straightforward, just use the definition of 𝑓∗. □

Corollary.  Fundamental group is homotopy-invariant: if (𝑋, 𝑥0), (𝑌 , 𝑦0) are
homotopy equivalent, then

𝜋1(𝑋, 𝑥0) ≅ 𝜋1(𝑌 , 𝑦0)

Proof.   Use definition of homotopy equivalent based spaces and above lemma, to
show the induced homomorphisms of the homotopy equivalences are inverse to each
other. □

Theorem.  Let 𝑋 path-connected space, 𝑥0, 𝑥1 ∈ 𝑋. Then

𝜋1(𝑋, 𝑥0) ≅ 𝜋1(𝑋, 𝑥1)

Proof.
• There is path 𝑝 from 𝑥0 to 𝑥1.
• Let 𝜆 loop in 𝑋 based at 𝑥0.
• Define 𝑝(𝑠) = 𝑝(1 − 𝑠), define loop 𝜆𝑝 in 𝑋 based at 𝑥1 by
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𝜆𝑝(𝑠) =

⎩{
{⎨
{{
⎧𝑝(3𝑠) if 𝑠 ∈ [0, 1/3]

𝜆(3𝑠 − 1) if 𝑠 ∈ [1/3, 2/3]
𝑝(3𝑠 − 2) if 𝑠 ∈ [2/3, 1]

• Claim:

Φ𝑝 : 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑋, 𝑥1), Φ𝑝([𝜆]) = [𝜆𝑝]

is isomorphism.
‣ Well-defined: show if 𝜆, 𝜇 loops based at 𝑥0, 𝜆 ≃ 𝜇 ⟹ 𝜆𝑝 ≃ 𝜇𝑝 by homotopy

diagram (merge 𝑝, 𝜆, 𝑝 on bottom and 𝑝, 𝜇, 𝑝 on top).
‣ Homomorphism: show (𝜆 × 𝜇)𝑝 ≃ 𝜆𝑝 ∗ 𝜇𝑝 using homotopy diagram (for each 𝑡 ∈

[0, 1], we want to partially traverse 𝑝 (until 𝑠 = 1
2) then back along 𝑝, before

traversing 𝜇).
‣ Isomorphism: show that Φ𝑝 defined analogously satisfies Φ𝑝 = (Φ𝑝)−1, i.e. 

(𝜆𝑝)𝑝 ≃ 𝜆 and (𝜇𝑝)𝑝 ≃ 𝜇 for all loops 𝜆 based at 𝑥0, 𝜇 based at 𝑥1. (As 𝑡 → 1,
want to retract the spurs 𝑝 ∗ 𝑝 of the loop back to 𝑥0).

□

Notation.  Write 𝜋1(𝑋) for fundamental group of path-connected space 𝑋 (although
isomorphism between 𝜋1(𝑋, 𝑥0) and 𝜋1(𝑋, 𝑥1) is not canonical).
Proposition.  Let 𝑋 contractible space, then 𝜋1(𝑋) ≅ 𝟙, the trivial group with one
element.

Proof.
• Show we can omit based point in notation.
• Reason that there is only loop in one point space.
• Use definition of contractibility and above corollary.

□

Definition.  Topological space 𝑋 is simply connected if path-connected and 
𝜋1(𝑋) = 𝟙 (i.e. its fundamental group is trivial).
Example.
• 𝜋1(𝑆1) ≅ ℤ where 𝑛 ∈ ℤ corresponds to homotopy class of 𝑛 times map 𝜑𝑛 :

𝑆1 → 𝑆1, 𝜑𝑛(𝑧) = 𝑧𝑛.
• 𝜋1(𝑆𝑛) ≅ 𝟙 for all 𝑛 ≥ 2.
• 𝜋1(𝑇 ) ≅ ℤ2.
• 𝜋1(ℙ) ≅ ℤ/2.

11.3. Brouwer’s fixed point theorem
Theorem.  Every map 𝑓 : 𝐷2 → 𝐷2 has a fixed point:

∃𝑥 ∈ 𝐷2 : 𝑓(𝑥) = 𝑥

Proof.
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• Assume no fixed point, so every 𝑥, 𝑓(𝑥) ∈ 𝐷2 defines straight line 𝐿𝑥 passing
through 𝐷2.

• Define 𝑔(𝑥) as point of intersection of boundary and 𝐿𝑥 (the one closer to 𝑥 than 
𝑓(𝑥)). Note 𝑔(𝑥) = 𝑥 if 𝑥 ∈ 𝜕𝐷2.

• Let 𝑖 : 𝑆1 → 𝐷2 be inclusion map of boundary circle to disc, then 𝑔 ∘ 𝑖 = id𝑆1 , and 
𝑔∗ ∘ 𝑖∗ = (𝑔 ∘ 𝑖)∗ = id𝜋1(𝑆1).

• Obtain contradiction using Lemma 11.2.9 and Example 11.2.15.

