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1. Combinatorial methods
Definition 1.1  Let 𝐺 be an abelian group and 𝐴, 𝐵 ⊆ 𝐺. The sumset of 𝐴 and 𝐵
is

𝐴 + 𝐵 ≔ {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

The difference set of 𝐴 and 𝐵 is

𝐴 − 𝐵 ≔ {𝑎 − 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

Proposition 1.2  max{|𝐴|, |𝐵|} ≤ |𝐴 + 𝐵| ≤ |𝐴| ⋅ |𝐵|.

Proof .  Trivial. □

Example 1.3  Let 𝐴 = [𝑛] = {1, …, 𝑛}. Then 𝐴 + 𝐴 = {2, …, 2𝑛} so |𝐴 + 𝐴| = 2|𝐴| −
1.

Lemma 1.4  Let 𝐴 ⊆ ℤ be finite. Then |𝐴 + 𝐴| ≥ 2|𝐴| − 1 with equality iff 𝐴 is an
arithmetic progression.

Proof (Hints) .  Consider two sequences in 𝐴 + 𝐴 which are strictly increasing and of
the same length. □

Proof .  Let 𝐴 = {𝑎1, …, 𝑎𝑛} with 𝑎𝑖 < 𝑎𝑖+1. Then 𝑎1 + 𝑎1 < 𝑎1 + 𝑎2 < ⋯ < 𝑎1 + 𝑎𝑛 <
𝑎2 + 𝑎𝑛 < ⋯ < 𝑎𝑛 + 𝑎𝑛. Note this is not the only choice of increasing sequence that
works, in particular, so does 𝑎1 + 𝑎1 < 𝑎1 + 𝑎2 < 𝑎2 + 𝑎2 < 𝑎2 + 𝑎3 < 𝑎2 + 𝑎4 < ⋯ <
𝑎2 + 𝑎𝑛 < 𝑎3 + 𝑎𝑛 < ⋯ < 𝑎𝑛 + 𝑎𝑛. So when equality holds, all these sequences must
be the same. In particular, 𝑎2 + 𝑎𝑖 = 𝑎1 + 𝑎𝑖+1 for all 𝑖. □

Lemma 1.5  If 𝐴, 𝐵 ⊆ ℤ, then |𝐴 + 𝐵| ≥ |𝐴| + |𝐵| − 1 with equality iff 𝐴 and 𝐵 are
arithmetic progressions with the same step.

Proof (Hints) .  Similar to above, consider 4 sequences in 𝐴 + 𝐵 which are strictly
increasing and of the same length. □

Example 1.6  Let 𝐴, 𝐵 ⊆ ℤ/𝑝 for 𝑝 prime. If |𝐴| + |𝐵| ≥ 𝑝 + 1, then 𝐴 + 𝐵 = ℤ/𝑝.

Proof (Hints) .  Consider 𝐴 ∩ (𝑔 − 𝐵) for 𝑔 ∈ ℤ/𝑝. □

Proof .  Note that 𝑔 ∈ 𝐴 + 𝐵 iff 𝐴 ∩ (𝑔 − 𝐵) ≠ ∅ where (𝑔 − 𝐵 = {𝑔} − 𝐵). Let 𝑔 ∈
ℤ/𝑝, then use inclusion-exclusion on |𝐴 ∩ (𝑔 − 𝐵)| to conclude result. □

Theorem 1.7 (Cauchy-Davenport)  Let 𝑝 be prime, 𝐴, 𝐵 ⊆ ℤ/𝑝 be non-empty. Then

|𝐴 + 𝐵| ≥ min{𝑝, |𝐴| + |𝐵| − 1}.

Proof (Hints) .
• Assume |𝐴| + |𝐵| < 𝑝 + 1, and WLOG that 1 ≤ |𝐴| ≤ |𝐵| and 0 ∈ 𝐴 (by

translation).
• Induct on |𝐴|.
• Let 𝑎 ∈ 𝐴, find 𝐵′ such that 0 ∈ 𝐵′, 𝑎 ∉ 𝐵′ and |𝐵′| = |𝐵| (use fact that 𝑝 is

prime).
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• Apply induction with 𝐴 ∩ 𝐵′ and 𝐴 ∪ 𝐵′, while reasoning that (𝐴 ∩ 𝐵′) + (𝐴 ∪
𝐵′) ⊆ 𝐴 + 𝐵′.

□

Proof .  Assume |𝐴| + |𝐵| < 𝑝 + 1, and WLOG that 1 ≤ |𝐴| ≤ |𝐵| and 0 ∈ 𝐴 (by
translation). We use induction on |𝐴|. |𝐴| = 1 is trivial. Let |𝐴| ≥ 2 and let 0 ≠ 𝑎 ∈
𝐴. Then since 𝑝 is prime, {𝑎, 2𝑎, …, 𝑝𝑎} = ℤ/𝑝. There exists 𝑚 ≥ 0 such that 𝑚𝑎 ∈ 𝐵
but (𝑚 + 1)𝑎 ∉ 𝐵 (why?). Let 𝐵′ = 𝐵 − 𝑚𝑎, so 0 ∈ 𝐵′, 𝑎 ∉ 𝐵′ and |𝐵′| = |𝐵|.

Now 1 ≤ |𝐴 ∩ 𝐵′| < |𝐴| (why?) so the inductive hypothesis applies to 𝐴 ∩ 𝐵′ and 𝐴 ∪
𝐵′. Since (𝐴 ∩ 𝐵′) + (𝐴 ∪ 𝐵′) ⊆ 𝐴 + 𝐵′ (why?), we have |𝐴 + 𝐵| = |𝐴 + 𝐵′| ≥ |(𝐴 ∩
𝐵′) + (𝐴 ∪ 𝐵′)| ≥ |𝐴 ∩ 𝐵′| + |𝐴 ∪ 𝐵′| − 1 = |𝐴| + |𝐵| − 1. □

Example 1.8  Cauchy-Davenport does not hold general abelian groups (e.g. ℤ/𝑛 for
𝑛 composite): for example, let 𝐴 = 𝐵 = {0, 2, 4} ⊆ ℤ/6, then 𝐴 + 𝐵 = {0, 2, 4} so
|𝐴 + 𝐵| = 3 < min{6, |𝐴| + |𝐵| − 1}.

Example 1.9  Fix a small prime 𝑝 and let 𝑉 ⊆ 𝔽𝑛
𝑝  be a subspace. Then 𝑉 + 𝑉 = 𝑉 ,

so |𝑉 + 𝑉 | = |𝑉 |. In fact, if 𝐴 ⊆ 𝔽𝑛
𝑝  satisfies |𝐴 + 𝐴| = |𝐴|, then 𝐴 is an affine

subspace (a coset of a subspace).

Proof .  If 0 ∈ 𝐴, then 𝐴 ⊆ 𝐴 + 𝐴, so 𝐴 = 𝐴 + 𝐴. General result follows by considering
translation of 𝐴. □

Example 1.10  Let 𝐴 ⊆ 𝔽𝑛
𝑝  satisfy |𝐴 + 𝐴| ≤ 3

2 |𝐴|. Then there exists a subspace
𝑉 ⊆ 𝔽𝑛

𝑝  such that |𝑉 | ≤ 3
2 |𝐴| and 𝐴 is contained in a coset of 𝑉 .

Proof .  Exercise (sheet 1). □

Definition 1.11  Let 𝐴, 𝐵 ⊆ 𝐺 be finite subsets of an abelian group 𝐺. The Ruzsa
distance between 𝐴 and 𝐵 is

𝑑(𝐴, 𝐵) ≔ log |𝐴 − 𝐵|
√|𝐴| ⋅ |𝐵|

.

Lemma 1.12 (Ruzsa Triangle Inequality)  Let 𝐴, 𝐵, 𝐶 ⊆ 𝐺 be finite. Then

𝑑(𝐴, 𝐶) ≤ 𝑑(𝐴, 𝐵) + 𝑑(𝐵, 𝐶).

Proof (Hints) .  Consider a certain map from 𝐵 × (𝐴 − 𝐶) to (𝐴 − 𝐵) × (𝐵 − 𝐶). □

Proof .  Note that |𝐵| |𝐴 − 𝐶| ≤ |𝐴 − 𝐵| |𝐵 − 𝐶|. Indeed, writing each 𝑑 ∈ 𝐴 − 𝐶 as
𝑑 = 𝑎𝑑 − 𝑐𝑑 with 𝑎𝑑 ∈ 𝐴, 𝑐𝑑 ∈ 𝐶, the map 𝜑 : 𝐵 × (𝐴 − 𝐶) → (𝐴 − 𝐵) × (𝐵 − 𝐶),
𝜑(𝑏, 𝑑) = (𝑎𝑑 − 𝑏, 𝑏 − 𝑐𝑑) is injective (why?). The triangle inequality now follows from
definition of Ruzsa distance. □

Definition 1.13  The doubling constant of finite 𝐴 ⊆ 𝐺 is 𝜎(𝐴) ≔ |𝐴 + 𝐴|/|𝐴|.

Definition 1.14  The difference constant of finite 𝐴 ⊆ 𝐺 is 𝛿(𝐴) ≔ |𝐴 − 𝐴|/|𝐴|.

Remark 1.15  The Ruzsa triangle inequality shows that
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log 𝛿(𝐴) = 𝑑(𝐴, 𝐴) ≤ 𝑑(𝐴, −𝐴) + 𝑑(−𝐴, 𝐴) = 2 log 𝜎(𝐴).

So 𝛿(𝐴) ≤ 𝜎(𝐴)2, i.e. |𝐴 − 𝐴| ≤ |𝐴 + 𝐴|2/|𝐴|.

Notation 1.16  Let 𝐴 ⊆ 𝐺, ℓ, 𝑚 ∈ ℕ0. Then

ℓ𝐴 + 𝑚𝐴 ≔ 𝐴 + ⋯ + 𝐴⏟⏟⏟⏟⏟
ℓ times

−𝐴 − ⋯ − 𝐴⏟⏟⏟⏟⏟
𝑚 times

This is referred to as the iterated sum and difference set.

Theorem 1.17 (Plunnecke's Inequality)  Let 𝐴, 𝐵 ⊆ 𝐺 be finite and |𝐴 + 𝐵| ≤ 𝐾|𝐴|
for some 𝐾 ≥ 1. Then ∀ℓ, 𝑚 ∈ ℕ0,

|ℓ𝐵 − 𝑚𝐵| ≤ 𝐾ℓ+𝑚|𝐴|.

Proof (Hints) .
• Let 𝐴′ ⊆ 𝐴 minimise |𝐴′ + 𝐵|/|𝐴′| with value 𝐾′.
• Show that for every finite 𝐶 ⊆ 𝐺, |𝐴′ + 𝐵 + 𝐶| ≤ 𝐾′|𝐴 + 𝐶| by induction on |𝐶|

(note two sets need to be written as disjoint unions here).
• Show that ∀𝑚 ∈ ℕ0, |𝐴′ + 𝑚𝐵| ≤ (𝐾′)𝑚|𝐴′| by induction.
• Use Ruzsa triangle inequality to conclude result.

□

Proof .  Choose ∅ ≠ 𝐴′ ⊆ 𝐴 which minimises |𝐴′ + 𝐵|/|𝐴′|. Let the minimum value by
𝐾′. Then |𝐴′ + 𝐵| = 𝐾′|𝐴′|, 𝐾′ ≤ 𝐾 and ∀𝐴″ ⊆ 𝐴, |𝐴″ + 𝐵| ≥ 𝐾′|𝐴″|.

We claim that for every finite 𝐶 ⊆ 𝐺, |𝐴′ + 𝐵 + 𝐶| ≤ 𝐾′|𝐴′ + 𝐶|:

Use induction on |𝐶|. |𝐶| = 1 is true by definition of 𝐾′. Let claim be true for 𝐶,
consider 𝐶′ = 𝐶 ∪ {𝑥} for 𝑥 ∉ 𝐶. 𝐴′ + 𝐵 + 𝐶′ = (𝐴′ + 𝐵 + 𝐶) ∪ ((𝐴′ + 𝐵 + 𝑥) −
(𝐷 + 𝐵 + 𝑥)), where 𝐷 = {𝑎 ∈ 𝐴′ : 𝑎 + 𝐵 + 𝑥 ⊆ 𝐴′ + 𝐵 + 𝐶}. By definition of 𝐾′,
|𝐷 + 𝐵| ≥ 𝐾′|𝐷|. Hence,

|𝐴′ + 𝐵 + 𝐶| ≤ |𝐴′ + 𝐵 + 𝐶| + |𝐴′ + 𝐵 + 𝑥| − |𝐷 + 𝐵 + 𝑥|
≤ 𝐾′|𝐴′ + 𝐶| + 𝐾′|𝐴′| − 𝐾′|𝐷|
= 𝐾′(|𝐴′ + 𝐶| + |𝐴′| − |𝐷|).

Applying this argument a second time, write 𝐴′ + 𝐶′ = (𝐴′ + 𝐶) ∪ ((𝐴′ + 𝑥) − (𝐸 +
𝑥)), where 𝐸 = {𝑎 ∈ 𝐴′ : 𝑎 + 𝑥 ∈ 𝐴′ + 𝐶} ⊆ 𝐷. Finally,

|𝐴′ + 𝐶′| = |𝐴′ + 𝐶| + |𝐴′ + 𝑥| − |𝐸 + 𝑥|
≥ |𝐴′ + 𝐶| + |𝐴′| − |𝐷|.

This proves the claim.

We now show that ∀𝑚 ∈ ℕ0, |𝐴′ + 𝑚𝐵| ≤ (𝐾′)𝑚|𝐴′| by induction: 𝑚 = 0 is trivial,
𝑚 = 1 is true by assumption. Suppose it is true for 𝑚 − 1 ≥ 1. By the claim with
𝐶 = (𝑚 − 1)𝐵, we have

|𝐴′ + 𝑚𝐵| = |𝐴′ + 𝐵 + (𝑚 − 1)𝐵| ≤ 𝐾′|𝐴′ + (𝑚 − 1)𝐵| ≤ (𝐾′)𝑚|𝐴′|.
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As in the proof of Ruzsa’s triangle inequality, ∀ℓ, 𝑚 ∈ ℕ0,

|𝐴′| |ℓ𝐵 − 𝑚𝐵| ≤ |𝐴′ + ℓ𝐵| |𝐴′ + 𝑚𝐵|

≤ (𝐾′)ℓ|𝐴′|(𝐾′)𝑚|𝐴′|

= (𝐾′)ℓ+𝑚|𝐴′|2.

□

Theorem 1.18 (Freiman-Ruzsa)  Let 𝐴 ⊆ 𝔽𝑛
𝑝  and |𝐴 + 𝐴| ≤ 𝐾|𝐴|. Then 𝐴 is

contained in a subspace 𝐻 ⊆ 𝔽𝑛
𝑝  with |𝐻| ≤ 𝐾2𝑝𝐾4 |𝐴|.

Proof (Hints) .
• Let 𝑋 ⊆ 2𝐴 − 𝐴 be of maximal size such that all 𝑥 + 𝐴, 𝑥 ∈ 𝑋, are disjoint.
• Use Plunnecke's Inequality to obtain an upper bound on |𝑋||𝐴|.
• Show that ∀ℓ ≥ 2, ℓ𝐴 − 𝐴 ⊆ (ℓ − 1)𝑋 + 𝐴 − 𝐴 by induction.
• Let 𝐻 be subgroup generated by 𝐴. By writing 𝐻 as an infinite union, show that

𝐻 ⊆ 𝑌 + 𝐴 − 𝐴, where 𝑌  is subgroup generated by 𝑋.
• Find an upper bound for |𝑌 |, conclude using Plunnecke's Inequality.

□

Proof .  Choose maximal 𝑋 ⊆ 2𝐴 − 𝐴 such that the translates 𝑥 + 𝐴 with 𝑥 ∈ 𝑋 are
disjoint. Such an 𝑋 cannot be too large: ∀𝑥 ∈ 𝑋, 𝑥 + 𝐴 ⊆ 3𝐴 − 𝐴, so by Plunnecke's
Inequality, since |3𝐴 − 𝐴| ≤ 𝐾4|𝐴|,

|𝑋||𝐴| = | ⋃
𝑥∈𝑋

(𝑥 + 𝐴)| ≤ |3𝐴 − 𝐴| ≤ 𝐾4|𝐴|.

