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1. Set systems
1.1. Chains and antichains
Note 1.1  The ideas in combinatorics often occur in the proofs, so it is advisable
to learn the techniques used in proofs, rather than just learning the results and not
their proofs.

Definition 1.2  Let 𝑋 be a set. A set system on 𝑋 (also called a family of subsets
of 𝑋) is a collection ℱ ⊆ ℙ(𝑋).

Notation 1.3  𝑋(𝑟) ≔ {𝐴 ⊆ 𝑋 : |𝐴| = 𝑟} denotes the family of subsets of 𝑋 of size 𝑟.

Remark 1.4  Usually, we take 𝑋 = [𝑛] = {1, …, 𝑛}, so |𝑋(𝑟)| = (𝑛
𝑟 ).

Notation 1.5  For brevity, we write e.g. [4](2) = {12, 13, 14, 23, 24, 34}.

Definition 1.6  We can visualise ℙ(𝑋) as a graph by joining nodes 𝐴 ∈ ℙ(𝑋) and 𝐵 ∈
ℙ(𝑋) if |𝐴Δ𝐵| = 1, i.e. if 𝐴 = 𝐵 ∪ {𝑖} for some 𝑖 ∉ 𝐵, or vice versa.

This graph is the discrete cube 𝑄𝑛.

Diagram 1.7

123

12 13 23

1 2 3

∅

𝑋(3)

𝑋(2)

𝑋(1)

𝑋(0)

𝑋(4)

𝑋(3)

𝑋(2)

𝑋(1)

𝑋(0)

𝑄3, 𝑄3, and 𝑄4.

Remark 1.8  Alternatively, we can view 𝑄𝑛 as an 𝑛-dimensional unit cube {0, 1}𝑛

by identifying e.g. {1, 3} ⊆ [5] with 10100 (i.e. identify 𝐴 with 𝟙𝐴, the characteristic/
indicator function of 𝐴).

Diagram 1.9
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∅ 1

3 13

2 12

23 123

1
2

3

The cube 𝑄3 as the unit cube in ℝ3

Definition 1.10  ℱ ⊆ ℙ(𝑋) is a chain if ∀𝐴, 𝐵 ∈ ℱ, 𝐴 ⊆ 𝐵 or 𝐵 ⊆ 𝐴.

Example 1.11
• ℱ = {23, 1235, 123567} is a chain.
• ℱ = {∅, 1, 12, …, [𝑛]} ⊆ ℙ([𝑛]) is a chain.

Definition 1.12  ℱ ⊆ ℙ(𝑋) is an antichain if ∀𝐴 ≠ 𝐵 ∈ ℱ, 𝐴 ⊈ 𝐵.

Diagram 1.13

A chain and antichain.

Example 1.14
• ℱ = {23, 137} is an antichain.
• ℱ = {1, …, 𝑛} ⊆ ℙ([𝑛]) is an antichain.
• More generally, ℱ = 𝑋(𝑟) is an antichain for any 𝑟.

Proposition 1.15  A chain and an antichain can meet at most once.

Proof (Hints) .  Trivial. □

Proof .  By definition. □

Proposition 1.16  A chain ℱ ⊆ ℙ([𝑛]) can have at most 𝑛 + 1 elements.

Proof (Hints) .  Trivial. □

Proof .  For each 0 ≤ 𝑟 ≤ 𝑛, ℱ can contain at most 1 𝑟-set (set of size 𝑟). □

Theorem 1.17 (Sperner's Lemma)  Let ℱ ⊆ ℙ(𝑋) be an antichain. Then |ℱ| ≤
( 𝑛

⌊𝑛/2⌋), i.e. the maximum size of an antichain is achieved by the set of 𝑋(⌊𝑛/2⌋).

Proof (Hints) .
• Let 𝑟 < 𝑛

2 .
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• Let 𝐺 be bipartite subgraph of 𝑄𝑛 spanned by 𝑋(𝑟) ∪ 𝑋(𝑟+1).
• By considering an expression and upper bound for number of 𝑆-Γ(𝑆) edges in 𝐺 for

each 𝑆 ⊆ 𝑋(𝑟), show that there is a matching from 𝑋(𝑟) to 𝑋(𝑟+1).
• Reason that this induces a matching from 𝑋(𝑟) to 𝑋(𝑟−1) for each 𝑟 > 𝑛

2 .
• Reason that joining these matchings together, together with length 1 chains of

subsets of 𝑋(⌊𝑛/2⌋) not included in a matching, result in a partition of ℙ(𝑋) into
( 𝑛

⌊𝑛/2⌋) chains, and conclude result from here.

□

Proof .  We use the idea: from “a chain meets each layer in ≤ 1 points, because a layer
is an antichain”, we try to decompose the cube into chains.

Diagram 1.18

Decomposition of ℙ(𝑋) into chains.

In particular, we partition ℙ(𝑋) into ( 𝑛
⌊𝑛/2⌋) chains, so each subset of 𝑋 appears exactly

once in one chain. Then we are done (since to form an antichain, we can pick at most
one element from each chain). To achieve this, it is sufficient to find:
• For each 𝑟 < 𝑛

2 , a matching from 𝑋(𝑟) to 𝑋(𝑟+1) (a matching is a set of disjoint edges,
one for each point in 𝑋(𝑟)).

• For each 𝑟 > 𝑛
2 , a matching from 𝑋(𝑟) to 𝑋(𝑟−1).

Then put these matchings together to form a set of chains, each passing through 𝑋(⌊𝑛/2⌋).

Diagram 1.19
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𝑋(𝑛/2−2)

𝑋(𝑛/2−1)

𝑋(𝑛/2)

𝑋(𝑛/2+1)

𝑋(𝑛/2+2)

Example of joining matchings in the 5 middle layers, for 𝑛 even.

If a subset 𝑋(⌊𝑛/2⌋) has a chain passing through it, then this chain is unique. The
subsets with no chain passing through form their own one-element chain. By taking
complements, it is enough to construct the matchings just for 𝑟 < 𝑛

2  (since a matching
from 𝑋(𝑟) to 𝑋(𝑟+1) induces a matching from 𝑋(𝑛−𝑟−1) to 𝑋(𝑛−𝑟): there is a correspon-
dence between 𝑋(𝑟) and 𝑋(𝑛−𝑟) by taking complements, and taking complements reverse
inclusion, so edges in the induced matching are guaranteed to exist).

Let 𝐺 be the (bipartite) subgraph of 𝑄𝑛 spanned by 𝑋(𝑟) ∪ 𝑋(𝑟+1). For any 𝑆 ⊆ 𝑋(𝑟),
the number of 𝑆-Γ(𝑆) edges in 𝐺 is |𝑆|(𝑛 − 𝑟) (counting from below) since there are
𝑛 − 𝑟 ways to add an element. This number is ≤ |Γ(𝑆)| (𝑟 + 1) (counting from above),
since 𝑟 + 1 ways to remove an element.

Diagram 1.20

𝑋(𝑟)

𝑋(𝑟+1)

𝑆

Γ(𝑆)

Hence |Γ(𝑆)| ≥ |𝑆| (𝑛−𝑟)
𝑟+1 ≥ |𝑆| as 𝑟 < 𝑛

2 . So by Hall’s theorem, since there is a matching
from 𝑆 to Γ(𝑆), there is a matching from 𝑋(𝑟) to 𝑋(𝑟+1). □

Remark 1.21  The proof above doesn’t tell us when we have equality in Sperner’s
Lemma.
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Definition 1.22  For ℱ ⊆ 𝑋(𝑟) (1 ≤ 𝑟 ≤ 𝑛), the shadow of ℱ is the set of subsets
which can be obtained by removing one element from a subset in ℱ:

𝜕ℱ = 𝜕−ℱ ≔ {𝐵 ∈ 𝑋(𝑟−1) : 𝐵 ⊆ ℱ for some 𝐴 ∈ ℱ}.