□

12. Computing the fundamental group
12.1. Finitely presented groups
Definition.  Free group on 𝑛 letters 𝑥1, …, 𝑥𝑛, 𝐹𝑛 = ⟨𝑥1, …, 𝑥𝑛⟩, is the group
whose elements are finite words in the generators 𝑥1, …, 𝑥𝑛 and their formal inverses 
𝑥−1

1 , …, 𝑥−1
𝑛 , where the group operation ∗ is given by concatenation of words: 𝑥𝑖 ∗

𝑥𝑗 = 𝑥𝑖𝑥𝑗. Identity element is the empty word 𝑒. We assume ∀𝑖 ∈ [𝑛], 𝑥𝑖𝑥−1
𝑖 =

𝑥−1
𝑖 𝑥𝑖 = 𝑒.

Notation.  If 𝑘 ∈ ℤ, then define

𝑥𝑘
𝑗 =

⎩{
{⎨
{{
⎧𝑒 if 𝑘 = 0

𝑥𝑗…𝑥𝑗 if 𝑘 > 0

𝑥−1
𝑗 …𝑥−1

𝑗 if 𝑘 < 0

Note.  𝐹𝑛 is not abelian for all 𝑛 ≥ 2 since e.g. 𝑥1𝑥2 ≠ 𝑥2𝑥1. ∀𝑛 ∈ ℕ, 𝐹𝑛 is infinite
group.
Example.
• 𝐹 1 = ⟨𝑥⟩ ≅ ℤ since every element is of the form 𝑥𝑘, 𝑘 ∈ ℤ. There is isomorphism 

𝜑 : 𝐹 1 → ℤ given by 𝜑(𝑥) = 1.
• 𝐹 2 = ⟨𝑥, 𝑦⟩ ≇ ℤ2 = ℤ ⊕ ℤ since 𝑥𝑦 ≠ 𝑦𝑥.
Definition.  Finitely presented group is group which isomorphic to a group
denoted by the group presentation

⟨𝑥1, …, 𝑥𝑛 | 𝑟1, …, 𝑟𝑚⟩

consisting of finite words in generators 𝑥1, …, 𝑥𝑛 and their formal inverses 
𝑥−1

1 , …, 𝑥−1
𝑛 , subject to relations 𝑟1, …, 𝑟𝑚 ∈ 𝐹𝑛 = ⟨𝑥1, …, 𝑥𝑛⟩ (i.e. ∀𝑗 ∈ [𝑚], 𝑟𝑗 =

𝑟−1
𝑗 = 𝑒), and group operation is concatenation of words.

Note.
• A finitely presented group is a quotient of a free group.
• Free groups on 𝑛 letters are finitely presented (with no relations).
• Group presentations are not unique.
Example.
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• ⟨𝑥, 𝑦 | 𝑥𝑦−1⟩ ≅ ⟨𝑎⟩ = 𝐹 1 ≅ ℤ via isomorphism 𝜑 : ⟨𝑥, 𝑦 | 𝑥𝑦−1⟩ → ⟨𝑎⟩ defined by 
𝜑(𝑥) = 𝜑(𝑦) = 𝑎 since 𝑥𝑦−1 = 𝑒 ⟺ 𝑥 = 𝑦 so can replace every 𝑦 in words of 
⟨𝑥, 𝑦 | 𝑥𝑦−1⟩ with 𝑥, yielding an element of ⟨𝑥⟩.

• ℤ/2 ≅ ⟨𝑥 | 𝑥2⟩ since 𝑥 = 𝑥−1 and ∀𝑛 ∈ ℕ, 𝑥−𝑛 = 𝑥𝑛 = 𝑒 if 𝑛 even, 𝑥 if 𝑛 odd.
• ⟨𝑥, 𝑦 | 𝑥𝑦𝑥−1𝑦−1⟩ ≅ ℤ2 since 𝑥𝑦 = 𝑦𝑥 so the group is abelian. Isomorphism given

by 𝜑(𝑥) = (1, 0), 𝜑(𝑦) = (0, 1).
• ⟨𝑥, 𝑦 | 𝑥𝑦𝑥−1𝑦−1, 𝑦2⟩ ≅ ℤ × ℤ/2.
Definition.  Let 𝐺1, 𝐺2 finitely presented groups, 𝐺1 ∩ 𝐺2 = ∅, given by

𝐺1 = ⟨𝑥1, …, 𝑥𝑛 | 𝑟1, …, 𝑟𝑚⟩, 𝐺2 = ⟨𝑦1, …, 𝑦𝑘 | 𝑠1, …, 𝑠ℓ⟩

Free product of 𝐺1 and 𝐺2 is the finitely presented group

𝐺1 ∗ 𝐺2 ≔ ⟨𝑥1, …, 𝑥𝑛, 𝑦1, …, 𝑦𝑚 | 𝑟1, …, 𝑟𝑘, 𝑠1, …, 𝑠ℓ⟩

If 𝐻 is another group and there exist homomorphisms 𝑖1 : 𝐻 → 𝐺1, 𝑖2 : 𝐻 → 𝐺2,
then amalgamated product of 𝐺1 and 𝐺2 with respect to 𝐻 is