Hence |𝑋| ≤ 𝐾4. We next show that 2𝐴 − 𝐴 ⊆ 𝑋 + 𝐴 − 𝐴. Indeed, if, 𝑦 ∈ 2𝐴 − 𝐴
and 𝑦 ∉ 𝑋, then by maximality of 𝑋, then (𝑦 + 𝐴) ∩ (𝑥 + 𝐴) ≠ ∅ for some 𝑥 ∈ 𝑋. If
𝑦 ∈ 𝑋, then 𝑦 ∈ 𝑋 + 𝐴 − 𝐴. It follows from above, by induction, that ∀ℓ ≥ 2, ℓ𝐴 −
𝐴 ⊆ (ℓ − 1)𝑋 + 𝐴 − 𝐴:

ℓ𝐴 − 𝐴 = 𝐴 + (ℓ − 1)𝐴 − 𝐴
⊆ (ℓ − 2)𝑋 + 2𝐴 − 𝐴
⊆ (ℓ − 2)𝑋 + 𝑋 + 𝐴 − 𝐴
= (ℓ − 1)𝑋 + 𝐴 − 𝐴.

Now, let 𝐻 ⊆ 𝔽𝑛
𝑝  be the subgroup generated by 𝐴:

𝐻 = ⋃
ℓ≥1

(ℓ𝐴 − 𝐴) ⊆ 𝑌 + 𝐴 − 𝐴

where 𝑌 ⊆ 𝔽𝑛
𝑝  is the subgroup generated by 𝑋. Every element of 𝑌  can be written as

a sum of |𝑋| elements of 𝑋 with coefficients in {0, …, 𝑝 − 1}. Hence, |𝑌 | ≤ 𝑝|𝑋| ≤ 𝑝𝐾4 .
Finaly, |𝐻| ≤ |𝑌 ||𝐴 − 𝐴| ≤ 𝑝𝐾4𝐾2|𝐴| by Plunnecke's Inequality/Ruzsa Triangle
Inequality. □
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Example 1.19  Let 𝐴 = 𝑉 ∪ 𝑅, where 𝑉 ⊆ 𝔽𝑛
𝑝  is a subspace with dim(𝑉 ) = 𝑑 =

𝑛/𝐾 satisfying 𝐾 ≪ 𝑑 ≪ 𝑛 − 𝐾, and 𝑅 consists of 𝐾 − 1 linearly independent
vectors not in 𝑉 . Then |𝐴| = |𝑉 ∪ 𝑅| = |𝑉 | + |𝑅| = 𝑝𝑛/𝐾 + 𝐾 − 1 ≈ 𝑝𝑛/𝐾 = |𝑉 |.

Now |𝐴 + 𝐴| = |(𝑉 ∪ 𝑅) + (𝑉 ∪ 𝑅)| = |𝑉 ∪ (𝑉 + 𝑅) ∪ 2𝑅| ≈ 𝐾|𝑉 | ≈ 𝐾|𝐴| (since 𝑉 ∪
(𝑉 + 𝑅) gives 𝐾 cosets of 𝑉 ). But any subspace 𝐻 ⊆ 𝔽𝑛

𝑝  containing 𝐴 must have size
at least 𝑝𝑛/𝐾+(𝐾−1) ≈ |𝑉 |𝑝𝐾 . Hence, the exponential dependence on 𝐾 in Freiman-
Ruzsa is necessary.

Theorem 1.20 (Polynomial Freiman-Ruzsa Theorem)  Let 𝐴 ⊆ 𝔽𝑛
𝑝  be such that

|𝐴 + 𝐴| ≤ 𝐾|𝐴|. Then there exists a subspace 𝐻 ⊆ 𝔽𝑛
𝑝  of size at most 𝐶1(𝐾)|𝐴| such

that for some 𝑥 ∈ 𝔽𝑛
𝑝 ,

|𝐴 ∩ (𝑥 + 𝐻)| ≥ |𝐴|
𝐶2(𝐾)

,

where 𝐶1(𝐾) and 𝐶2(𝐾) are polynomial in 𝐾.

Proof .  Very difficult (took Green, Gowers and Tao to prove it). □

Definition 1.21  Given 𝐴, 𝐵 ⊆ 𝐺 for an abelian group 𝐺, the additive energy
between 𝐴 and 𝐵 is

𝐸(𝐴, 𝐵) ≔ |{(𝑎, 𝑎′, 𝑏, 𝑏′) ∈ 𝐴 × 𝐴 × 𝐵 × 𝐵 : 𝑎 + 𝑏 = 𝑎′ + 𝑏′}|.

Additive quadruples (𝑎, 𝑎′, 𝑏, 𝑏′) are those such that 𝑎 + 𝑏 = 𝑎′ + 𝑏′. Write 𝐸(𝐴)
for 𝐸(𝐴, 𝐴).

Example 1.22  Let 𝑉 ⊆ 𝔽𝑛
𝑝  be a subspace. Then 𝐸(𝑉 ) = |𝑉 |3. On the other hand, if

𝐴 ⊆ ℤ/𝑝 is chosen at random from ℤ/𝑝 (where each 𝑎 ∈ ℤ/𝑝 is included with
probability 𝛼 > 0), with high probability, 𝐸(𝐴) = 𝛼4𝑝3 = 𝛼|𝐴|3.

Definition 1.23  For 𝐴, 𝐵 ⊆ 𝐺, the representation function is 𝑟𝐴+𝐵(𝑥) ≔
|{(𝑎, 𝑏) ∈ 𝐴 × 𝐵 : 𝑎 + 𝑏 = 𝑥}| = |𝐴 ∩ (𝑥 − 𝐵)|.

Lemma 1.24  Let ∅ ≠ 𝐴, 𝐵 ⊆ 𝐺 for an abelian group 𝐺. Then

𝐸(𝐴, 𝐵) ≥ |𝐴|2|𝐵|2

|𝐴 ± 𝐵|
.

Proof (Hints) .
• Show that using Cauchy-Schwarz that

𝐸(𝐴, 𝐵) = ∑
𝑥∈𝐺

𝑟𝐴+𝐵(𝑥)2 ≥
(∑𝑥∈𝐺 𝑟𝐴+𝐵(𝑥))

2

|𝐴 + 𝐵|
.

• By using indicator functions, show that ∑𝑥∈𝐺 𝑟𝐴+𝐵(𝑥) = |𝐴||𝐵|.

□

Proof .  Observe that
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𝐸(𝐴, 𝐵) = |{(𝑎, 𝑎′, 𝑏, 𝑏′) ∈ 𝐴2 × 𝐵2 : 𝑎 + 𝑏 = 𝑎′ + 𝑏′}|

= | ⋃
𝑥∈𝐺

{(𝑎, 𝑎′, 𝑏, 𝑏′) ∈ 𝐴2 × 𝐵2 : 𝑎 + 𝑏 = 𝑥 and 𝑎′ + 𝑏′ = 𝑥}|

= ⋃
𝑥∈𝐺

|{(𝑎, 𝑎′, 𝑏, 𝑏′) ∈ 𝐴2 × 𝐵2 : 𝑎 + 𝑏 = 𝑥 and 𝑎′ + 𝑏′ = 𝑥}|

= ∑
𝑥∈𝐺

𝑟𝐴+𝐵(𝑥)2

= ∑
𝑥∈𝐴+𝐵

𝑟𝐴+𝐵(𝑥)2

≥
(∑𝑥∈𝐴+𝐵 𝑟𝐴+𝐵(𝑥))

2

|𝐴 + 𝐵|
by Cauchy-Schwarz

But now

∑
𝑥∈𝐺

𝑟𝐴+𝐵(𝑥) = ∑
𝑥∈𝐺

|𝐴 ∩ (𝑥 − 𝐵)| = ∑
𝑥∈𝐺

∑
𝑦∈𝐺

𝟙𝐴(𝑦)𝟙𝑥−𝐵(𝑦)

= ∑
𝑥∈𝐺

∑
𝑦∈𝐺

𝟙𝐴(𝑦)𝟙𝐵(𝑥 − 𝑦) = |𝐴||𝐵|.

Note that the same argument works for |𝐴 − 𝐵|. □

Corollary 1.25  If |𝐴 + 𝐴| ≤ 𝐾|𝐴|, then 𝐸(𝐴) ≥ |𝐴|4
|𝐴+𝐴| ≥ |𝐴|3

𝐾 . So if 𝐴 has small
doubling constant, then it has large additive energy.

Proof (Hints) .  Trivial. □

Proof .  Trivial. □

Example 1.26  The converse of the above lemma does not hold: e.g. let 𝐺 be a
(class of) abelian group(s). Then there exist constants 𝜃, 𝜂 > 0 such that for all 𝑛
large enough, there exists 𝐴 ⊆ 𝐺 with |𝐴| ≥ 𝑛 satisfying 𝐸(𝐴) ≥ 𝜂|𝐴|3, and |𝐴 +
𝐴| ≥ 𝜃|𝐴|2.

Definition 1.27  Given 𝐴 ⊆ 𝐺 and 𝛾 > 0, let 𝑃𝛾 ≔ {𝑥 ∈ 𝐺 : |𝐴 ∩ (𝑥 + 𝐴)| ≥ 𝛾|𝐴|}
be the set of 𝛾-popular differences of 𝐴.

Lemma 1.28  Let 𝐴 ⊆ 𝐺 be finite such that 𝐸(𝐴) = 𝜂|𝐴|3 for some 𝜂 > 0. Then
∀𝑐 > 0, there is a subset 𝑋 ⊆ 𝐴 with |𝑋| ≥ 𝜂

3 |𝐴| such that for all (16𝑐)-proportion of
pairs (𝑎, 𝑏) ∈ 𝑋2, 𝑎 − 𝑏 ∈ 𝑃𝑐𝜂.

Proof .  We use a technique called “dependent random choice”. Let 𝑈 = {𝑥 ∈ 𝐺 : |𝐴 ∩
(𝑥 + 𝐴)| ≤ 1

2𝜂|𝐴|}. Then

∑
𝑥∈𝑈

|𝐴 ∩ (𝑥 + 𝐴)|2 ≤ 1
2
𝜂|𝐴| ∑

𝑥∈𝐺
|𝐴 ∩ (𝑥 + 𝐴)|

= 1
2
𝜂|𝐴|3 = 1

2
𝐸(𝐴).
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For 0 ≤ 𝑖 ≤ ⌈log2 𝜂−1⌉, let 𝑄𝑖 = {𝑥 ∈ 𝐺 : |𝐴|/2𝑖+1 < |𝐴 ∩ (𝑥 + 𝐴)| ≤ |𝐴|/2𝑖} and set
𝛿𝑖 = 𝜂−12−2𝑖. Then

∑
⌈log2 𝜂−1⌉

𝑖=0
𝛿𝑖|𝑄𝑖| = ∑

𝑖

|𝑄𝑖|
𝜂22𝑖

= 1
𝜂|𝐴|2

∑
𝑖

|𝐴|2

22𝑖 |𝑄𝑖|

= 1
𝜂|𝐴|2

∑
𝑖

|𝐴|2

22𝑖 ∑
𝑥∉𝑈

𝟙{|𝐴|/2𝑖+1<|𝐴∩(𝑥+𝐴)|≤|𝐴|/2𝑖}

≥ 1
𝜂|𝐴|2

∑
𝑥∉𝑈

|𝐴 ∩ (𝑥 + 𝐴)|2

≥ 1
𝜂|𝐴|2

⋅ 1
2
𝐸(𝐴) = 1

2
|𝐴|.

Let 𝑆 = {(𝑎, 𝑏) ∈ 𝐴2 : 𝑎 − 𝑏 ∉ 𝑃𝑐𝜂}. Now

∑
𝑖

∑
(𝑎,𝑏)∈𝑆

|(𝐴 − 𝑎) ∩ (𝐴 − 𝑏) ∩ 𝑄𝑖| ≤ ∑
(𝑎,𝑏)∈𝑆

|(𝐴 − 𝑎) ∩ (𝐴 − 𝑏)|

= ∑
(𝑎,𝑏)∈𝑆

|𝐴 ∩ (𝑎 − 𝑏 + 𝐴)|

≤ ∑
(𝑎,𝑏)∈𝑆

𝑐𝜂|𝐴| by definition of 𝑆

= |𝑆|𝑐𝜂|𝐴|

≤ 𝑐𝜂|𝐴|3 = 2𝑐𝜂|𝐴|2 ⋅ 1
2
|𝐴|

≤ 2𝑐𝜂|𝐴|2 ∑
𝑖

𝛿𝑖|𝑄𝑖| by above inequality.

Hence ∃𝑖0 such that

∑
(𝑎,𝑏)∈𝑆

|(𝐴 − 𝑎) ∩ (𝐴 − 𝑏) ∩ 𝑄𝑖0
| ≤ 2𝑐𝜂|𝐴|2𝛿𝑖0

|𝑄𝑖0
|.

Let 𝑄 = 𝑄𝑖0
, 𝛿 = 𝛿𝑖0

, 𝜆 = 2−𝑖0 , so that

∑
(𝑎,𝑏)∈𝑆

|(𝐴 − 𝑎) ∩ (𝐴 − 𝑏) ∩ 𝑄| ≤ 2𝑐𝜂|𝐴|2𝛿|𝑄|.

Given 𝑥 ∈ 𝐺, let 𝑋(𝑥) = 𝐴 ∩ (𝑥 + 𝐴). Then

𝔼𝑥∈𝑄|𝑋(𝑥)| = 1
|𝑄|

∑
𝑥∈𝑄

|𝐴 ∩ (𝑥 + 𝐴)| ≥ 1
2
𝜆|𝐴|.

Define 𝑇 (𝑥) = {(𝑎, 𝑏) ∈ 𝑋(𝑥)2 : 𝑎 − 𝑏 ∈ 𝑃 𝑐𝜂}. Then
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𝔼𝑥∈𝑄|𝑇 (𝑥)| = 𝔼𝑥∈𝑄|{(𝑎, 𝑏) ∈ (𝐴 ∩ (𝑥 + 𝐴))2 : 𝑎 − 𝑏 ∉ 𝑃𝑐𝜂}|

= 1
|𝑄|

∑
𝑥∈𝑄

|{(𝑎, 𝑏) ∈ 𝑆 : 𝑥 ∈ (𝐴 − 𝑎) ∩ (𝐴 − 𝑏)}|

= 1
|𝑄|

∑
(𝑎,𝑏)∈𝑆

|(𝐴 − 𝑎) ∩ (𝐴 − 𝑏) ∩ 𝑄|

≤ 1
|𝑄|

2𝑐𝜂|𝐴|2𝛿|𝑄| = 2𝑐𝜂𝛿|𝐴|2 = 2𝑐𝜆2|𝐴|2.

Therefore,

𝔼𝑥∈𝑄(|𝑋(𝑥)|2 − (16𝑐)−1|𝑇 (𝑥)|) ≥ (𝔼𝑥∈𝑄|𝑋(𝑥)|)2 − (16𝑐)−1𝔼𝑥∈𝑄|𝑇 (𝑥)| by Cauchy-Schwarz

≥ (𝜆
2
)

2

|𝐴|2 − (16𝑐)−12𝑐𝜆2|𝐴|2

= (𝜆2

4
− 𝜆2

8
)|𝐴|2 = 𝜆2

8
|𝐴|2.

So ∃𝑥 ∈ 𝑄 such that |𝑋(𝑥)|2 ≥ 𝜆2

8 |𝐴|2, so |𝑋| ≥ 𝜆√
8 |𝐴| ≥ 𝜂

3 |𝐴| and |𝑇 (𝑥)| ≤ 16𝑐|𝑋|2.□

Theorem 1.29 (Balog-Szemerédi-Gowers, Schoen)  Let 𝐴 ⊆ 𝐺 be finite such that
𝐸(𝐴) ≥ 𝜂|𝐴|3 for some 𝜂 > 0. Then there exists 𝐴′ ⊆ 𝐴 with |𝐴′| ≥ 𝑐1(𝜂)|𝐴| such
that |𝐴′ + 𝐴′| ≤ |𝐴|/𝑐2(𝜂), where 𝑐1(𝜂) and 𝑐2(𝜂) are both polynomial in 𝜂.