Diagram 1.23

𝑋(𝑟−1)

𝑋(𝑟)ℱ

𝜕ℱ

A family ℱ ⊆ 𝑋(𝑟) and its shadow.

Example 1.24  Let ℱ = {123, 124, 134, 137} ∈ [7](3). Then 𝜕ℱ =
{12, 13, 23, 14, 24, 34, 17, 37}.

Proposition 1.25 (Local LYM)  Let ℱ ⊆ 𝑋(𝑟), 1 ≤ 𝑟 ≤ 𝑛. Then

|ℱ|
(𝑛

𝑟 )
≤ |𝜕ℱ|

( 𝑛
𝑟−1)

.

i.e. the proportion of the level occupied by 𝜕ℱ is at least the proportion of the level
occupied by ℱ.

Proof (Hints) .  Find equation and upper bound for number of ℱ-𝜕ℱ edges in 𝑄𝑛. □

Proof .  The number of ℱ-𝜕ℱ edges in 𝑄𝑛 is |ℱ|𝑟 (counting from above, since we can
remove any of 𝑟 elements from |ℱ| sets) and is ≤ |𝜕ℱ| (𝑛 − 𝑟 + 1) (since adding one of
the 𝑛 − 𝑟 + 1 elements not in 𝐴 ∈ 𝜕ℱ to 𝐴 may not result in a subset of ℱ). Hence,

|ℱ|
|𝜕ℱ|

≤ 𝑛 − 𝑟 + 1
𝑟

= (𝑛
𝑟
)/( 𝑛

𝑟 − 1
). □

Remark 1.26  For equality in Local LYM, we must have that ∀𝐴 ∈ ℱ, ∀𝑖 ∈ 𝐴, ∀𝑗 ∉
𝐴, we must have (𝐴 − {𝑖}) ∪ {𝑗} ∈ ℱ, i.e. ℱ = ∅ or 𝑋(𝑟) for some 𝑟.

Notation 1.27  Write ℱ𝑟 for ℱ ∩ 𝑋(𝑟).

Theorem 1.28 (LYM Inequality)  Let ℱ ⊆ ℙ(𝑋) be an antichain. Then

∑
𝑛

𝑟=0

|ℱ ∩ 𝑋(𝑟)|
(𝑛

𝑟 )
≤ 1,

i.e. the proportions of each layer occupied add to ≤ 1.

Diagram 1.29
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Proof (Hints) .
• Method 1: show the result for the sum ∑𝑛

𝑟=𝑘 by induction, starting with 𝑘 = 𝑛. Use
local LYM, and that 𝜕ℱ𝑛 and ℱ𝑛−1 are disjoint (and analogous results for lower
levels).

• Method 2: let 𝒞 be uniformly random maximal chain, find an expression for
Pr(𝒞 meets ℱ).

• Method 3: determine number of maximal chains in 𝑋, determine number of maximal
chains passing through a fixed 𝑟-set, deduce maximal number of chains passing
through ℱ.

□

Proof .  Method 1: “bubble down with local LYM”. We trivially have that ℱ𝑛/(𝑛
𝑛) ≤

1. 𝜕ℱ𝑛 and ℱ𝑛−1 are disjoint, as ℱ is an antichain, so

|𝜕ℱ𝑛|
( 𝑛

𝑛−1)
+ |ℱ𝑛−1|

( 𝑛
𝑛−1)

= |𝜕ℱ𝑛 ∪ ℱ𝑛−1|
( 𝑛

𝑛−1)
≤ 1.

So by local LYM,

|ℱ𝑛|
(𝑛

𝑛)
+ |ℱ𝑛−1|

( 𝑛
𝑛−1)

≤ 1.

Now, 𝜕(𝜕ℱ𝑛 ∪ ℱ𝑛−1) and ℱ𝑛−2 are disjoint, as ℱ is an antichain, so

|𝜕(𝜕ℱ𝑛 ∪ ℱ𝑛−1)|
( 𝑛

𝑛−2)
+ |ℱ𝑛−2|

( 𝑛
𝑛−2)

≤ 1.

So by local LYM,

|𝜕ℱ𝑛 ∪ ℱ𝑛−1|
( 𝑛

𝑛−1)
+ |ℱ𝑛−2|

( 𝑛
𝑛−2)

≤ 1.

So

|ℱ𝑛|
(𝑛

𝑛)
+ |ℱ𝑛−1|

( 𝑛
𝑛−1)

+ |ℱ𝑛−2|
( 𝑛

𝑛−2)
≤ 1.

Continuing inductively, we obtain the result.

Method 2: Choose uniformly at random a maximal chain 𝒞 (i.e. 𝐶0 ⊊ 𝐶1 ⊆ ⋯ ⊊
𝐶𝑛 with |𝐶𝑟| = 𝑟 for all 𝑟). For any 𝑟-set 𝐴, Pr(𝐴 ∈ 𝒞) = 1/(𝑛

𝑟 ), since all 𝑟-sets are
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equally likely. So Pr(𝒞 meets ℱ𝑟) = |ℱ𝑟|/(𝑛
𝑟 ), since the events are disjoint. Thus,

Pr(𝒞 meets ℱ) = ∑𝑛
𝑟=0|ℱ𝑟|/(𝑛

𝑟 ) ≤ 1 since the events are disjoint (since ℱ is an
antichain).

Diagram 1.30

𝒞
𝑄𝑛

A random maximal chain 𝒞.

Method 3 (same as method 2 but counting instead of using probability): The number
of maximal chains is 𝑛!, and the number through any fixed 𝑟-set is 𝑟!(𝑛 − 𝑟)!, so
∑𝑟|ℱ𝑟|𝑟!(𝑛 − 𝑟)! ≤ 𝑛!. □

Remark 1.31  To have equality in LYM, we must have equality in each use of local
LYM in proof method 1. In this case, the maximum 𝑟 with ℱ𝑟 ≠ ∅ has ℱ𝑟 = 𝑋(𝑟). So
equality holds iff ℱ = 𝑋(𝑟) for some 𝑟. Hence equality in Sperner’s Lemma holds iff
ℱ = 𝑋(⌊𝑛/2⌋) or ℱ = 𝑋(⌈𝑛/2⌉).

1.2. Two total orders on 𝑋(𝑟)

Definition 1.32  Let 𝐴 ≠ 𝐵 be 𝑟-sets, 𝐴 = 𝑎1…𝑎𝑟, 𝐵 = 𝑏1…𝑏𝑟 (where 𝑎1 < ⋯ < 𝑎𝑛,
𝑏1 < ⋯ < 𝑏𝑛). 𝐴 < 𝐵 in the lexicographic (lex) ordering if for some 𝑗, we have 𝑎𝑖 =
𝑏𝑖 for all 𝑖 < 𝑗, and 𝑎𝑗 < 𝑏𝑗. “use small elements”.

Example 1.33  The elements of [4](2) in lexicographic order are 12, 13, 14, 23, 24, 34.
The elements of [6](3) in lexicographic order are 123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256, 345, 346, 356, 456.