𝐺1 ∗𝐻 𝐺2 ≔ ⟨𝑥1, …, 𝑥𝑛, 𝑦1, …, 𝑦𝑘 | 𝑟1, …, 𝑟𝑚, 𝑠1, …, 𝑠ℓ, 𝑖1(ℎ)𝑖2(ℎ)−1 ∀ℎ ∈ 𝐻⟩

i.e. we impose the additional relations 𝑖1(ℎ) = 𝑖2(ℎ) for all ℎ ∈ 𝐻, on 𝐺1 ∗ 𝐺2. 𝐺1 ∗𝐻
𝐺2 is finitely presented iff 𝐻 is finitely generated.
Example.
• If 𝐻 ≅ 𝟙, then 𝐺1 ∗𝐻 𝐺2 = 𝐺1 ∗ 𝐺2.
• If 𝐹𝑛, 𝐹 𝑘 are free groups, then 𝐹𝑛 ∗ 𝐹 𝑘 = 𝐹𝑛+𝑘.
• 𝐹𝑛 = 𝐹 1 ∗ ⋯ ∗ 𝐹 1 ≅ ℤ ∗ ⋯ ∗ ℤ (not this is ≇ ℤ𝑛 for 𝑛 ≥ 2).
• If 𝐺1 ≅ 𝟙, then

𝐺1 ∗𝐻 𝐺2 = ⟨𝑦1, …, 𝑦𝑘 | 𝑠1, …, 𝑠ℓ, 𝑖2(ℎ) ∀ℎ ∈ 𝐻⟩

12.2. The fundamental group of a triangulated surface
Definition.  Tree is finite, connected graph with no cycles.
Definition.  Let 𝐾 be connected, finite simplicial complex of dimension ≤ 2.
• A maximal tree in 𝐾 is tree formed out of the 0 and 1-simplices in 𝐾 which

cannot be extended to any larger tree (and necessarily contains all 0-simplices).
• If 𝐿 is maximal tree in 𝐾, maximal simply connected subcomplex 𝑀  of 𝐾

(associated to 𝐿) is constructed as follows: let 𝑀0 = 𝐿 and for each 𝑗 ∈ ℕ, let 𝑀𝑗
be subcomplex of 𝐾 given by

𝑀𝑗 = 𝑀𝑗−1 ∪ {2-simplices in 𝐾 with two edges contained in 𝑀𝑗−1}

Since 𝐾 is finite simplicial complex, this process must stabilise after finite number
of steps. Let 𝑀  be final subcomplex obtained.

Algorithm.  Let 𝐾 be connected, finite simplicial complex of dimension ≤ 2, let 
𝑥0 ∈ 𝐾 be 0-simplex. To compute 𝜋1(𝐾, 𝑥0):
1. Find a maximal tree 𝐿 in 𝐾.
2. Extend 𝐿 to maximal simply connected subcomplex 𝑀  of 𝐾.
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3. Assign a direction and a label to each 1-simplex in 𝐾 which is not contained in 𝑀 .
The labels give the generators of a group presentation for 𝜋1(𝐾, 𝑥0).

4. Impose relations on the labels as follows:
1. For 2-simplices with exactly one edge in 𝑀 : if the directions of the other two

edges, 𝑎 and 𝑏, either both point towards or both point away from the edge in 
𝑀 , impose the relation 𝑎 = 𝑏. If one points towards and the other away, then
impose the relation 𝑎 = 𝑏−1.

2. For 2-simplices with no edges in 𝑀  and with labels 𝑎, 𝑏, 𝑐: (up to permutation
of 𝑎, 𝑏, 𝑐) if the directions of 𝑏 and 𝑐 point towards a common vertex and the
directions of 𝑎 and 𝑐 point away from a common vertex, then impose the
relation 𝑐 = 𝑎𝑏, otherwise (in this case, the directions form a cycle), if 𝑎 has
direction pointing away from 𝑐 and 𝑏 has direction pointing towards 𝑐, impose 
𝑐 = (𝑎𝑏)−1.

5. We have 𝜋1(𝐾, 𝑥0) ≅ ⟨labels | relations⟩.
Note.  We can use step 4 to more efficiently choose labels and directions in step 3.
Definition.  Each directed 1-simplex in 𝑀𝑐 gives a basic loop (opposite choice of
direction yields the inverse loop).

Proof. (Proof of algorithm)   Let 𝐾 be connected finite simplicial complex, 𝑣0 be 0-
simplex in 𝐾, 𝐿 be maximal tree in 𝐾, 𝑀  be maximal simply connected subcomplex
in 𝐾 associated to 𝐿.
• Simplices are convex, so every path in 𝐾 is homotopic to one which passes through

only 0- and 1-simplices (with no doubling back). In particular, every element of 
𝜋1(𝐾, 𝑣0) can be represented by a loop based at 𝑣0 which passes through only 0-
and 1-simplices.

• If 𝑣 is 0-simplex then 𝑣 ∈ 𝐿 ⊆ 𝑀 , and 𝐿 has no cycles, so there exists unique path
from 𝑣 to 𝑣0 in 𝐿 with no doubling back.

• For all 0-simplices 𝑣 ∈ 𝐾, there exists unique homotopy class of paths in 𝑀  from 𝑣
to 𝑣0 and this class can be represented by a unique path in 𝐿 that doesn’t double
back on itself.