Proof .  The idea is to find 𝐴′ ⊆ 𝐴 such that ∀𝑎, 𝑏 ∈ 𝐴′, 𝑎 − 𝑏 has many
representations as (𝑎1 − 𝑎2) + (𝑎3 − 𝑎4) with each 𝑎𝑖 ∈ 𝐴. Apply the above lemma
with 𝑐 = 2−7 to obtain 𝑋 ⊆ 𝐴 with |𝑋| ≥ 𝜂

3 |𝐴| such that for all but 1
8  of pairs (𝑎, 𝑏) ∈

𝑋2, 𝑎 − 𝑏 ∈ 𝑃𝜂/27 . In particular, the bipartite graph 𝐺 = (𝑋 ⊔ 𝑋, {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 :
𝑥 − 𝑦 ∈ 𝑃𝜂/27}) has at least 7

8 |𝑋|2 edges.

Let 𝐴′ = {𝑥 ∈ 𝑋 : deg𝐺(𝑥) ≥ 3
4 |𝑋|}. Clearly |𝐴′| ≥ |𝑋|/8. For any 𝑎, 𝑏 ∈ 𝐴′, there

are at least |𝑋|/2 elements 𝑦 ∈ 𝑋 such that (𝑎, 𝑦), (𝑏, 𝑦) ∈ 𝐸(𝐺) (so 𝑎 − 𝑦, 𝑏 − 𝑦 ∈
𝑃𝜂/27). Hence 𝑎 − 𝑏 = (𝑎 − 𝑦) − (𝑏 − 𝑦) has at least

𝜂
6
|𝐴|

⏟
choices for 𝑦

⋅ 𝜂
27 |𝐴| 𝜂

27 |𝐴| ≥ 𝜂3

217 |𝐴|3

representations of the form 𝑎1 − 𝑎2 − (𝑎3 − 𝑎4) with each 𝑎𝑖 ∈ 𝐴. It follows that
𝜂3

217 |𝐴|3|𝐴′ − 𝐴′| ≤ |𝐴|4, hence |𝐴′ − 𝐴′| ≤ 217𝜂−3|𝐴| ≤ 222𝜂−4|𝐴′|, and so |𝐴′ + 𝐴′| ≤
244𝜂−8|𝐴′|. □

2. Fourier-analytic techniques
In this chapter, assume that 𝐺 is a finite abelian group.

Definition 2.1  The group ̂𝐺 of characters of 𝐺 is the group of homomorphisms 𝛾 :
𝐺 → ℂ×. In fact, ̂𝐺 is isomorphic to 𝐺.
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Notation 2.2  Norm and inner product notation:
• Write

‖𝑓‖𝑞 = ‖𝑓‖𝐿𝑞(𝐺) = (𝔼𝑥∈𝐺|𝑓(𝑥)|𝑞)1/𝑞,

‖ ̂𝑓‖𝑞 = ‖ ̂𝑓‖ℓ𝑞(𝐺) = (∑
𝛾∈𝐺

| ̂𝑓(𝛾)|𝑞)1/𝑞,

⟨𝑓, 𝑔⟩𝐿2(𝐺) = 𝔼𝑥∈𝐺𝑓(𝑥)𝑔(𝑥),

⟨𝑓, 𝑔⟩ℓ2(𝐺) = ∑
𝛾∈𝐺

̂𝑓(𝛾) ̂𝑔(𝛾)

• If Fourier support of function is restricted to Λ ⊆ ̂𝐺, write ‖ ̂𝑓‖ℓ𝑞(Λ) =
(∑𝛾∈Λ | ̂𝑓(𝛾)|𝑞)

1/𝑞
.

Notation 2.3  Asymptotic notation:
• Write 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if

∃𝐶 > 0 : ∀𝑛 ∈ ℕ, |𝑓(𝑛)| ≤ 𝐶|𝑔(𝑛)|.
• Write 𝑓(𝑛) = 𝑜(𝑔(𝑛)) if

∀𝜀 > 0, ∃𝑁 ∈ ℕ : ∀𝑛 ≥ 𝑁, |𝑓(𝑛)| ≤ 𝜀|𝑔(𝑛)|,

i.e. lim𝑛→∞
𝑓(𝑛)
𝑔(𝑛) = 0.

• Write 𝑓(𝑛) = Ω(𝑔(𝑛)) if 𝑔(𝑛) = 𝑂(𝑓(𝑛)).
• If the implied constant depends on a fixed parameter, this may be indicated by a

subscript, e.g. exp(𝑝 + 𝑛2) = 𝑂𝑝(exp(𝑛2)).

Theorem 2.4 (Hölder's Inequality)  Let 𝑝, 𝑞 ∈ [1, ∞] with 1
𝑝 + 1

𝑞 , and 𝑓 ∈ 𝐿𝑝(𝐺), 𝑔 ∈
𝐿𝑞(𝐺). Then

‖𝑓𝑔‖1 ≤ ‖𝑓‖𝑝‖𝑔‖𝑞.

Theorem 2.5 (Cauchy-Schwarz Inequality)  For 𝑓, 𝑔 ∈ 𝐿2(𝐺), we have

⟨𝑓, 𝑔⟩𝐿2(𝐺) ≤ ‖𝑓‖2‖𝑔‖2.

Note this is a special case of Hölder’s inequality with 𝑝 = 𝑞 = 2.

Theorem 2.6 (Young's Convolution Inequality)  Let 𝑝, 𝑞, 𝑟 ∈ [1, ∞], 1
𝑝 + 1

𝑞 = 1 + 1
𝑟 ,

𝑓 ∈ 𝐿𝑝(𝐺), 𝑔 ∈ 𝐿𝑞(𝐺). Then

‖𝑓 ∗ 𝑔‖𝑟 ≤ ‖𝑓‖𝑝‖𝑔‖𝑞.

Notation 2.7  𝑒(𝑦) denotes the function 𝑒2𝜋𝑖𝑦.

Example 2.8
• Let 𝐺 = 𝔽𝑛

𝑝 , then for any 𝛾 ∈ ̂𝐺, we have a corresponding character 𝛾(𝑥) =
𝑒((𝛾.𝑥)/𝑝).

• If 𝐺 = ℤ/𝑁 , then any 𝛾 ∈ ̂𝐺 has a corresponding character 𝛾(𝑥) = 𝑒(𝛾𝑥/𝑁).
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Notation 2.9  Given a non-empty 𝐵 ⊆ 𝐺 and 𝑔 : 𝐵 → ℂ, write 𝔼𝑥∈𝐵𝑔(𝑥) for
1

|𝐵| ∑𝑥∈𝐵 𝑔(𝑥). If 𝐵 = 𝐺, we may simply write 𝔼 instead of 𝔼𝑥∈𝐵.

Lemma 2.10  For all 𝛾 ∈ ̂𝐺,

𝔼𝑥∈𝐺𝛾(𝑥) = {1 if 𝛾 = 1
0 otherwise.

and for all 𝑥 ∈ 𝐺,

∑
𝛾∈𝐺

𝛾(𝑥) = {|𝐺| if 𝑥 = 0
0 otherwise.

Proof (Hints) .
• For 1 ≠ 𝛾 ∈ ̂𝐺, consider 𝑦 ∈ 𝐺 with 𝛾(𝑦) ≠ 1.
• For 0 ≠ 𝑥 ∈ 𝐺, by considering 𝐺/⟨𝑥⟩, show by contradiction that there is 𝛾 ∈ ̂𝐺

with 𝛾(𝑥) ≠ 1.

□

Proof .  The first case for both equations is trivial. Let 1 ≠ 𝛾 ∈ ̂𝐺. Then ∃𝑦 ∈ 𝐺 with
𝛾(𝑦) ≠ 1. So

𝛾(𝑦)𝔼𝑧∈𝐺𝛾(𝑧) = 𝔼𝑧∈𝐺𝛾(𝑦 + 𝑧)
= 𝔼𝑧′∈𝐺𝛾(𝑧′).

Hence 𝔼𝑧∈𝐺𝛾(𝑧) = 0.

For second equation, given 0 ≠ 𝑥 ∈ 𝐺, there exists 𝛾 ∈ ̂𝐺 such that 𝛾(𝑥) ≠ 1, since
otherwise ̂𝐺 would act trivially on ⟨𝑥⟩, hence would also be the dual group for 𝐺/⟨𝑥⟩,
a contradiction. □

Definition 2.11  Given 𝑓 : 𝐺 → ℂ, define the Fourier transform of 𝑓 to be

̂𝑓 : ̂𝐺 → ℂ,

𝛾 ↦ 𝔼𝑥∈𝐺𝑓(𝑥)𝛾(𝑥).

Proposition 2.12 (Fourier Inversion Formula)  Let 𝑓 : 𝐺 → ℂ. Then for all 𝑥 ∈ 𝐺,

𝑓(𝑥) = ∑
𝛾∈𝐺

̂𝑓(𝛾)𝛾(𝑥).

Proof (Hints) .  Straightforward. □

Proof .  We have
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∑
𝛾∈𝐺

̂𝑓(𝛾)𝛾(𝑥) = ∑
𝛾∈𝐺

𝔼𝑦∈𝐺𝑓(𝑦)𝛾(𝑦)𝛾(𝑥)

= 𝔼𝑦∈𝐺𝑓(𝑦) ∑
𝛾∈𝐺

𝛾(𝑥 − 𝑦)

= 𝑓(𝑥)

by Lemma 2.10. □

Definition 2.13  For 𝐴 ⊆ 𝐺, the indicator (or characteristic) function of 𝐴 is

𝟙𝐴 : 𝐺 → {0, 1},

𝑥 ↦ {1 if 𝑥 ∈ 𝐴
0 if 𝑥 ∉ 𝐴.

Definition 2.14  �̂�𝐴(1) = 𝔼𝑥∈𝐺𝟙𝐴(𝑥) ⋅ 1 = |𝐴|/|𝐺| is the density of 𝐴 in 𝐺. This is
often denoted by 𝛼.

Definition 2.15  Given ∅ ≠ 𝐴 ⊆ 𝐺, the characteristic measure 𝜇𝐴 : 𝐺 → [0, |𝐺|]
is defined by

𝜇𝐴(𝑥) ≔ 𝛼−1𝟙𝐴(𝑥).

Note that 𝔼𝑥∈𝐺𝜇𝐴(𝑥) = 1 = ̂𝜇𝐴(1).

Definition 2.16  The balanced function 𝑓𝐴 : 𝐺 → [−1, 1] of 𝐴 is given by

𝑓𝐴(𝑥) = 𝟙𝐴(𝑥) − 𝛼.

Note that 𝔼𝑥∈𝐺𝑓𝐴(𝑥) = 0 = ̂𝑓𝐴(1).

Example 2.17  Let 𝑉 ≤ 𝔽𝑛
𝑝  be a subspace. Then for 𝑡 ∈ �̂�𝑛

𝑝 ,

�̂�𝑉 (𝑡) = 𝔼𝑥∈𝔽𝑛
𝑝
𝟙𝑉 (𝑥)𝑒(−𝑥.𝑡/𝑝)

= |𝑉 |
𝑝𝑛 𝟙𝑉 ⟂(𝑡).

where 𝑉 ⟂ = {𝑡 ∈ �̂�𝑛
𝑝 : 𝑥.𝑡 = 0 ∀𝑥 ∈ 𝑉 } is the annihilator of 𝑉 . Hence, �̂�𝑉 = 𝜇𝑉 ⟂ .

Example 2.18  Let 𝑅 ⊆ 𝐺 be such that each 𝑥 ∈ 𝐺 lies in 𝑅 independently with
probability 1

2 . Then with high probability,

sup
𝛾≠1

|�̂�𝑅(𝛾)| = 𝑂
(
((√log|𝐺|

|𝐺|
)
)).

This follows from Chernoff’s inequality.

Theorem 2.19 (Chernoff's Inequality)  Given complex-valued independent random
variables 𝑋1, …, 𝑋𝑛 with mean 0, for all 𝜃 > 0, we have
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Pr
[
[[|∑

𝑛

𝑖=1
𝑋𝑖| ≥ 𝜃√∑

𝑛

𝑖=1
‖𝑋𝑖‖

2
𝐿∞(Pr)

]
]] ≤ 4 exp(−𝜃2/4).

Example 2.20  Let 𝑄 = {𝑥 ∈ 𝔽𝑛
𝑝 : 𝑥.𝑥 = 0} with 𝑝 > 2. Then |𝑄|/𝑝𝑛 = 1

𝑝 +
𝑂(𝑝−𝑛/2) and sup𝑡≠0|�̂�𝑄(𝑡)| = 𝑂(𝑝−𝑛/2).

Lemma 2.21 (Plancherel's Identity)  For all 𝑓, 𝑔 : 𝐺 → ℂ,

⟨𝑓, 𝑔⟩ = ⟨ ̂𝑓, ̂𝑔⟩.

Proof .  Exercise. □

Corollary 2.22 (Parseval's Identity)  For all 𝑓, 𝑔 : 𝐺 → ℂ,

‖𝑓‖2
𝐿2(𝐺) = ‖ ̂𝑓‖2

ℓ2(𝐺).

Proof (Hints) .  Trivial from Plancherel's Identity. □

Proof .  By Plancherel's Identity. □

Definition 2.23  Let 𝜌 > 0 and 𝑓 : 𝐺 → ℂ. The 𝜌-large Fourier spectrum of 𝑓 is

Spec𝜌(𝑓) ≔ {𝛾 ∈ ̂𝐺 : | ̂𝑓(𝛾)| ≥ 𝜌‖𝑓‖1}.

Example 2.24  Let 𝐴 ⊆ 𝐺, then ‖𝑓‖1 = 𝛼 = |𝐴|/|𝐺|, so

Spec𝜌(𝟙𝐴) = {𝑡 ∈ �̂�𝑛
𝑝 : |�̂�𝑉 (𝑡)| ≥ 𝜌𝛼}.

In particular, if 𝑉 ≤ 𝔽𝑛
𝑝  is a subspace, then by Example 2.17, Spec𝜌(𝟙𝑉 ) = 𝑉 ⟂ for all

𝜌 ∈ (0, 1].

Lemma 2.25  For all 𝜌 > 0,

|Spec𝜌(𝑓)| ≤ 𝜌−2 ‖𝑓‖2
2

‖𝑓‖2
1

In particular, if 𝑓 = 𝟙𝐴 for 𝐴 ⊆ 𝐺, then ‖𝑓‖1 = 𝛼 = |𝐴|/|𝐺| = ‖𝑓‖2
2. So |Spec𝜌(𝟙𝐴)| ≤

𝜌−2𝛼−1.

Proof (Hints) .  Use Parseval. □

Proof .  By Parseval,

‖𝑓‖2
2 = ‖ ̂𝑓‖2

2 = ∑
𝛾∈𝐺

| ̂𝑓(𝛾)|2

≥ ∑
𝛾∈ Spec𝜌(𝑓)

| ̂𝑓(𝛾)|2

≥ |Spec𝜌(𝑓)|(𝜌‖𝑓‖1)
2.

□
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Definition 2.26  The convolution of 𝑓, 𝑔 : 𝔾 → ℂ is

𝑓 ∗ 𝑔 : 𝐺 → ℂ,
𝑥 ↦ 𝔼𝑦∈𝐺𝑓(𝑦)𝑔(𝑥 − 𝑦).

Example 2.27  Given 𝐴, 𝐵 ⊆ 𝐺,

(𝟙𝐴 ∗ 𝟙𝐵)(𝑥) = 𝔼𝑦∈𝐺𝟙𝐴(𝑦)𝟙𝐵(𝑥 − 𝑦)

= 𝔼𝑦∈𝐺𝟙𝐴(𝑦)𝟙𝑥−𝐵(𝑦)

= 𝔼𝑦∈𝐺𝟙𝐴∩(𝑥−𝐵)(𝑦)

= |𝐴 ∩ (𝑥 − 𝐵)|
|𝐺|

= 1
|𝐺|

𝑟𝐴+𝐵(𝑥).