Definition 1.34  Let 𝐴 ≠ 𝐵 be 𝑟-sets, 𝐴 = 𝑎1…𝑎𝑟, 𝐵 = 𝑏1…𝑏𝑟 (where 𝑎1 < ⋯ < 𝑎𝑛,
𝑏1 < ⋯ < 𝑏𝑛). 𝐴 < 𝐵 in the colexicographic (colex) order if for some 𝑗, we have 𝑎𝑖 =
𝑏𝑖 for all 𝑖 > 𝑗, and 𝑎𝑗 < 𝑏𝑗. “avoid large elements”.

Example 1.35  The elements of [4](2) in colex order are 12, 13, 23, 14, 24, 34. The
elements of [6](3) are 123, 124, 134, 234, 125, 135, 235, 145, 245, 345, 126, 136, 236, 146, 246, 346, 156, 256, 356, 456.

Remark 1.36  Lex and colex are both total orders. Note that in colex, [𝑛 − 1](𝑟) is
an initial segment of [𝑛](𝑟) (this does not hold for lex). So we can view colex as an
enumeration of ℕ(𝑟).

Remark 1.37  𝐴 < 𝐵 in colex iff 𝐴𝑐 < 𝐵𝑐 in lex with ground set order reversed.

Remark 1.38  By Local LYM, we know that |𝜕ℱ| ≥ |ℱ|𝑟/(𝑛 − 𝑟 + 1). Equality is rare
(only for ℱ = 𝑋(𝑟) for 0 ≤ 𝑟 ≤ 𝑛). What happens in between, i.e., given |ℱ|, how should
we choose ℱ to minimise |𝜕ℱ|?
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You should be able to convince yourself that if |ℱ| = (𝑘
𝑟), then we should take ℱ =

[𝑘](𝑟). If (𝑘
𝑟) < |ℱ| < (𝑘+1

𝑟 ), then convince yourself that we should take some [𝑘](𝑟) plus
some 𝑟-sets in [𝑘 + 1](𝑟).

E.g. for ℱ ⊆ 𝑋(𝑟) with |ℱ| = (8
3) + (4

2), take ℱ = [8](3) ∪ {9 ∪ 𝐵 : 𝐵 ∈ [4](2)}.

Remark 1.39  We want to show that if ℱ ⊆ 𝑋(𝑟) and 𝒞 ⊆ 𝑋(𝑟) is the initial segment
of colex with |𝒞| = |ℱ|, then |𝜕𝒞| ≤ |𝜕ℱ|. In particular, if |ℱ| = (𝑘

𝑟) (so 𝒞 = [𝑘](𝑟)),
then |𝜕ℱ| ≥ ( 𝑘

𝑟−1).

1.3. Compressions
Remark 1.40  We want to transform ℱ ⊆ 𝑋(𝑟) into some ℱ′ ⊆ 𝑋(𝑟) such that:
• |ℱ′| = |ℱ|,
• |𝜕ℱ′| ≤ |𝜕ℱ|.

Ideally, we want a family of such “compressions” ℱ → ℱ′ → … → ℬ such that either
ℬ = 𝒞, or ℬ is similar enough to 𝒞 that we can directly check that |𝜕𝒞| ≤ |𝜕ℬ|.

Definition 1.41  Let 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. The 𝑖𝑗-compression 𝐶𝑖𝑗 is defined as:
• For 𝐴 ∈ 𝑋(𝑟),

𝐶𝑖𝑗(𝐴) = {(𝐴 ∪ 𝑖) − 𝑗 if 𝑗 ∈ 𝐴, 𝑖 ∉ 𝐴
𝐴 otherwise .

• For ℱ ⊆ 𝑋(𝑟), 𝐶𝑖𝑗(ℱ) = {𝐶𝑖𝑗(𝐴) : 𝐴 ∈ ℱ} ∪ {𝐴 ∈ ℱ : 𝐶𝑖𝑗(𝐴) ∈ ℱ}.

“replace 𝑗 by 𝑖 where possible”. This definition is inspired by “colex prefers 𝑖 < 𝑗 to 𝑗”.
Note that 𝐶𝑖𝑗(ℱ) ⊆ 𝑋(𝑟) and |𝐶𝑖𝑗(ℱ)| = |ℱ|.

Diagram 1.42

𝐴

𝐴 ∪ 𝑗

𝐴 ∪ 𝑖

𝐴 ∪ 𝑖𝑗

𝑖

𝑗

Applying an 𝑖𝑗-compression to 𝐴 ∈ 𝑋(𝑟).

Definition 1.43  ℱ is 𝑖𝑗-compressed if 𝐶𝑖𝑗(ℱ) = ℱ.

Example 1.44  Let ℱ = {123, 134, 234, 235, 146, 567}, then 𝐶12(ℱ) =
{123, 134, 234, 135, 146, 567}.

Lemma 1.45  Let ℱ ⊆ 𝑋(𝑟), 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Then |𝜕𝐶𝑖𝑗(ℱ)| ≤ |𝜕ℱ|.

Proof (Hints) .

9



• Let ℱ′ = 𝐶𝑖𝑗(ℱ), 𝐵 ∈ 𝜕ℱ′ − 𝜕ℱ.
• Show that 𝑖 ∈ 𝐵 and 𝑗 ∉ 𝐵.
• Reason that 𝐵 ∪ 𝑗 − 𝑖 ∈ 𝜕ℱ′.
• Show that 𝐵 ∪ 𝑗 − 𝑖 ∉ 𝜕ℱ′ by contradiction.
• Conclude the result.

□

Proof .  Let ℱ′ = 𝐶𝑖𝑗(ℱ). Let 𝐵 ∈ 𝜕ℱ′ − 𝜕ℱ. We’ll show that 𝑖 ∈ 𝐵, 𝑗 ∉ 𝐵, (𝐵 ∪ 𝑗) −
𝑖 ∈ 𝜕ℱ − 𝜕ℱ′.

Diagram 1.46

𝐵 − 𝑖

(𝐵 ∪ 𝑗) − 𝑖

𝐵

𝐵 ∪ 𝑗

𝑖

𝑗

Note that 𝐵 ∪ 𝑥 ∈ ℱ′ and 𝐵 ∪ 𝑥 ∉ ℱ (since 𝐵 ∉ 𝜕ℱ) for some 𝑥. So 𝑖 ∈ 𝐵 ∪ 𝑥, 𝑗 ∉ 𝐵 ∪
𝑥, (𝐵 ∪ 𝑥 ∪ 𝑗) − 𝑖 ∈ ℱ. We can’t have 𝑥 = 𝑖, since otherwise (𝐵 ∪ 𝑥 ∪ 𝑗) − 𝑖 = 𝐵 ∪ 𝑗,
which gives 𝐵 ∈ 𝜕ℱ, a contradiction. So 𝑖 ∈ 𝐵 and 𝑗 ∉ 𝐵. Also, 𝐵 ∪ 𝑗 − 𝑖 ∈ 𝜕ℱ, since
𝐵 ∪ 𝑥 ∪ 𝑗 − 𝑖 ∈ ℱ.