• Trees are contractible and so 𝐿 is simply connected, hence 𝑀  is simply connected.
• Thus, if there is another path in 𝑀  from 𝑣 to 𝑣0, there is a loop in 𝑀 , which must

be null-homotopic. Hence, the paths must be homotopic in 𝑀 .
• If 𝑀𝑐 = 𝐾 − 𝑀 ≠ ∅, it consists of 1- and 2-simplices (minus points on boundaries)

and every 1-simplex in 𝑀𝑐 with a choice of direction yields a homotopically non-
trivial loop in (𝐾, 𝑣0). Each vertex of a 1-simplex in 𝑀𝑐 can be connected back to 
𝑣0 by a unique (up to homotopy) path in 𝐿. So each directed 1-simplex in 𝑀𝑐

gives a basic loop (opposite choice of direction yields the inverse loop).
• Every non-trivial loop in 𝐾 is homotopic to a product of basic loops:

‣ If 𝜆 is loop in (𝐾, 𝑣0), we have 𝜆 ≃ 𝜇, where 𝜇 is loop through only 0- and 1-
simplices (so 𝜇 consists of a sequence of directed 1-simplices, with some in 𝑀
and others not).

‣ Every time 𝜇 enters/exists 𝑀  (necessarily at a vertex), draw a path through 𝐿
back to 𝑣0. This shows that 𝜇 is homotopic to product of basic loops.
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• Therefore, by assigning labels to directed 1-simplices in 𝑀𝑐, we obtain a list of
generators of 𝜋1(𝐾, 𝑣0).

• Also, 2-simplices in 𝑀𝑐 give relations between the generators of 𝜋1(𝐾, 𝑣0).
• So we have surjective homomorphism

⟨labels of directed 1-simplices in 𝑀𝑐 | 2-simplex relations⟩ ⟶ 𝜋1(𝐾, 𝑣0)

and this can be shown to be injective.

□

Example.  Consider 𝑆1 triangulated with three 1-simplices and no 2-simplices. A
maximal tree consists of two edges, the maximal connected subcomplex 𝑀  is already
the maximal tree. There is one 1-simplex not in 𝑀  and there are no relations (since
no 2-simplices). Hence 𝜋1(𝑆1, 𝑥0) ≅ ⟨𝑎⟩ = 𝐹 1 ≅ ℤ.

12.3. Van Kampen’s theorem
Theorem (van Kampen's theorem).  Let (𝐾, 𝑣0) be based, connected finite simplicial
complex. Suppose there exists connected simplicial subcomplexes 𝐴, 𝐵 ⊆ 𝐾 such that:
• 𝐾 = 𝐴 ∪ 𝐵
• 𝐴 ∩ 𝐵 is path-connected simplicial subcomplex.
• 𝑣0 ∈ 𝐴 ∩ 𝐵.

Then

𝜋1(𝐾, 𝑣0) ≅ 𝜋1(𝐴, 𝑣0) ∗𝜋1(𝐴∩𝐵,𝑥0) 𝜋1(𝐵, 𝑥0)

where the homomorphisms (𝑖𝐴)∗ : 𝜋1(𝐴 ∩ 𝐵, 𝑣0) → 𝜋1(𝐴, 𝑣0), (𝑖𝐵)∗ : 𝜋1(𝐴 ∩ 𝐵, 𝑣0) →
𝜋1(𝐵, 𝑣0) are those induced from the respective inclusion maps 𝑖𝐴 : 𝐴 ∩ 𝐵 → 𝐴, 𝑖𝐵 :
𝐴 ∩ 𝐵 → 𝐵.

Proof.
• Find maximal tree 𝐿𝐴∩𝐵 in 𝐴 ∩ 𝐵. Extend to maximal trees 𝐿𝐴 in 𝐴, 𝐿𝐵 in 𝐵.

Then 𝐿 = 𝐿𝐴 ∪ 𝐿𝐵 is maximal tree in 𝐾.
• Extend 𝐿𝐴∩𝐵, 𝐿𝐴, 𝐿𝐵 to maximal simply connected subcomplexes to 𝑀𝐴∩𝐵, 𝑀𝐴, 

𝑀𝐵. Then 𝑀 = 𝑀𝐴 ∪ 𝑀𝐵 is maximal simply connected subcomplex in 𝐾.
• By the algorithm, 𝜋1(𝐾, 𝑣0) ≅

⟨directed 1-simplices in 𝑀𝑐 | relations from 2-simplices in 𝑀𝑐⟩ where

{directed 1-simplices in 𝑀𝑐} = 𝐷𝐴 ∪ 𝐷𝐵

≔ {directed 1-simplices in 𝐴 − 𝑀𝐴}
∪ {directed 1-simplices in 𝐵 − 𝑀𝐵}

and

{2-simplices in 𝑀𝑐} = {2-simplices in 𝐴 − 𝑀𝐴}
∪ {2-simplices in 𝐵 − 𝑀𝐵}
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• However, 𝐷𝐴 ∩ 𝐷𝐵 = {directed 1-simplices in (𝐴 ∩ 𝐵) − 𝑀𝐴∩𝐵}. So to avoid
counting homotopy classes of twice, we identify corresponding generators in thre
free product 𝜋1(𝐴, 𝑣) ∗ 𝜋1(𝐵, 𝑣0), which gives the amalgamated product.