In particular, supp(𝟙𝐴 ∗ 𝟙𝐵) = 𝐴 + 𝐵.

Lemma 2.28  Given 𝑓, 𝑔 : 𝐺 → ℂ,

∀𝛾 ∈ ̂𝐺, ̂(𝑓 ∗ 𝑔)(𝛾) = ̂𝑓(𝛾) ̂𝑔(𝛾).

Proof (Hints) .  Straightforward. □

Proof .  We have

̂(𝑓 ∗ 𝑔)(𝛾) = 𝔼𝑥∈𝐺(𝑓 ∗ 𝑔)(𝑥)𝛾(𝑥)

= 𝔼𝑥∈𝐺𝔼𝑦∈𝐺𝑓(𝑦)𝑔(𝑥 − 𝑦)𝛾(𝑥)

= 𝔼𝑢∈𝐺𝔼𝑦∈𝐺𝑓(𝑦)𝑔(𝑢)𝛾(𝑢 + 𝑦) (𝑢 = 𝑥 − 𝑦)

= 𝔼𝑢∈𝐺𝔼𝑦∈𝐺𝑓(𝑦)𝑔(𝑢)𝛾(𝑢)𝛾(𝑦)

= ̂𝑓(𝛾) ̂𝑔(𝛾).

□

Example 2.29  𝔼𝑥+𝑦=𝑧+𝑤𝑓(𝑥)𝑓(𝑦)𝑓(𝑧)𝑓(𝑤) = ‖ ̂𝑓‖4
ℓ4(𝐺). In particular, ‖�̂�𝐴‖

4

ℓ4(𝐺)
=

𝐸(𝐴)/|𝐺|3 for any 𝐴 ⊆ 𝐺.

Theorem 2.30 (Bogolyubov's Lemma)  Let 𝐴 ⊆ 𝔽𝑛
𝑝  be of density 𝛼. Then there

exists a subspace 𝑉 ≤ 𝔽𝑛
𝑝  with codim(𝑉 ) ≤ 2𝛼−2, such that 𝑉 ⊆ 𝐴 + 𝐴 − 𝐴 − 𝐴.

Proof (Hints) .
• Let 𝑔 = 𝟙𝐴 ∗ 𝟙𝐴 ∗ 𝟙−𝐴 ∗ 𝟙−𝐴, reason that if 𝑔(𝑥) > 0 for all 𝑥 ∈ 𝑉 , then 𝑉 ⊆ 2𝐴 −

2𝐴.
• Let 𝑆 = Spec𝜌(𝟙𝐴), with 𝜌 for now unspecified.
• Show that 𝑔(𝑥) = 𝛼4 + ∑𝑡∈𝑆\{0} |�̂�𝐴(𝑡)|

4
𝑒(𝑥.𝑡/𝑝) + ∑𝑡∉𝑆 |�̂�𝐴(𝑡)|

4
𝑒(𝑥.𝑡/𝑝).

• Find an appropriate subspace 𝑉  from 𝑆, bound 𝑔(𝑥) from below in terms of 𝜌, and
use this to determine a suitable value for 𝜌.

□

14



Proof .  Observe 2𝐴 − 2𝐴 = supp(𝑔) where 𝑔 = 𝟙𝐴 ∗ 𝟙𝐴 ∗ 𝟙−𝐴 ∗ 𝟙−𝐴, so we want to
find 𝑉 ≤ 𝔽𝑛

𝑝  such that 𝑔(𝑥) > 0 for all 𝑥 ∈ 𝑉 . Let 𝑆 = Spec𝜌(𝟙𝐴) with 𝜌 a constant to
be specified later, and let 𝑉 = ⟨𝑆⟩⟂. By Lemma 2.25, codim(𝑉 ) = dim⟨𝑆⟩ ≤ |𝑆| ≤
𝜌−2𝛼−1. Fix 𝑥 ∈ 𝑉 . Now

𝑔(𝑥) = ∑
𝑡∈�̂�𝑛

𝑝

̂𝑔(𝑡)𝑒(𝑥.𝑡/𝑝)

= ∑
𝑡∈�̂�𝑛

𝑝

|�̂�𝐴(𝑡)|
4
𝑒(𝑥.𝑡/𝑝) by Lemma 2.28

= 𝛼4 + ∑
𝑡≠0

|�̂�𝐴(𝑡)|
4
𝑒(𝑥.𝑡/𝑝)

= 𝛼4 + ∑
𝑡∈𝑆\{0}

|�̂�𝐴(𝑡)|
4
𝑒(𝑥.𝑡/𝑝) + ∑

𝑡∉𝑆
|�̂�𝐴(𝑡)|

4
𝑒(𝑥.𝑡/𝑝)

Each term in the first sum is non-negative, since ∀𝑡 ∈ 𝑆, 𝑥.𝑡 = 0. The absolute value
of the second sum is bounded above, by the triangle inequality, by

∑
𝑡∉𝑆

|�̂�𝐴(𝑡)|
4

≤ sup
𝑡∉𝑆

|�̂�𝐴(𝑡)|
2
∑
𝑡∉𝑆

|�̂�𝐴(𝑡)|
2

≤ sup
𝑡∉𝑆

|�̂�𝐴(𝑡)|
2

∑
𝑡∈�̂�𝑛

𝑝

|�̂�𝐴(𝑡)|
2

≤ (𝜌𝛼)2‖𝟙𝐴‖2
2 = 𝜌2𝛼3

by Example 2.24 and Parseval. Note the second sum must be real since all other
terms in the equation are. So we have 𝑔(𝑥) ≥ 𝛼4 − 𝜌2𝛼3. Thus, it is sufficient that
𝜌2𝛼3 ≤ 𝛼4

2 , so set 𝜌 = √𝑎/2. Hence 𝑔(𝑥) > 0 (in fact, 𝑔(𝑥) ≥ 𝛼4

2 ) for all 𝑥 ∈ 𝑉 , and
codim(𝑉 ) ≤ 2𝛼−2. □

Example 2.31  The set 𝐴 = {𝑥 ∈ 𝔽𝑛
2 : |𝑥| ≥ 𝑛

2 +
√

𝑛
2 } (where |𝑥| is number of 1s in

𝑥) has density ≥ 1
8  but there is no coset 𝐶 of any subspace of codimension 

√
𝑛 such

that 𝐶 ⊆ 𝐴 + 𝐴. Hence, the 2𝐴 − 2𝐴 part of Bogolyubov’s lemma is necessary: 2𝐴 is
not sufficient.

Lemma 2.32  Let 𝐴 ⊆ 𝔽𝑛
𝑝  have density 𝛼 with sup𝑡≠0|�̂�𝐴(𝑡)| ≥ 𝜌𝛼 for some 𝜌 > 0.

Then there exists a subspace 𝑉 ≤ 𝔽𝑛
𝑝  with codim(𝑉 ) = 1 and 𝑥 ∈ 𝔽𝑛

𝑝  such that

|𝐴 ∩ (𝑥 + 𝑉 )| ≥ 𝛼(1 + 𝜌
2
)|𝑉 |.

Proof (Hints) .
• Let 𝑉 = ⟨𝑡⟩⟂ for some suitable 𝑡 (can determine later).
• Define 𝑎𝑗 = |𝐴∩(𝑣𝑗+𝑉 )|

|𝑣𝑗+𝑉 | − 𝛼 for each 𝑗 ∈ [𝑝], where 𝑥.𝑣𝑗 = 𝑗.
• Show that �̂�𝐴(𝑡) = 𝔼𝑗∈[𝑝]𝑎𝑗𝑒(−𝑗/𝑝).
• Show that 𝔼𝑗∈[𝑝]𝑎𝑗 + |𝑎𝑗| ≥ 𝜌𝛼.

□
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Proof .  Let 𝑡 ≠ 0 be such that |�̂�𝐴(𝑡)| ≥ 𝜌𝛼 and let 𝑉 = ⟨𝑡⟩⟂. Write 𝑣𝑗 + 𝑉 = {𝑥 ∈
𝔽𝑛

𝑝 : 𝑥.𝑡 = 𝑗} for 𝑗 ∈ [𝑝] for the 𝑝 distinct cosets of 𝑉 . Then

�̂�𝐴(𝑡) = ̂𝑓𝐴(𝑡) = 𝔼𝑥∈𝔽𝑛
𝑝
(𝟙𝐴(𝑥) − 𝛼)𝑒(−𝑥.𝑡/𝑝)

= 𝔼𝑗∈[𝑝]𝔼𝑥∈𝑣𝑗+𝑉 (𝟙𝐴(𝑥) − 𝛼)𝑒(−𝑗/𝑝)

= 𝔼𝑗∈[𝑝](
|𝐴 ∩ (𝑣𝑗 + 𝑉 )|

|𝑣𝑗 + 𝑉 |
− 𝛼)𝑒(−𝑗/𝑝)

≕ 𝔼𝑗∈[𝑝]𝑎𝑗𝑒(−𝑗/𝑝).

By the triangle inequality, 𝔼𝑗∈[𝑝]|𝑎𝑗| ≥ 𝜌𝛼. Note that 𝔼𝑗∈[𝑝]𝑎𝑗 = 0. So 𝔼𝑗∈[𝑝]𝑎𝑗 + |𝑎𝑗| ≥
𝜌𝛼, so ∃𝑗 ∈ [𝑝] such that 𝑎𝑗 + |𝑎𝑗| ≥ 𝜌𝛼, hence 𝑎𝑗 ≥ 𝜌𝛼/2. So take 𝑥 = 𝑣𝑗. □

Notation 2.33  Given 𝑓, 𝑔, ℎ : 𝐺 → ℂ, write

𝑇3(𝑓, 𝑔, ℎ) = 𝔼𝑥,𝑑∈𝐺𝑓(𝑥)𝑔(𝑥 + 𝑑)ℎ(𝑥 + 2𝑑).

Notation 2.34  Given 𝐴 ⊆ 𝐺, write 2 ⋅ 𝐴 = {2𝑎 : 𝑎 ∈ 𝐴}. Note this is not the same
as 2𝐴 = 𝐴 + 𝐴.

Lemma 2.35  Let 𝑝 ≥ 3 and 𝐴 ⊆ 𝔽𝑛
𝑝  be of density 𝛼 > 0, such that sup𝑡≠0|�̂�𝐴(𝑡)| ≤

𝜀. Then the number of 3-APs in 𝐴 differs from 𝛼3(𝑝𝑛)2 by at most 𝜀(𝑝𝑛)2.

Proof (Hints) .
• Express 𝑇3(𝟙𝐴, 𝟙𝐴, 𝟙𝐴) as an inner product of functions 𝔽𝑛

𝑝 → ℂ, rewrite as inner
product of functions �̂�𝑛

𝑝 → ℂ.
• Find upper bound of the absolute value of a sub-sum of this inner product, using

triangle inequality and Cauchy-Schwarz.

□

Proof .  The number of 3-APs in 𝐴 is (𝑝𝑛)2 multiplied by

𝑇3(𝟙𝐴, 𝟙𝐴, 𝟙𝐴) = 𝔼𝑥,𝑑𝟙𝐴(𝑥)𝟙𝐴(𝑥 + 𝑑)𝟙𝐴(𝑥 + 2𝑑)

= 𝔼𝑥,𝑦𝟙𝐴(𝑥)𝟙𝐴(𝑦)𝟙𝐴(2𝑦 − 𝑥)

= 𝔼𝑦𝟙𝐴(𝑦)𝔼𝑥𝟙𝐴(𝑥)𝟙𝐴(2𝑦 − 𝑥)

= 𝔼𝑦𝟙𝐴(𝑦)(𝟙𝐴 ∗ 𝟙𝐴)(2𝑦)

= ⟨𝟙2⋅𝐴, 𝟙𝐴 ∗ 𝟙𝐴⟩.

By Plancherel's Identity and Lemma 2.28, this is equal to

⟨�̂�2⋅𝐴, �̂�2
𝐴⟩ = ∑

𝑡∈�̂�𝑛
𝑝

�̂�2⋅𝐴(𝑡)�̂�𝐴(𝑡)
2

= 𝛼3 + ∑
𝑡≠0

�̂�2⋅𝐴(𝑡)�̂�𝐴(𝑡)
2

But
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|∑
𝑡≠0

�̂�2⋅𝐴(𝑡)�̂�𝐴(𝑡)
2
| ≤ sup

𝑡≠0
|�̂�𝐴(𝑡)| ∑

𝑡≠0
|�̂�2⋅𝐴(𝑡)||�̂�𝐴(𝑡)|

≤ 𝜀 ∑
𝑡∈�̂�𝑛

𝑝

|�̂�2⋅𝐴(𝑡)||�̂�𝐴(𝑡)|

≤ 𝜀(∑
𝑡

|�̂�2⋅𝐴(𝑡)|
2
∑

𝑡
|�̂�𝐴(𝑡)|

2
)

1/2

by Cauchy-Schwarz

= 𝜀‖�̂�2⋅𝐴‖
2
‖�̂�𝐴‖

2

= 𝜀 ⋅ 𝛼2 ≤ 𝜀 by Parseval.

□

Theorem 2.36 (Meshulam)  Let 𝐴 ⊆ 𝔽𝑛
𝑝  be a set containing no non-trivial 3-APs.

Then |𝐴| = 𝑂(𝑝𝑛/ log 𝑝𝑛), i.e. 𝛼 = 𝑂(1/𝑛).

Proof (Hints) .
• Use similar proof as that of above lemma to show that |𝑇3(𝟙𝐴, 𝟙𝐴, 𝟙𝐴) − 𝛼3| ≤

sup𝑡≠0|�̂�𝐴(𝑡)| ⋅ 𝛼.
• Reason that provided 𝑝𝑛 ≥ 2𝛼−2, we have sup𝑡≠0|�̂�𝐴(𝑡)| ≥ 𝛼2

2 .
• Use this to iteratively generate 𝐴1, 𝑉1, 𝐴2, 𝑉2, ….
• Reason that each 𝐴𝑖 contains no non-trivial 3 APs.
• Find an expression for maximum number of steps it takes for the density of the 𝐴𝑖

to increase from 2𝑘𝛼 to 2𝑘+1𝛼 (in terms of 𝑘 and 𝛼). Use this to deduce an upper
bound for the maximum number steps it takes for the density to reach 1.

• Find lower bound for dim(𝑉𝑚) where 𝑉𝑚 is the final 𝑉𝑖 in the sequence, use fact
that iteration halted to deduce that 𝑝dim(𝑉𝑚) ≤ 2𝛼−2.

• Reason that we can assume 𝛼 ≥
√

2𝑝−𝑛/4, and conclude that 𝛼 ≤ 16𝑛.

□

Proof .  By assumption, 𝑇3(𝟙𝐴, 𝟙𝐴, 𝟙𝐴) = |𝐴|/(𝑝𝑛)2 = 𝛼/𝑝𝑛 (there are |𝐴| trivial APs).
By the proof of the above lemma,

|𝑇3(𝟙𝐴, 𝟙𝐴, 𝟙𝐴) − 𝛼3| ≤ sup
𝑡≠0

|�̂�𝐴(𝑡)| ⋅ 𝛼.

So provided that 𝑝𝑛 ≥ 2𝛼−2, we have 𝑇3(𝟙𝐴, 𝟙𝐴, 𝟙𝐴) ≤ 𝛼3/2, so |𝑇3(𝟙𝐴, 𝟙𝐴, 𝟙𝐴) −
𝛼3| ≥ 𝛼3/2, hence

sup
𝑡≠0

|�̂�𝐴(𝑡)| ≥ 𝛼2

2
.

So by Lemma 2.32 with 𝜌 = 𝛼
2 , there exists a subspace 𝑉 ≤ 𝔽𝑛

𝑝  of codimension 1 and
𝑥 ∈ 𝔽𝑛

𝑝  such that |𝐴 ∩ (𝑥 + 𝑉 )| ≥ (𝛼 + 𝛼2/4)|𝑉 |.