Suppose 𝐵 ∪ 𝑗 − 𝑖 ∈ 𝜕ℱ′: so (𝐵 ∪ 𝑗 − 𝑖) ∪ 𝑦 ∈ ℱ′ for some 𝑦. We cannot have 𝑦 = 𝑖,
since otherwise 𝐵 ∪ 𝑗 ∈ ℱ′, so 𝐵 ∪ 𝑗 ∈ ℱ (as 𝑗 ∈ 𝐵 ∪ 𝑗), contradicting 𝐵 ∉ 𝜕ℱ. Hence
𝑗 ∈ (𝐵 ∪ 𝑗 − 𝑖) ∪ 𝑦 and 𝑖 ∉ (𝐵 ∪ 𝑗 − 𝑖) ∪ 𝑦. Thus, both (𝐵 ∪ 𝑗 − 𝑖) ∪ 𝑦 and 𝐵 ∪ 𝑦 =
𝐶𝑖𝑗((𝐵 ∪ 𝑗 − 𝑖) ∪ 𝑦) belong to ℱ (by definition of ℱ′), contradicting 𝐵 ∉ 𝜕ℱ. □

Remark 1.47  In the above proof, we actually showed that 𝜕𝐶𝑖𝑗(ℱ) ⊆ 𝐶𝑖𝑗(𝜕ℱ).

Definition 1.48  ℱ ⊆ 𝑋(𝑟) is left-compressed if 𝐶𝑖𝑗(ℱ) = ℱ for all 𝑖 < 𝑗.

Corollary 1.49  Let ℱ ⊆ 𝑋(𝑟). Then there exists a left-compressed ℬ ⊆ 𝑋(𝑟) with
|ℬ| = |ℱ| and |𝜕ℬ| ≤ |𝜕ℱ|.

Proof (Hints) .  Define a sequence ℱ0, ℱ1, … of subsets of 𝑋(𝑟) with ∑𝐴∈ℱ𝑘
∑𝑖∈𝐴 𝑖

strictly decreasing. □

Proof .  Define a sequence ℱ0, ℱ1, … as follows: set ℱ0 = ℱ. Having defined ℱ0, …, ℱ𝑘,
if ℱ𝑘 is left-compressed the end the sequence with ℱ𝑘; if not, choose 𝑖 < 𝑗 such that
ℱ𝑘 is not 𝑖𝑗-compressed, and set ℱ𝑘+1 = 𝐶𝑖𝑗(ℱ𝑘).
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This must terminate after a finite number of steps, e.g. since ∑𝐴∈ℱ𝑘
∑𝑖∈𝐴 𝑖 is strictly

decreasing with 𝑘. The final term ℬ = ℱ𝑘 satisfies |ℬ| = |ℱ|, and |𝜕ℬ| ≤ |𝜕ℱ| by the
above lemma. □

Remark 1.50
• Another way of proving this is: among all ℬ ⊆ 𝑋(𝑟) with |ℱ| = |ℱ| and |𝜕ℬ| ≤ |𝜕ℱ|,

choose one with minimal ∑𝐴∈ℬ ∑𝑖∈𝐴 𝑖.
• We can choose an order of the 𝐶𝑖𝑗 so that no 𝐶𝑖𝑗 is applied twice.
• Any initial segment of colex is left-compressed, but the converse is false, e.g.

{123, 124, 125, 126} is left-compressed.

Definition 1.51  Let 𝑈, 𝑉 ⊆ 𝑋, |𝑈| = |𝑉 |, 𝑈 ∩ 𝑉 = ∅ and max 𝑈 < max 𝑉 . Define the
𝑈𝑉 -compression 𝐶𝑈𝑉  as:
• For 𝐴 ⊆ 𝑋,

𝐶𝑈𝑉 (𝐴) = {(𝐴 − 𝑉 ) ∪ 𝑈 if 𝑉 ⊆ 𝐴, 𝑈 ∩ 𝐴 = ∅
𝐴 otherwise .

• For ℱ ⊆ 𝑋(𝑟),

𝐶𝑈𝑉 (ℱ) = {𝐶𝑈𝑉 (𝐴) : 𝐴 ∈ ℱ} ∪ {𝐴 ∈ ℱ : 𝐶𝑈𝑉 (𝐴) ∈ ℱ}.

We have 𝐶𝑈𝑉 (ℱ) ⊆ 𝑋(𝑟) and |𝐶𝑈𝑉 (ℱ)| = |ℱ|. This definition is inspired by “colex
prefers 23 to 14”.

Definition 1.52  ℱ is 𝑈𝑉 -compressed if 𝐶𝑈𝑉 (ℱ) = ℱ.

Example 1.53  Let ℱ = {123, 124, 147, 237, 238, 149}, then 𝐶23,14(ℱ) =
{123, 124, 147, 237, 238, 239}.

Example 1.54  We can have |𝜕𝐶𝑈𝑉 (ℱ)| > |𝜕ℱ|. E.g. ℱ = {147, 157} has |𝜕ℱ| = 5,
but 𝐶23,14(ℱ) = {237, 157} has |𝜕𝐶23,14(ℱ)| = 6.

Lemma 1.55  Let ℱ ⊆ 𝑋(𝑟) be 𝑈𝑉 -compressed for all 𝑈, 𝑉 ⊆ 𝑋 with |𝑈| = |𝑉 |, 𝑈 ∩
𝑉 = ∅ and max 𝑈 < max 𝑉 . Then ℱ is an initial segment of colex.

Proof (Hints) .  Suppose not, consider a compression for appropriate 𝑈  and 𝑉 . □

Proof .  Suppose not, then there exists 𝐴, 𝐵 ∈ 𝑋(𝑟) with 𝐵 < 𝐴 in colex but 𝐴 ∈ ℱ, 𝐵 ∉
ℱ. Let 𝑉 = 𝐴 \ 𝐵, 𝑈 = 𝐵 \ 𝐴. Then |𝑉 | = |𝑈|, 𝑈 ∩ 𝑉 = ∅, and max 𝑉 > max 𝑈  (since
max(𝐴Δ𝐵) ∈ 𝐴, by definition of colex). Since ℱ is 𝑈𝑉 -compressed, we have 𝐶𝑈𝑉 (𝐴) =
𝐵 ∈ 𝐶𝑈𝑉 (ℱ) = ℱ, contradiction. □

Lemma 1.56  Let 𝑈, 𝑉 ⊆ 𝑋, |𝑈| = |𝑉 |, 𝑈 ∩ 𝑉 = ∅, max 𝑈 < max 𝑉 . For ℱ ⊆ 𝑋(𝑟),
suppose that

∀𝑢 ∈ 𝑈, ∃𝑣 ∈ 𝑉 : ℱ is (𝑈 − 𝑢, 𝑉 − 𝑣)-compressed.

Then |𝜕𝐶𝑈𝑉 (ℱ)| ≤ |𝜕ℱ|.

Proof (Hints) .
• Let ℱ′ = 𝐶𝑈𝑉 (ℱ), 𝐵 ∈ 𝜕ℱ′ − 𝜕ℱ.
• Show that 𝑈 ⊆ 𝐵 and 𝑉 ∩ 𝐵 = ∅.
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• Reason that (𝐵 − 𝑈) ∪ 𝑉 ∈ 𝜕ℱ.
• Show that (𝐵 − 𝑈) ∪ 𝑉 ∉ 𝜕ℱ′ by contradiction.

□

Proof .  Let ℱ′ = 𝐶𝑈𝑉 (ℱ). For 𝐵 ∈ 𝜕ℱ′ − 𝜕ℱ, we will show that 𝑈 ⊆ 𝐵, 𝑉 ∩ 𝐵 = ∅
and 𝐵 ∪ 𝑉 − 𝑈 ∈ 𝜕ℱ − 𝜕ℱ′, then we will be done.