□

Example.  Let 𝑊2 be figure 8 space - the one-point union of two copies of 𝑆1, i.e.
two copies of 𝑆1 joined at single point (the base point) 𝑤0. So 𝑊2 = 𝐴 ∪ 𝐵 where 
𝐴 = 𝐵 = 𝑆1, 𝐴 ∩ 𝐵 = {𝑝}, the one-point space, is path-connected. 𝜋1({𝑝}, 𝑤0) ≅ 𝟙.
So

𝜋1(𝑊2, 𝑤0) ≅ 𝜋1(𝑆1, 𝑤0) ∗𝟙 𝜋1(𝑆1, 𝑤0)

= 𝜋1(𝑆1, 𝑤0) ∗ 𝜋1(𝑆1, 𝑤0)
≅ ⟨𝑥⟩ ∗ ⟨𝑦⟩

= ⟨𝑥, 𝑦⟩ = 𝐹 2

Example.
• Decompose torus as 𝕋 = 𝐴 ∪ 𝐵 where 𝐴 is small closed disc in 𝕋, 𝐵 is closure of

the remainder (i.e. remainder together with circle boundary of the disc) so 𝐴 ∩
𝐵 = 𝑆1.

• 𝐵 is homotopy equivalent to the figure-eight space so 𝜋1(𝐵) ≅ ⟨𝑥, 𝑦⟩. 𝐴 is
contractible so 𝜋1(𝐴) ≅ 𝟙, and 𝜋1(𝐴 ∩ 𝐵) ≅ ⟨𝑧⟩. But the loop going once around 
𝐴 ∩ 𝐵 is homotopy equivalent to the loop going along the boundary of unit square
whose quotient gives 𝕋, which corresponds to 𝑥𝑦𝑥−1𝑦−1.

• So by van Kampen’s theorem,

𝜋1(𝕋) ≅ 𝜋1(𝐴) ∗𝜋1(𝐴∩𝐵) 𝜋1(𝐵)

≅ 𝟙 ∗⟨𝑧⟩ ⟨𝑥, 𝑦⟩

= ⟨𝑥, 𝑦 | 𝑧⟩

= ⟨𝑥, 𝑦 | 𝑥𝑦𝑥−1𝑦−1⟩ ≅ ℤ2

since the image of 𝑧 under the homomorphism ℎ1 : 𝜋1(𝐴 ∩ 𝐵) → 𝐴 must be 𝑒.

13. Euler characteristics and the classification of
closed surfaces
13.1. The Euler characteristic of a graph
Definition.  Let 𝐺 be finite graph with 𝑣 vertices and 𝑒 edges. Euler
characteristic of 𝐺 is

𝜒(𝐺) ≔ 𝑣 − 𝑒

Definition.  Degree of vertex in graph of number of edge ends with that vertex as
endpoint (so degree of vertex with loop is 2).
Lemma.  A non-trivial finite tree contains a vertex of degree 1.
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Lemma.  Let 𝐺 be finite tree, then 𝜒(𝐺) = 1.

Proof.   Induction of number of vertices. □

Lemma.  If 𝐺 is finite connected graph, then 𝜒(𝐺) ≤ 1 with equality iff 𝐺 is tree.

Proof.   Remove edges from cycles until 𝐺 is a tree, note what happens to Euler
characteristic each time. □

Remark.  𝜒(𝐺) is a homotopy invariant, i.e. 𝐺1 ≃ 𝐺2, then 𝜒(𝐺1) = 𝜒(𝐺2).
Theorem (Euler's Theorem).  Let 𝐺 be finite, connected graph drawn on 𝑆2. Then 
𝑆2 − 𝐺 consists of 𝑓 = 2 − 𝜒(𝐺) faces (connected regions homeomorphic to open
discs).

Proof.
• Assume first that 𝑆2 − 𝐺 consists of 𝑓 connected regions homeomorphic to open

discs.
• If 𝐺 has cycle, remove edge to obtain new connected graph 𝐺′. This means two of

the 𝑓 regions are joined into one region, and 𝜒(𝐺′) = 𝜒(𝐺) + 1. Hence 𝜒(𝐺′) +
𝑓 ′ = 𝜒(𝐺) + 𝑓 .

• Remove edges until resulting graph is tree 𝑇 . Then 𝑆2 − 𝑇 ≅ 𝐸2, a single
connected region. Deduce that 𝜒(𝐺) + 𝑓 = 2.

• Assumption was correct, since if 𝑇  is tree then 𝑆2 − 𝑇  is always homeomorphic to
open disc. With reverse of above argument, every edge added to 𝑇  creates cycle
and divides disc into two sub-discs.

□

Corollary.  Let 𝐾 be finite simplicial complex which triangulates 𝑆2, with 𝑣 0-
simplices, 𝑒 1-simplices and 𝑓 2-simplices. Then

𝑣 − 𝑒 + 𝑓 = 2

Proof.   Let 𝐺 = {0-simplices} ∪ {1-simplices}, then 𝐺 is finite connected graph and 
𝑆2 − 𝐺 = {interiors of 2-simplices}. □

13.2. The Euler characteristic of a surface
Definition.  Let 𝑆 be surface.
• Finite connected graph 𝐺 ⊂ 𝑆 is good if every connected component of 𝑆 − 𝐺 is

homeomorphic to an open disc.
• Let 𝐺 ⊂ 𝑆 be a good graph. The 𝐺-Euler characteristic of 𝑆 is

𝜒𝐺(𝑆) ≔ 𝜒(𝐺) + (number of components of 𝑆 − 𝐺)