We iterate this observation: let 𝐴0 = 𝐴, 𝑉0 = 𝔽𝑛
𝑝 , 𝛼0 = |𝐴0|/|𝑉0|. At this 𝑖-th step, we

are given a set 𝐴𝑖−1 ⊆ 𝑉𝑖−1 of density 𝛼𝑖−1 with no non-trivial 3-APs. Provided that
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𝑝dim(𝑉𝑖−1) ≥ 2𝛼−2
𝑖−1, there exists a subspace 𝑉𝑖 ≤ 𝑉𝑖−1 of codimension 1 and 𝑥𝑖 ∈ 𝑉𝑖−1

such that

|(𝐴 − 𝑥𝑖) ∩ 𝑉𝑖| = |𝐴 ∩ (𝑥𝑖 + 𝑉𝑖)| ≥ (𝛼𝑖−1 + 𝛼2
𝑖−1/4)|𝑉𝑖|

So set 𝐴𝑖 = (𝐴 − 𝑥𝑖) ∩ 𝑉𝑖. 𝐴𝑖 has density 𝛼𝑖 ≥ 𝛼𝑖−1 + 𝛼2
𝑖−1/4, and contains no non-

trivial 3-APs (since the translate 𝐴 − 𝑥𝑖 contains no non-trivial 3-APs). Through this
iteration, the density increases:
• from 𝛼 to 2𝛼 in at most 𝛼/(𝛼2/4) = 4𝛼−1 steps,
• from 2𝛼 to 4𝛼 in at most (2𝛼)/((2𝛼)2/4) = 2𝛼−1 steps.
• and so on, …

So the density reaches 1 in at most 4𝛼−1(1 + 1
2 + 1

4 + ⋯) = 8𝛼−1 steps. The iteration
must end with dim(𝑉𝑖) ≥ 𝑛 − 8𝛼−1, at which point we must have had 𝑝dim(𝑉𝑖) <
2𝛼−2

𝑖−1 ≤ 2𝛼−2, or else we could have iterated again.

But we may assume that 𝛼 ≥
√

2𝑝−𝑛/4 (since otherwise we would be done), so 𝛼−2 <
1
2𝑝𝑛/2, whence 𝑝𝑛−8𝛼−1 ≤ 𝑝𝑛/2, i.e. 𝑛

2 ≤ 8𝛼−1. □

Remark 2.37  The current largest known subset of 𝔽𝑛
3  containing no non-trivial 3-

APs has size 2.2202𝑛.

Lemma 2.38  Let 𝐴 ⊆ [𝑁] be of density 𝛼 > 0 and contain no non-trivial 3-APs,
with 𝑁 > 50𝛼−2. Let 𝑝 be a prime with 𝑝 ∈ [𝑁/3, 2𝑁/3], and write 𝐴′ = 𝐴 ∩ [𝑝] ⊆
ℤ/𝑝. Then one of the following holds:
1. sup𝑡≠0|�̂�𝐴′(𝑡)| ≥ 𝛼2/10 (where the Fourier coefficient is computed in ℤ/𝑝).
2. There exists an interval 𝐽 ⊆ [𝑁] of length ≥ 𝑁/3 such that |𝐴 ∩ 𝐽| ≥ 𝛼(1 +

𝛼/400)|𝐽|.

Proof (Hints) .
• Show that we can assume |𝐴′| ≥ 𝛼(1 − 𝛼/200)𝑝.

□

Proof .  TODO: fill in details in proof.

We may assume that |𝐴′| = |𝐴 ∩ [𝑝]| ≥ 𝛼(1 − 𝛼/200)𝑝, since otherwise |𝐴 ∩ [𝑝 +
1, 𝑁]| ≥ 𝛼𝑁 − (𝛼(1 − 𝛼/200)𝑝) = 𝛼(𝑁 − 𝑝) + 𝛼2

200𝑝 ≥ (𝛼 + 𝛼2/400)(𝑁 − 𝑝) since 𝑝 ≥
𝑁/3, which implies case 2 with 𝐽 = [𝑝 + 1, 𝑁].

Let 𝐴″ = 𝐴′ ∩ [𝑝/3, 2𝑝/3]. Note that all 3-APs of the form (𝑥, 𝑥 + 𝑑, 𝑥 + 2𝑑) ∈ 𝐴′ ×
𝐴″ × 𝐴″ are in fact APs in [𝑁]. If |𝐴′ ∩ [𝑝/3]| or |𝐴′ ∩ [2𝑝/3, 𝑝]| is at least 2

5 |𝐴′|, then
again we are in case 2. So we may assume that |𝐴″| ≥ |𝐴′|/5. Now as in above
lemmas, we have

𝛼″

𝑝
= |𝐴″|

𝑝2 = 𝑇3(𝟙𝐴′ , 𝟙𝐴″ , 𝟙𝐴″) = 𝛼′(𝛼″)2 + ∑
𝑡

�̂�𝐴′(𝑡)�̂�𝐴″(𝑡)�̂�2⋅𝐴″(𝑡)

where 𝛼′ = |𝐴′|/𝑝 and 𝛼″ = |𝐴″|/𝑝. So as before,
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𝛼′𝛼″

2
≤ sup

𝑡≠0
|𝟙𝐴′(𝑡)| ⋅ 𝛼″

provided that 𝛼″/𝑝 ≤ 1
2𝛼′(𝛼″)2, i.e. 2/𝑝 ≤ 𝛼′𝛼″ (check this inequality indeed holds).

Hence, sup𝑡≠0|�̂�𝐴′(𝑡)| ≥ 𝛼′𝛼″

2 ≥ 1
2𝛼(1 − 𝛼/200)2 ⋅ 2

5 ≥ 𝛼2/10. TODO: constants need
to change somewhere here. □

Lemma 2.39  Let 𝑚 ∈ ℕ, and let 𝜑 : [𝑚] → ℤ/𝑝 be given by 𝜑(𝑥) = 𝑡𝑥 for some 𝑡 ≠
0. For all 𝜀 > 0, there exists a partition of [𝑚] into progressions 𝑃𝑖 of length ℓ𝑖 ∈
[𝜀

√
𝑚/2, 𝜀

√
𝑚], such that

∀𝑖, diam(𝜑(𝑃𝑖)) ≔ max
𝑥,𝑦∈𝑃𝑖

|𝜑(𝑥) − 𝜑(𝑦)| ≤ 𝜀𝑝

(where |𝜑(𝑥) − 𝜑(𝑦)| views 𝜑(𝑥), 𝜑(𝑦) ∈ {0, …, 𝑝 − 1}).

Proof .  Let 𝑢 = ⌊
√

𝑚⌋ and consider 0, 𝑡, …, 𝑢𝑡. By the pigeonhole principle, there
exists 0 ≤ 𝑣 < 𝑤 ≤ 𝑢 such that |𝑤𝑡 − 𝑣𝑡| = |(𝑤 − 𝑣)𝑡| ≤ 𝑝/𝑢. Set 𝑠 = 𝑤 − 𝑣, so |𝑠𝑡| ≤
𝑝/𝑢. Divide [𝑚] into residue classes mod 𝑠, each of which has size at least 𝑚/𝑠 ≥ 𝑚/𝑢.
But each residue class can be divided into APsof the form 𝑎, 𝑎 + 𝑠, …, 𝑎 + 𝑑𝑠 for some
𝜀𝑢/2 < 𝑑 ≤ 𝜀𝑢. The diameter of the image of each progression under 𝜑 is |𝑑𝑠𝑡| ≤
𝑑𝑝/𝑢 ≤ 𝜀𝑢𝑝/𝑢 = 𝜀𝑝. □

Lemma 2.40  Let 𝐴 ⊆ [𝑁] be of density 𝛼 > 0, let 𝑝 be prime with 𝑝 ∈ [𝑁/3, 2𝑁/3],
and write 𝐴′ = 𝐴 ∩ [𝑝] ⊆ ℤ/𝑝. Suppose that |�̂�𝐴′(𝑡)| ≥ 𝛼2/20 for some 𝑡 ≠ 0. Then
there exists a progression 𝑃 ⊆ [𝑁] of length at least 𝛼2

√
𝑁/500 such that |𝐴 ∩ 𝑃 | ≥

𝛼(1 + 𝛼/80)|𝑃 |.

Proof .  Let 𝜀 = 𝛼2/40𝜋 and use above lemma to partition [𝑝] into progressions 𝑃𝑖 of
length ≥ 𝜀√𝑝/2 ≥ 𝛼2/40𝜋√𝑁/3

2 ≥ 𝛼
√

𝑁/500, and diam(𝜑(𝑃𝑖)) ≤ 𝜀𝑝. Fix one 𝑥𝑖 from
each of the 𝑃𝑖. Then

𝛼2

20
≤ | ̂𝑓𝐴′(𝑡)| = 1

𝑝
∑

𝑖
∑
𝑥∈𝑃𝑖

𝑓𝐴′(𝑥)𝑒(−𝑥𝑡/𝑝)

= 1
𝑝
|∑

𝑖
∑
𝑥∈𝑃𝑖

𝑓𝐴′(𝑥)𝑒(−𝑥𝑖𝑡/𝑝) + ∑
𝑖

∑
𝑥∈𝑃𝑖

𝑓𝐴′(𝑥)(𝑒(−𝑥𝑡/𝑝) − 𝑒(−𝑥𝑖𝑡/𝑝))|

≤ 1
𝑝

∑
𝑖

|∑
𝑥∈𝑃𝑖

𝑓𝐴′(𝑥)| + 1
𝑝

∑
𝑖

∑
𝑥∈𝑃𝑖

|𝑓𝐴′(𝑥)||𝑒(−𝑥𝑡/𝑝) − 𝑒(−𝑥𝑖𝑡/𝑝)|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≤2𝜋𝜀 since diam(𝜑(𝑃𝑖))≤𝜀𝑝

So

∑
𝑖

|∑
𝑥∈𝑃𝑖

𝑓𝐴′(𝑥)| ≥ 𝛼2

40
𝑝

Since 𝑓𝐴′ has mean zero,
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∑
𝑖

(|∑
𝑥∈𝑃𝑖

𝑓𝐴′(𝑥)| + ∑
𝑥∈𝑃𝑖

𝑓𝐴′(𝑥)) ≥ 𝛼2

40
𝑝

hence ∃𝑖 such that

|∑
𝑥∈𝑃𝑖

𝑓𝐴′(𝑥)| + ∑
𝑥∈𝑃𝑖

𝑓𝐴′(𝑥) ≥ 𝛼2

80
|𝑃𝑖|

and so

∑
𝑥∈𝑃𝑖

𝑓𝐴′(𝑥) ≥ 𝛼2

160
|𝑃𝑖|.

□

Definition 2.41  Let Γ ⊆ ̂𝐺 and 𝜌 > 0. The Bohr set 𝐵(Γ, 𝜌) is the set

𝐵(Γ, 𝜌) = {𝑥 ∈ 𝐺 : |𝛾(𝑥) − 1|) < 𝜌 ∀𝛾 ∈ Γ}.

The rank of 𝐵(Γ, 𝜌) is |𝐵(Γ, 𝜌)|, and is width (or radius) is 𝜌.

Example 2.42  Let 𝐺 = 𝔽𝑛
𝑝 , then 𝐵(Γ, 𝜌) = ⟨Γ⟩⟂ for all sufficiently small 𝜌. Here,

the rank gives an upper bound on codim(⟨Γ⟩⟂).

Lemma 2.43  Let Γ ⊆ ̂𝐺 and |Γ| = 𝑑, and let 𝜌 > 0. Then

|𝐵(Γ, 𝜌)| ≥ (𝜌
8
)

𝑑
|𝐺|.

Proposition 2.44 (Bogolyubov's Lemma for Finite Abelian Groups)  Let 𝐴 ⊆ 𝐺 be
of density 𝛼 > 0. Then there exists Γ ⊆ ̂𝐺 with |Γ| ≤ 2𝛼−2 such that

𝐵(Γ, 1
2
) ⊆ 𝐴 + 𝐴 − (𝐴 + 𝐴).

Proof .  Recall that

(𝟙𝐴 ∗ 𝟙𝐴 ∗ 𝟙𝐴 ∗ 𝟙𝐴)(𝑥) = ∑
𝛾∈𝐺

|�̂�𝐴(𝛾)|
4
𝛾(𝑥)

Let Γ = Spec√𝛼/2(𝟙𝐴) and note that for 𝑥 ∈ 𝐵(Γ, 1/2) and 𝛾 ∈ Γ, Re(𝛾(𝑥)) > 0.
Hence, for 𝑥 ∈ 𝐵(Γ, 1/2),

Re
(
((∑

𝛾∈𝐺

|�̂�𝐴(𝛾)|
4
𝛾(𝑥)

)
)) = Re(∑

𝛾∈Γ
)|�̂�𝐴(𝛾)|

4
𝛾(𝑥)) + Re(∑

𝑥∉Γ
)|�̂�𝐴(𝛾)|

4
𝛾(𝑥))

and
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|Re(∑
𝛾∉Γ

|�̂�𝐴(𝛾)|
4
𝛾(𝑥))|) ≤ sup

𝛾∉Γ
|�̂�𝐴(𝛾)|

2
∑
𝛾∉Γ

|�̂�𝐴(𝛾)|
2

≤ (√𝛼
2

⋅ 𝛼)
2

⋅ 𝛼 = 𝛼4

2

by Parseval. □

Theorem 2.45 (Roth)  Let 𝐴 ⊆ [𝑁] be a set containing no non-trivial 3-APs. Then
|𝐴| = 𝑂(𝑁/ log log 𝑁).

Proof .

□

Example 2.46 (Behrend's Example)  There exists a set 𝐴 ⊆ [𝑁] of size |𝐴| ≥
exp(−𝑐

√
log 𝑁)𝑁  containing no non-trivial 3-APs.

3. Probabilistic tools
All probability spaces here will be finite.

Theorem 3.1 (Khintchine's Inequality)  Let 𝑝 ∈ [2, ∞). Let 𝑋1, …, 𝑋𝑛 be
independent random variables such that

∀𝑖 ∈ [𝑛], ℙ(𝑋𝑖 = 𝑥𝑖) = ℙ(𝑋𝑖 = −𝑥𝑖) = 1
2

for some 𝑥1, …, 𝑥𝑛 ∈ ℂ. Then

‖∑
𝑛

𝑖=1
𝑋𝑖‖

𝐿𝑝(ℙ)

= 𝑂
(
(((𝑝1/2(∑

𝑛

𝑖=1
‖𝑋𝑖‖

2
𝐿2(ℙ))

1/2

)
)))

Proof (Hints) .
• Explain why sufficient to prove for the case that 𝑝 = 2𝑘 for 𝑘 ∈ ℕ.
• Explain why ∑𝑛

𝑖=1 ‖𝑋𝑖‖
2
𝐿∞(Pr) = ∑𝑛

𝑖=1 ‖𝑋𝑖‖
2
𝐿2(Pr), and assume they are equal to 1.

• Show that ‖𝑋‖2𝑘
𝐿2𝑘(Pr) ≤ 8𝑘𝐼(𝑘), where 𝐼(𝑘) = ∫∞

0
𝑡2𝑘−1 exp(−𝑡2/4) d𝑡.

• Show by induction on 𝑘 that 𝐼(𝑘) ≤ 22𝑘(2𝑘)𝑘/4𝑘.