Diagram 1.57

𝐵 − 𝑈

(𝐵 ∪ 𝑉 ) − 𝑈

𝐵

𝐵 ∪ 𝑉

∪ 𝑈

∪ 𝑉

We have 𝐵 ∪ 𝑥 ∈ ℱ′ for some 𝑥 ∈ 𝑋, and 𝐵 ∪ 𝑥 ∉ ℱ. So 𝑈 ⊆ 𝐵 ∪ 𝑥, 𝑉 ∩ (𝐵 ∪ 𝑥) =
∅, and (𝐵 ∪ 𝑥 ∪ 𝑉 ) − 𝑈 ∈ ℱ, by definition of 𝐶𝑈𝑉 . If 𝑥 ∈ 𝑈 , then ∃𝑦 ∈ 𝑉  such that
ℱ is (𝑈 − 𝑥, 𝑉 − 𝑦)-compressed, so from (𝐵 ∪ 𝑥 ∪ 𝑉 ) − 𝑈 ∈ ℱ, we have 𝐵 ∪ 𝑦 ∈ ℱ,
contradicting 𝐵 ∉ 𝜕ℱ. Thus 𝑥 ∉ 𝑈 , so 𝑈 ⊆ 𝐵 and 𝑉 ∩ 𝐵 = ∅. Certainly 𝐵 ∪ 𝑉 − 𝑈 ∈
𝜕ℱ (since (𝐵 ∪ 𝑥 ∪ 𝑉 ) − 𝑈 ∈ ℱ), so we just need to show that 𝐵 ∪ 𝑉 − 𝑈 ∉ 𝜕ℱ′.

Assume the opposite, i.e. (𝐵 − 𝑈) ∪ 𝑉 ∈ 𝜕ℱ′, so (𝐵 − 𝑈) ∪ 𝑉 ∪ 𝑤 ∈ ℱ′ for some 𝑤 ∈
𝑋. (This also belongs to ℱ, since it contains 𝑉 ). If 𝑤 ∈ 𝑈 , then since ℱ is (𝑈 −
𝑤, 𝑉 − 𝑧)-compressed for some 𝑧 ∈ 𝑉 , we have 𝐵 ∪ 𝑧 = 𝐶𝑈−𝑤,𝑉 −𝑧((𝐵 − 𝑈) ∪ 𝑉 ∪ 𝑤) ∈
ℱ, contradicting 𝐵 ∉ 𝜕ℱ. So 𝑤 ∉ 𝑈 , and since 𝑉 ⊆ (𝐵 − 𝑈) ∪ 𝑉 ∪ 𝑤 and 𝑈 ∩ ((𝐵 −
𝑈) ∪ 𝑉 ∪ 𝑤) = ∅, by definition of 𝐶𝑈𝑉 , we must have that both (𝐵 − 𝑈) ∪ 𝑉 ∪ 𝑤 and
𝐵 ∪ 𝑤 = 𝐶𝑈𝑉 ((𝐵 − 𝑈) ∪ 𝑉 ∪ 𝑤) ∈ ℱ, contradicting 𝐵 ∉ 𝜕ℱ. □

Theorem 1.58 (Kruskal-Katona)  Let ℱ ⊆ 𝑋(𝑟), 1 ≤ 𝑟 ≤ 𝑛, let 𝒞 be the initial segment
of colex on 𝑋(𝑟) with |𝒞| = |ℱ|. Then |𝜕𝒞| ≤ |𝜕ℱ|.

In particular, if |ℱ| = (𝑘
𝑟), then |𝜕ℱ| ≥ ( 𝑘

𝑟−1).

Proof (Hints) .
• Let Γ = {(𝑈, 𝑉 ) ∈ ℙ(𝑋) × ℙ(𝑋) : |𝑈| = |𝑉 | > 0, 𝑈 ∩ 𝑉 = ∅, max 𝑈 < max 𝑉 } ∪

{(∅, ∅)}.
• Define a sequence ℱ0, ℱ1, … of 𝑈𝑉 -compressions where (𝑈, 𝑉 ) ∈ Γ, choosing |𝑈| =

|𝑉 | > 0 minimal each time. Show that this (𝑈, 𝑉 ) satisfies condition of above lemma.
• Reason that sequence terminates by considering ∑𝐴∈ℱ𝑘

∑𝑖∈𝐴 2𝑖.

□
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Proof .  Let Γ = {(𝑈, 𝑉 ) ∈ ℙ(𝑋) × ℙ(𝑋) : |𝑈| = |𝑉 | > 0, 𝑈 ∩ 𝑉 = ∅, max 𝑈 < max 𝑉 } ∪
{(∅, ∅)}. Define a sequence ℱ0, ℱ1, … of set systems in 𝑋(𝑟) as follows: set ℱ0 = ℱ.
Having chosen ℱ0, …, ℱ𝑘, if ℱ𝑘 is (𝑈𝑉 )-compressed for all (𝑈, 𝑉 ) ∈ Γ then stop.
Otherwise, choose (𝑈, 𝑉 ) ∈ Γ with |𝑈| = |𝑉 | > 0 minimal, such that ℱ𝑘 is not (𝑈𝑉 )-
compressed.

Note that ∀𝑢 ∈ 𝑈 , ∃𝑣 ∈ 𝑉  such that (𝑈 − 𝑢, 𝑉 − 𝑣) ∈ Γ (namely 𝑣 = min(𝑉 )). So by the
above lemma, |𝜕𝐶𝑈𝑉 (ℱ𝑘)| ≤ |𝜕ℱ𝑘|. Set ℱ𝑘+1 = 𝐶𝑈𝑉 (ℱ𝑘), and continue. The sequence
must terminate, as ∑𝐴∈ℱ𝑘

∑𝑖∈𝐴 2𝑖 is strictly decreasing with 𝑘. The final term ℬ =
ℱ𝑘 satisfies |ℬ| = |ℱ|, |𝜕ℬ| ≤ |𝜕ℱ|, and is (𝑈𝑉 )-compressed for all (𝑈, 𝑉 ) ∈ Γ. So ℬ =
𝒞 by lemma before previous lemma. □

Remark 1.59
• Equivalently, if |ℱ| = (𝑘𝑟

𝑟 ) + (𝑘𝑟−1
𝑟−1 ) + ⋯ + (𝑘𝑠

𝑠 ) where each 𝑘𝑖 > 𝑘𝑖−1 and 𝑠 ≥ 1,
then

|𝜕ℱ| ≥ ( 𝑘𝑟
𝑟 − 1

) + ( 𝑘𝑟−1
𝑟 − 2

) + ⋯ + ( 𝑘𝑠
𝑠 − 1

).

• Equality in Kruskal-Katona: if |ℱ| = (𝑘
𝑟) and |𝜕ℱ| = ( 𝑘

𝑟−1), then ℱ = 𝑌 (𝑟) for some
𝑌 ⊆ 𝑋 with |𝑌 | = 𝑘. However, it is not true in general that if |𝜕ℱ| = |𝜕𝐶|, then ℱ
is isomorphic to 𝒞 (i.e. there is a permutation of the ground set 𝑋 sending ℱ to 𝒞).

Definition 1.60  For ℱ ⊆ 𝑋(𝑟), 0 ≤ 𝑟 ≤ 𝑛 − 1, the upper shadow of ℱ is

𝜕+ℱ ≔ {𝐴 ∪ 𝑥 : 𝐴 ∈ ℱ, 𝑥 ∉ 𝐴} ⊆ 𝑋(𝑟+1).

Corollary 1.61  Let ℱ ⊆ 𝑋(𝑟), 0 ≤ 𝑟 ≤ 𝑛 − 1, let 𝒞 be the initial segment of lex on
𝑋(𝑟) with |𝒞| = |ℱ|. Then |𝜕+𝒞| ≤ |𝜕+ℱ|.

