Contents

1. Combinatorial methods	2
2. Fourier-analytic techniques	9
3. Probabilistic tools	21
4. Further topics	27

1. Combinatorial methods

Definition 1.1 Let G be an abelian group and $A, B \subseteq G$. The sumset of A and B is

$$A + B \coloneqq \{a + b : a \in A, b \in B\}$$

The **difference set** of A and B is

$$A - B \coloneqq \{a - b : a \in A, b \in B\}.$$

Proposition 1.2 $\max\{|A|, |B|\} \le |A + B| \le |A| \cdot |B|.$

Proof. Trivial.

Example 1.3 Let $A = [n] = \{1, ..., n\}$. Then $A + A = \{2, ..., 2n\}$ so |A + A| = 2|A| - 2|A|1.

Lemma 1.4 Let $A \subseteq \mathbb{Z}$ be finite. Then $|A + A| \ge 2|A| - 1$ with equality iff A is an arithmetic progression.

Proof (Hints). Consider two sequences in A + A which are strictly increasing and of the same length.

Proof. Let $A = \{a_1, ..., a_n\}$ with $a_i < a_{i+1}$. Then $a_1 + a_1 < a_1 + a_2 < \cdots < a_1 + a_n < a_1 + a_2 < \cdots < a_n + a_n < a_n <$ $a_2 + a_n < \cdots < a_n + a_n$. Note this is not the only choice of increasing sequence that works, in particular, so does $a_1 + a_1 < a_1 + a_2 < a_2 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 < \dots < a_1 + a_2 < a_2 + a_4 + a_4 < \dots < a_1 + a_4 + a_4 + a_4 + \dots < a_4 + a_4 + \dots < a_4 + a_4 + \dots < a_4 + \dots <$ $a_2 + a_n < a_3 + a_n < \dots < a_n + a_n$. So when equality holds, all these sequences must be the same. In particular, $a_2 + a_i = a_1 + a_{i+1}$ for all *i*.

Lemma 1.5 If $A, B \subseteq \mathbb{Z}$, then $|A + B| \ge |A| + |B| - 1$ with equality iff A and B are arithmetic progressions with the same step.

Proof (Hints). Similar to above, consider 4 sequences in A + B which are strictly increasing and of the same length.

Example 1.6 Let $A, B \subseteq \mathbb{Z}/p$ for p prime. If $|A| + |B| \ge p + 1$, then $A + B = \mathbb{Z}/p$.

Proof (Hints). Consider $A \cap (q - B)$ for $q \in \mathbb{Z}/p$.

Proof. Note that $g \in A + B$ iff $A \cap (g - B) \neq \emptyset$ where $(g - B = \{g\} - B)$. Let $g \in A = \{g\} - B$. \mathbb{Z}/p , then use inclusion-exclusion on $|A \cap (g - B)|$ to conclude result.

Theorem 1.7 (Cauchy-Davenport) Let p be prime, $A, B \subseteq \mathbb{Z}/p$ be non-empty. Then

$$|A + B| \ge \min\{p, |A| + |B| - 1\}.$$

Proof (Hints).

- Assume $|A| + |B| , and WLOG that <math>1 \le |A| \le |B|$ and $0 \in A$ (by translation).
- Induct on |A|.
- Let $a \in A$, find B' such that $0 \in B'$, $a \notin B'$ and |B'| = |B| (use fact that p is prime).

• Apply induction with $A \cap B'$ and $A \cup B'$, while reasoning that $(A \cap B') + (A \cup B') \subseteq A + B'$.

Proof. Assume $|A| + |B| , and WLOG that <math>1 \le |A| \le |B|$ and $0 \in A$ (by translation). We use induction on |A|. |A| = 1 is trivial. Let $|A| \ge 2$ and let $0 \ne a \in A$. Then since p is prime, $\{a, 2a, ..., pa\} = \mathbb{Z}/p$. There exists $m \ge 0$ such that $ma \in B$ but $(m + 1)a \notin B$ (why?). Let B' = B - ma, so $0 \in B'$, $a \notin B'$ and |B'| = |B|.

Now $1 \leq |A \cap B'| < |A|$ (why?) so the inductive hypothesis applies to $A \cap B'$ and $A \cup B'$. Since $(A \cap B') + (A \cup B') \subseteq A + B'$ (why?), we have $|A + B| = |A + B'| \geq |(A \cap B') + (A \cup B')| \geq |A \cap B'| + |A \cup B'| - 1 = |A| + |B| - 1$.

Example 1.8 Cauchy-Davenport does not hold general abelian groups (e.g. \mathbb{Z}/n for n composite): for example, let $A = B = \{0, 2, 4\} \subseteq \mathbb{Z}/6$, then $A + B = \{0, 2, 4\}$ so $|A + B| = 3 < \min\{6, |A| + |B| - 1\}$.

Example 1.9 Fix a small prime p and let $V \subseteq \mathbb{F}_p^n$ be a subspace. Then V + V = V, so |V + V| = |V|. In fact, if $A \subseteq \mathbb{F}_p^n$ satisfies |A + A| = |A|, then A is an affine subspace (a coset of a subspace).

Proof. If $0 \in A$, then $A \subseteq A + A$, so A = A + A. General result follows by considering translation of A.

Example 1.10 Let $A \subseteq \mathbb{F}_p^n$ satisfy $|A + A| \leq \frac{3}{2} |A|$. Then there exists a subspace $V \subseteq \mathbb{F}_p^n$ such that $|V| \leq \frac{3}{2} |A|$ and A is contained in a coset of V.

Proof. Exercise (sheet 1).

Definition 1.11 Let $A, B \subseteq G$ be finite subsets of an abelian group G. The **Ruzsa** distance between A and B is

$$d(A,B) \coloneqq \log \frac{|A-B|}{\sqrt{|A|\cdot |B|}}$$

Lemma 1.12 (Ruzsa Triangle Inequality) Let $A, B, C \subseteq G$ be finite. Then

$$d(A,C) \le d(A,B) + d(B,C).$$

Proof (Hints). Consider a certain map from $B \times (A - C)$ to $(A - B) \times (B - C)$. \Box

Proof. Note that $|B| |A - C| \le |A - B| |B - C|$. Indeed, writing each $d \in A - C$ as $d = a_d - c_d$ with $a_d \in A$, $c_d \in C$, the map $\varphi : B \times (A - C) \rightarrow (A - B) \times (B - C)$, $\varphi(b, d) = (a_d - b, b - c_d)$ is injective (why?). The triangle inequality now follows from definition of Ruzsa distance. □

Definition 1.13 The **doubling constant** of finite $A \subseteq G$ is $\sigma(A) := |A + A|/|A|$. **Definition 1.14** The **difference constant** of finite $A \subseteq G$ is $\delta(A) := |A - A|/|A|$.

Remark 1.15 The Ruzsa triangle inequality shows that

$$\log \delta(A) = d(A, A) \le d(A, -A) + d(-A, A) = 2\log \sigma(A).$$

So $\delta(A) \leq \sigma(A)^2$, i.e. $|A - A| \leq |A + A|^2/|A|$.

Notation 1.16 Let $A \subseteq G$, $\ell, m \in \mathbb{N}_0$. Then

$$\ell A + mA \coloneqq \underbrace{A + \dots + A}_{\ell \text{ times}} \underbrace{-A - \dots - A}_{m \text{ times}}$$

This is referred to as the **iterated sum and difference set**.

Theorem 1.17 (Plunnecke's Inequality) Let $A, B \subseteq G$ be finite and $|A + B| \leq K|A|$ for some $K \geq 1$. Then $\forall \ell, m \in \mathbb{N}_0$,

$$|\ell B - mB| \le K^{\ell+m} |A|.$$

Proof (Hints).

- Let $A' \subseteq A$ minimise |A' + B|/|A'| with value K'.
- Show that for every finite $C \subseteq G$, $|A' + B + C| \leq K'|A + C|$ by induction on |C| (note two sets need to be written as disjoint unions here).
- Show that $\forall m \in \mathbb{N}_0, |A' + mB| \le (K')^m |A'|$ by induction.
- Use Ruzsa triangle inequality to conclude result.

Proof. Choose $\emptyset \neq A' \subseteq A$ which minimises |A' + B|/|A'|. Let the minimum value by K'. Then |A' + B| = K'|A'|, $K' \leq K$ and $\forall A'' \subseteq A$, $|A'' + B| \geq K'|A''|$.

We claim that for every finite $C \subseteq G$, $|A' + B + C| \leq K'|A' + C|$:

Use induction on |C|. |C| = 1 is true by definition of K'. Let claim be true for C, consider $C' = C \cup \{x\}$ for $x \notin C$. $A' + B + C' = (A' + B + C) \cup ((A' + B + x) - (D + B + x))$, where $D = \{a \in A' : a + B + x \subseteq A' + B + C\}$. By definition of K', $|D + B| \ge K'|D|$. Hence,

$$\begin{split} |A' + B + C| &\leq |A' + B + C| + |A' + B + x| - |D + B + x| \\ &\leq K'|A' + C| + K'|A'| - K'|D| \\ &= K'(|A' + C| + |A'| - |D|). \end{split}$$

Applying this argument a second time, write $A' + C' = (A' + C) \cup ((A' + x) - (E + x))$, where $E = \{a \in A' : a + x \in A' + C\} \subseteq D$. Finally,

$$\begin{split} |A' + C'| &= |A' + C| + |A' + x| - |E + x| \\ &\geq |A' + C| + |A'| - |D|. \end{split}$$

This proves the claim.

We now show that $\forall m \in \mathbb{N}_0$, $|A' + mB| \leq (K')^m |A'|$ by induction: m = 0 is trivial, m = 1 is true by assumption. Suppose it is true for $m - 1 \geq 1$. By the claim with C = (m - 1)B, we have

$$|A' + mB| = |A' + B + (m-1)B| \le K'|A' + (m-1)B| \le (K')^m |A'|.$$

As in the proof of Ruzsa's triangle inequality, $\forall \ell, m \in \mathbb{N}_0$,

$$\begin{split} |A'| \; |\ell B - mB| &\leq |A' + \ell B| \; |A' + mB| \\ &\leq (K')^{\ell} |A'| (K')^m |A'| \\ &= (K')^{\ell + m} |A'|^2. \end{split}$$

Theorem 1.18 (Freiman-Ruzsa) Let $A \subseteq \mathbb{F}_p^n$ and $|A + A| \leq K|A|$. Then A is contained in a subspace $H \subseteq \mathbb{F}_p^n$ with $|H| \leq K^2 p^{K^4} |A|$.

Proof (Hints).

- Let $X \subseteq 2A A$ be of maximal size such that all x + A, $x \in X$, are disjoint.
- Use Plunnecke's Inequality to obtain an upper bound on |X||A|.
- Show that $\forall \ell \geq 2, \ \ell A A \subseteq (\ell 1)X + A A$ by induction.
- Let *H* be subgroup generated by *A*. By writing *H* as an infinite union, show that $H \subseteq Y + A A$, where *Y* is subgroup generated by *X*.
- Find an upper bound for |Y|, conclude using Plunnecke's Inequality.

Proof. Choose maximal $X \subseteq 2A - A$ such that the translates x + A with $x \in X$ are disjoint. Such an X cannot be too large: $\forall x \in X, x + A \subseteq 3A - A$, so by Plunnecke's Inequality, since $|3A - A| \leq K^4 |A|$,

$$|X||A| = \left| \bigcup_{x \in X} (x+A) \right| \le |3A-A| \le K^4 |A|.$$

Hence $|X| \leq K^4$. We next show that $2A - A \subseteq X + A - A$. Indeed, if, $y \in 2A - A$ and $y \notin X$, then by maximality of X, then $(y + A) \cap (x + A) \neq \emptyset$ for some $x \in X$. If $y \in X$, then $y \in X + A - A$. It follows from above, by induction, that $\forall \ell \geq 2$, $\ell A - A \subseteq (\ell - 1)X + A - A$:

$$\begin{split} \ell A - A &= A + (\ell - 1)A - A \\ &\subseteq (\ell - 2)X + 2A - A \\ &\subseteq (\ell - 2)X + X + A - A \\ &= (\ell - 1)X + A - A. \end{split}$$

Now, let $H \subseteq \mathbb{F}_p^n$ be the subgroup generated by A:

$$H = \bigcup_{\ell \ge 1} (\ell A - A) \subseteq Y + A - A$$

where $Y \subseteq \mathbb{F}_p^n$ is the subgroup generated by X. Every element of Y can be written as a sum of |X| elements of X with coefficients in $\{0, ..., p-1\}$. Hence, $|Y| \leq p^{|X|} \leq p^{K^4}$. Finaly, $|H| \leq |Y||A - A| \leq p^{K^4}K^2|A|$ by Plunnecke's Inequality/Ruzsa Triangle Inequality.

Example 1.19 Let $A = V \cup R$, where $V \subseteq \mathbb{F}_p^n$ is a subspace with dim(V) = d = n/K satisfying $K \ll d \ll n - K$, and R consists of K - 1 linearly independent vectors not in V. Then $|A| = |V \cup R| = |V| + |R| = p^{n/K} + K - 1 \approx p^{n/K} = |V|$.

Now $|A + A| = |(V \cup R) + (V \cup R)| = |V \cup (V + R) \cup 2R| \approx K|V| \approx K|A|$ (since $V \cup (V + R)$ gives K cosets of V). But any subspace $H \subseteq \mathbb{F}_p^n$ containing A must have size at least $p^{n/K+(K-1)} \approx |V|p^K$. Hence, the exponential dependence on K in Freiman-Ruzsa is necessary.

Theorem 1.20 (Polynomial Freiman-Ruzsa Theorem) Let $A \subseteq \mathbb{F}_p^n$ be such that $|A + A| \leq K|A|$. Then there exists a subspace $H \subseteq \mathbb{F}_p^n$ of size at most $C_1(K)|A|$ such that for some $x \in \mathbb{F}_p^n$,

$$|A \cap (x+H)| \geq \frac{|A|}{C_2(K)},$$

where $C_1(K)$ and $C_2(K)$ are polynomial in K.