□

Proof .  Since 𝐿𝑝 norms are nested, it suffices to prove in the case that 𝑝 = 2𝑘 for
some 𝑘 ∈ ℕ. Write 𝑋 = ∑𝑛

𝑖=1 𝑋𝑖, and assume the quantity ∑𝑛
𝑖=1 ‖𝑋𝑖‖

2
𝐿∞(ℙ) =

∑𝑛
𝑖=1 |𝑥𝑖|

2 = ∑𝑛
𝑖=1 ‖𝑋𝑖‖

2
𝐿2(ℙ) is equal to 1. By Chernoff's Inequality, ∀𝜃 > 0,

Pr(|𝑋| ≥ 𝜃) ≤ 4 exp(−𝜃2/4),

and so, since ∫𝑡
0

𝑃𝑋(𝑠) d𝑠 = Pr(|𝑋| ≤ 𝑡),
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‖𝑋‖2𝑘
𝐿2𝑘(Pr) = ∫

∞

0
𝑡2𝑘𝑃𝑋(𝑡) d𝑡

= ∫
∞

0
2𝑘𝑡2𝑘−1 Pr(|𝑋| ≥ 𝑡) d𝑡 by integration by parts

≤ 8𝑘 ∫
∞

0
𝑡2𝑘−1 exp(−𝑡2/4) d𝑡 ≕ 8𝑘𝐼(𝑘)

We will show by induction on 𝑘 that 𝐼(𝑘) ≤ 22𝑘(2𝑘)𝑘/4𝑘. Indeed, when 𝑘 = 1,

∫
∞

0
𝑡 exp(−𝑡2/4) d𝑡 = [−2 exp(−𝑡2/4)]∞

0
= 2

= 22⋅1(2 ⋅ 1)1/(4 ⋅ 1)

For 𝑘 > 1, we integrate by parts to find that

𝐼(𝑘) ≔ ∫
∞

0
𝑡2𝑘−2⏟

𝑢
⋅ 𝑡 exp(−𝑡2/4)⏟⏟⏟⏟⏟

𝑣′

d𝑡

= [𝑡2𝑘−2 ⋅ (−2 exp(−𝑡2/4))]∞
0

− ∫
∞

0
(2𝑘 − 2)𝑡2𝑘−3 ⋅ (−2 exp(−𝑡2/4)) d𝑡

= 4(𝑘 − 1) ∫
∞

0
𝑡2(𝑘−1)−1 exp(−𝑡2/4) d𝑡

= 4(𝑘 − 1)𝐼(𝑘 − 1)

≤ 4(𝑘 − 1)22𝑘−1(2(𝑘 − 1))𝑘−1

4(𝑘 − 1)
by induction hypothesis

≤ 22𝑘(2𝑘)𝑘

4𝑘
.

□

Corollary 3.2 (Rudin's Inequality)  Let Γ ⊆ �̂�𝑛
2  be a linearly independent set and let

𝑝 ∈ [2, ∞). Then ∀ ̂𝑓 ∈ ℓ2(Γ),

‖∑
𝛾∈Γ

̂𝑓(𝛾)𝛾‖
𝐿𝑝(𝔽𝑛

2 )

= 𝑂(√𝑝 ⋅ ‖ ̂𝑓‖ℓ2(Γ))

Proof .  Exercise. □

Corollary 3.3 (Dual Rudin)  Let Γ ⊆ �̂�𝑛
2  be a linearly independent set and let 𝑝 ∈

(1, 2]. Then ∀𝑓 ∈ 𝐿𝑝(𝔽𝑛
2 ),

‖ ̂𝑓‖ℓ2(Γ) = 𝑂(√
𝑝

𝑝 − 1
⋅ ‖𝑓‖𝐿𝑝(𝔽𝑛

2 )).

Proof (Hints) .  Let 𝑔(𝑥) = ∑𝛾∈Γ
̂𝑓(𝛾)𝛾(𝑥). Show that ‖ ̂𝑓‖2

ℓ2(Γ) ≤ ‖𝑓‖𝐿𝑝(𝔽𝑛
2 )‖𝑔‖𝐿𝑞(𝔽𝑛

2 )

where 1/𝑝 + 1/𝑞 = 1, and conclude using Rudin's Inequality. □
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Proof .  Let 𝑓 ∈ 𝐿𝑝(𝔽𝑛
2 ) and let 𝑔(𝑥) = ∑𝛾∈Γ

̂𝑓(𝛾)𝛾(𝑥). Then

‖ ̂𝑓‖2
ℓ2(Γ) ≔ ∑

𝛾∈Γ
| ̂𝑓(𝛾)|2

= ⟨ ̂𝑓, ̂𝑔⟩ℓ2(Γ) = ⟨ ̂𝑓, ̂𝑔⟩ℓ2(�̂�𝑛
2 )

= ⟨𝑓, 𝑔⟩𝐿2(𝔽𝑛
2 ) by Plancherel's Identity

≤ ‖𝑓‖𝐿𝑝(𝔽𝑛
2 )‖𝑔‖𝐿𝑞(𝔽𝑛

2 ) by Hölder's Inequality.

where 1/𝑝 + 1/𝑞 = 1. By Rudin's Inequality,

‖𝑔‖𝐿𝑞(𝔽𝑛
2 ) = 𝑂(√𝑞 ⋅ ‖ ̂𝑔‖ℓ2(Γ))

= 𝑂(√
𝑝

𝑝 − 1
⋅ ‖ ̂𝑓‖ℓ2(Γ)).

□

Recall that given 𝐴 ⊆ 𝔽𝑛
2  of density 𝛼 > 0, we have |Spec𝜌(𝟙𝐴)| ≤ 𝜌−2𝛼−1. This is the

best possible bound as the example of a subspace 𝐴 shows. However, in this case, the
large spectrum is highly structured.

Theorem 3.4 (Special Case of Chang's Theorem)  Let 𝐴 ⊆ 𝔽𝑛
2  be of density 𝛼 > 0.

Then

∀𝜌 > 0, ∃𝐻 ≤ �̂�𝑛
2 : dim(𝐻) = 𝑂(𝜌−2 log 𝛼−1) and Spec𝜌(𝟙𝐴) ⊆ 𝐻.

Proof (Hints) .  Use Dual Rudin on a maximal linearly independent set in Spec𝜌(𝟙𝐴),
with 𝑝 = 1 + (log 𝛼−1)−1. □

Proof .  Let Γ ⊆ Spec𝜌(𝟙𝐴) be maximal linearly independent set. Let 𝐻 =
⟨Spec𝜌(𝟙𝐴)⟩. Clearly dim(𝐻) = |Γ|. By Dual Rudin, ∀𝑝 ∈ (1, 2],

(𝜌𝛼)2|Γ| ≤ ∑
𝛾∈Γ

|�̂�𝐴(𝛾)|
2

= ‖�̂�𝐴‖
2

ℓ2(Γ)
= 𝑂( 𝑝

𝑝 − 1
‖𝟙𝐴‖2

𝐿𝑝(𝔽𝑛
2 )) = 𝑂( 𝑝

𝑝 − 1
𝛼2/𝑝).

Hence, |Γ| ≤ 𝑂(𝜌−2𝛼−2𝛼2/𝑝 𝑝
𝑝−1). Setting 𝑝 = 1 + (log 𝛼−1)−1, we obtain |Γ| ≤

𝑂(𝜌−2𝛼−2(𝛼2𝑒2)(log 𝛼−1 + 1)) = 𝑂(𝜌−2 log 𝛼−1). □

Definition 3.5  Let 𝐺 be a finite abelian group. 𝑆 ⊆ 𝐺 is dissociated if, whenever
∑𝑠∈𝑆 𝜀𝑠𝑠 = 0 with each 𝜀𝑠 ∈ {−1, 0, 1}, then we have 𝜀𝑠 = 0 for all 𝑠 ∈ 𝑆.

Example 3.6  Clearly, if 𝐺 = 𝔽𝑛
2 , then 𝑆 ⊆ 𝐺 is dissociated iff 𝑆 is linearly

independent.

Theorem 3.7 (Chang)  Let 𝐺 be a finite abelian group, and let 𝐴 ⊆ 𝐺 be of density
𝛼 > 0. If Λ ⊆ Spec𝜌(𝟙𝐴) is dissociated, then |Λ| = 𝑂(𝜌−2 log 𝛼−1).

Theorem 3.8 (Marcinkiewicz-Zygmund)  Let 𝑝 ∈ [2, ∞) and let 𝑋1, …, 𝑋𝑛 ∈ 𝐿𝑝(Pr)
be independent RVs with 𝔼[𝑋1 + ⋯ + 𝑋𝑛] = 0. Then
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‖∑
𝑛

𝑖=1
𝑋𝑖‖

𝐿𝑝(Pr)

= 𝑂
(
((
(𝑝1/2 ⋅ ‖∑

𝑛

𝑖=1
|𝑋𝑖|

2‖
1/2

𝐿𝑝/2(Pr))
))
).

Proof .  First assume that the distribution of the 𝑋𝑖 is symmetric, i.e. Pr(𝑋𝑖 = 𝑎) =
Pr(𝑋𝑖 = −𝑎) for all 𝑎 ∈ ℝ and 𝑖 ∈ [𝑛]. Partition the probability space Ω into sets
Ω1, Ω2, …, Ω𝑀  and write Pr𝑗 for the induced measure on Ω, such that all 𝑋𝑖 are
symmetric and take at most 2 values. By Khintchine’s inequality, for each 𝑗 ∈ [𝑀],

‖∑
𝑛

𝑖=1
𝑋𝑖‖

𝑝

𝐿𝑝(Pr𝑗)

= 𝑂
(
(((𝑝𝑝/2 ⋅ (∑

𝑛

𝑖=1
‖𝑋𝑖‖

2
𝐿2(Pr𝑗))

𝑝/2

)
)))

= 𝑂

(
(((
(

𝑝𝑝/2 ⋅ ‖∑
𝑛

𝑖=1
|𝑋𝑖|

2‖
𝑝/2

𝐿𝑝/2(Pr𝑗))
)))
)

.

Summing over all 𝑗 ∈ [𝑀] and taking 𝑝-th roots gives the result for the symmetric
case.

Now suppose the 𝑋𝑖 are arbitrary RVs, and let 𝑌1, …, 𝑌𝑛 be such that 𝑌𝑖 ∼ 𝑋𝑖 and
𝑋1, 𝑌1, …, 𝑋𝑛, 𝑌𝑛 are all independent. Applying the symmetric case to the RVs 𝑋𝑖 −
𝑌𝑖, we obtain

‖∑
𝑛

𝑖=1
(𝑋𝑖 − 𝑌𝑖)‖

𝐿𝑝(Pr × Pr)

= 𝑂
(
((
(𝑝1/2 ⋅ ‖∑

𝑛

𝑖=1
|𝑋𝑖 − 𝑌𝑖|

2‖
1/2

𝐿𝑝/2(Pr × Pr))
))
)

= 𝑂
(
((
(𝑝1/2 ⋅ ‖∑

𝑛

𝑖=1
|𝑋2

𝑖 |‖
1/2

𝐿𝑝/2(Pr))
))
) TODO: check this explicitly

But then

‖∑
𝑛

𝑖=1
𝑋𝑖‖

𝑝

𝐿𝑝(Pr)

= ‖∑
𝑛

𝑖=1
𝑋𝑖 − 𝔼𝑌 [∑

𝑛

𝑖=1
𝑌𝑖]‖

𝑝

𝐿𝑝(Pr)

= 𝔼𝑋|∑
𝑛

𝑖=1
𝑋𝑖 − 𝔼𝑌 [∑

𝑛

𝑖=1
𝑌𝑖]|

𝑝

= 𝔼𝑋|𝔼𝑌 ∑
𝑛

𝑖=1
(𝑋𝑖 − 𝑌𝑖)|

𝑝

≤ 𝔼𝑋𝔼𝑌 |∑
𝑛

𝑖=1
(𝑋𝑖 − 𝑌𝑖)|

𝑝

by Jensen's inequality

= ‖∑
𝑛

𝑖=1
(𝑋𝑖 − 𝑌𝑖)‖

𝑝

𝐿𝑝(Pr × Pr)

.
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□

Theorem 3.9 (Croot-Sisask Almost Periodicity)  Let 𝐺 be a finite abelian group, let
𝜀 > 0, and 𝑝 ∈ [2, ∞). Let 𝐴, 𝐵 ⊆ 𝐺 be such that |𝐴 + 𝐵| ≤ 𝐾|𝐴|, and let 𝑓 : 𝐺 → ℂ.
Then there is 𝑏 ∈ 𝐵 and a set 𝑋 ⊆ 𝐵 − 𝑏 such that |𝑋| ≥ 1

2𝐾−𝑂(𝜀−2𝑝)|𝐵| and

‖𝜏𝑥(𝑓 ∗ 𝜇𝐴) − 𝑓 ∗ 𝜇𝐴‖𝐿𝑝(𝐺) ≤ 𝜀‖𝑓‖𝐿𝑝(𝐺) ∀𝑥 ∈ 𝑋,

where 𝜏𝑥𝑔(𝑦) = 𝑔(𝑦 + 𝑥) for all 𝑦 ∈ 𝐺.

Proof .  The main idea is to approximated

(𝑓 ∗ 𝜇𝐴)(𝑦) = 𝔼𝑥∈𝐺𝑓(𝑦 − 𝑥)𝜇𝐴(𝑥) = 𝔼𝑥∈𝐴𝑓(𝑦 − 𝑥)

by 1
𝑚 ∑𝑚

𝑖=1 𝑓(𝑦 − 𝑧𝑖) where the 𝑧𝑖 are sampled independently and uniformly from 𝐴,
and 𝑚 is to be chosen later. For each 𝑦 ∈ 𝐺, define 𝑍𝑖(𝑦) = 𝜏−𝑧𝑖

𝑓(𝑦) − (𝑓 ∗ 𝜇𝐴)(𝑦).
For each 𝑦 ∈ 𝐺, these are independent random variables with mean 0. So by
Marcinkiewicz-Zygmund,

‖∑
𝑚

𝑖=1
𝑍𝑖(𝑦)‖

𝑝

𝐿𝑝(Pr)

= 𝑂
(
((
(𝑝𝑝/2 ⋅ ‖∑

𝑚

𝑖=1
|𝑍𝑖(𝑦)|2‖

𝑝/2

𝐿𝑝/2(Pr))
))
)

= 𝑂
(
(((𝑝𝑝/2 ⋅ 𝔼(𝑧1,…,𝑧𝑚)∈𝐴𝑚|∑

𝑚

𝑖=1
|𝑍𝑖(𝑦)|2|

𝑝/2

)
))).

By Holder’s inequality with 1/𝑝′ + 2/𝑝 = 1,

|∑
𝑚

𝑖=1
|𝑍𝑖(𝑦)|2|

𝑝/2

≤ (∑
𝑚

𝑖=1
1𝑝′)

1
𝑝′ ⋅𝑝2

⋅ (∑
𝑚

𝑖=1
|𝑍𝑖(𝑦)|2⋅𝑝2 )

2
𝑝 ⋅𝑝2

= 𝑚𝑝/2−1 ⋅ ∑
𝑚

𝑖=1
|𝑍𝑖(𝑦)|𝑝.

So

‖∑
𝑚

𝑖=1
𝑍𝑖(𝑦)‖

𝑝

𝐿𝑝(Pr)

= 𝑂(𝑝𝑝/2𝑚𝑝/2−1 ⋅ 𝔼(𝑧1,…,𝑧𝑚)∈𝐴𝑚 ∑
𝑚

𝑖=1
|𝑍𝑖(𝑦)|𝑝).

Summing over all 𝑦 ∈ 𝐺, we have

𝔼𝑦∈𝐺‖∑
𝑚

𝑖=1
𝑍𝑖(𝑦)‖

𝑝

𝐿𝑝(Pr)

= 𝑂(𝑝𝑝/2𝑚𝑝/2−1𝔼(𝑧1,…,𝑧𝑚)∈𝐴𝑚 ∑
𝑚

𝑖=1
𝔼𝑦∈𝐺|𝑍𝑖(𝑦)|𝑝)

and (𝔼𝑦∈𝐺|𝑍𝑖(𝑦)|𝑝)1/𝑝 = ‖𝑍𝑖‖𝐿𝑝(𝐺) = ‖𝜏−𝑧𝑖
𝑓 − 𝑓 ∗ 𝜇𝐴‖

𝐿𝑝(𝐺)
≤ ‖𝜏−𝑧𝑖

𝑓‖
𝐿𝑝(𝐺)

+

‖𝑓 ∗ 𝜇𝐴‖𝐿𝑝(𝐺) ≤ ‖𝑓‖𝐿𝑝(𝐺) + ‖𝑓‖𝐿𝑝(𝐺) ⋅ ‖𝜇𝐴‖𝐿1(𝐺) ≤ 2‖𝑓‖𝐿𝑝(𝐺) by Young’s convolution
inequality. So we have
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𝔼(𝑧1,…,𝑧𝑚)∈𝐴𝑚𝔼𝑦∈𝐺|∑
𝑚

𝑖=1
𝑍𝑖(𝑦)|

𝑝

= 𝑂(𝑝𝑝/2𝑚𝑝/2−1 ∑
𝑚

𝑖=1
(2‖𝑓‖𝐿𝑝(𝐺))

𝑝
)

= 𝑂((4𝑝)𝑝/2𝑚𝑝/2‖𝑓‖𝑝
𝐿𝑝(𝐺)).