Note.
• If 𝜕𝑆 ≠ ∅ and 𝐺 ⊂ 𝑆 is a good graph, then 𝜕𝑆 ⊂ 𝐺 as a subgraph.
• Not every graph in a surface is good, e.g. if 𝐺 is single vertex in the torus, then 

𝕋 − 𝐺 is homotopy equivalent to the figure 8 space.
Lemma.  Let 𝐺, 𝐺′ be good graphs on surface 𝑆, with 𝐺 subgraph of 𝐺′ (𝐺′ is an
enlargement of 𝐺). Then
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𝜒𝐺(𝑆) = 𝜒𝐺′(𝑆)

Proof.
• 𝐺′ can be constructed from 𝐺 by sequence of one or more of the following

operations, none of which change 𝜒𝐺(𝑆):
‣ Add new vertex to interior of existing edge. This adds one vertex, one edge,

number of components in complement does not change.
‣ Add new edge between existing vertices. Number of components in complement

increases by 1.
‣ Add new edge and new vertex by attaching new edge at one to existing vertex

and at other end to new vertex. Number of components in complement does not
change.

□

Theorem.  The 𝐺-Euler characteristic of surface 𝑆 does not depend on choice of
good graph 𝐺.

Proof.
• Let 𝐺1, 𝐺2 be good graphs on 𝑆. If 𝜕𝑆 ≠ ∅, consider 𝜕𝑆 as (possibly) disconnected

graph with {vertices} = {all vertices in (𝐺1 ∪ 𝐺2) ∩ 𝜕𝑆}.
• Position 𝐺1 such that it crosses 𝐺2 in only isolated points in int(𝑆) = 𝑆 − 𝜕𝑆.

Add new vertices at these interior intersection points.
• Now 𝐺1 ∪ 𝐺2 is common enlargment of 𝐺1 and 𝐺2 and a good graph, so result

follows by above lemma.

□

Definition.  Euler characteristic of surface 𝑆, is 𝜒(𝑆) ≔ 𝜒𝐺(𝑆) where 𝐺 is any
good graph on 𝑆.
Theorem.  Euler characteristic is homeomorphism-invariant: i.e. if 𝑆1, 𝑆2
homeomorphic surfaces, then 𝜒(𝑆1) = 𝜒(𝑆2).
Example.  If surface 𝑆 is triangulated by finite simplicial complex 𝐾 with 𝑣 0-
simplices, 𝑒 1-simplices and 𝑓 2-simplices, then

𝜒(𝑆) = 𝑣 − 𝑒 + 𝑓

Proposition.  Euler characteristic is also homotopy-invariant: 𝑋 ≃ 𝑌 ⟹ 𝜒(𝑋) =
𝜒(𝑌 ).

Proof.   Non-examinable. □

Definition.  For 𝑛-dimensional finite simplicial complex 𝐾, Euler characteristic is
defined as

∑
𝑛

𝑘=0
(−1)𝑘(number of 𝑘-simplices in 𝐾)

Lemma (Union Lemma).  Let 𝐾 = 𝐴 ∪ 𝐵 be 2-dimensional finite simplicial complex
with 𝐴, 𝐵, 𝐴 ∩ 𝐵 simplicial sub-complexes. Then
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𝜒(𝐾) = 𝜒(𝐴 ∪ 𝐵) = 𝜒(𝐴) + 𝜒(𝐵) − 𝜒(𝐴 ∩ 𝐵)

Proof.   Express number of vertices, edges and faces of 𝐴 ∪ 𝐵 in terms of those of 𝐴, 
𝐵 and 𝐴 ∩ 𝐵. □

Lemma.  Let 𝑋, 𝑌  surfaces. Then

𝜒(𝑋#𝑌 ) = 𝜒(𝑋) + 𝜒(𝑌 ) − 2

Proof.
• For closed surface 𝑋, 𝜒(𝑋 − open disc) = 𝜒(𝑋) − 1 (justify using triangulations).
• Use Union lemma with 𝐴 = 𝑋 − open disc, 𝐵 = 𝑌 − open disc, 𝐴 ∩ 𝐵 = 𝑆1.

□

Lemma.  Let 𝑆 be surface, let 𝑆𝑀  be 𝑆 with cross-cap attached. Then

𝜒(𝑆𝑀) = 𝜒(𝑆) − 1

Proof.
• 𝑆𝑀 = 𝐴 ∪ 𝐵 where 𝐴 = (𝑆 − open disc), 𝐵 is Mobius band.
• Use Union lemma.

□

Lemma.  Let 𝑆 surface, let 𝑆𝐻 be 𝑆 with handle added. Then

𝜒(𝑆𝐻) = 𝜒(𝑆) − 2

Proof.
• 𝑆𝐻 = 𝐴 ∪ 𝐵, where 𝐴 = (𝑆 − 2 open discs), 𝐵 is cylinder.
• 𝐴 ∩ 𝐵 is disjoint union of 𝑆1 and 𝑆1, 𝑆1 ∐ 𝑆1.
• Use Union lemma to show 𝜒(𝐴 ∩ 𝐵) = 0.
• Use Union lemma again to deduce the result.