Proof. Very difficult (took Green, Gowers and Tao to prove it).

Definition 1.21 Given $A, B \subseteq G$ for an abelian group G, the **additive energy** between A and B is

$$E(A,B) \coloneqq |\{(a,a',b,b') \in A \times A \times B \times B : a+b=a'+b'\}|.$$

Additive quadruples (a, a', b, b') are those such that a + b = a' + b'. Write E(A) for E(A, A).

Example 1.22 Let $V \subseteq \mathbb{F}_p^n$ be a subspace. Then $E(V) = |V|^3$. On the other hand, if $A \subseteq \mathbb{Z}/p$ is chosen at random from \mathbb{Z}/p (where each $a \in \mathbb{Z}/p$ is included with probability $\alpha > 0$), with high probability, $E(A) = \alpha^4 p^3 = \alpha |A|^3$.

Definition 1.23 For $A, B \subseteq G$, the representation function is $r_{A+B}(x) := |\{(a,b) \in A \times B : a+b=x\}| = |A \cap (x-B)|.$

Lemma 1.24 Let $\emptyset \neq A, B \subseteq G$ for an abelian group G. Then

$$E(A, B) \ge \frac{|A|^2 |B|^2}{|A \pm B|}.$$

Proof (Hints).

• Show that using Cauchy-Schwarz that

$$E(A,B) = \sum_{x \in G} r_{A+B}(x)^2 \ge \frac{\left(\sum_{x \in G} r_{A+B}(x)\right)^2}{|A+B|}.$$

• By using indicator functions, show that $\sum_{x \in G} r_{A+B}(x) = |A||B|$.

Proof. Observe that

$$\begin{split} E(A,B) &= \left| \left\{ (a,a',b,b') \in A^2 \times B^2 : a+b = a'+b' \right\} \right| \\ &= \left| \bigcup_{x \in G} \left\{ (a,a',b,b') \in A^2 \times B^2 : a+b = x \text{ and } a'+b' = x \right\} \right| \\ &= \bigcup_{x \in G} \left| \left\{ (a,a',b,b') \in A^2 \times B^2 : a+b = x \text{ and } a'+b' = x \right\} \right| \\ &= \sum_{x \in G} r_{A+B}(x)^2 \\ &= \sum_{x \in A+B} r_{A+B}(x)^2 \\ &\geq \frac{\left(\sum_{x \in A+B} r_{A+B}(x) \right)^2}{|A+B|} \quad \text{by Cauchy-Schwarz} \end{split}$$

But now

$$\begin{split} \sum_{x \in G} r_{A+B}(x) &= \sum_{x \in G} |A \cap (x-B)| = \sum_{x \in G} \sum_{y \in G} \mathbbm{1}_A(y) \mathbbm{1}_{x-B}(y) \\ &= \sum_{x \in G} \sum_{y \in G} \mathbbm{1}_A(y) \mathbbm{1}_B(x-y) = |A| |B|. \end{split}$$

Note that the same argument works for |A - B|.

Corollary 1.25 If $|A + A| \leq K|A|$, then $E(A) \geq \frac{|A|^4}{|A+A|} \geq \frac{|A|^3}{K}$. So if A has small doubling constant, then it has large additive energy.

Proof (Hints). Trivial.

Proof. Trivial.

Example 1.26 The converse of the above lemma does not hold: e.g. let G be a (class of) abelian group(s). Then there exist constants $\theta, \eta > 0$ such that for all n large enough, there exists $A \subseteq G$ with $|A| \ge n$ satisfying $E(A) \ge \eta |A|^3$, and $|A + A| \ge \theta |A|^2$.

Definition 1.27 Given $A \subseteq G$ and $\gamma > 0$, let $P_{\gamma} := \{x \in G : |A \cap (x + A)| \ge \gamma |A|\}$ be the set of γ -popular differences of A.

Lemma 1.28 Let $A \subseteq G$ be finite such that $E(A) = \eta |A|^3$ for some $\eta > 0$. Then $\forall c > 0$, there is a subset $X \subseteq A$ with $|X| \ge \frac{\eta}{3} |A|$ such that for all (16*c*)-proportion of pairs $(a, b) \in X^2$, $a - b \in P_{c\eta}$.

Proof. We use a technique called "dependent random choice". Let $U = \{x \in G : |A \cap (x+A)| \leq \frac{1}{2}\eta |A|\}$. Then

$$\begin{split} \sum_{x \in U} |A \cap (x+A)|^2 &\leq \frac{1}{2} \eta |A| \sum_{x \in G} |A \cap (x+A)| \\ &= \frac{1}{2} \eta |A|^3 = \frac{1}{2} E(A). \end{split}$$

For $0 \le i \le \lceil \log_2 \eta^{-1} \rceil$, let $Q_i = \{x \in G : |A|/2^{i+1} < |A \cap (x+A)| \le |A|/2^i\}$ and set $\delta_i = \eta^{-1}2^{-2i}$. Then

$$\begin{split} \sum_{i=0}^{\lceil \log_2 \eta^{-1} \rceil} \delta_i |Q_i| &= \sum_i \frac{|Q_i|}{\eta 2^{2i}} \\ &= \frac{1}{\eta |A|^2} \sum_i \frac{|A|^2}{2^{2i}} |Q_i| \\ &= \frac{1}{\eta |A|^2} \sum_i \frac{|A|^2}{2^{2i}} \sum_{x \notin U} \mathbbm{1}_{\{|A|/2^{i+1} < |A \cap (x+A)| \le |A|/2^i\}} \\ &\geq \frac{1}{\eta |A|^2} \sum_{x \notin U} |A \cap (x+A)|^2 \\ &\geq \frac{1}{\eta |A|^2} \cdot \frac{1}{2} E(A) = \frac{1}{2} |A|. \end{split}$$

Let $S = \{(a, b) \in A^2 : a - b \notin P_{c\eta}\}$. Now

$$\begin{split} \sum_{i} \sum_{(a,b)\in S} &|(A-a) \cap (A-b) \cap Q_i| \leq \sum_{(a,b)\in S} |(A-a) \cap (A-b)| \\ &= \sum_{(a,b)\in S} |A \cap (a-b+A)| \\ &\leq \sum_{(a,b)\in S} c\eta |A| \quad \text{by definition of } S \\ &= |S|c\eta |A| \\ &\leq c\eta |A|^3 = 2c\eta |A|^2 \cdot \frac{1}{2} |A| \\ &\leq 2c\eta |A|^2 \sum_{i} \delta_i |Q_i| \quad \text{by above inequality} \end{split}$$

Hence $\exists i_0$ such that

$$\sum_{(a,b)\in S} \Bigl| (A-a) \cap (A-b) \cap Q_{i_0} \Bigr| \leq 2c\eta |A|^2 \delta_{i_0} \Bigl| Q_{i_0} \Bigr|.$$

Let $Q=Q_{i_0},\,\delta=\delta_{i_0},\,\lambda=2^{-i_0},$ so that

$$\sum_{(a,b)\in S} |(A-a)\cap (A-b)\cap Q| \leq 2c\eta |A|^2\delta |Q|.$$

Given $x \in G$, let $X(x) = A \cap (x + A)$. Then

$$\mathbb{E}_{x\in Q}|X(x)|=\frac{1}{|Q|}\sum_{x\in Q}|A\cap (x+A)|\geq \frac{1}{2}\lambda|A|.$$

Define $T(x)=\big\{(a,b)\in X(x)^2:a-b\in P^{c\eta}\big\}.$ Then

$$\begin{split} \mathbb{E}_{x \in Q} |T(x)| &= \mathbb{E}_{x \in Q} \big| \big\{ (a, b) \in (A \cap (x + A))^2 : a - b \notin P_{c\eta} \big\} \big| \\ &= \frac{1}{|Q|} \sum_{x \in Q} |\{ (a, b) \in S : x \in (A - a) \cap (A - b) \} | \\ &= \frac{1}{|Q|} \sum_{(a, b) \in S} |(A - a) \cap (A - b) \cap Q| \\ &\leq \frac{1}{|Q|} 2c\eta |A|^2 \delta |Q| = 2c\eta \delta |A|^2 = 2c\lambda^2 |A|^2. \end{split}$$

Therefore,

$$\begin{split} \mathbb{E}_{x\in Q}\big(|X(x)|^2 - (16c)^{-1}|T(x)|\big) &\geq \left(\mathbb{E}_{x\in Q}|X(x)|\right)^2 - (16c)^{-1}\mathbb{E}_{x\in Q}|T(x)| \text{ by Cauchy-Schwarz} \\ &\geq \left(\frac{\lambda}{2}\right)^2 |A|^2 - (16c)^{-1}2c\lambda^2|A|^2 \\ &= \left(\frac{\lambda^2}{4} - \frac{\lambda^2}{8}\right)|A|^2 = \frac{\lambda^2}{8}|A|^2. \end{split}$$

So $\exists x \in Q$ such that $|X(x)|^2 \ge \frac{\lambda^2}{8} |A|^2$, so $|X| \ge \frac{\lambda}{\sqrt{8}} |A| \ge \frac{\eta}{3} |A|$ and $|T(x)| \le 16c |X|^2$.

Theorem 1.29 (Balog-Szemerédi-Gowers, Schoen) Let $A \subseteq G$ be finite such that $E(A) \ge \eta |A|^3$ for some $\eta > 0$. Then there exists $A' \subseteq A$ with $|A'| \ge c_1(\eta)|A|$ such that $|A' + A'| \le |A|/c_2(\eta)$, where $c_1(\eta)$ and $c_2(\eta)$ are both polynomial in η .

Proof. The idea is to find $A' \subseteq A$ such that $\forall a, b \in A', a - b$ has many representations as $(a_1 - a_2) + (a_3 - a_4)$ with each $a_i \in A$. Apply the above lemma with $c = 2^{-7}$ to obtain $X \subseteq A$ with $|X| \ge \frac{\eta}{3}|A|$ such that for all but $\frac{1}{8}$ of pairs $(a, b) \in X^2$, $a - b \in P_{\eta/2^7}$. In particular, the bipartite graph $G = (X \sqcup X, \{(x, y) \in X \times X : x - y \in P_{\eta/2^7}\})$ has at least $\frac{7}{8}|X|^2$ edges.

Let $A' = \left\{x \in X : \deg_G(x) \ge \frac{3}{4}|X|\right\}$. Clearly $|A'| \ge |X|/8$. For any $a, b \in A'$, there are at least |X|/2 elements $y \in X$ such that $(a, y), (b, y) \in E(G)$ (so $a - y, b - y \in P_{\eta/2^7}$). Hence a - b = (a - y) - (b - y) has at least

$$\underbrace{\frac{\eta}{6}|A|}_{\text{choices for }y} \cdot \frac{\eta}{2^7}|A|\frac{\eta}{2^7}|A| \ge \frac{\eta^3}{2^{17}}|A|^3$$

 $\begin{array}{l} \text{representations of the form } a_1 - a_2 - (a_3 - a_4) \text{ with each } a_i \in A. \text{ It follows that} \\ \frac{\eta^3}{2^{17}} |A|^3 |A' - A'| \leq |A|^4, \text{ hence } |A' - A'| \leq 2^{17} \eta^{-3} |A| \leq 2^{22} \eta^{-4} |A'|, \text{ and so } |A' + A'| \leq 2^{44} \eta^{-8} |A'|. \end{array}$

2. Fourier-analytic techniques

In this chapter, assume that G is a *finite* abelian group.

Definition 2.1 The group \hat{G} of **characters** of G is the group of homomorphisms $\gamma : G \to \mathbb{C}^{\times}$. In fact, \hat{G} is isomorphic to G.

Notation 2.2 Norm and inner product notation:

• Write

$$\begin{split} \|f\|_q &= \|f\|_{L^q(G)} = \left(\mathbb{E}_{x \in G} |f(x)|^q\right)^{1/q}, \\ \left\|\hat{f}\right\|_q &= \left\|\hat{f}\right\|_{\ell^q\left(\widehat{G}\right)} = \left(\sum_{\gamma \in \widehat{G}} \left|\hat{f}(\gamma)\right|^q\right)^{1/q}, \\ &\langle f, g \rangle_{L^2(G)} = \mathbb{E}_{x \in G} f(x) \overline{g(x)}, \\ &\langle f, g \rangle_{\ell^2\left(\widehat{G}\right)} = \sum_{\gamma \in \widehat{G}} \widehat{f}(\gamma) \overline{\widehat{g}(\gamma)} \end{split}$$

• If Fourier support of function is restricted to $\Lambda \subseteq \hat{G}$, write $\|\hat{f}\|_{\ell^q(\Lambda)} = \left(\sum_{\gamma \in \Lambda} \left|\hat{f}(\gamma)\right|^q\right)^{1/q}$.

Notation 2.3 Asymptotic notation:

• Write f(n) = O(g(n)) if

$$\exists C>0: \forall n\in \mathbb{N}, \quad |f(n)|\leq C|g(n)|.$$

• Write f(n) = o(g(n)) if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N, |f(n)| \leq \varepsilon |g(n)|,$$

i.e. $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$

- Write $f(n) = \Omega(g(n))$ if g(n) = O(f(n)).
- If the implied constant depends on a fixed parameter, this may be indicated by a subscript, e.g. $\exp(p + n^2) = O_p(\exp(n^2))$.

Theorem 2.4 (Hölder's Inequality) Let $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q}$, and $f \in L^p(G), g \in L^q(G)$. Then

$$\|fg\|_1 \le \|f\|_p \|g\|_q$$

Theorem 2.5 (Cauchy-Schwarz Inequality) For $f, g \in L^2(G)$, we have

 $\langle f,g\rangle_{L^2(G)} \le \|f\|_2 \|g\|_2.$

Note this is a special case of Hölder's inequality with p = q = 2.