Proof (Hints) .  By Kruskal-Katona. □

Proof .  By Kruskal-Katona, since 𝐴 < 𝐵 in colex iff 𝐴𝑐 < 𝐵𝑐 in lex with ground-set (𝑋)
order reversed, and if ℱ′ = {𝐴𝑐 : 𝐴 ∈ ℱ}, then |𝜕+ℱ′| = |𝜕ℱ|. □

Remark 1.62  The fact that the shadow of an initial segment of colex on 𝑋(𝑟) is an
initial segment of colex on 𝑋(𝑟−1) (since if 𝒞 = {𝐴 ∈ 𝑋(𝑟) : 𝐴 ≤ 𝑎1…𝑎𝑟 in colex}, then
𝜕𝒞 = {𝐵 ∈ 𝑋(𝑟−1) : 𝐵 ≤ 𝑎2…𝑎𝑟 in colex}) gives:

Corollary 1.63  Let ℱ ⊆ 𝑋(𝑟), 1 ≤ 𝑟 ≤ 𝑛, 𝒞 be the initial segment of colex on 𝑋(𝑟) with
|𝒞| = |ℱ|. Then |𝜕𝑡𝒞| ≤ |𝜕𝑡ℱ| for all 1 ≤ 𝑡 ≤ 𝑟 (where 𝜕𝑡 is shadow applied 𝑡 times).

Proof (Hints) .  Straightforward. □

Proof .  If |𝜕𝑡𝒞| ≤ |𝜕𝑡ℱ|, then |𝜕𝑡+1𝒞| ≤ |𝜕𝑡+1ℱ|, since 𝜕𝑡𝒞 is an initial segment of colex.
So we are done by induction (base case is Kruskal-Katona). □

Remark 1.64  So if |ℱ| = (𝑘
𝑟), then |𝜕𝑡ℱ| ≥ ( 𝑘

𝑟−𝑡).

1.4. Intersecting families
Definition 1.65  A family ℱ ∈ ℙ(𝑋) is intersecting if for all 𝐴, 𝐵 ∈ ℱ, 𝐴 ∩ 𝐵 ≠ ∅.

We are interested in finding intersecting families of maximum size.
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Proposition 1.66  For all intersecting families ℱ ⊆ ℙ(𝑋), |ℱ| ≤ 2𝑛−1 = 1
2 |ℙ(𝑋)|.

Proof (Hints) .  Straightforward. □

Proof .  Given any 𝐴 ⊆ 𝑋, at most one of 𝐴 and 𝐴𝑐 can belong to ℱ. □

Example 1.67
• ℱ = {𝐴 ⊆ 𝑋 : 1 ∈ 𝐴} is intersecting, and |ℱ| = 2𝑘−1.
• ℱ = {𝐴 ⊆ 𝑋 : |𝐴| > 𝑛

2 } for 𝑛 odd.

Example 1.68  Let ℱ ⊆ 𝑋(𝑟):
• If 𝑟 > 𝑛

2 , then ℱ = 𝑋(𝑟) is intersecting.
• If 𝑟 = 𝑛

2 , then choose one of 𝐴 and 𝐴𝑐 for all 𝐴 ∈ 𝑋(𝑟). This gives |ℱ| = 1
2(𝑛

𝑟 ).
• If 𝑟 < 𝑛

2 , then ℱ = {𝐴 ∈ 𝑋(𝑟) : 1 ∈ 𝐴} has size (𝑛−1
𝑟−1 ) = 𝑟

𝑛(𝑛
𝑟 ) (since the probability

of a random 𝑟-set containing 1 is 𝑟
𝑛). If (𝑛, 𝑟) = (8, 3), then |ℱ| = (7

2) = 21.
• Let ℱ = {𝐴 ∈ 𝑋(𝑟) : |𝐴 ∩ {1, 2, 3}| ≥ 2}. If (𝑛, 𝑟) = (8, 3), then |ℱ| = 1 + (3

2)(5
1) =

16 < 21 (since 1 set 𝐴 has |𝐵 ∩ [3]| = 3, 15 sets 𝐴 have |𝐴 ∩ [3]| = 2).

Theorem 1.69 (Erdos-Ko-Rado)  Let ℱ ⊆ 𝑋(𝑟) be an intersecting family, where 𝑟 <
𝑛
2 . Then |ℱ| ≤ (𝑛−1

𝑟−1 ).

Proof (Hints) .
• Method 1:

‣ Let ℱ = {𝐴𝑐 : 𝐴 ∈ ℱ}. Show that 𝜕𝑛−2𝑟ℱ and ℱ are disjoint families of 𝑟-sets.
‣ Assume the opposite, show that the size of the union of these two sets is greater

than the size of 𝑋(𝑟).
• Method 2:

‣ Let 𝑐 : [𝑛] → ℤ/𝑛 be bijection, i.e. cyclic ordering of [𝑛]. Show there at most 𝑟 sets
in ℱ that are intervals (sets with 𝑟 consecutive elements) under this ordering.

‣ Find expression for number of times an 𝑟-set in ℱ is an interval all possible
orderings, and find an upper bound for this using the above.

□

Proof .  Proof 1 (“bubble down with Kruskal-Katona”): note that 𝐴 ∩ 𝐵 ≠ ∅ iff 𝐴 ⊈ 𝐵𝑐.

Diagram 1.70

𝐴 𝐵

𝐵𝑐

𝑋(𝑟)

𝑋(𝑛−𝑟)

ℱ

ℱ

Let ℱ = {𝐴𝑐 : 𝐴 ∈ ℱ} ⊆ 𝑋(𝑛−𝑟). We have 𝜕𝑛−2𝑟ℱ and ℱ are disjoint families of 𝑟-sets
(if not, then there is some 𝐴 ∈ ℱ such that 𝐴 ⊆ 𝐵𝑐 for some 𝐵 ∈ ℱ, but then 𝐴 ∩ 𝐵 =
∅). Suppose |ℱ| > (𝑛−1

𝑟−1 ). Then |ℱ| = |ℱ| > (𝑛−1
𝑟−1 ) = (𝑛−1

𝑛−𝑟). So by Kruskal-Katona, we
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have |𝜕𝑛−2𝑟ℱ| ≥ (𝑛−1
𝑟 ). So |ℱ| + |𝜕𝑛−2𝑟ℱ| > (𝑛−1

𝑟−1 ) + (𝑛−1
𝑟 ) = (𝑛

𝑟 ) = |𝑋(𝑟)|, a contra-
diction, since ℱ, 𝜕𝑛−2𝑟ℱ ⊆ 𝑋(𝑟).

Proof 2: pick a cyclic ordering of [𝑛], i.e. a bijection 𝑐 : [𝑛] → ℤ/𝑛. There are at most
𝑟 sets in ℱ that are intervals (𝑟 consecutive elements) under this ordering: for 𝑐1…𝑐𝑟 ∈
ℱ, for each 2 ≤ 𝑖 ≤ 𝑟, at most one of the two intervals 𝑐𝑖…𝑐𝑖+𝑟−1 and 𝑐𝑖−𝑟…𝑐𝑖−1 can
belong to ℱ, since they are disjoint and ℱ is intersecting (the indices of 𝑐 are taken
mod 𝑛).