□

13.3. The classification of closed surfaces
Theorem (Classification Theorem for Closed Surfaces).  The complete list of closed
surfaces, up to homeomorphism, is
• Orientable: for 𝑔 ∈ ℕ0,

𝑀𝑔 ≅ 𝑆2#𝑇#⋯#𝑇⏟
𝑔 times

≅ 𝑆2 with 𝑔 handles attached

• Non-orientable: for 𝑔 ∈ ℕ,

𝑁𝑔 ≅ ℙ#⋯#ℙ⏟
𝑔 times

≅ 𝑆2 with 𝑔 cross caps attached

Since 𝜒(𝑀𝑔) = 2 − 2𝑔 and 𝜒(𝑁𝑔) = 2 − 𝑔, a closed surface is classified up to
homeomorphism (its homeomorphism type) by its Euler characteristic and
whether it is orientable or not.
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Definition.  Let 𝐾 be finite simplicial complex that triangulates a closed surface 𝑆,
let 𝐿 be sub-complex of 𝐾 of dimension ≤ 1. The thickening of 𝐿, Θ(𝐿), is sub-
complex of 𝐾(2) given by the union of all 2-simplices in 𝐾(2) (including all their
faces) which meet 𝐿.
Proposition.  Let 𝐿 be 1-dimensional sub-complex of 2-dimensional finite simplicial
complex 𝐾. Then
• Θ(𝐿) ≃ 𝐿.
• If 𝐿 is tree, then Θ(𝐿) is homeomorphic to closed disc 𝐷2.
• If 𝐿 is simple closed curve (i.e. homeomorphic to 𝑆1) then Θ(𝐿) is homeomorphic

to either cylinder or Mobius band.
Lemma.  Let 𝐾 be finite simplicial complex that triangulates closed surface, let 𝐿 be
1-dimensional sub-complex of 𝐾. Then

𝜒(𝐿) = 𝜒(Θ(𝐿))

Proof.
• Let 𝜕Θ(𝐿) be boundary of Θ(𝐿) in 𝐾, let 𝐶 = Θ(𝐿) − 𝐿 − 𝜕Θ(𝐿) (note 𝐶 is not

simplicial complex).
• By definition, 𝐿, 𝜕Θ(𝐿) and 𝐶 are pairwise disjoint and Θ(𝐿) = 𝐿 ∪ 𝜕Θ(𝐿) ∪ 𝐶.
• By Union lemma, 𝜒(Θ(𝐿)) = 𝜒(𝐿) + 𝜒(𝜕Θ(𝐿)) + 𝜒(𝐶).

□

Definition.  Let 𝐾 finite simplicial complex that triangulates closed surface.
• A maximal tree in 𝐾 is tree formed out of the 0- and 1-simplices in 𝐾 which

cannot be extended to any larger tree (and necessarily contains all 0-simplices).
• For maximal tree 𝐿 in 𝐾, dual graph of 𝐿, 𝐿∗ ⊂ 𝐾, is defined as follows:

‣ The vertices of 𝐿∗ are the barycentres of the 2-simplices of 𝐾.
‣ Two vertices of 𝐿∗ are joined by an edge iff the corresponding two 2-simplices

meet in a 1-simplex not in 𝐿.
Proposition.  Let 𝐿 be maximal tree in 𝐾.
• 𝐿∗ is connected.
• Θ(𝐿) ∪ Θ(𝐿∗) = 𝐾(2) ≅ 𝐾.
• Θ(𝐿) ∩ Θ(𝐿∗) = boundary of disc Θ(𝐿) ≅ 𝑆1.
Theorem.  Let 𝐾 finite simplicial complex that triangulates closed surface. Then 
𝜒(𝐾) = 1 + 𝜒(𝐿∗) ≤ 2 (where 𝐿 is maximal tree in 𝐾) with equality iff 𝐾 ≅ 𝑆2.

Proof.
• Let 𝐿 be maximal tree in 𝐾 with dual graph 𝐿∗. Use Union lemma and above two

propositions to show 𝜒(𝐾) ≤ 2.
• Show if 𝜒(𝐾) = 2 then 𝐿∗ is tree, conclude that 𝐾 is homeomorphic to union of

two closed discs glued along their boundary circles, so is copy of 𝑆2.

□

Lemma.  Let 𝑆 be closed surface. Then (𝑆 + handle) ≅ 𝑆#𝕋.
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Proof.
• Up to homeomorphism, we can always arrange that a handle is attached to the

interior of a region homeomorphic to a closed disc in 𝑆.
• So 𝑆 + handle ≅ (𝑆 − open disc) ∪ (𝕋 − open disc) ≅ 𝑆#𝕋.

□

Lemma.  Let 𝑆 be non-orientable closed surface. Then (𝑆 + handle) ≅ 𝑆#𝕂 ≅
𝑆#ℙ#ℙ ≅ (𝑆 + 2 cross caps).
Definition.  Let 𝐿 be maximal tree in finite simplicial complex 𝐾 with dual graph 
𝐿∗, let 𝐶 ⊆ 𝐿∗ be a cycle. Then 𝐶 is a non-separating simple closed curve.
Definition.  Performing surgery along a non-separating simple closed curve 𝐶 is the
following process:
• Remove interior of Θ(𝐶) from 𝐾(2) ≅ 𝐾 ≅ 𝑆, giving a simplicial complex 𝐾(2) −

int(Θ(𝐶)) which has either two holes (if Θ(𝐶) ≅ cylinder) or one hole (if Θ(𝐶) ≅
Mobius band), with the boundary of each of these holes being a triangulated
circle.