Theorem 2.6 (Young's Convolution Inequality) Let $p, q, r \in [1, \infty]$, $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$, $f \in L^p(G)$, $g \in L^q(G)$. Then

$$||f * g||_r \le ||f||_p ||g||_q$$

Notation 2.7 e(y) denotes the function $e^{2\pi i y}$.

Example 2.8

- Let $G = \mathbb{F}_p^n$, then for any $\gamma \in \hat{G}$, we have a corresponding character $\gamma(x) = e((\gamma \cdot x)/p)$.
- If $G = \mathbb{Z}/N$, then any $\gamma \in \hat{G}$ has a corresponding character $\gamma(x) = e(\gamma x/N)$.

Notation 2.9 Given a non-empty $B \subseteq G$ and $g: B \to \mathbb{C}$, write $\mathbb{E}_{x \in B}g(x)$ for $\frac{1}{|B|} \sum_{x \in B} g(x)$. If B = G, we may simply write \mathbb{E} instead of $\mathbb{E}_{x \in B}$. Lemma 2.10 For all $\gamma \in \hat{G}$,

$$\mathbb{E}_{x\in G}\gamma(x) = \begin{cases} 1 & \text{if } \gamma = 1 \\ 0 & \text{otherwise} \end{cases}$$

and for all $x \in G$,

$$\sum_{\gamma \in \widehat{G}} \gamma(x) = \begin{cases} |G| & \text{if } x = 0\\ 0 & \text{otherwise} \end{cases}$$

Proof (Hints).

- For $1 \neq \gamma \in \hat{G}$, consider $y \in G$ with $\gamma(y) \neq 1$.
- For $0 \neq x \in G$, by considering $G/\langle x \rangle$, show by contradiction that there is $\gamma \in \hat{G}$ with $\gamma(x) \neq 1$.

Proof. The first case for both equations is trivial. Let $1 \neq \gamma \in \hat{G}$. Then $\exists y \in G$ with $\gamma(y) \neq 1$. So

$$\begin{split} \gamma(y) \mathbb{E}_{z \in G} \gamma(z) &= \mathbb{E}_{z \in G} \gamma(y+z) \\ &= \mathbb{E}_{z' \in G} \gamma(z'). \end{split}$$

Hence $\mathbb{E}_{z \in G} \gamma(z) = 0.$

For second equation, given $0 \neq x \in G$, there exists $\gamma \in \hat{G}$ such that $\gamma(x) \neq 1$, since otherwise \hat{G} would act trivially on $\langle x \rangle$, hence would also be the dual group for $G/\langle x \rangle$, a contradiction.

Definition 2.11 Given $f: G \to \mathbb{C}$, define the Fourier transform of f to be

$$\begin{split} \widehat{f} &: \widehat{G} \to \mathbb{C}, \\ \gamma &\mapsto \mathbb{E}_{x \in G} f(x) \overline{\gamma(x)} \end{split}$$

Proposition 2.12 (Fourier Inversion Formula) Let $f: G \to \mathbb{C}$. Then for all $x \in G$,

$$f(x) = \sum_{\gamma \in \widehat{G}} \widehat{f}(\gamma) \gamma(x).$$

Proof (Hints). Straightforward.

Proof. We have

$$\begin{split} \sum_{\gamma \in \widehat{G}} \widehat{f}(\gamma) \gamma(x) &= \sum_{\gamma \in \widehat{G}} \mathbb{E}_{y \in G} f(y) \overline{\gamma(y)} \gamma(x) \\ &= \mathbb{E}_{y \in G} f(y) \sum_{\gamma \in \widehat{G}} \gamma(x-y) \\ &= f(x) \end{split}$$

by Lemma 2.10.

Definition 2.13 For $A \subseteq G$, the **indicator** (or **characteristic**) function of A is

$$\begin{split} \mathbb{1}_A: G \to \{0,1\}, \\ x \mapsto \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \end{split}$$

Definition 2.14 $\hat{\mathbb{1}}_A(1) = \mathbb{E}_{x \in G} \mathbb{1}_A(x) \cdot 1 = |A|/|G|$ is the **density** of A in G. This is often denoted by α .

Definition 2.15 Given $\emptyset \neq A \subseteq G$, the characteristic measure $\mu_A : G \to [0, |G|]$ is defined by

$$\mu_A(x)\coloneqq \alpha^{-1}\mathbb{1}_A(x).$$

Note that $\mathbb{E}_{x \in G} \mu_A(x) = 1 = \hat{\mu}_A(1)$.

Definition 2.16 The balanced function $f_A: G \to [-1, 1]$ of A is given by

$$f_A(x) = \mathbb{1}_A(x) - \alpha.$$

Note that $\mathbb{E}_{x\in G}f_A(x) = 0 = \hat{f}_A(1).$

Example 2.17 Let $V \leq \mathbb{F}_p^n$ be a subspace. Then for $t \in \hat{\mathbb{F}}_p^n$,

$$\begin{split} \widehat{\mathbb{1}}_V(t) &= \mathbb{E}_{x \in \mathbb{F}_p^n} \mathbb{1}_V(x) e(-x.t/p) \\ &= \frac{|V|}{p^n} \mathbb{1}_{V^\perp}(t). \end{split}$$

where $V^{\perp} = \{t \in \widehat{\mathbb{F}}_p^n : x.t = 0 \quad \forall x \in V\}$ is the **annihilator** of V. Hence, $\widehat{\mathbb{1}}_V = \mu_{V^{\perp}}$. **Example 2.18** Let $R \subseteq G$ be such that each $x \in G$ lies in R independently with probability $\frac{1}{2}$. Then with high probability,

$$\sup_{\gamma \neq 1} \Bigl| \widehat{\mathbb{1}}_R(\gamma) \Bigr| = O \Biggl(\sqrt{\frac{\log \lvert G \rvert}{\lvert G \rvert}} \Biggr).$$

This follows from Chernoff's inequality.

Theorem 2.19 (Chernoff's Inequality) Given complex-valued independent random variables $X_1, ..., X_n$ with mean 0, for all $\theta > 0$, we have

$$\operatorname{Spec}_{\rho}(f) \coloneqq \left\{ \gamma \in \hat{G} \colon \left| \hat{f}(\gamma) \right| \ge \rho \|f\|_{1} \right\}.$$

 $\subseteq G$ then $\|f\|_{1} = \alpha = |A|/|G|$ so

Example 2.24 Let $A \subseteq G$, then $||f||_1 = \alpha = |A|/|G|$, so

if
$$V < \mathbb{F}^n$$
 is a subspace, then by Example 2.17. Spec $(\mathbb{1}_V) = \mathbb{F}^n$

Spec $(1, \cdot) = \{ t \in \widehat{\mathbb{R}}^n : |\widehat{1}_{\cdot \cdot}(t)| > o\alpha \}$

In particular, if $V \leq \mathbb{F}_p^n$ is a subspace, then by Example 2.17, $\operatorname{Spec}_{\rho}(\mathbb{1}_V) = V^{\perp}$ for all $\rho \in (0, 1]$.

Lemma 2.25 For all $\rho > 0$,

Proof. By Plancherel's Identity.

$$\left| {\rm Spec}_{\rho}(f) \right| \leq \rho^{-2} \frac{\|f\|_2^2}{\|f\|_1^2}$$

In particular, if $f = \mathbb{1}_A$ for $A \subseteq G$, then $||f||_1 = \alpha = |A|/|G| = ||f||_2^2$. So $|\operatorname{Spec}_{\rho}(\mathbb{1}_A)| \leq \rho^{-2}\alpha^{-1}$.

Proof (Hints). Use Parseval.

Proof. By Parseval,

$$\begin{split} \|f\|_{2}^{2} &= \left\|\hat{f}\right\|_{2}^{2} = \sum_{\gamma \in \widehat{G}} \left|\hat{f}(\gamma)\right|^{2} \\ &\geq \sum_{\gamma \in \operatorname{Spec}_{\rho}(f)} \left|\hat{f}(\gamma)\right|^{2} \\ &\geq \left|\operatorname{Spec}_{\rho}(f)\right| (\rho \|f\|_{1})^{2}. \end{split}$$

$$\Pr\left[\left|\sum_{i=1}^n X_i\right| \geq \theta \sqrt{\sum_{i=1}^n \|X_i\|_{L^\infty(\mathrm{Pr})}^2}\right] \leq 4\exp\bigl(-\theta^2/4\bigr).$$

Example 2.20 Let $Q = \{x \in \mathbb{F}_p^n : x \cdot x = 0\}$ with p > 2. Then $|Q|/p^n = \frac{1}{p} + O(p^{-n/2})$ and $\sup_{t \neq 0} |\hat{\mathbb{1}}_Q(t)| = O(p^{-n/2})$.

Lemma 2.21 (Plancherel's Identity) For all $f, g: G \to \mathbb{C}$,

$$\langle f,g\rangle = \langle \hat{f},\hat{g}\rangle$$

Proof. Exercise.

Corollary 2.22 (Parseval's Identity) For all $f, g: G \to \mathbb{C}$,

Proof (Hints). Trivial from Plancherel's Identity.

$$\|f\|^2_{L^2(G)} = \Big\| \widehat{f} \Big\|^2_{\ell^2\big(\widehat{G}\big)}.$$

Definition 2.23 Let $\rho > 0$ and $f : G \to \mathbb{C}$. The ρ -large Fourier spectrum of f is

Definition 2.26 The convolution of $f, g : \mathbb{G} \to \mathbb{C}$ is

$$\label{eq:g} \begin{split} f*g:G\to \mathbb{C},\\ x\mapsto \mathbb{E}_{y\in G}f(y)g(x-y) \end{split}$$

Example 2.27 Given $A, B \subseteq G$,

$$\begin{split} (\mathbbm{1}_A * \mathbbm{1}_B)(x) &= \mathbbm{E}_{y \in G} \mathbbm{1}_A(y) \mathbbm{1}_B(x - y) \\ &= \mathbbm{E}_{y \in G} \mathbbm{1}_A(y) \mathbbm{1}_{x - B}(y) \\ &= \mathbbm{E}_{y \in G} \mathbbm{1}_{A \cap (x - B)}(y) \\ &= \frac{|A \cap (x - B)|}{|G|} = \frac{1}{|G|} r_{A + B}(x) \end{split}$$

In particular, $\operatorname{supp}(\mathbb{1}_A * \mathbb{1}_B) = A + B$.

Lemma 2.28 Given $f, g: G \to \mathbb{C}$,

$$\forall \gamma \in \hat{G}, \quad (\widehat{f \ast g})(\gamma) = \widehat{f}(\gamma)\widehat{g}(\gamma).$$

Proof (Hints). Straightforward.

Proof. We have

$$\begin{split} (\widehat{f*g})(\gamma) &= \mathbb{E}_{x \in G}(f*g)(x)\overline{\gamma(x)} \\ &= \mathbb{E}_{x \in G} \mathbb{E}_{y \in G} f(y) g(x-y) \overline{\gamma(x)} \\ &= \mathbb{E}_{u \in G} \mathbb{E}_{y \in G} f(y) g(u) \overline{\gamma(u+y)} \quad (u=x-y) \\ &= \mathbb{E}_{u \in G} \mathbb{E}_{y \in G} f(y) g(u) \overline{\gamma(u)\gamma(y)} \\ &= \widehat{f}(\gamma) \widehat{g}(\gamma). \end{split}$$

$$\begin{split} \mathbf{Example \ 2.29} \ \ \mathbb{E}_{x+y=z+w}f(x)f(y)\overline{f(z)f(w)} &= \left\|\widehat{f}\right\|_{\ell^4\left(\widehat{G}\right)}^4. \text{ In particular, } \left\|\widehat{\mathbb{1}}_A\right\|_{\ell^4\left(\widehat{G}\right)}^4 &= E(A)/|G|^3 \text{ for any } A \subseteq G. \end{split}$$

Theorem 2.30 (Bogolyubov's Lemma) Let $A \subseteq \mathbb{F}_p^n$ be of density α . Then there exists a subspace $V \leq \mathbb{F}_p^n$ with $\operatorname{codim}(V) \leq 2\alpha^{-2}$, such that $V \subseteq A + A - A - A$.

Proof (Hints).

- Let $g = \mathbb{1}_A * \mathbb{1}_A * \mathbb{1}_{-A} * \mathbb{1}_{-A}$, reason that if g(x) > 0 for all $x \in V$, then $V \subseteq 2A 2A$.
- Let $S = \operatorname{Spec}_{\rho}(\mathbb{1}_A)$, with ρ for now unspecified.
- Show that $g(x) = \alpha^4 + \sum_{t \in S \setminus \{0\}} \left| \hat{\mathbb{1}}_A(t) \right|^4 e(x.t/p) + \sum_{t \notin S} \left| \hat{\mathbb{1}}_A(t) \right|^4 e(x.t/p).$
- Find an appropriate subspace V from S, bound g(x) from below in terms of ρ , and use this to determine a suitable value for ρ .