Diagram 1.71

ℤ𝑛
𝑐𝑖

𝑐𝑖+1

𝑐𝑖+𝑟−2

𝑐𝑖+𝑟−1

𝑐𝑖−1

𝑐𝑖−2

𝑐𝑖−𝑟+1𝑐𝑖−𝑟

For each 𝑟-set 𝐴, out of the 𝑛! cyclic orderings, there are 𝑛 ⋅ 𝑟!(𝑛 − 𝑟)! which map 𝐴 to
an interval (𝑟! orderings inside 𝐴, (𝑛 − 𝑟)! orderings outside 𝐴, 𝑛 choices for the start of
the interval). Hence, by counting the number of times an 𝑟-set in ℱ is an interval under
a given ordering (over all 𝑟-sets in ℱ and all cyclic orderings), we obtain |ℱ|𝑛𝑟!(𝑛 −
𝑟)! ≤ 𝑛!𝑟, i.e. |ℱ| ≤ (𝑛−1

𝑟−1 ). □

Remark 1.72
• The calculation at the end of proof method 1 had to give the correct answer, as the

shadow calculations would all be exact if ℱ = {𝐴 ∈ 𝑋(𝑟) : 1 ∈ 𝐴} (in this case, ℱ
and 𝜕𝑛−2𝑟ℱ partition 𝑋(𝑟)).

• The calculations at the end of proof method 2 had to work out, given equality for
the family ℱ = {𝐴 ∈ 𝑋(𝑟) : 1 ∈ 𝐴}.

• In method 2, equivalently, we are double-counting the edges in the bipartite graph,
where the vertex classes (partition sets) are ℱ and all cyclic orderings, with 𝐴 joined
to 𝑐 if 𝐴 is an interval under 𝑐. This method is called averaging or Katona’s
method.

• Equality in Erdos-Ko-Rado holds iff ℱ = {𝐴 ∈ 𝑋(𝑟) : 𝑖 ∈ 𝐴}, for some 1 ≤ 𝑖 ≤ 𝑛.
This can be obtained from proof 1 and equality in Kruskal-Katona, or from proof 2.

2. Isoperimetric inequalities
We seek to answer questions of the form “how do we minimise the boundary of a set of
given size?”

Example 2.1  In the continuous setting:
• Among all subsets of ℝ2 of a given fixed area, the disc minimises the perimeter.
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• Among all subsets of ℝ3 of a given fixed volume, the solid sphere minimises the
surface area.

• Among all subsets of 𝑆2 of given fixed surface area, the circular cap minimises the
perimeter.

Definition 2.2  For a 𝐴 of vertices of a graph 𝐺, the boundary of 𝐴 is

𝑏(𝐴) = {𝑥 ∈ 𝐺 : 𝑥 ∉ 𝐴, 𝑥𝑦 ∈ 𝐸 for some 𝑦 ∈ 𝐴}.

Diagram 2.3

1 2

3 4

5

6 7

𝐴 = {1, 2, 4} (in red) has boundary {3, 5} (in blue).

Definition 2.4  An isoperimetric inequality on a graph 𝐺 is an inequality of the
form

∀𝐴 ⊆ 𝐺, |𝑏(𝐴)| ≥ 𝑓(|𝐴|)

for some function 𝑓 : ℕ → ℝ.

Definition 2.5  The neighbourhood of 𝐴 ⊆ 𝑉 (𝐺) is 𝑁(𝐴) ≔ 𝐴 ∪ 𝑏(𝐴), i.e.

𝑁(𝐴) = {𝑥 ∈ 𝐺 : 𝑑(𝑥, 𝐴) ≤ 1}.

Diagram 2.6  Let 𝐴 ⊆ ℙ(𝑋) = 𝑉 (𝑄3), |𝐴| = 4.

|𝑏(𝐴)| = 3 |𝑏(𝐴)| = 4

Example 2.7  A good (and natural) example for 𝐴 that minimises |𝑏(𝐴)| in the discrete
cube 𝑄𝑛 might be a ball 𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝐺 : 𝑑(𝑥, 𝑦) ≤ 𝑟}.

A good guess is that balls are best, i.e. sets of the form 𝐵(∅, 𝑟) = 𝑋(≤𝑟) = 𝑋(0) ∪ ⋯ ∪
𝑋(𝑟). What if |𝑋(≤𝑟)| ≤ |𝐴| ≤ |𝑋(≤𝑟+1)|? A good guess is take 𝐴 with 𝑋(≤𝑟) ⊊ 𝐴 ⊊
𝑋(≤𝑟+1). If 𝐴 = 𝑋(≤𝑟) ∪ 𝐵, where 𝐵 ⊆ 𝑋(𝑟+1), then 𝑏(𝐴) = (𝑋(𝑟+1) − 𝐵) ∪ 𝜕+𝐵, so we
would take 𝐵 to be an initial segment of lex by Kruskal-Katona. This motivates the
following definition.
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Definition 2.8  The simplicial ordering on ℙ(𝑋) defines 𝑥 < 𝑦 if either |𝑥| < |𝑦|, or
both |𝑥| = |𝑦| and 𝑥 < 𝑦 in lex.

We want to show the initial segments of the simplicial ordering minimise the boundary.

Definition 2.9  For 𝐴 ⊆ ℙ(𝑋) and 1 ≤ 𝑖 ≤ 𝑛, the 𝑖-sections of 𝐴 are the families
𝐴(𝑖)

− , 𝐴(𝑖)
+ ⊆ ℙ(𝑋 \ 𝑖), given by

𝐴(𝑖)
− = 𝐴− ≔ {𝑥 ∈ 𝐴 : 𝑖 ∉ 𝑥},

𝐴(𝑖)
+ = 𝐴+ ≔ {𝑥 − 𝑖 : 𝑥 ∈ 𝐴, 𝑖 ∈ 𝑥}

Note that 𝐴 = 𝐴(𝑖)
− ∪ {𝑥 ∪ 𝑖 : 𝑥 ∈ 𝐴(𝑖)

+ }, so we can define a family by its 𝑖-sections.

Diagram 2.10

𝑖

𝐴(𝑖)
−

𝐴(𝑖)
+

𝐶𝑖(𝐴)(𝑖)
−

𝐶𝑖(𝐴)(𝑖)
+

𝐶𝑖

𝑖-compression of 𝐴

Remark 2.11  When viewing ℙ(𝑋) as the 𝑛-dimensional cube 𝑄𝑛, we view the 𝑖-
sections as subgraphs of the (𝑛 − 1)-dimensional cube 𝑄𝑛−1 (which we view ℙ(𝑋 \ 𝑖) as).

Definition 2.12  A Hamming ball is a family 𝐴 ⊆ ℙ(𝑋) with 𝑋(≤𝑟) ⊆ 𝐴 ⊆ 𝑋(≤𝑟+1)

for some 𝑟.

Definition 2.13  The 𝑖-compression of 𝐴 ⊆ ℙ(𝑋) is the family 𝐶𝑖(𝐴) ⊆ ℙ(𝑋) given
by its 𝑖-sections:
• (𝐶𝑖(𝐴))(𝑖)

−  is the first |𝐴(𝑖)
− | elements of the simplicial order on ℙ(𝑋 − 𝑖), and

• (𝐶𝑖(𝐴))(𝑖)
+  is the first |𝐴(𝑖)

+ | elements of the simplicial order on ℙ(𝑋 − 𝑖).

Note that |𝐶𝑖(𝐴)| = |𝐴|, and 𝐶𝑖(𝐴) “looks more like” a Hamming ball than 𝐴 does.

Definition 2.14  𝐴 ⊆ ℙ(𝑋) is 𝑖-compressed if 𝐶𝑖(𝐴) = 𝐴.