Choose 𝑚 = 𝑂(𝜀−2𝑝) so that the RHS is at most (𝜀
4‖𝑓‖𝐿𝑝(𝐺))

𝑝
, and f§or (𝑧1, …, 𝑧𝑚) ∈

𝐴𝑚, define

𝑀(𝑧1,…,𝑧𝑚) ≔ 𝔼𝑦∈𝐺| 1
𝑚

∑
𝑚

𝑖=1
𝜏−𝑧𝑖

𝑓(𝑦) − (𝑓 ∗ 𝜇𝐴)(𝑦)|
𝑝

.

Then we have

𝔼(𝑧1,…,𝑧𝑚)∈𝐴𝑚𝑀(𝑧1,…,𝑧𝑚) = 𝑂((4𝑝)𝑝/2𝑚𝑝/2‖𝑓‖𝑝
𝐿𝑝(𝐺)) = (𝜀

4
‖𝑓‖𝐿𝑝(𝐺))

𝑝
.

Also define

𝐿 = {𝒛 ∈ 𝐴𝑚 : 𝑀𝒛 ≤ (𝜀
2
‖𝑓‖𝐿𝑝(𝐺))

𝑝
}.

By Markov’s inequality, since

𝔼𝒛∈𝐴𝑚𝑀𝒛 ≤ (𝜀
4
‖𝑓‖𝐿𝑝(𝐺))

𝑝
= 2−𝑝(𝜀

2
‖𝑓‖𝐿𝑝(𝐺))

𝑝
,

we have

|𝐴𝑚 \ 𝐿|
|𝐴𝑚|

= Pr(𝑀𝒛 ≥ (𝜀
2
‖𝑓‖𝐿𝑝(𝐺))

𝑝
) ≤ Pr(𝑀𝒛 ≥ 2𝑝𝔼𝒛∈𝐴𝑚𝑀𝒛) ≤ 2−𝑝,

hence |𝐿| ≥ (1 − 1/2𝑝)|𝐴|𝑚 ≥ 1
2 |𝐴|𝑚. Let 𝐷 = {(𝑏, …, 𝑏) : 𝑏 ∈ 𝐵} ⊆ 𝐵𝑚. Then 𝐿 +

𝐷 ⊆ (𝐴 + 𝐵)𝑚, and so

|𝐿 + 𝐷| ≤ |𝐴 + 𝐵|𝑚 ≤ 𝐾𝑚|𝐴|𝑚 ≤ 2𝐾𝑚|𝐿|.

By Lemma 1.24,

𝐸(𝐿, 𝐷) ≥ |𝐿|2|𝐷|2

|𝐿 + 𝐷|
≥ 1

2
𝐾−𝑚|𝐷|2|𝐿|,

so there are at least |𝐷|2/2𝐾𝑚 pairs (𝑑1, 𝑑2) ∈ 𝐷2 such that 𝑟𝐿−𝐿(𝑑2 − 𝑑1) > 0. In
particular, there exists 𝑏 ∈ 𝐵 and 𝑋 ⊆ 𝐵 − 𝑏 such that |𝑋| ≥ |𝐷|/2𝐾𝑚 = |𝐵|/2𝐾𝑚

and for all 𝑥 ∈ 𝑋, there exists ℓ2(𝑥) ∈ 𝐿 such that for all ∈ [𝑚], ℓ1(𝑥)𝑖 − ℓ2(𝑥)𝑖 = 𝑥.
But now for all 𝑥 ∈ 𝑋, by the triangle inequality, we have,
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‖𝜏−𝑥𝑓 ∗ 𝜇𝐴 − 𝑓 ∗ 𝜇𝐴‖𝐿𝑝(𝐺) ≤ ‖𝜏−𝑥𝑓 ∗ 𝜇𝐴 − 𝜏−𝑥( 1
𝑚

∑
𝑚

𝑖=1
𝜏−ℓ2(𝑥)𝑖

𝑓)‖
𝐿𝑝(𝐺)

+‖𝜏−𝑥( 1
𝑚

∑
𝑚

𝑖=1
𝜏−ℓ2(𝑥)𝑖𝑓 − 𝑓 ∗ 𝜇𝐴)‖

𝐿𝑝(𝐺)

= ‖𝑓 ∗ 𝜇𝐴 − 1
𝑚

∑
𝑚

𝑖=1
𝜏−ℓ2(𝑥)𝑖𝑓‖

𝐿𝑝(𝐺)

+‖ 1
𝑚

∑
𝑚

𝑖=1
𝜏−𝑥−ℓ2(𝑥)𝑖𝑓 − 𝑓 ∗ 𝜇𝐴‖

𝐿𝑝(𝐺)

≤ 2 ⋅ 𝜀
2
‖𝑓‖𝐿𝑝(𝐺)

by definition of 𝐿. □

Theorem 3.10 (Bogolyubov, after Sanders)  Let 𝐴 ⊆ 𝔽𝑛
𝑝  have density 𝛼 > 0. There

exists a subspace 𝑉 ≤ 𝔽𝑛
𝑝  of codimension 𝑂((log 𝛼−1)4) such that

𝑉 ⊆ (𝐴 + 𝐴) − (𝐴 + 𝐴)

4. Further topics
Theorem 4.1 (Ellenberg-Gijswijt)  If 𝐴 ⊆ 𝔽𝑛

3  contains no non-trivial 3-term APs,
then |𝐴| = 𝑜(2.756𝑛).

Notation 4.2  Let 𝑀𝑛 denote the set of monomials in 𝑥1, …, 𝑥𝑛 whose degree in each
variable is at most 2.

Notation 4.3  Let 𝑉𝑛 denote the vector space of polynomials over 𝔽3 whose basis is
𝑀𝑛.

Notation 4.4  For any 0 ≤ 𝑑 ≤ 2𝑛, let 𝑀𝑑
𝑛 denote the set of monomials in 𝑀𝑛 of

total degree at most 𝑑, and let 𝑉 𝑑
𝑛  denote the corresponding vector space of

polynomials. Write 𝑚𝑑 = dim(𝑉 𝑑
𝑛 ) = |𝑀𝑑

𝑛|.

Lemma 4.5  Let 𝐴 ⊆ 𝔽𝑛
3  and 𝑃 ∈ 𝑉 𝑑

𝑛  be a polynomial. If 𝑃(𝑎 + 𝑏) = 0 for all 𝑎 ≠
𝑏 ∈ 𝐴, then

|{𝑎 ∈ 𝐴 : 𝑃(2𝑎) ≠ 0}| ≤ 2𝑚𝑑/2.

Proof .  Every 𝑃 ∈ 𝑉 𝑑
𝑛  can be written as a linear combination of monomials in 𝑀𝑑

𝑛 , so

𝑃(𝑥 + 𝑦) = ∑
𝑚,𝑚′∈𝑀𝑑

𝑛
deg(𝑚𝑚′)≤𝑑

𝑐𝑚,𝑚′𝑚(𝑥)𝑚′(𝑦)

for some coefficients 𝑐𝑚,𝑚′ . Clearly, at least one of 𝑚, 𝑚′ must have degree ≤ 𝑑/2,
whence

27



𝑃(𝑥 + 𝑦) = ∑
𝑚∈𝑀𝑑/2

𝑛

𝑚(𝑥)𝐹𝑚(𝑦) + ∑
𝑚′∈𝑀𝑑/2

𝑛

𝑚′(𝑦)𝐺𝑚′(𝑥),

for some families of polynomials {𝐹𝑚 : 𝑚 ∈ 𝑀𝑑/2
𝑛 } and {𝐺𝑚′ : 𝑚′ ∈ 𝑀𝑑/2

𝑛 }. Viewing
(𝑃 (𝑥 + 𝑦))𝑥,𝑦∈𝐴 as an |𝐴| × |𝐴| matrix 𝐶, we see that 𝐶 can be written as the sum of
at most 2𝑚𝑑/2 matrices, each of which has rank 1. Thus, rank(𝐶) ≤ 2𝑚𝑑/2. But by
assumption, 𝐶 is diagonal, and so its rank is equal to |{𝑎 ∈ 𝐴 : 𝑃(𝑎 + 𝑎) ≠ 0}|. □

Proposition 4.6  Let 𝐴 ⊆ 𝔽𝑛
3  be a set containing no non-trivial 3-APs. Then |𝐴| ≤

3𝑚2𝑛/3.

Proof .  Let 𝑑 ∈ [0, 2𝑛] be an integer which we will determine later. Let 𝑊  be the
space of polynomials in 𝑉 𝑑

𝑛  that vanish in (2 ⋅ 𝐴)𝑐. We have dim(𝑊) ≥ dim(𝑉 𝑑
𝑛 ) −

|(2 ⋅ 𝐴)𝑐| = 𝑚𝑑 − (3𝑛 − |𝐴|).

We claim that there exists 𝑃 ∈ 𝑊  such that |supp(𝑃)| ≥ dim(𝑊). Indeed, pick 𝑃 ∈
𝑊  with maximal support. If |supp(𝑃)| < dim(𝑊), then there would be a non-zero
polynomial 𝑄 ∈ 𝑊  vanishing on supp(𝑃), in which case supp(𝑃 + 𝑄) ⊋ supp(𝑃),
contradicting the maximality of supp(𝑃).

Now by assumption, {𝑎 + 𝑎′ : 𝑎 ≠ 𝑎′ ∈ 𝐴} ∩ 2 ⋅ 𝐴 = ∅, so any polynomial that
vanishes on (2 ⋅ 𝐴)𝑐 also vanishes on {𝑎 + 𝑎′ : 𝑎 ≠ 𝑎′ ∈ 𝐴}. Thus by above lemma,

𝑚𝑑 − (3𝑛 − |𝐴|) ≤ dim(𝑊) ≤ |supp(𝑃)| = |{𝑥 ∈ 𝔽𝑛
3 : 𝑃 (𝑥) ≠ 0}|

= |{𝑎 ∈ 𝐴 : 𝑃(2𝑎) ≠ 0}| ≤ 2𝑚𝑑/2.

Hence, |𝐴| ≤ 3𝑛 − 𝑚𝑑 + 2𝑚𝑑/2. But the monomials in 𝑀𝑛 \ 𝑀𝑑
𝑛 are in bijection with

the ones in 𝑀2𝑛−𝑑 by 𝑥𝛼1
1 ⋯𝑥𝛼𝑛𝑛 ⟷ 𝑥2−𝛼1

1 ⋯𝑥2−𝛼𝑛𝑛 , whence 3𝑛 − 𝑚𝑑 = 𝑚2𝑛−𝑑. Thus,
setting 𝑑 = 4𝑛/3, we have

|𝐴| ≤ 𝑚2𝑛/3 + 2𝑚2𝑛/3 = 3𝑚2𝑛/3.

□

Example 4.7  Recall from (find lemma) that given 𝐴 ⊆ 𝐺,

|𝑇3(𝟙𝐴, 𝟙𝐴, 𝟙𝐴) − 𝛼3| ≤ sup
𝛾≠1

|�̂�𝐴(𝛾)|.

However, it is impossible to bound 𝑇4(𝟙𝐴, 𝟙𝐴, 𝟙𝐴, 𝟙𝐴) − 𝛼4, where

𝑇4(𝟙𝐴, 𝟙𝐴, 𝟙𝐴, 𝟙𝐴) = 𝔼𝑥,𝑑𝟙𝐴(𝑥)𝟙𝐴(𝑥 + 𝑑)𝟙𝐴(𝑥 + 2𝑑)𝟙𝐴(𝑥 + 3𝑑),

by sup𝛾≠1|�̂�𝐴(𝛾)|. Indeed, consider 𝑄 = {𝑥 ∈ 𝔽𝑛
𝑝 : 𝑥 ⋅ 𝑥 = 0}. By (find example),

|𝑄|/𝑝𝑛 = 1/𝑝 + 𝑂(𝑝−𝑛/2) and sup𝑡≠0|�̂�𝑄(𝑡)| = 𝑂(𝑝−𝑛/2). But given a 3-AP 𝑥, 𝑥 +
𝑑, 𝑥 + 2𝑑 ∈ 𝑄, by the identity

∀𝑥, 𝑑, 𝑥2 − 3(𝑥 + 𝑑)2 + 3(𝑥 + 2𝑑)2 − (𝑥 + 3𝑑)2 = 0,

𝑥 + 3𝑑 automatically lies in 𝑄, so 𝑇4(𝟙𝐴, 𝟙𝐴, 𝟙𝐴, 𝟙𝐴) = 𝑇3(𝟙𝐴, 𝟙𝐴, 𝟙𝐴) = (1/𝑝)3 +
𝑂(𝑝−𝑛/2).
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Definition 4.8  Given 𝑓 : 𝐺 → ℂ, define its 𝑈2-norm by

‖𝑓‖4
𝑈2(𝐺) = 𝔼𝑥,𝑎,𝑏∈𝐺𝑓(𝑥)𝑓(𝑥 + 𝑎)𝑓(𝑥 + 𝑏)𝑓(𝑥 + 𝑎 + 𝑏)

By (find example), we have ‖𝑓‖𝑈2(𝐺) = ‖ ̂𝑓‖ℓ4(𝐺), so it is indeed a norm.

Lemma 4.9  Let 𝑓1, 𝑓2, 𝑓3 : 𝐺 → ℂ. Then

|𝑇3(𝑓1, 𝑓2, 𝑓3)| ≤ min
𝑖∈[3]

(‖𝑓𝑖‖𝑈2(𝐺) ⋅ ∏
𝑗≠𝑖

‖𝑓𝑗‖𝐿∞(𝐺)
).

Note that

sup
𝛾∈𝐺

| ̂𝑓(𝛾)|4 ≤ ∑
𝛾∈𝐺

| ̂𝑓(𝛾)|4 ≤ sup
𝛾∈𝐺

| ̂𝑓(𝛾)|2 ∑
𝛾∈𝐺

| ̂𝑓(𝛾)|2

and so by Parseval,

‖ ̂𝑓‖ℓ∞(𝐺) = ‖𝑓‖4
𝑈2(𝐺) = ‖ ̂𝑓‖4

ℓ∞(𝐺) ≤ ‖ ̂𝑓‖2
ℓ∞(𝐺) ⋅ ‖𝑓‖2

𝐿2(𝐺).

Moreover, if 𝑓 = 𝑓𝐴 = 𝟙𝐴 − 𝛼, then

𝑇3(𝑓, 𝑓, 𝑓) = 𝑇3(𝟙𝐴 − 𝛼, 𝟙𝐴 − 𝛼, 𝟙𝐴 − 𝛼) = 𝑇3(𝟙𝐴, 𝟙𝐴, 𝟙𝐴) − 𝛼3.

We may therefore reformulate the first step in the proof of Meshulam as follows: if
𝑝𝑛 ≥ 2𝛼−2, then by (find lemma), 𝛼3

2 ≤ | 𝛼
𝑝𝑛 − 𝛼3| = |𝑇3(𝑓𝐴, 𝑓𝐴, 𝑓𝐴)| ≤ ‖𝑓𝐴‖𝑈2(𝔽𝑛

𝑝 ). It
remains to show that if ‖𝑓𝑎‖𝑈2(𝔽𝑛

𝑝 ) is non-trivial, then there exists a subspace 𝑉 ≤ 𝔽𝑛
𝑝

of bounded codimension on which 𝐴 has increased density.

Theorem 4.10 (𝑈2 Inverse Theorem)  Let 𝑓 : 𝔽𝑛
𝑝 → ℂ satisfy ‖𝑓‖𝐿∞(𝔽𝑛

𝑝 ) ≤ 1 and
‖𝑓‖𝑈2(𝔽𝑛

𝑝 ) ≥ 𝛿 for some 𝛿 > 0. Then there exists 𝑏 ∈ 𝔽𝑛
𝑝  such that

|𝔼𝑥∈𝔽𝑛
𝑝
𝑓(𝑥)𝑒(−𝑥.𝑏/𝑝)| ≥ 𝛿2.