Proof. Observe $2A - 2A = \operatorname{supp}(g)$ where $g = \mathbb{1}_A * \mathbb{1}_A * \mathbb{1}_{-A} * \mathbb{1}_{-A}$, so we want to find $V \leq \mathbb{F}_p^n$ such that g(x) > 0 for all $x \in V$. Let $S = \operatorname{Spec}_{\rho}(\mathbb{1}_A)$ with ρ a constant to be specified later, and let $V = \langle S \rangle^{\perp}$. By Lemma 2.25, $\operatorname{codim}(V) = \dim \langle S \rangle \leq |S| \leq$ $\rho^{-2}\alpha^{-1}$. Fix $x \in V$. Now

$$\begin{split} g(x) &= \sum_{t \in \widehat{\mathbb{F}}_p^n} \widehat{g}(t) e(x.t/p) \\ &= \sum_{t \in \widehat{\mathbb{F}}_p^n} \left| \widehat{\mathbb{1}}_A(t) \right|^4 e(x.t/p) \quad \text{by Lemma 2.28} \\ &= \alpha^4 + \sum_{t \neq 0} \left| \widehat{\mathbb{1}}_A(t) \right|^4 e(x.t/p) \\ &= \alpha^4 + \sum_{t \in S \setminus \{0\}} \left| \widehat{\mathbb{1}}_A(t) \right|^4 e(x.t/p) + \sum_{t \notin S} \left| \widehat{\mathbb{1}}_A(t) \right|^4 e(x.t/p) \end{split}$$

Each term in the first sum is non-negative, since $\forall t \in S, x.t = 0$. The absolute value of the second sum is bounded above, by the triangle inequality, by

$$\begin{split} \sum_{t \notin S} \left| \hat{\mathbb{1}}_A(t) \right|^4 &\leq \sup_{t \notin S} \left| \hat{\mathbb{1}}_A(t) \right|^2 \sum_{t \notin S} \left| \hat{\mathbb{1}}_A(t) \right|^2 \\ &\leq \sup_{t \notin S} \left| \hat{\mathbb{1}}_A(t) \right|^2 \sum_{t \in \widehat{\mathbb{F}}_p^n} \left| \hat{\mathbb{1}}_A(t) \right|^2 \\ &\leq (\rho \alpha)^2 \| \mathbb{1}_A \|_2^2 = \rho^2 \alpha^3 \end{split}$$

by Example 2.24 and Parseval. Note the second sum must be real since all other terms in the equation are. So we have $g(x) \ge \alpha^4 - \rho^2 \alpha^3$. Thus, it is sufficient that $\rho^2 \alpha^3 \leq \frac{\alpha^4}{2}$, so set $\rho = \sqrt{a/2}$. Hence g(x) > 0 (in fact, $g(x) \geq \frac{\alpha^4}{2}$) for all $x \in V$, and $\operatorname{codim}(V) \le 2\alpha^{-2}.$

Example 2.31 The set $A = \left\{ x \in \mathbb{F}_2^n : |x| \ge \frac{n}{2} + \frac{\sqrt{n}}{2} \right\}$ (where |x| is number of 1s in x) has density $\geq \frac{1}{8}$ but there is no coset C of any subspace of codimension \sqrt{n} such that $C \subseteq A + A$. Hence, the 2A - 2A part of Bogolyubov's lemma is necessary: 2A is not sufficient.

Lemma 2.32 Let $A \subseteq \mathbb{F}_p^n$ have density α with $\sup_{t \neq 0} \left| \hat{\mathbb{1}}_A(t) \right| \ge \rho \alpha$ for some $\rho > 0$. Then there exists a subspace $V \leq \mathbb{F}_p^n$ with $\operatorname{codim}(V) = 1$ and $x \in \mathbb{F}_p^n$ such that

$$|A \cap (x+V)| \ge \alpha \left(1 + \frac{\rho}{2}\right)|V|.$$

Proof (Hints).

- Let V = ⟨t⟩[⊥] for some suitable t (can determine later).
 Define a_j = |A∩(v_j+V)|/||v_j+V|| − α for each j ∈ [p], where x.v_j = j.
- Show that $\hat{\mathbb{1}}_A(t) = \mathbb{E}_{j \in [p]} a_j e(-j/p)$.
- Show that $\mathbb{E}_{j \in [p]} a_j + |a_j| \ge \rho \alpha$.

Proof. Let $t \neq 0$ be such that $|\hat{\mathbb{1}}_A(t)| \geq \rho \alpha$ and let $V = \langle t \rangle^{\perp}$. Write $v_j + V = \{x \in \mathbb{F}_p^n : x \cdot t = j\}$ for $j \in [p]$ for the p distinct cosets of V. Then

$$\begin{split} \widehat{\mathbb{1}}_A(t) &= \widehat{f}_A(t) = \mathbb{E}_{x \in \mathbb{F}_p^n}(\mathbb{1}_A(x) - \alpha)e(-x.t/p) \\ &= \mathbb{E}_{j \in [p]} \mathbb{E}_{x \in v_j + V}(\mathbb{1}_A(x) - \alpha)e(-j/p) \\ &= \mathbb{E}_{j \in [p]} \left(\frac{|A \cap (v_j + V)|}{|v_j + V|} - \alpha \right) e(-j/p) \\ &=: \mathbb{E}_{j \in [p]} a_j e(-j/p). \end{split}$$

By the triangle inequality, $\mathbb{E}_{j\in[p]}|a_j| \ge \rho\alpha$. Note that $\mathbb{E}_{j\in[p]}a_j = 0$. So $\mathbb{E}_{j\in[p]}a_j + |a_j| \ge \rho\alpha$, so $\exists j \in [p]$ such that $a_j + |a_j| \ge \rho\alpha$, hence $a_j \ge \rho\alpha/2$. So take $x = v_j$.

Notation 2.33 Given $f, g, h : G \to \mathbb{C}$, write

$$T_3(f,g,h) = \mathbb{E}_{x,d \in G} f(x) g(x+d) h(x+2d).$$

Notation 2.34 Given $A \subseteq G$, write $2 \cdot A = \{2a : a \in A\}$. Note this is not the same as 2A = A + A.

Lemma 2.35 Let $p \geq 3$ and $A \subseteq \mathbb{F}_p^n$ be of density $\alpha > 0$, such that $\sup_{t \neq 0} |\hat{\mathbb{1}}_A(t)| \leq \varepsilon$. Then the number of 3-APs in A differs from $\alpha^3(p^n)^2$ by at most $\varepsilon(p^n)^2$.

Proof (Hints).

- Express $T_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A)$ as an inner product of functions $\mathbb{F}_p^n \to \mathbb{C}$, rewrite as inner product of functions $\hat{\mathbb{F}}_p^n \to \mathbb{C}$.
- Find upper bound of the absolute value of a sub-sum of this inner product, using triangle inequality and Cauchy-Schwarz.

Proof. The number of 3-APs in A is $(p^n)^2$ multiplied by

$$\begin{split} T_3(\mathbbm{1}_A,\mathbbm{1}_A,\mathbbm{1}_A) &= \mathbb{E}_{x,d}\mathbbm{1}_A(x)\mathbbm{1}_A(x+d)\mathbbm{1}_A(x+2d) \\ &= \mathbb{E}_{x,y}\mathbbm{1}_A(x)\mathbbm{1}_A(y)\mathbbm{1}_A(2y-x) \\ &= \mathbb{E}_y\mathbbm{1}_A(y)\mathbb{E}_x\mathbbm{1}_A(x)\mathbbm{1}_A(2y-x) \\ &= \mathbb{E}_y\mathbbm{1}_A(y)(\mathbbm{1}_A*\mathbbm{1}_A)(2y) \\ &= \langle \mathbbm{1}_{2\cdot A},\mathbbm{1}_A*\mathbbm{1}_A \rangle. \end{split}$$

By Plancherel's Identity and Lemma 2.28, this is equal to

$$\begin{split} \langle \hat{\mathbb{1}}_{2\cdot A}, \hat{\mathbb{1}}_A^2 \rangle &= \sum_{t \in \hat{\mathbb{F}}_p^n} \hat{\mathbb{1}}_{2\cdot A}(t) \overline{\hat{\mathbb{1}}_A(t)}^2 \\ &= \alpha^3 + \sum_{t \neq 0} \hat{\mathbb{1}}_{2\cdot A}(t) \overline{\hat{\mathbb{1}}_A(t)}^2 \end{split}$$

But

$$\begin{split} \left|\sum_{t\neq 0} \hat{\mathbb{1}}_{2\cdot A}(t)\overline{\hat{\mathbb{1}}_{A}(t)}^{2}\right| &\leq \sup_{t\neq 0} \left|\hat{\mathbb{1}}_{A}(t)\right| \sum_{t\neq 0} \left|\hat{\mathbb{1}}_{2\cdot A}(t)\right| \left|\hat{\mathbb{1}}_{A}(t)\right| \\ &\leq \varepsilon \sum_{t\in \widehat{\mathbb{F}}_{p}^{n}} \left|\hat{\mathbb{1}}_{2\cdot A}(t)\right| \left|\hat{\mathbb{1}}_{A}(t)\right| \\ &\leq \varepsilon \left(\sum_{t} \left|\hat{\mathbb{1}}_{2\cdot A}(t)\right|^{2} \sum_{t} \left|\hat{\mathbb{1}}_{A}(t)\right|^{2}\right)^{1/2} \quad \text{by Cauchy-Schwarz} \\ &= \varepsilon \left\|\hat{\mathbb{1}}_{2\cdot A}\right\|_{2} \left\|\hat{\mathbb{1}}_{A}\right\|_{2} \\ &= \varepsilon \cdot \alpha^{2} \leq \varepsilon \qquad \qquad \text{by Parseval.} \end{split}$$

Theorem 2.36 (Meshulam) Let $A \subseteq \mathbb{F}_p^n$ be a set containing no non-trivial 3-APs. Then $|A| = O(p^n / \log p^n)$, i.e. $\alpha = O(1/n)$.

Proof (Hints).

- Use similar proof as that of above lemma to show that $|T_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) \alpha^3| \leq \sup_{t \neq 0} |\hat{\mathbb{1}}_A(t)| \cdot \alpha.$
- Reason that provided $p^n \ge 2\alpha^{-2}$, we have $\sup_{t \ne 0} \left| \hat{\mathbb{1}}_A(t) \right| \ge \frac{\alpha^2}{2}$.
- Use this to iteratively generate $A_1, V_1, A_2, V_2, \dots$
- Reason that each A_i contains no non-trivial 3 APs.
- Find an expression for maximum number of steps it takes for the density of the A_i to increase from $2^k \alpha$ to $2^{k+1} \alpha$ (in terms of k and α). Use this to deduce an upper bound for the maximum number steps it takes for the density to reach 1.
- Find lower bound for dim (V_m) where V_m is the final V_i in the sequence, use fact that iteration halted to deduce that $p^{\dim(V_m)} \leq 2\alpha^{-2}$.
- Reason that we can assume $\alpha \geq \sqrt{2}p^{-n/4}$, and conclude that $\alpha \leq 16n$.

Proof. By assumption, $T_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) = |A|/(p^n)^2 = \alpha/p^n$ (there are |A| trivial APs). By the proof of the above lemma,

$$\left|T_3(\mathbb{1}_A,\mathbb{1}_A,\mathbb{1}_A)-\alpha^3\right|\leq \sup_{t\neq 0}\Bigl|\widehat{\mathbb{1}}_A(t)\Bigr|\cdot\alpha.$$

So provided that $p^n \ge 2\alpha^{-2}$, we have $T_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) \le \alpha^3/2$, so $|T_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) - \alpha^3| \ge \alpha^3/2$, hence

$$\sup_{t\neq 0} \left| \widehat{\mathbb{1}}_A(t) \right| \geq \frac{\alpha^2}{2}.$$

So by Lemma 2.32 with $\rho = \frac{\alpha}{2}$, there exists a subspace $V \leq \mathbb{F}_p^n$ of codimension 1 and $x \in \mathbb{F}_p^n$ such that $|A \cap (x+V)| \geq (\alpha + \alpha^2/4)|V|$.

We iterate this observation: let $A_0 = A$, $V_0 = \mathbb{F}_p^n$, $\alpha_0 = |A_0|/|V_0|$. At this *i*-th step, we are given a set $A_{i-1} \subseteq V_{i-1}$ of density α_{i-1} with no non-trivial 3-APs. Provided that

 $p^{\dim(V_{i-1})} \geq 2\alpha_{i-1}^{-2},$ there exists a subspace $V_i \leq V_{i-1}$ of codimension 1 and $x_i \in V_{i-1}$ such that

$$|(A-x_i)\cap V_i| = |A\cap (x_i+V_i)| \geq \left(\alpha_{i-1} + \alpha_{i-1}^2/4\right)|V_i|$$

So set $A_i = (A - x_i) \cap V_i$. A_i has density $\alpha_i \ge \alpha_{i-1} + \alpha_{i-1}^2/4$, and contains no non-trivial 3-APs (since the translate $A - x_i$ contains no non-trivial 3-APs). Through this iteration, the density increases:

- from α to 2α in at most $\alpha/(\alpha^2/4) = 4\alpha^{-1}$ steps,
- from 2α to 4α in at most $(2\alpha)/((2\alpha)^2/4) = 2\alpha^{-1}$ steps.
- and so on, ...

So the density reaches 1 in at most $4\alpha^{-1}\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right) = 8\alpha^{-1}$ steps. The iteration must end with $\dim(V_i) \ge n - 8\alpha^{-1}$, at which point we must have had $p^{\dim(V_i)} < 2\alpha_{i-1}^{-2} \le 2\alpha^{-2}$, or else we could have iterated again.

But we may assume that $\alpha \geq \sqrt{2}p^{-n/4}$ (since otherwise we would be done), so $\alpha^{-2} < \frac{1}{2}p^{n/2}$, whence $p^{n-8\alpha^{-1}} \leq p^{n/2}$, i.e. $\frac{n}{2} \leq 8\alpha^{-1}$.

Remark 2.37 The current largest known subset of \mathbb{F}_3^n containing no non-trivial 3-APs has size 2.2202^n .

Lemma 2.38 Let $A \subseteq [N]$ be of density $\alpha > 0$ and contain no non-trivial 3-APs, with $N > 50\alpha^{-2}$. Let p be a prime with $p \in [N/3, 2N/3]$, and write $A' = A \cap [p] \subseteq \mathbb{Z}/p$. Then one of the following holds:

- 1. $\sup_{t\neq 0} \left| \hat{\mathbb{1}}_{A'}(t) \right| \geq \alpha^2/10$ (where the Fourier coefficient is computed in \mathbb{Z}/p).
- 2. There exists an interval $J \subseteq [N]$ of length $\geq N/3$ such that $|A \cap J| \geq \alpha(1 + \alpha/400)|J|$.