• Glue triangulated closed discs onto each boundary circle to “cap off” the holes.
• This gives a new finite simplicial complex 𝐾′ which triangulates a closed surface 

𝑆′. So

𝑆 ≅ {
𝑆′ + handle if Θ(𝐶) ≅ cylinder
𝑆′ + cross cap if Θ(𝐶) ≅ Mobius band

• So

𝜒(𝑆′) = {
𝜒(𝑆) + 2 if Θ(𝐶) ≅ cylinder
𝜒(𝑆) + 1 if Θ(𝐶) ≅ Mobius band

Theorem.  Up to homeomorphism, any closed surface can be obtained from a sphere
by adding a finite number of handles and/or a finite number of cross caps.

Proof.
• Let 𝑆 be closed surface, triangulated by a finite simpicial complex 𝐾. Let 𝐿 be

maximal tree in 𝐾 with dual graph 𝐿∗.
• Then 𝜒(𝑆) = 𝜒(𝐾) = 1 + 𝜒(𝐿∗). If 𝐿∗ is tree, then 𝜒(𝑆) = 2 so 𝑆 ≅ 𝑆2.
• So suppose 𝐿∗ contains cycle 𝐶, i.e. a simple closed curve.
• We show we can always reduce to the case that the dual graph is a tree by

performing “surgeries”, and hence, that 𝑆 can be constructed from 𝑆2.
• Claim: the cycle 𝐶 ⊂ 𝐿∗ is non-separating, i.e. 𝐾 − 𝐶 is path-connected.

‣ Suppose not. Then each connected component of 𝐾 − 𝐶 must contain a 0-
simplex in 𝐾 (since 𝐶 ⊂ 𝐿∗ avoids them all).

‣ Clearly, 0-simplices in different components cannot be joined by a path in 𝐾 −
𝐶. However, 𝐿 ⊂ 𝐾 − 𝐶 contains all 0-simplices by definition of the dual graph:
contradiction.

• Since 𝐶 ≅ 𝑆1, Θ(𝐶) ≅ cylinder or Mobius band.
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• Perform surgery along the non-separating closed curve:
‣ Remove interior of Θ(𝐶) from 𝐾(2) ≅ 𝐾 ≅ 𝑆, giving a simplicial complex 𝐾(2) −

int(Θ(𝐶)) which has either two holes (if Θ(𝐶) ≅ cylinder) or one hole (if 
Θ(𝐶) ≅ Mobius band), with the boundary of each of these holes being a
triangulated circle.

‣ Glue triangulated closed discs onto each boundary circle to “cap off” the holes.
‣ This gives a new finite simplicial complex 𝐾′ which triangulates a closed surface

𝑆′. So

𝑆 ≅ {
𝑆′ + handle if Θ(𝐶) ≅ cylinder
𝑆′ + cross cap if Θ(𝐶) ≅ Mobius band

‣ So

𝜒(𝑆′) = {
𝜒(𝑆) + 2 if Θ(𝐶) ≅ cylinder
𝜒(𝑆) + 1 if Θ(𝐶) ≅ Mobius band

• We can repeat this surgery procedure along cycles in “the” dual graph in each
such new surface obtained.

• This process must terminate after a finite number of surgeries in a closed surface 
𝑍 for which “the” dual graph (in every triangulation) has no cycles (i.e. the dual
graph is a tree, i.e. 𝑍 ≅ 𝑆2), since each surgery increases the Euler characteristic
and 𝜒(𝑆) ≤ 2 for all closed surfaces 𝑆.

□

Corollary.  If 𝑆 is non-orientable surface, then 𝑆#𝑇 ≅ 𝑆#𝕂.
Corollary.  Up to homeomorphism, every closed surface 𝑆 is given by precisely one
of the closed surfaces
• If 𝑆 is orientable: 𝑀𝑔 = 𝑆2 + 𝑔 handles ≅ 𝑆2#𝑇#⋯#𝑇 , 𝑔 ∈ ℕ0.
• If 𝑆 is non-orientable: 𝑁𝑔 = 𝑆2 + 𝑔 cross caps ≅ ℙ#⋯#ℙ where 𝑔 ∈ ℕ.

Proof.
• If 𝑆 orientable, then 𝑆 can only be obtained by attaching handles to 𝑆2 by above

theorem. So 𝑆2 ≅ 𝑆2 + 𝑔 handles = 𝑀𝑔. But 𝜒(𝑀𝑔) = 2 − 2𝑔 so homeomorphism
type is determined by number of handles.

• If 𝑆 non-orientable, then 𝑆 ≅ 𝑆2 + 𝑘 handles + ℓ cross caps, 𝑘 ≥ 0, ℓ ≥ 1. But
attaching handle to non-orientable surface is same as attaching two cross caps, so 
𝑆2 ≅ 𝑆2 + (2𝑘 + ℓ) cross caps = 𝑁2𝑘+ℓ. But 𝜒(𝑁𝑔) = 2 − 𝑔 so homeomorphism
type is determined by number of cross caps.

□
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