In other words, ⟨𝑓, 𝜑⟩ ≥ 𝛿2 for 𝜑(𝑥) = 𝑒(−𝑥.𝑏/𝑝). We say “𝑓 correlates with a linear
phase function”.

Proof .  We have seen that ‖𝑓‖𝑈2(𝔽𝑛
𝑝 ) ≤ ‖ ̂𝑓‖ℓ∞(�̂�𝑛

𝑝 )‖𝑓‖𝐿2(𝔽𝑛
𝑝 ) ≤ ‖ ̂𝑓‖ℓ∞(�̂�𝑛

𝑝 ). So

𝛿2 ≤ ‖ ̂𝑓‖ℓ∞(�̂�𝑛
𝑝 ) = sup

𝑡∈�̂�𝑛
𝑝

|𝔼𝑥∈𝔽𝑛
𝑝
𝑓(𝑥)𝑒(−𝑥.𝑡/𝑝)|.

□

Definition 4.11  Given 𝑓 : 𝐺 → ℂ, the 𝑈3 norm of 𝑓 is defined by
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‖𝑓‖8
𝑈3(𝐺) = 𝔼𝑥,𝑎,𝑏,𝑐∈𝐺𝑓(𝑥)𝑓(𝑥 + 𝑎)𝑓(𝑥 + 𝑏)𝑓(𝑥 + 𝑐)

𝑓(𝑥 + 𝑎 + 𝑏)𝑓(𝑥 + 𝑏 + 𝑐)𝑓(𝑥 + 𝑎 + 𝑐)𝑓(𝑥 + 𝑎 + 𝑏 + 𝑐)

= 𝔼𝑥,ℎ1,ℎ2,ℎ3∈𝐺 ∏
𝜀∈{0,1}3

𝒞|𝜺|𝑓(𝑥 + 𝜺.𝒉),

where 𝒞𝑔(𝑥) = 𝑔(𝑥) and |𝜺| = |{𝑖 ∈ [3] : 𝜀𝑖 = 1}| is the number of 1′s in 𝜺.

TODO: insert diagram of cube with vertices 𝑥, 𝑥 + 𝑎, …, 𝑥 + 𝑎 + 𝑏 + 𝑐.

Remark 4.12  It is easy to verify that ‖𝑓‖8
𝑈3(𝐺) = 𝔼𝑐∈𝐺‖Δ𝑐𝑓‖4

𝑈2(𝐺) where Δ𝑐𝑔(𝑥) =
𝑔(𝑥)𝑔(𝑥 + 𝑐).

Definition 4.13  Given eight functions 𝑓𝜀 : 𝐺 → ℂ for 𝜀 ∈ {0, 1}3, define their 𝑈3

inner product by

⟨(𝑓𝜀)𝜀∈{0,1}3⟩
𝑈3(𝐺)

≔ 𝔼𝑥,ℎ1,ℎ2,ℎ3∈𝐺 ∏
𝜀∈{0,1}3

𝒞|𝜀|𝑓𝜀(𝑥 + 𝜀 ⋅ ℎ)

Observe that ⟨𝑓, 𝑓, 𝑓, 𝑓, 𝑓, 𝑓, 𝑓, 𝑓⟩𝑈3(𝐺) = ‖𝑓‖8
𝑈3(𝐺).

Lemma 4.14 (Gowers-Cauchy-Schwarz Inequality)  Given 𝑓𝜀 : 𝐺 → ℂ for 𝜀 ∈ {0, 1}3,

|⟨(𝑓𝜀)𝜀∈{0,1}3⟩
𝑈3(𝐺)

| ≤ ∏
𝜀∈{0,1}3

‖𝑓𝜀‖𝑈3(𝐺).

Proof .  Exercise (helpful to do for 𝑈2 first). □

Remark 4.15  Setting 𝑓𝜀 = 𝑓 for 𝜀 ∈ {0, 1}2 × {0} and 𝑓𝜀 = 1 otherwise, it follows
that

‖𝑓‖4
𝑈2(𝐺) ≤ ‖𝑓‖4

𝑈3(𝐺) hence ‖𝑓‖𝑈2(𝐺) ≤ ‖𝑓‖𝑈3(𝐺).

Proposition 4.16  Let 𝑓1, 𝑓2, 𝑓3, 𝑓4 : 𝔽𝑛
5 → ℂ. Then

|𝑇4(𝑓1, 𝑓2, 𝑓3, 𝑓4)| ≤ min
𝑖∈[4]

‖𝑓𝑖‖𝑈3(𝐺) ⋅ ∏
𝑗≠𝑖

‖𝑓𝑗‖𝐿∞(𝔽𝑛
5 )

.

Proof .  Assume 𝑓𝑖 = 𝑓 for all 𝑖 and that ‖𝑓‖𝐿∞(𝔽𝑛
5 ) ≤ 1 (we can remove these

assumptions). Reparameterising (by subtracting 𝑎 + 𝑏 + 𝑐 + 𝑑), we have

𝑇4(𝑓, 𝑓, 𝑓, 𝑓) = 𝔼𝑎,𝑏,𝑐,𝑑∈𝔽𝑛
5
𝑓(3𝑎 + 2𝑏 + 𝑐)𝑓(2𝑎 + 𝑏 − 𝑑)𝑓(𝑎 − 𝑐 − 2𝑑)𝑓(−𝑏 − 2𝑐 − 3𝑑)

Now
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|𝑇4(𝑓, 𝑓, 𝑓, 𝑓)|8 ≤ (𝔼𝑎,𝑏,𝑐|𝔼𝑑𝑓(2𝑎 + 𝑏 − 𝑑)𝑓(𝑎 − 𝑐 − 2𝑑)𝑓(−𝑏 − 2𝑐 − 3𝑑)|2)
4

by C-S

=

(𝔼𝑑,𝑑′𝔼𝑎,𝑏𝑓(2𝑎 + 𝑏 − 𝑑)𝑓(2𝑎 + 𝑏 − 𝑑′)

⋅ 𝔼𝑐𝑓(𝑎 − 𝑐 − 2𝑑)𝑓(𝑎 − 𝑐 − 2𝑑′)𝑓(−𝑏 − 2𝑐 − 3𝑑)𝑓(−𝑏 − 2𝑐 − 3𝑑′))

4

≤ 𝔼𝑑,𝑑′𝔼𝑎,𝑏|𝔼𝑐𝑓(𝑎 − 𝑐 − 2𝑑)𝑓 − 𝑐 − 2𝑑′𝑓(−𝑏 − 2𝑐 − 3𝑑)𝑓(−𝑏 − 2𝑐 − 3𝑑′)
2
|
2

=

(𝔼𝑐,𝑐′,𝑑,𝑑′𝔼𝑎𝑓(𝑎 − 𝑐 − 2𝑑)𝑓(𝑎 − 𝑐′ − 2𝑑)𝑓(𝑎 − 𝑐 − 2𝑑′)𝑓(𝑎 − 𝑐′ − 2𝑑′)

⋅ 𝔼𝑏𝑓(−𝑏 − 2𝑐 − 3𝑑)𝑓(−𝑏 − 2𝑐′ − 3𝑑)𝑓(−𝑏 − 2𝑐 − 3𝑑′)𝑓(−𝑏 − 2𝑐′ − 3𝑑′))

2

≤ 𝔼𝑐,𝑐′,𝑑,𝑑′,𝑎|𝔼𝑏𝑓(−𝑏 − 2𝑐 − 3𝑑)𝑓(−𝑏 − 2𝑐′ − 3𝑑)𝑓(−𝑏 − 2𝑐 − 3𝑑′)𝑓(−𝑏 − 2𝑐′ − 3𝑑′)|
2

= 𝔼𝑏,𝑏′,𝑐,𝑐′,𝑑,𝑑′𝑓(−𝑏 − 2𝑐 − 3𝑑)𝑓(−𝑏′ − 2𝑐 − 3𝑑)𝑓(−𝑏 − 2𝑐′ − 3𝑑)𝑓(−𝑏′ − 2𝑐′ − 3𝑑)

𝑓(−𝑏 − 2𝑐 − 3𝑑′)𝑓(−𝑏′ − 2𝑐 − 3𝑑′)𝑓(−𝑏 − 2𝑐′ − 3𝑑′)𝑓(−𝑏′ − 2𝑐′ − 3𝑑′)

where all the inequalities are by Cauchy-Schwarz. □

Example 4.17  Let 𝑀  be an 𝔽𝑛×𝑛
5  be a symmetric matrix. Then 𝑓(𝑥) = 𝑒(𝑥𝑇 𝑀𝑥/5)

satisfies ‖𝑓‖𝑈3 = 1.

Theorem 4.18 (𝑈3 Inverse Theorem)  Let 𝑓 : 𝔽𝑛
5 → ℂ satisfy ‖𝑓‖𝐿∞(𝔽𝑛

5 ) ≤ 1 and
‖𝑓‖𝑈3(𝔽𝑛

5 ) ≥ 𝛿 for some 𝛿 > 0. Then there exists a symmetric matrix 𝑀 ∈ 𝔽𝑛×𝑛
5  and

𝑏 ∈ 𝔽𝑛
5  such that

|𝔼𝑥𝑓(𝑥)𝑒(𝑥𝑇 𝑀𝑥 + 𝑏𝑇 𝑥/𝑝)| ≥ 𝑐(𝛿),

where 𝑐(𝛿) is a polynomial in 𝛿. In other words, |⟨𝑓, 𝜑⟩| ≥ 𝑐(𝛿) for 𝜑(𝑥) = 𝑒(𝑥𝑇 𝑀𝑥 +
𝑏𝑇 𝑥/𝑝), and we say “𝑓 correlates with a quadratic phase function”.

Proof sketch .  We have ‖𝑓‖8
𝑈3 = 𝔼ℎ‖Δℎ𝑓‖4

𝑈2 where Δℎ𝑓(𝑥) = 𝑓(𝑥)𝑓(𝑥 + ℎ).

1. Weak linearity: if ‖𝑓‖8
𝑈3 ≥ 𝛿8, then for at least a 𝛿8/2-proportion of ℎ ∈ 𝔽𝑛

5 , 𝛿8/2 ≤
‖Δℎ𝑓‖4

𝑈2 ≤ ‖Δ̂ℎ𝑓‖
2

ℓ∞
. So for each such ℎ ∈ 𝔽𝑛

5 , there exists 𝑡ℎ such that
|Δ̂ℎ(𝑡ℎ)|

2
≥ 𝛿8/2. We have

Proposition 4.19  Let 𝑓 : 𝔽𝑛
5 → ℂ satisfy ‖𝑓‖𝐿∞(𝔽𝑛

5 ) ≤ 1 and ‖𝑓‖𝑈3(𝔽𝑛
5 ) ≥ 𝛿 for

some 𝛿 > 0. Suppose |𝔽𝑛
5 | = Ω𝛿(1). Then there exists 𝑆 ⊆ 𝔽𝑛

5  with |𝑆| = Ω𝛿(|𝔽𝑛
5 |)

and a function 𝜑 : 𝑆 → �̂�𝑛
5  such that:

• |Δ̂ℎ𝑓(𝜑(ℎ))| = Ω𝛿(1), and
• There are at least Ω𝛿(|𝔽𝑛

5 |3) quadruples (𝑠1, 𝑠2, 𝑠3, 𝑠4) ∈ 𝑆4 such that 𝑠1 + 𝑠2 =
𝑠3 + 𝑠4 and 𝜑(𝑠1) + 𝜑(𝑠2) = 𝜑(𝑠3) + 𝜑(𝑠4).

2. Strong linearity. If 𝑆 and 𝜑 are as above, then there is a linear function 𝜓 : 𝔽𝑛
5 →

�̂�𝑛
5  which coincides with 𝜑 for many elements of 𝑆. We have

Proposition 4.20  Let 𝑆 and 𝜑 be as given by above proposition. Then there
exists a 𝑀 ∈ 𝔽𝑛×𝑛

5  and 𝑏 ∈ 𝔽𝑛
5  such that 𝜓 : 𝔽𝑛

5 → �̂�𝑛
5 , 𝜓(𝑥) = 𝑀𝑥 + 𝑏 satisfies

𝜓(𝑥) = 𝜑(𝑥) for Ω𝛿(|𝔽𝑛
5 |) elements 𝑥 ∈ 𝑆.
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Proof .  Consider the graph of 𝜑: Γ = {(ℎ, 𝜑(ℎ) : ℎ ∈ 𝑆} ⊆ 𝔽𝑛
5 × �̂�𝑛

5 . By above
proposition, Γ has Ω𝛿(|𝔽𝑛

5 |) additive quadruples. By Balog-Szemeredi-Gowers,
there exists Γ′ ⊆ Γ with |Γ′| = Ω𝛿(|Γ|) = Ω𝛿(|𝔽𝑛

5 |) and |Γ′ + Γ′| = 𝑂𝛿(|Γ′|). Define
𝑆′ ⊆ 𝑆 by Γ′ = {(ℎ, 𝜑(ℎ)) : ℎ ∈ 𝑆′}. Note that |𝑆′| = Ω𝛿(|𝔽𝑛

5 |). By Freiman-Ruzsa
applied to Γ′ ⊆ 𝔽𝑛

5 × �̂�𝑛
5 , there exists a subspace 𝐻 ≤ 𝔽𝑛

5 × �̂�𝑛
5  with |𝐻| =

𝑂𝛿(|Γ′|) = 𝑂𝛿(|𝔽𝑛
5 |) such that Γ′ ⊆ 𝐻.

Denote by 𝜋 : 𝔽𝑛
5 × �̂�𝑛

5  the projection onto the first 𝑛 coordinates. By construction,
𝜋(𝐻) ⊇ 𝑆′. Moreover, since |𝑆′| = Ω𝛿(|𝔽𝑛

5 |), we have

|ker(𝜋|𝐻)| = |𝐻|
|im(𝜋|𝐻)|

≤ 𝑂𝛿(|𝔽𝑛
5 |)

|𝑆′|
= 𝑂𝛿(1).

We may thus partition 𝐻 into 𝑂𝛿(1) cosets of some subspace 𝐻∗ such that 𝜋|𝐻 is
injective on each coset. By averaging, there exists a coset 𝑥 + 𝐻∗ such that |Γ′ ∩
(𝑥 + 𝐻∗)| = Ω𝛿(|Γ′|) = Ω𝛿(|𝔽𝑛

5 |).

Set Γ″ = Γ′ ∩ (𝑥 + 𝐻∗) and define 𝑆″ accordingly. Now 𝜋|𝑥+𝐻∗ is injective and
surjective onto 𝑉 ≔ im(𝜋|𝑥+𝐻∗). This means there is an affine-linear map 𝜓 : 𝑉 →
�̂�𝑛

5  such that (ℎ, 𝜓(ℎ)) ∈ Γ′ for all ℎ ∈ 𝑆″. □
3. Symmetry argument.
4. Integration step.

Theorem 4.21 (Szemeredi's Theorem for 4-APs)  Let 𝐴 ⊆ 𝔽𝑛
5  be a set containing no

non-trivial 4-APs. Then |𝐴| = 𝑂(5𝑛).

Proof .  Idea: by above proposition with 𝑓 = 𝑓𝐴 = 𝟙𝐴 − 𝛼,

𝑇4(𝟙𝐴, 𝟙𝐴, 𝟙𝐴, 𝟙𝐴) − 𝛼4 = 𝑇4(𝑓𝐴, 𝑓𝐴, 𝑓𝐴, 𝑓𝐴) + 14 other terms,

in which between one and three of the inputs are equal to 𝑓𝐴. These are controlled by
‖𝑓𝐴‖𝑈2(𝔽𝑛

5 ) ≤ ‖𝑓𝐴‖𝑈3(𝔽𝑛
5 ), whence

|𝑇4(𝟙𝐴, 𝟙𝐴, 𝟙𝐴, 𝟙𝐴) − 𝛼4| ≤ 15‖𝑓𝐴‖𝑈3(𝔽𝑛
5 )

So if 𝐴 contains no non-trivial 4-APs and 5𝑛 > 2𝛼−3, then ‖𝑓𝐴‖𝑈3(𝔽𝑛
5 ) ≥ 𝛼4

30 . What can
we say about functions with large 𝑈3 norm? □
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