Proof (Hints).

• Show that we can assume $|A'| \ge \alpha (1 - \alpha/200)p$.

Proof. TODO: fill in details in proof.

We may assume that $|A'| = |A \cap [p]| \ge \alpha(1 - \alpha/200)p$, since otherwise $|A \cap [p + 1, N]| \ge \alpha N - (\alpha(1 - \alpha/200)p) = \alpha(N - p) + \frac{\alpha^2}{200}p \ge (\alpha + \alpha^2/400)(N - p)$ since $p \ge N/3$, which implies case 2 with J = [p + 1, N].

Let $A'' = A' \cap [p/3, 2p/3]$. Note that all 3-APs of the form $(x, x + d, x + 2d) \in A' \times A'' \times A''$ are in fact APs in [N]. If $|A' \cap [p/3]|$ or $|A' \cap [2p/3, p]|$ is at least $\frac{2}{5}|A'|$, then again we are in case 2. So we may assume that $|A''| \ge |A'|/5$. Now as in above lemmas, we have

$$\frac{\alpha''}{p} = \frac{|A''|}{p^2} = T_3(\mathbb{1}_{A'}, \mathbb{1}_{A''}, \mathbb{1}_{A''}) = \alpha'(\alpha'')^2 + \sum_t \overline{\hat{\mathbb{1}}_{A'}(t)\hat{\mathbb{1}}_{A''}(t)} \widehat{\mathbb{1}}_{2 \cdot A''}(t)$$

where $\alpha' = |A'|/p$ and $\alpha'' = |A''|/p$. So as before,

$$\frac{\alpha'\alpha''}{2} \le \sup_{t \ne 0} |\mathbb{1}_{A'}(t)| \cdot \alpha''$$

provided that $\alpha''/p \leq \frac{1}{2}\alpha'(\alpha'')^2$, i.e. $2/p \leq \alpha'\alpha''$ (check this inequality indeed holds). Hence, $\sup_{t\neq 0} |\hat{\mathbb{1}}_{A'}(t)| \geq \frac{\alpha'\alpha''}{2} \geq \frac{1}{2}\alpha(1-\alpha/200)^2 \cdot \frac{2}{5} \geq \alpha^2/10$. TODO: constants need to change somewhere here.

Lemma 2.39 Let $m \in \mathbb{N}$, and let $\varphi : [m] \to \mathbb{Z}/p$ be given by $\varphi(x) = tx$ for some $t \neq 0$. For all $\varepsilon > 0$, there exists a partition of [m] into progressions P_i of length $\ell_i \in [\varepsilon \sqrt{m}/2, \varepsilon \sqrt{m}]$, such that

$$\forall i, \quad \mathrm{diam}(\varphi(P_i)) \coloneqq \max_{x,y \in P_i} |\varphi(x) - \varphi(y)| \leq \varepsilon p$$

(where $|\varphi(x) - \varphi(y)|$ views $\varphi(x), \varphi(y) \in \{0, ..., p-1\}$).

Proof. Let $u = \lfloor \sqrt{m} \rfloor$ and consider 0, t, ..., ut. By the pigeonhole principle, there exists $0 \le v < w \le u$ such that $|wt - vt| = |(w - v)t| \le p/u$. Set s = w - v, so $|st| \le p/u$. Divide [m] into residue classes mod s, each of which has size at least $m/s \ge m/u$. But each residue class can be divided into APsof the form a, a + s, ..., a + ds for some $\varepsilon u/2 < d \le \varepsilon u$. The diameter of the image of each progression under φ is $|dst| \le dp/u \le \varepsilon up/u = \varepsilon p$.

Lemma 2.40 Let $A \subseteq [N]$ be of density $\alpha > 0$, let p be prime with $p \in [N/3, 2N/3]$, and write $A' = A \cap [p] \subseteq \mathbb{Z}/p$. Suppose that $\left|\hat{\mathbb{1}}_{A'}(t)\right| \ge \alpha^2/20$ for some $t \neq 0$. Then there exists a progression $P \subseteq [N]$ of length at least $\alpha^2 \sqrt{N}/500$ such that $|A \cap P| \ge \alpha(1 + \alpha/80)|P|$.

Proof. Let $\varepsilon = \alpha^2/40\pi$ and use above lemma to partition [p] into progressions P_i of length $\geq \varepsilon \sqrt{p/2} \geq \alpha^2/40\pi \frac{\sqrt{N/3}}{2} \geq \alpha^{\sqrt{N}}/500$, and diam $(\varphi(P_i)) \leq \varepsilon p$. Fix one x_i from each of the P_i . Then

$$\begin{split} \frac{\alpha^2}{20} &\leq \left| \hat{f}_{A'}(t) \right| = \frac{1}{p} \sum_i \sum_{x \in P_i} f_{A'}(x) e(-xt/p) \\ &= \frac{1}{p} \left| \sum_i \sum_{x \in P_i} f_{A'}(x) e(-xit/p) + \sum_i \sum_{x \in P_i} f_{A'}(x) (e(-xt/p) - e(-xit/p)) \right| \\ &\leq \frac{1}{p} \sum_i \left| \sum_{x \in P_i} f_{A'}(x) \right| + \frac{1}{p} \sum_i \sum_{x \in P_i} |f_{A'}(x)| \underbrace{|e(-xt/p) - e(-xit/p)|}_{\leq 2\pi\varepsilon \text{ since } \operatorname{diam}(\varphi(P_i)) \leq \varepsilon p} \end{split}$$

So

$$\sum_{i} \left| \sum_{x \in P_i} f_{A'}(x) \right| \ge \frac{\alpha^2}{40} p$$

Since $f_{A'}$ has mean zero,

$$\sum_{i} \left(\left| \sum_{x \in P_i} f_{A'}(x) \right| + \sum_{x \in P_i} f_{A'}(x) \right) \ge \frac{\alpha^2}{40} p$$

hence $\exists i$ such that

$$\left|\sum_{x\in P_i} f_{A'}(x)\right| + \sum_{x\in P_i} f_{A'}(x) \geq \frac{\alpha^2}{80} |P_i|$$

and so

$$\sum_{x\in P_i}f_{A'}(x)\geq \frac{\alpha^2}{160}|P_i|.$$

Definition 2.41 Let $\Gamma \subseteq \hat{G}$ and $\rho > 0$. The **Bohr set** $B(\Gamma, \rho)$ is the set

$$B(\Gamma,\rho)=\{x\in G: |\gamma(x)-1|)<\rho \ \forall \gamma\in \Gamma\}.$$

The rank of $B(\Gamma, \rho)$ is $|B(\Gamma, \rho)|$, and is width (or radius) is ρ .

Example 2.42 Let $G = \mathbb{F}_p^n$, then $B(\Gamma, \rho) = \langle \Gamma \rangle^{\perp}$ for all sufficiently small ρ . Here, the rank gives an upper bound on $\operatorname{codim}(\langle \Gamma \rangle^{\perp})$.

Lemma 2.43 Let $\Gamma \subseteq \hat{G}$ and $|\Gamma| = d$, and let $\rho > 0$. Then

$$|B(\Gamma,\rho)| \geq \left(\frac{\rho}{8}\right)^d |G|.$$

Proposition 2.44 (Bogolyubov's Lemma for Finite Abelian Groups) Let $A \subseteq G$ be of density $\alpha > 0$. Then there exists $\Gamma \subseteq \hat{G}$ with $|\Gamma| \leq 2\alpha^{-2}$ such that

$$B\left(\Gamma, \frac{1}{2}\right) \subseteq A + A - (A + A).$$

Proof. Recall that

$$(\mathbb{1}_A*\mathbb{1}_A*\mathbb{1}_A*\mathbb{1}_A)(x)=\sum_{\gamma\in\widehat{G}}\left|\widehat{\mathbb{1}}_A(\gamma)\right|^4\gamma(x)$$

Let $\Gamma = \operatorname{Spec}_{\sqrt{\alpha/2}}(\mathbb{1}_A)$ and note that for $x \in B(\Gamma, 1/2)$ and $\gamma \in \Gamma$, $\operatorname{Re}(\gamma(x)) > 0$. Hence, for $x \in B(\Gamma, 1/2)$,

$$\operatorname{Re}\left(\sum_{\gamma\in\widehat{G}}\left|\widehat{\mathbbm{1}}_{A}(\gamma)\right|^{4}\gamma(x)\right) = \operatorname{Re}\left(\sum_{\gamma\in\Gamma}\right)\left|\widehat{\mathbbm{1}}_{A}(\gamma)\right|^{4}\gamma(x)) + \operatorname{Re}\left(\sum_{x\notin\Gamma}\right)\left|\widehat{\mathbbm{1}}_{A}(\gamma)\right|^{4}\gamma(x)\right)$$

and

$$\begin{split} \left| \operatorname{Re} \left(\sum_{\gamma \notin \Gamma} \left| \widehat{\mathbb{1}}_{A}(\gamma) \right|^{4} \gamma(x) \right) \right|) &\leq \sup_{\gamma \notin \Gamma} \left| \widehat{\mathbb{1}}_{A}(\gamma) \right|^{2} \sum_{\gamma \notin \Gamma} \left| \widehat{\mathbb{1}}_{A}(\gamma) \right|^{2} \\ &\leq \left(\sqrt{\frac{\alpha}{2}} \cdot \alpha \right)^{2} \cdot \alpha = \frac{\alpha^{4}}{2} \end{split}$$

by Parseval.

Theorem 2.45 (Roth) Let $A \subseteq [N]$ be a set containing no non-trivial 3-APs. Then $|A| = O(N/\log\log N).$

Proof.

Example 2.46 (Behrend's Example) There exists a set $A \subseteq [N]$ of size $|A| \ge 1$ $\exp(-c\sqrt{\log N})N$ containing no non-trivial 3-APs.

3. Probabilistic tools

All probability spaces here will be finite.

Theorem 3.1 (Khintchine's Inequality) Let $p \in [2, \infty)$. Let $X_1, ..., X_n$ be independent random variables such that

$$\forall i \in [n], \quad \mathbb{P}(X_i = x_i) = \mathbb{P}(X_i = -x_i) = \frac{1}{2}$$

for some $x_1, ..., x_n \in \mathbb{C}$. Then

$$\left\|\sum_{i=1}^{n} X_{i}\right\|_{L^{p}(\mathbb{P})} = O\left(p^{1/2} \left(\sum_{i=1}^{n} \|X_{i}\|_{L^{2}(\mathbb{P})}^{2}\right)^{1/2}\right)$$

Proof (Hints).

- Explain why sufficient to prove for the case that p = 2k for $k \in \mathbb{N}$.
- Explain why summer to prove for the case that p = 2k for $k \in \mathbb{N}$. Explain why $\sum_{i=1}^{n} \|X_i\|_{L^{\infty}(\mathrm{Pr})}^2 = \sum_{i=1}^{n} \|X_i\|_{L^{2}(\mathrm{Pr})}^2$, and assume they are equal to 1. Show that $\|X\|_{L^{2k}(\mathrm{Pr})}^{2k} \leq 8kI(k)$, where $I(k) = \int_0^\infty t^{2k-1} \exp(-t^2/4) \, \mathrm{d}t$. Show by induction on k that $I(k) \leq 2^{2k}(2k)^k/4k$.

Proof. Since L^p norms are nested, it suffices to prove in the case that p = 2k for some $k \in \mathbb{N}$. Write $X = \sum_{i=1}^{n} X_i$, and assume the quantity $\sum_{i=1}^{n} \|X_i\|_{L^{\infty}(\mathbb{P})}^2 = \sum_{i=1}^{n} \|X_i\|_{L^2(\mathbb{P})}^2$ is equal to 1. By Chernoff's Inequality, $\forall \theta > 0$,

$$\Pr(|X| \ge \theta) \le 4 \exp(-\theta^2/4),$$

and so, since $\int_0^t P_X(s) \, \mathrm{d}s = \Pr(|X| \le t)$,

$$\begin{split} \|X\|_{L^{2k}(\Pr)}^{2k} &= \int_{0}^{\infty} t^{2k} P_{X}(t) \, \mathrm{d}t \\ &= \int_{0}^{\infty} 2k t^{2k-1} \Pr(|X| \ge t) \, \mathrm{d}t \text{ by integration by parts} \\ &\le 8k \int_{0}^{\infty} t^{2k-1} \exp(-t^{2}/4) \, \mathrm{d}t =: 8k I(k) \end{split}$$

We will show by induction on k that $I(k) \leq 2^{2k} (2k)^k / 4k$. Indeed, when k = 1,

$$\int_0^\infty t \exp(-t^2/4) \, \mathrm{d}t = \left[-2 \exp(-t^2/4)\right]_0^\infty = 2$$
$$= 2^{2 \cdot 1} (2 \cdot 1)^1 / (4 \cdot 1)$$

For k > 1, we integrate by parts to find that

$$\begin{split} I(k) &\coloneqq \int_0^\infty \underbrace{t^{2k-2}}_u \cdot \underbrace{t \exp(-t^2/4)}_{v'} dt \\ &= \left[t^{2k-2} \cdot \left(-2 \exp(-t^2/4) \right) \right]_0^\infty - \int_0^\infty (2k-2) t^{2k-3} \cdot \left(-2 \exp(-t^2/4) \right) dt \\ &= 4(k-1) \int_0^\infty t^{2(k-1)-1} \exp(-t^2/4) dt \\ &= 4(k-1) I(k-1) \\ &\leq \frac{4(k-1) 2^{2k-1} (2(k-1))^{k-1}}{4(k-1)} \text{ by induction hypothesis} \\ &\leq \frac{2^{2k} (2k)^k}{4k}. \end{split}$$

Corollary 3.2 (Rudin's Inequality) Let $\Gamma \subseteq \widehat{\mathbb{F}}_2^n$ be a linearly independent set and let $p \in [2, \infty)$. Then $\forall \hat{f} \in \ell^2(\Gamma)$,

$$\left\|\sum_{\gamma\in\Gamma}\widehat{f}(\gamma)\gamma\right\|_{L^p(\mathbb{F}_2^n)}=O\Bigl(\sqrt{p}\cdot\Big\|\widehat{f}\Big\|_{\ell^2(\Gamma)}\Bigl)$$

Proof. Exercise.

Corollary 3.3 (Dual Rudin) Let $\Gamma \subseteq \widehat{\mathbb{F}}_2^n$ be a linearly independent set and let $p \in (1, 2]$. Then $\forall f \in L^p(\mathbb{F}_2^n)$,

$$\left\|\widehat{f}\right\|_{\ell^2(\Gamma)} = O\bigg(\sqrt{\frac{p}{p-1}} \cdot \|f\|_{L^p(\mathbb{F}_2^n)}\bigg).$$

 $\begin{array}{l} Proof \ (Hints). \ \ \mathrm{Let} \ g(x) = \sum_{\gamma \in \Gamma} \widehat{f}(\gamma) \gamma(x). \ \mathrm{Show \ that} \ \left\| \widehat{f} \right\|_{\ell^2(\Gamma)}^2 \leq \| f \|_{L^p(\mathbb{F}_2^n)} \| g \|_{L^q(\mathbb{F}_2^n)} \\ \mathrm{where} \ 1/p + 1/q = 1, \ \mathrm{and \ conclude \ using \ Rudin's \ Inequality.} \end{array}$

Proof. Let $f \in L^p(\mathbb{F}_2^n)$ and let $g(x) = \sum_{\gamma \in \Gamma} \hat{f}(\gamma)\gamma(x)$. Then

$$\begin{split} \|\widehat{f}\|_{\ell^{2}(\Gamma)}^{2} &\coloneqq \sum_{\gamma \in \Gamma} \left|\widehat{f}(\gamma)\right|^{2} \\ &= \langle \widehat{f}, \widehat{g} \rangle_{\ell^{2}(\Gamma)} = \langle \widehat{f}, \widehat{g} \rangle_{\ell^{2}\left(\widehat{\mathbb{F}}_{2}^{n}\right)} \\ &= \langle f, g \rangle_{L^{2}(\mathbb{F}_{2}^{n})} & \text{by Plancherel's Identity} \\ &\leq \|f\|_{L^{p}(\mathbb{F}_{2}^{n})} \|g\|_{L^{q}(\mathbb{F}_{2}^{n})} & \text{by Hölder's Inequality.} \end{split}$$

where 1/p + 1/q = 1. By Rudin's Inequality,

$$\begin{split} \|g\|_{L^q(\mathbb{F}_2^n)} &= O\Big(\sqrt{q} \cdot \|\hat{g}\|_{\ell^2(\Gamma)}\Big) \\ &= O\bigg(\sqrt{\frac{p}{p-1}} \cdot \Big\|\hat{f}\Big\|_{\ell^2(\Gamma)}\bigg). \end{split}$$

Recall that given $A \subseteq \mathbb{F}_2^n$ of density $\alpha > 0$, we have $|\operatorname{Spec}_{\rho}(\mathbb{1}_A)| \leq \rho^{-2} \alpha^{-1}$. This is the best possible bound as the example of a subspace A shows. However, in this case, the large spectrum is highly structured.

Theorem 3.4 (Special Case of Chang's Theorem) Let $A \subseteq \mathbb{F}_2^n$ be of density $\alpha > 0$. Then

$$\forall \rho > 0, \exists H \leq \hat{\mathbb{F}}_2^n : \dim(H) = O\big(\rho^{-2}\log\alpha^{-1}\big) \quad \text{and} \quad \operatorname{Spec}_\rho(\mathbb{1}_A) \subseteq H.$$

Proof (Hints). Use Dual Rudin on a maximal linearly independent set in $\operatorname{Spec}_{\rho}(\mathbb{1}_A)$, with $p = 1 + (\log \alpha^{-1})^{-1}$.

Proof. Let $\Gamma \subseteq \operatorname{Spec}_{\rho}(\mathbb{1}_A)$ be maximal linearly independent set. Let $H = \langle \operatorname{Spec}_{\rho}(\mathbb{1}_A) \rangle$. Clearly dim $(H) = |\Gamma|$. By Dual Rudin, $\forall p \in (1, 2]$,

$$(\rho\alpha)^2|\Gamma| \leq \sum_{\gamma \in \Gamma} \left|\widehat{\mathbb{1}}_A(\gamma)\right|^2 = \left\|\widehat{\mathbb{1}}_A\right\|_{\ell^2(\Gamma)}^2 = O\left(\frac{p}{p-1}\|\mathbb{1}_A\|_{L^p(\mathbb{F}_2^n)}^2\right) = O\left(\frac{p}{p-1}\alpha^{2/p}\right).$$

Hence, $|\Gamma| \leq O\left(\rho^{-2}\alpha^{-2}\alpha^{2/p}\frac{p}{p-1}\right)$. Setting $p = 1 + \left(\log \alpha^{-1}\right)^{-1}$, we obtain $|\Gamma| \leq O\left(\rho^{-2}\alpha^{-2}(\alpha^{2}e^{2})\left(\log \alpha^{-1}+1\right)\right) = O\left(\rho^{-2}\log \alpha^{-1}\right)$.

Definition 3.5 Let G be a finite abelian group. $S \subseteq G$ is **dissociated** if, whenever $\sum_{s \in S} \varepsilon_s s = 0$ with each $\varepsilon_s \in \{-1, 0, 1\}$, then we have $\varepsilon_s = 0$ for all $s \in S$.

Example 3.6 Clearly, if $G = \mathbb{F}_2^n$, then $S \subseteq G$ is dissociated iff S is linearly independent.

Theorem 3.7 (Chang) Let G be a finite abelian group, and let $A \subseteq G$ be of density $\alpha > 0$. If $\Lambda \subseteq \operatorname{Spec}_{\rho}(\mathbb{1}_A)$ is dissociated, then $|\Lambda| = O(\rho^{-2} \log \alpha^{-1})$.

Theorem 3.8 (Marcinkiewicz-Zygmund) Let $p \in [2, \infty)$ and let $X_1, ..., X_n \in L^p(\Pr)$ be independent RVs with $\mathbb{E}[X_1 + \dots + X_n] = 0$. Then

$$\left\|\sum_{i=1}^n X_i\right\|_{L^p(\mathrm{Pr})} = O\left(p^{1/2} \cdot \left\|\sum_{i=1}^n |X_i|^2\right\|_{L^{p/2}(\mathrm{Pr})}^{1/2}\right).$$

Proof. First assume that the distribution of the X_i is symmetric, i.e. $\Pr(X_i = a) = \Pr(X_i = -a)$ for all $a \in \mathbb{R}$ and $i \in [n]$. Partition the probability space Ω into sets $\Omega_1, \Omega_2, ..., \Omega_M$ and write \Pr_j for the induced measure on Ω , such that all X_i are symmetric and take at most 2 values. By Khintchine's inequality, for each $j \in [M]$,

$$\begin{split} \left\|\sum_{i=1}^{n} X_{i}\right\|_{L^{p}(\mathrm{Pr}_{j})}^{p} &= O\left(p^{p/2} \cdot \left(\sum_{i=1}^{n} \|X_{i}\|_{L^{2}(\mathrm{Pr}_{j})}^{2}\right)^{p/2}\right) \\ &= O\left(p^{p/2} \cdot \left\|\sum_{i=1}^{n} |X_{i}|^{2}\right\|_{L^{p/2}(\mathrm{Pr}_{j})}^{p/2}\right). \end{split}$$

Summing over all $j \in [M]$ and taking *p*-th roots gives the result for the symmetric case.

Now suppose the X_i are arbitrary RVs, and let $Y_1, ..., Y_n$ be such that $Y_i \sim X_i$ and $X_1, Y_1, ..., X_n, Y_n$ are all independent. Applying the symmetric case to the RVs $X_i - Y_i$, we obtain

$$\begin{split} \left\|\sum_{i=1}^{n} (X_{i} - Y_{i})\right\|_{L^{p}(\mathbf{Pr} \times \mathbf{Pr})} &= O\left(p^{1/2} \cdot \left\|\sum_{i=1}^{n} |X_{i} - Y_{i}|^{2}\right\|_{L^{p/2}(\mathbf{Pr} \times \mathbf{Pr})}^{1/2}\right) \\ &= O\left(p^{1/2} \cdot \left\|\sum_{i=1}^{n} |X_{i}^{2}|\right\|_{L^{p/2}(\mathbf{Pr})}^{1/2}\right) \quad \text{TODO: check this explicitly} \end{split}$$

But then

$$\begin{split} \left| \sum_{i=1}^{n} X_{i} \right\|_{L^{p}(\mathrm{Pr})}^{p} &= \left\| \sum_{i=1}^{n} X_{i} - \mathbb{E}_{Y} \left[\sum_{i=1}^{n} Y_{i} \right] \right\|_{L^{p}(\mathrm{Pr})}^{p} \\ &= \mathbb{E}_{X} \left| \sum_{i=1}^{n} X_{i} - \mathbb{E}_{Y} \left[\sum_{i=1}^{n} Y_{i} \right] \right|^{p} \\ &= \mathbb{E}_{X} \left| \mathbb{E}_{Y} \sum_{i=1}^{n} (X_{i} - Y_{i}) \right|^{p} \\ &\leq \mathbb{E}_{X} \mathbb{E}_{Y} \left| \sum_{i=1}^{n} (X_{i} - Y_{i}) \right|^{p} \quad \text{by Jensen's inequality} \\ &= \left\| \sum_{i=1}^{n} (X_{i} - Y_{i}) \right\|_{L^{p}(\mathrm{Pr} \times \mathrm{Pr})}^{p}. \end{split}$$

Theorem 3.9 (Croot-Sisask Almost Periodicity) Let G be a finite abelian group, let $\varepsilon > 0$, and $p \in [2, \infty)$. Let $A, B \subseteq G$ be such that $|A + B| \leq K|A|$, and let $f : G \to \mathbb{C}$. Then there is $b \in B$ and a set $X \subseteq B - b$ such that $|X| \geq \frac{1}{2}K^{-O(\varepsilon^{-2}p)}|B|$ and

$$\|\tau_x(f\ast\mu_A)-f\ast\mu_A\|_{L^p(G)}\leq \varepsilon\|f\|_{L^p(G)}\quad \forall x\in X,$$

where $\tau_x g(y) = g(y+x)$ for all $y \in G$.

Proof. The main idea is to approximated

$$(f*\mu_A)(y) = \mathbb{E}_{x\in G}f(y-x)\mu_A(x) = \mathbb{E}_{x\in A}f(y-x)$$

by $\frac{1}{m} \sum_{i=1}^{m} f(y - z_i)$ where the z_i are sampled independently and uniformly from A, and m is to be chosen later. For each $y \in G$, define $Z_i(y) = \tau_{-z_i} f(y) - (f * \mu_A)(y)$. For each $y \in G$, these are independent random variables with mean 0. So by Marcinkiewicz-Zygmund,

$$\begin{split} \left\|\sum_{i=1}^{m} Z_{i}(y)\right\|_{L^{p}(\mathrm{Pr})}^{p} &= O\left(p^{p/2} \cdot \left\|\sum_{i=1}^{m} |Z_{i}(y)|^{2}\right\|_{L^{p/2}(\mathrm{Pr})}^{p/2}\right) \\ &= O\left(p^{p/2} \cdot \mathbb{E}_{(z_{1}, \dots, z_{m}) \in A^{m}} \left|\sum_{i=1}^{m} |Z_{i}(y)|^{2}\right|^{p/2}\right). \end{split}$$

By Holder's inequality with 1/p' + 2/p = 1,

$$\begin{split} \left| \sum_{i=1}^{m} |Z_i(y)|^2 \right|^{p/2} &\leq \left(\sum_{i=1}^{m} 1^{p'} \right)^{\frac{1}{p'} \cdot \frac{p}{2}} \cdot \left(\sum_{i=1}^{m} |Z_i(y)|^{2 \cdot \frac{p}{2}} \right)^{\frac{2}{p} \cdot \frac{p}{2}} \\ &= m^{p/2 - 1} \cdot \sum_{i=1}^{m} |Z_i(y)|^p. \end{split}$$

So

$$\left\|\sum_{i=1}^m Z_i(y)\right\|_{L^p(\mathrm{Pr})}^p = O\left(p^{p/2}m^{p/2-1}\cdot \mathbb{E}_{(z_1,\dots,z_m)\in A^m}\sum_{i=1}^m |Z_i(y)|^p\right).$$

Summing over all $y \in G$, we have

$$\mathbb{E}_{y \in G} \left\| \sum_{i=1}^m Z_i(y) \right\|_{L^p(\mathrm{Pr})}^p = O\left(p^{p/2} m^{p/2-1} \mathbb{E}_{(z_1, \dots, z_m) \in A^m} \sum_{i=1}^m \mathbb{E}_{y \in G} |Z_i(y)|^p \right)$$

and $\left(\mathbb{E}_{y\in G}|Z_{i}(y)|^{p}\right)^{1/p} = \left\|Z_{i}\right\|_{L^{p}(G)} = \left\|\tau_{-z_{i}}f - f * \mu_{A}\right\|_{L^{p}(G)} \le \left\|\tau_{-z_{i}}f\right\|_{L^{p}(G)} + \left\|f\right\|_{L^{p}(G)} + \left\|f\right\|_{L^{p}(G)} \cdot \left\|\mu_{A}\right\|_{L^{1}(G)} \le 2\left\|f\right\|_{L^{p}(G)}$ by Young's convolution inequality. So we have

$$\begin{split} \mathbb{E}_{(z_1,\dots,z_m)\in A^m} \mathbb{E}_{y\in G} \Biggl| \sum_{i=1}^m Z_i(y) \Biggr|^p &= O\Biggl(p^{p/2} m^{p/2-1} \sum_{i=1}^m \Bigl(2\|f\|_{L^p(G)} \Bigr)^p \Biggr) \\ &= O\Bigl((4p)^{p/2} m^{p/2} \|f\|_{L^p(G)}^p \Bigr). \end{split}$$

Choose $m = O(\varepsilon^{-2}p)$ so that the RHS is at most $\left(\frac{\varepsilon}{4} \|f\|_{L^p(G)}\right)^p$, and f§or $(z_1, ..., z_m) \in A^m$, define

$$M_{(z_1,\ldots,z_m)}\coloneqq \mathbb{E}_{y\in G} \Bigg| \frac{1}{m} \sum_{i=1}^m \tau_{-z_i} f(y) - (f\ast \mu_A)(y) \Bigg|^p.$$

Then we have

$$\mathbb{E}_{(z_1,\dots,z_m)\in A^m} M_{(z_1,\dots,z_m)} = O\Big((4p)^{p/2}m^{p/2}\|f\|_{L^p(G)}^p\Big) = \Big(\frac{\varepsilon}{4}\|f\|_{L^p(G)}\Big)^p.$$

Also define

$$L = \left\{ \boldsymbol{z} \in A^m : M_{\boldsymbol{z}} \le \left(\frac{\varepsilon}{2} \|f\|_{L^p(G)}\right)^p \right\}.$$

By Markov's inequality, since

$$\mathbb{E}_{\boldsymbol{z}\in A^m}M_{\boldsymbol{z}} \leq \left(\frac{\varepsilon}{4}\|f\|_{L^p(G)}\right)^p = 2^{-p} \left(\frac{\varepsilon}{2}\|f\|_{L^p(G)}\right)^p,$$

we have

$$\frac{A^m \setminus L|}{|A^m|} = \Pr\left(M_{\boldsymbol{z}} \geq \left(\frac{\varepsilon}{2} \|f\|_{L^p(G)}\right)^p\right) \leq \Pr(M_{\boldsymbol{z}} \geq 2^p \mathbb{E}_{\boldsymbol{z} \in A^m} M_{\boldsymbol{z}}) \leq 2^{-p},$$

hence $|L|\geq (1-1/2^p)|A|^m\geq \frac{1}{2}|A|^m.$ Let $D=\{(b,...,b):b\in B\}\subseteq B^m.$ Then $L+D\subseteq (A+B)^m,$ and so

$$|L + D| \le |A + B|^m \le K^m |A|^m \le 2K^m |L|.$$

By Lemma 1.24,

$$E(L,D) \geq \frac{|L|^2 |D|^2}{|L+D|} \geq \frac{1}{2} K^{-m} |D|^2 |L|,$$

so there are at least $|D|^2/2K^m$ pairs $(d_1, d_2) \in D^2$ such that $r_{L-L}(d_2 - d_1) > 0$. In particular, there exists $b \in B$ and $X \subseteq B - b$ such that $|X| \ge |D|/2K^m = |B|/2K^m$ and for all $x \in X$, there exists $\ell_2(x) \in L$ such that for all $\in [m]$, $\ell_1(x)_i - \ell_2(x)_i = x$. But now for all $x \in X$, by the triangle inequality, we have,

$$\begin{split} \|\tau_{-x}f*\mu_{A} - f*\mu_{A}\|_{L^{p}(G)} &\leq \left\|\tau_{-x}f*\mu_{A} - \tau_{-x}\left(\frac{1}{m}\sum_{i=1}^{m}\tau_{-\ell_{2}(x)_{i}}f\right)\right\|_{L^{p}(G)} \\ &+ \left\|\tau_{-x}\left(\frac{1}{m}\sum_{i=1}^{m}\tau_{-\ell_{2}(x)_{i}f} - f*\mu_{A}\right)\right\|_{L^{p}(G)} \\ &= \left\|f*\mu_{A} - \frac{1}{m}\sum_{i=1}^{m}\tau_{-\ell_{2}(x)_{i}f}\right\|_{L^{p}(G)} \\ &+ \left\|\frac{1}{m}\sum_{i=1}^{m}\tau_{-x-\ell_{2}(x)_{i}f} - f*\mu_{A}\right\|_{L^{p}(G)} \\ &\leq 2\cdot\frac{\varepsilon}{2}\|f\|_{L^{p}(G)} \end{split}$$

by definition of L.

Theorem 3.10 (Bogolyubov, after Sanders) Let $A \subseteq \mathbb{F}_p^n$ have density $\alpha > 0$. There exists a subspace $V \leq \mathbb{F}_p^n$ of codimension $O((\log \alpha^{-1})^4)$ such that

$$V \subseteq (A+A) - (A+A)$$

4. Further topics

Theorem 4.1 (Ellenberg-Gijswijt) If $A \subseteq \mathbb{F}_3^n$ contains no non-trivial 3-term APs, then $|A| = o(2.756^n)$.

Notation 4.2 Let M_n denote the set of monomials in $x_1, ..., x_n$ whose degree in each variable is at most 2.

Notation 4.3 Let V_n denote the vector space of polynomials over \mathbb{F}_3 whose basis is M_n .

Notation 4.4 For any $0 \le d \le 2n$, let M_n^d denote the set of monomials in M_n of total degree at most d, and let V_n^d denote the corresponding vector space of polynomials. Write $m_d = \dim(V_n^d) = |M_n^d|$.

Lemma 4.5 Let $A \subseteq \mathbb{F}_3^n$ and $P \in V_n^d$ be a polynomial. If P(a+b) = 0 for all $a \neq b \in A$, then

$$|\{a \in A: P(2a) \neq 0\}| \leq 2m_{d/2}.$$

Proof. Every $P \in V_n^d$ can be written as a linear combination of monomials in M_n^d , so

$$P(x+y) = \sum_{\substack{m,m' \in M_n^d \\ \deg(mm') \leq d}} c_{m,m'} m(x) m'(y)$$

for some coefficients $c_{m,m'}.$ Clearly, at least one of m,m' must have degree $\leq d/2,$ whence

$$P(x+y) = \sum_{m \in M_n^{d/2}} m(x) F_m(y) + \sum_{m' \in M_n^{d/2}} m'(y) G_{m'}(x),$$

for some families of polynomials $\{F_m : m \in M_n^{d/2}\}$ and $\{G_{m'} : m' \in M_n^{d/2}\}$. Viewing $(P(x+y))_{x,y\in A}$ as an $|A| \times |A|$ matrix C, we see that C can be written as the sum of at most $2m_{d/2}$ matrices, each of which has rank 1. Thus, $\operatorname{rank}(C) \leq 2m_{d/2}$. But by assumption, C is diagonal, and so its rank is equal to $|\{a \in A : P(a+a) \neq 0\}|$. \Box

Proposition 4.6 Let $A \subseteq \mathbb{F}_3^n$ be a set containing no non-trivial 3-APs. Then $|A| \leq 3m_{2n/3}$.

Proof. Let $d \in [0, 2n]$ be an integer which we will determine later. Let W be the space of polynomials in V_n^d that vanish in $(2 \cdot A)^c$. We have $\dim(W) \ge \dim(V_n^d) - |(2 \cdot A)^c| = m_d - (3^n - |A|).$

We claim that there exists $P \in W$ such that $|\operatorname{supp}(P)| \ge \dim(W)$. Indeed, pick $P \in W$ with maximal support. If $|\operatorname{supp}(P)| < \dim(W)$, then there would be a non-zero polynomial $Q \in W$ vanishing on $\operatorname{supp}(P)$, in which case $\operatorname{supp}(P + Q) \supseteq \operatorname{supp}(P)$, contradicting the maximality of $\operatorname{supp}(P)$.

Now by assumption, $\{a + a' : a \neq a' \in A\} \cap 2 \cdot A = \emptyset$, so any polynomial that vanishes on $(2 \cdot A)^c$ also vanishes on $\{a + a' : a \neq a' \in A\}$. Thus by above lemma,

$$\begin{split} m_d - (3^n - |A|) &\leq \dim(W) \leq |\mathrm{supp}(P)| = |\{x \in \mathbb{F}_3^n : P(x) \neq 0\}| \\ &= |\{a \in A : P(2a) \neq 0\}| \leq 2m_{d/2} \end{split}$$

Hence, $|A| \leq 3^n - m_d + 2m_{d/2}$. But the monomials in $M_n \setminus M_n^d$ are in bijection with the ones in M_{2n-d} by $x_1^{\alpha_1} \cdots x_n^{\alpha_n} \leftrightarrow x_1^{2-\alpha_1} \cdots x_n^{2-\alpha_n}$, whence $3^n - m_d = m_{2n-d}$. Thus, setting d = 4n/3, we have

$$|A| \le m_{2n/3} + 2m_{2n/3} = 3m_{2n/3}.$$

Example 4.7 Recall from (find lemma) that given $A \subseteq G$,

$$\big|T_3(\mathbb{1}_A,\mathbb{1}_A,\mathbb{1}_A)-\alpha^3\big|\leq \sup_{\gamma\neq 1}\Bigl|\widehat{\mathbb{1}}_A(\gamma)\Bigr|.$$

However, it is impossible to bound $T_4(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) - \alpha^4$, where

$$T_4(\mathbb{1}_A,\mathbb{1}_A,\mathbb{1}_A,\mathbb{1}_A)=\mathbb{E}_{x,d}\mathbb{1}_A(x)\mathbb{1}_A(x+d)\mathbb{1}_A(x+2d)\mathbb{1}_A(x+3d),$$

by $\sup_{\gamma \neq 1} |\hat{\mathbb{1}}_A(\gamma)|$. Indeed, consider $Q = \{x \in \mathbb{F}_p^n : x \cdot x = 0\}$. By (find example), $|Q|/p^n = 1/p + O(p^{-n/2})$ and $\sup_{t \neq 0} |\hat{\mathbb{1}}_Q(t)| = O(p^{-n/2})$. But given a 3-AP $x, x + d, x + 2d \in Q$, by the identity

$$\forall x,d, \quad x^2-3(x+d)^2+3(x+2d)^2-(x+3d)^2=0,$$

x+3d automatically lies in Q, so $T_4(\mathbbm{1}_A,\mathbbm{1}_A,\mathbbm{1}_A,\mathbbm{1}_A)=T_3(\mathbbm{1}_A,\mathbbm{1}_A,\mathbbm{1}_A)=(1/p)^3+O(p^{-n/2}).$

Definition 4.8 Given $f: G \to \mathbb{C}$, define its U^2 -norm by

$$\|f\|_{U^2(G)}^4 = \mathbb{E}_{x,a,b \in G} f(x) \overline{f(x+a)f(x+b)} f(x+a+b)$$

By (find example), we have $||f||_{U^2(G)} = ||\hat{f}||_{\ell^4(\widehat{G})}$, so it is indeed a norm.

Lemma 4.9 Let $f_1, f_2, f_3 : G \to \mathbb{C}$. Then

$$|T_3(f_1, f_2, f_3)| \leq \min_{i \in [3]} \left(\|f_i\|_{U^2(G)} \cdot \prod_{j \neq i} \|f_j\|_{L^{\infty}(G)} \right).$$

Note that

$$\sup_{\gamma \in \widehat{G}} \left| \widehat{f}(\gamma) \right|^4 \leq \sum_{\gamma \in \widehat{G}} \left| \widehat{f}(\gamma) \right|^4 \leq \sup_{\gamma \in \widehat{G}} \left| \widehat{f}(\gamma) \right|^2 \sum_{\gamma \in \widehat{G}} \left| \widehat{f}(\gamma) \right|^2$$

and so by Parseval,

$$\|\hat{f}\|_{\ell^{\infty}(\widehat{G})} = \|f\|_{U^{2}(G)}^{4} = \|\hat{f}\|_{\ell^{\infty}(\widehat{G})}^{4} \le \|\hat{f}\|_{\ell^{\infty}(\widehat{G})}^{2} \cdot \|f\|_{L^{2}(G)}^{2} \cdot \|f\|_{L^{2}(G)}$$

Moreover, if $f = f_A = \mathbb{1}_A - \alpha$, then

$$T_3(f,f,f) = T_3(\mathbb{1}_A - \alpha, \mathbb{1}_A - \alpha, \mathbb{1}_A - \alpha) = T_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) - \alpha^3.$$

We may therefore reformulate the first step in the proof of Meshulam as follows: if $p^n \geq 2\alpha^{-2}$, then by (find lemma), $\frac{\alpha^3}{2} \leq \left|\frac{\alpha}{p^n} - \alpha^3\right| = |T_3(f_A, f_A, f_A)| \leq ||f_A||_{U^2(\mathbb{F}_p^n)}$. It remains to show that if $||f_a||_{U^2(\mathbb{F}_p^n)}$ is non-trivial, then there exists a subspace $V \leq \mathbb{F}_p^n$ of bounded codimension on which A has increased density.

Theorem 4.10 (U^2 Inverse Theorem) Let $f : \mathbb{F}_p^n \to \mathbb{C}$ satisfy $||f||_{L^{\infty}(\mathbb{F}_p^n)} \leq 1$ and $||f||_{U^2(\mathbb{F}_p^n)} \geq \delta$ for some $\delta > 0$. Then there exists $b \in \mathbb{F}_p^n$ such that

$$\left|\mathbb{E}_{x\in\mathbb{F}_p^n}f(x)e(-x.b/p)\right|\geq\delta^2.$$

In other words, $\langle f, \varphi \rangle \ge \delta^2$ for $\varphi(x) = e(-x.b/p)$. We say "f correlates with a linear phase function".

Proof. We have seen that
$$||f||_{U^2(\mathbb{F}_p^n)} \leq ||\hat{f}||_{\ell^{\infty}(\widehat{\mathbb{F}}_p^n)} ||f||_{L^2(\mathbb{F}_p^n)} \leq ||\hat{f}||_{\ell^{\infty}(\widehat{\mathbb{F}}_p^n)}$$
. So
$$\delta^2 \leq ||\hat{f}||_{\ell^{\infty}(\widehat{\mathbb{F}}_p^n)} = \sup_{t\in\widehat{\mathbb{F}}_p^n} |\mathbb{E}_{x\in\mathbb{F}_p^n} f(x)e(-x.t/p)|.$$

Definition 4.11 Given $f: G \to \mathbb{C}$, the U^3 norm of f is defined by

$$\begin{split} \|f\|_{U^3(G)}^8 &= \mathbb{E}_{x,a,b,c\in G}f(x)\overline{f(x+a)f(x+b)f(x+c)} \\ & \quad f(x+a+b)f(x+b+c)f(x+a+c)\overline{f(x+a+b+c)} \\ &= \mathbb{E}_{x,h_1,h_2,h_3\in G}\prod_{\varepsilon\in\{0,1\}^3}\mathcal{C}^{|\varepsilon|}f(x+\varepsilon.h), \end{split}$$

where $\mathcal{C}g(x) = \overline{g(x)}$ and $|\varepsilon| = |\{i \in [3] : \varepsilon_i = 1\}|$ is the number of 1's in ε .

TODO: insert diagram of cube with vertices x, x + a, ..., x + a + b + c.

Remark 4.12 It is easy to verify that $||f||_{U^3(G)}^8 = \mathbb{E}_{c \in G} ||\Delta_c f||_{U^2(G)}^4$ where $\Delta_c g(x) = g(x)\overline{g(x+c)}$.

Definition 4.13 Given eight functions $f_{\varepsilon} : G \to \mathbb{C}$ for $\varepsilon \in \{0, 1\}^3$, define their U^3 inner product by

$$\langle \left(f_{\varepsilon}\right)_{\varepsilon \in \{0,1\}^3} \rangle_{U^3(G)} \coloneqq \mathbb{E}_{x,h_1,h_2,h_3 \in G} \prod_{\varepsilon \in \{0,1\}^3} \mathcal{C}^{|\varepsilon|} f_{\varepsilon}(x + \varepsilon \cdot h)$$

Observe that $\langle f, f, f, f, f, f, f, f, f \rangle_{U^3(G)} = ||f||_{U^3(G)}^8$.

Lemma 4.14 (Gowers-Cauchy-Schwarz Inequality) Given $f_{\varepsilon}: G \to \mathbb{C}$ for $\varepsilon \in \{0, 1\}^3$,

$$\left| \left\langle \left(f_{\varepsilon} \right)_{\varepsilon \in \{0,1\}^3} \right\rangle_{U^3(G)} \right| \leq \prod_{\varepsilon \in \{0,1\}^3} \left\| f_{\varepsilon} \right\|_{U^3(G)}.$$

Proof. Exercise (helpful to do for U^2 first).

Remark 4.15 Setting $f_{\varepsilon} = f$ for $\varepsilon \in \{0,1\}^2 \times \{0\}$ and $f_{\varepsilon} = 1$ otherwise, it follows that

$$\|f\|_{U^2(G)}^4 \leq \|f\|_{U^3(G)}^4 \quad \text{hence} \quad \|f\|_{U^2(G)} \leq \|f\|_{U^3(G)}.$$

Proposition 4.16 Let $f_1, f_2, f_3, f_4 : \mathbb{F}_5^n \to \mathbb{C}$. Then

$$|T_4(f_1,f_2,f_3,f_4)| \leq \min_{i \in [4]} \|f_i\|_{U^3(G)} \cdot \prod_{j \neq i} \left\|f_j\right\|_{L^\infty(\mathbb{F}_5^n)}$$

Proof. Assume $f_i = f$ for all i and that $||f||_{L^{\infty}(\mathbb{F}_5^n)} \leq 1$ (we can remove these assumptions). Reparameterising (by subtracting a + b + c + d), we have

$$T_4(f, f, f, f) = \mathbb{E}_{a, b, c, d \in \mathbb{F}_5^n} f(3a + 2b + c) f(2a + b - d) f(a - c - 2d) f(-b - 2c - 3d)$$

Now

$$\begin{split} |T_4(f,f,f,f)|^8 &\leq \left(\mathbb{E}_{a,b,c} |\mathbb{E}_d f(2a+b-d)f(a-c-2d)f(-b-2c-3d)|^2\right)^4 \text{ by C-S} \\ & \left(\mathbb{E}_{d,d'}\mathbb{E}_{a,b}f(2a+b-d)\overline{f(2a+b-d')} \right)^4 \\ &= \cdot \mathbb{E}_c f(a-c-2d)\overline{f(a-c-2d')}f(-b-2c-3d)\overline{f(-b-2c-3d')}\right) \\ &\leq \mathbb{E}_{d,d'}\mathbb{E}_{a,b} \bigg| \mathbb{E}_c f(a-c-2d)\overline{f-c-2d'}f(-b-2c-3d)\overline{f(-b-2c-3d')}^2 \bigg|^2 \\ & \left(\mathbb{E}_{c,c',d,d'}\mathbb{E}_a f(a-c-2d)\overline{f(a-c'-2d)}\overline{f(a-c-2d')}f(a-c'-2d')\right)^2 \\ &= \cdot \mathbb{E}_b f(-b-2c-3d)\overline{f(-b-2c'-3d)}\overline{f(-b-2c-3d')}f(-b-2c'-3d') \bigg) \\ &\leq \mathbb{E}_{c,c',d,d',a} \bigg| \mathbb{E}_b f(-b-2c-3d)\overline{f(-b-2c'-3d)}\overline{f(-b-2c'-3d)}f(-b-2c'-3d') \bigg|^2 \\ &= \mathbb{E}_{b,b',c,c',d,d'}f(-b-2c-3d)\overline{f(-b'-2c-3d)}f(-b-2c'-3d)}f(-b'-2c'-3d) \\ &\overline{f(-b-2c-3d')}f(-b'-2c-3d')f(-b-2c'-3d')}f(-b'-2c'-3d) \bigg|^2 \end{split}$$

where all the inequalities are by Cauchy-Schwarz.

Example 4.17 Let M be an $\mathbb{F}_5^{n \times n}$ be a symmetric matrix. Then $f(x) = e(x^T M x/5)$ satisfies $||f||_{U^3} = 1$.

Theorem 4.18 (U^3 Inverse Theorem) Let $f : \mathbb{F}_5^n \to \mathbb{C}$ satisfy $||f||_{L^{\infty}(\mathbb{F}_5^n)} \leq 1$ and $||f||_{U^3(\mathbb{F}_5^n)} \geq \delta$ for some $\delta > 0$. Then there exists a symmetric matrix $M \in \mathbb{F}_5^{n \times n}$ and $b \in \mathbb{F}_5^n$ such that

$$\left|\mathbb{E}_x f(x) e\big(x^T M x + b^T x/p\big)\right| \geq c(\delta),$$

where $c(\delta)$ is a polynomial in δ . In other words, $|\langle f, \varphi \rangle| \ge c(\delta)$ for $\varphi(x) = e(x^T M x + b^T x/p)$, and we say "f correlates with a quadratic phase function".

Proof sketch. We have $||f||_{U^3}^8 = \mathbb{E}_h ||\Delta_h f||_{U^2}^4$ where $\Delta_h f(x) = f(x)\overline{f(x+h)}$.

1. Weak linearity: if $\|f\|_{U^3}^8 \ge \delta^8$, then for at least a $\delta^8/2$ -proportion of $h \in \mathbb{F}_5^n$, $\delta^8/2 \le \|\Delta_h f\|_{U^2}^4 \le \|\widehat{\Delta_h f}\|_{\ell^\infty}^2$. So for each such $h \in \mathbb{F}_5^n$, there exists t_h such that $|\widehat{\Delta_h}(t_h)|^2 \ge \delta^8/2$. We have

Proposition 4.19 Let $f : \mathbb{F}_5^n \to \mathbb{C}$ satisfy $||f||_{L^{\infty}(\mathbb{F}_5^n)} \leq 1$ and $||f||_{U^3(\mathbb{F}_5^n)} \geq \delta$ for some $\delta > 0$. Suppose $|\mathbb{F}_5^n| = \Omega_{\delta}(1)$. Then there exists $S \subseteq \mathbb{F}_5^n$ with $|S| = \Omega_{\delta}(|\mathbb{F}_5^n|)$ and a function $\varphi : S \to \widehat{\mathbb{F}}_5^n$ such that:

- $\left|\widehat{\Delta_h f}(\varphi(h))\right| = \Omega_{\delta}(1)$, and
- There are at least $\Omega_{\delta}(|\mathbb{F}_{5}^{n}|^{3})$ quadruples $(s_{1}, s_{2}, s_{3}, s_{4}) \in S^{4}$ such that $s_{1} + s_{2} = s_{3} + s_{4}$ and $\varphi(s_{1}) + \varphi(s_{2}) = \varphi(s_{3}) + \varphi(s_{4})$.
- 2. Strong linearity. If S and φ are as above, then there is a linear function $\psi : \mathbb{F}_5^n \to \hat{\mathbb{F}}_5^n$ which coincides with φ for many elements of S. We have

Proposition 4.20 Let S and φ be as given by above proposition. Then there exists a $M \in \mathbb{F}_5^{n \times n}$ and $b \in \mathbb{F}_5^n$ such that $\psi : \mathbb{F}_5^n \to \hat{\mathbb{F}}_5^n$, $\psi(x) = Mx + b$ satisfies $\psi(x) = \varphi(x)$ for $\Omega_{\delta}(|\mathbb{F}_5^n|)$ elements $x \in S$.

Proof. Consider the graph of $\varphi: \Gamma = \{(h, \varphi(h) : h \in S\} \subseteq \mathbb{F}_5^n \times \hat{\mathbb{F}}_5^n$. By above proposition, Γ has $\Omega_{\delta}(|\mathbb{F}_5^n|)$ additive quadruples. By Balog-Szemeredi-Gowers, there exists $\Gamma' \subseteq \Gamma$ with $|\Gamma'| = \Omega_{\delta}(|\Gamma|) = \Omega_{\delta}(|\mathbb{F}_5^n|)$ and $|\Gamma' + \Gamma'| = O_{\delta}(|\Gamma'|)$. Define $S' \subseteq S$ by $\Gamma' = \{(h, \varphi(h)) : h \in S'\}$. Note that $|S'| = \Omega_{\delta}(|\mathbb{F}_5^n|)$. By Freiman-Ruzsa applied to $\Gamma' \subseteq \mathbb{F}_5^n \times \hat{\mathbb{F}}_5^n$, there exists a subspace $H \leq \mathbb{F}_5^n \times \hat{\mathbb{F}}_5^n$ with $|H| = O_{\delta}(|\Gamma'|) = O_{\delta}(|\mathbb{F}_5^n|)$ such that $\Gamma' \subseteq H$.

Denote by $\pi: \mathbb{F}_5^n \times \hat{\mathbb{F}}_5^n$ the projection onto the first *n* coordinates. By construction, $\pi(H) \supseteq S'$. Moreover, since $|S'| = \Omega_{\delta}(|\mathbb{F}_5^n|)$, we have

$$|\ker(\pi|_H)| = \frac{|H|}{|\mathrm{im}(\pi|_H)|} \le \frac{O_{\delta}(|\mathbb{F}_5^n|)}{|S'|} = O_{\delta}(1).$$

We may thus partition H into $O_{\delta}(1)$ cosets of some subspace H^* such that $\pi|_H$ is injective on each coset. By averaging, there exists a coset $x + H^*$ such that $|\Gamma' \cap (x + H^*)| = \Omega_{\delta}(|\Gamma'|) = \Omega_{\delta}(|\mathbb{F}_5^n|).$

Set $\Gamma'' = \Gamma' \cap (x + H^*)$ and define S'' accordingly. Now $\pi|_{x+H^*}$ is injective and surjective onto $V := \operatorname{im}(\pi|_{x+H^*})$. This means there is an affine-linear map $\psi : V \to \widehat{\mathbb{F}}_5^n$ such that $(h, \psi(h)) \in \Gamma'$ for all $h \in S''$.

3. Symmetry argument.

4. Integration step.

Theorem 4.21 (Szemeredi's Theorem for 4-APs) Let $A \subseteq \mathbb{F}_5^n$ be a set containing no non-trivial 4-APs. Then $|A| = O(5^n)$.

Proof. Idea: by above proposition with $f = f_A = \mathbb{1}_A - \alpha$,

 $T_4(\mathbbm{1}_A,\mathbbm{1}_A,\mathbbm{1}_A,\mathbbm{1}_A)-\alpha^4=T_4(f_A,f_A,f_A,f_A,f_A)+14 \text{ other terms},$

in which between one and three of the inputs are equal to f_A . These are controlled by $\|f_A\|_{U^2(\mathbb{F}^n_{\varepsilon})} \leq \|f_A\|_{U^3(\mathbb{F}^n_{\varepsilon})}$, whence

$$\left|T_4(\mathbb{1}_A,\mathbb{1}_A,\mathbb{1}_A,\mathbb{1}_A)-\alpha^4\right|\leq 15\|f_A\|_{U^3(\mathbb{F}^n_{\mathbb{F}})}$$

So if A contains no non-trivial 4-APs and $5^n > 2\alpha^{-3}$, then $\|f_A\|_{U^3(\mathbb{F}_5^n)} \ge \frac{\alpha^4}{30}$. What can we say about functions with large U^3 norm?