Example 2.15  Note that a set that is 𝑖-compressed for all 𝑖 ∈ [𝑛] is not necessarily an
initial segment of simplicial, e.g. take {∅, 1, 2, 12} in 𝑄3.
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However…

Lemma 2.16  Let 𝐵 ⊆ 𝑄𝑛 be 𝑖-compressed for all 𝑖 ∈ [𝑛] but not an initial segment of
the simplicial order. Then either:
• 𝑛 is odd (say 𝑛 = 2𝑘 + 1) and

𝐵 = 𝑋(≤𝑘) \ {𝑘 + 2, 𝑘 + 3, …, 2𝑘 + 1}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
last 𝑘-set

∪ {1, 2, …, 𝑘 + 1}⏟⏟⏟⏟⏟⏟⏟
first (𝑘+1)-set

,

• or 𝑛 is even (say 𝑛 = 2𝑘), and

𝐵 = 𝑋(<𝑘) ∪ {𝑥 ∈ 𝑋(𝑘) : 1 ∈ 𝑥} \ {1, 𝑘 + 2, 𝑘 + 3, …, 2𝑘}⏟⏟⏟⏟⏟⏟⏟⏟⏟
last 𝑘-set with 1

∪ {2, 3, …, 𝑘 + 1}⏟⏟⏟⏟⏟⏟⏟
first 𝑘-set without 1

.

Diagram 2.17

𝑛 odd

Gain

Lose
𝑋(≤𝑘)

𝑛 even

Gain
Lose

Proof (Hints) .  For 𝑥 ∉ 𝐵 and 𝑦 ∈ 𝐵, show by contradiction that any 𝑖 ∈ [𝑛] is in exactly
one of 𝑥 and 𝑦 (it helps to visualise this), and deduce that no elements lie strictly
between 𝑥 and 𝑦 in the simplicial ordering. □

Proof .  As 𝐵 is not an initial segment, there are 𝑥 < 𝑦 in simplicial ordering with 𝑥 ∉
𝐵 and 𝑦 ∈ 𝐵.

𝑥
∉ 𝐵

𝑦

∈ 𝐵
Simplicial order
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For each 𝑖 ∈ [𝑛], assume 𝑖 ∈ 𝑥, 𝑦. Since the 𝑖-section that 𝑦 lives in is an initial segment
of simplicial on ℙ(𝑋 \ 𝑖) (as 𝐵 is 𝑖-compressed), and 𝑥 − 𝑖 < 𝑦 − 𝑖 in simplicial on ℙ(𝑋 \
𝑖), we have that 𝑥 − 𝑖 lives in the same 𝑖-section, and so 𝑥 ∈ 𝐵: contradiction. Similarly,
𝑖 ∉ 𝑥, 𝑦 leads to a contradiction (as then 𝑥 < 𝑦 in simplicial on ℙ(𝑋 \ 𝑖)). So 𝑥 = 𝑦𝑐.

Thus for each 𝑦 ∈ 𝐵, there is at most one 𝑥 < 𝑦 with 𝑥 ∉ 𝐵 (namely 𝑥 = 𝑦𝑐), and
for each 𝑥 ∉ 𝐵, there is at most one 𝑦 > 𝑥 with 𝑦 ∈ 𝐵 (namely 𝑦 = 𝑥𝑐). So no sets
lie between 𝑥 and 𝑦 in the simplicial ordering. So 𝐵 = {𝑧 : 𝑧 ≤ 𝑦} \ {𝑥}, with 𝑥 the
predecessor of 𝑦, and 𝑥 = 𝑦𝑐.

𝑥
∉ 𝐵

𝑦

∈ 𝐵
Simplicial order

𝐵

Hence if 𝑛 = 2𝑘 + 1, then 𝑥 is the last 𝑘-set (otherwise sizes of 𝑥 and 𝑦 = 𝑥𝑐 don’t
match), and if 𝑛 = 2𝑘, then 𝑥 is the last 𝑘-set containing 1. □

Theorem 2.18 (Harper)  Let 𝐴 ⊆ 𝑉 (𝑄𝑛) and let 𝐶 be the initial segment of the
simplicial order on ℙ(𝑋) = 𝑉 (𝑄𝑛), with |𝐶| = |𝐴|. Then |𝑁(𝐴)| ≥ |𝑁(𝐶)|. So initial
segments of the simplicial order minimise the boundary. In particular, if |𝐴| = ∑𝑟

𝑖=0(
𝑛
𝑖 ),

then |𝑁(𝐴)| ≥ ∑𝑟+1
𝑖=0 (𝑛

𝑖 ).

Proof (Hints) .
• Using induction, prove the claim that |𝑁(𝐶𝑖(𝐴))| ≤ |𝑁(𝐴)|:

‣ Find expressions for 𝑁(𝐴)− as union of two sets, similarly for 𝑁(𝐴)+, same for
𝑁(𝐵)− and 𝑁(𝐵)+.

‣ Explain why 𝑁(𝐵−) and 𝐵+ are nested, use this to show |𝑁(𝐵−) ∪ 𝐵+| ≤
|𝑁(𝐴−) ∪ 𝐴+|.

‣ Do the same with the + and − switched.
• Define a suitable sequence of families 𝐴0, 𝐴1, … ∈ 𝑄𝑛.
• Reason that the sequence terminates by considering

∑𝑥∈𝐴𝑘
(position of 𝑥 in simplicial order).

• Conclude by above lemma.

□

Proof .  By induction on 𝑛. 𝑛 = 1 is trivial. Given 𝑛 > 1, 𝐴 ⊆ 𝑄𝑛 and 1 ≤ 𝑖 ≤ 𝑛, we
claim that |𝑁(𝐶𝑖(𝐴))| ≤ |𝑁(𝐴)|.

Proof of claim .  Write 𝐵 = 𝐶𝑖(𝐴). We have 𝑁(𝐴)− = 𝑁(𝐴−) ∪ 𝐴+, and 𝑁(𝐴)+ =
𝑁(𝐴+) ∪ 𝐴−. Similarly, 𝑁(𝐵)− = 𝑁(𝐵−) ∪ 𝐵+, and 𝑁(𝐵)+ = 𝑁(𝐵+) ∪ 𝐵−.

Now |𝐵+| = |𝐴+| by definition of 𝐵, and by the inductive hypothesis, |𝑁(𝐵−)| ≤
|𝑁(𝐴−)| (since 𝐶𝑖(𝐴−) = 𝐵−). But 𝐵+ is an initial segment of the simplicial ordering,
and 𝑁(𝐵−) is as well (since the neighbourhood of an initial segment of the simplicial
ordering is also an initial segment). So 𝐵+ and 𝑁(𝐵−) are nested (one is contained in
the other). Hence, |𝑁(𝐵−) ∪ 𝐵+| ≤ |𝑁(𝐴−) ∪ 𝐴+|.
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Similarly, |𝐵−| = |𝐴−| by definition of 𝐵. Since 𝐵+ and 𝐶𝑖(𝐴+) are both initial
segments of size |𝐵+| = |𝐴+|, we have 𝐵+ = 𝐶𝑖(𝐴+), hence by the inductive hypoth-
esis, |𝑁(𝐵+)| ≤ |𝑁(𝐴+)|. 𝐵− and 𝑁(𝐵+) are initial segments, so are nested. Hence
|𝑁(𝐵+) ∪ 𝐵−| ≤ |𝑁(𝐴+) ∪ 𝐴−|.

This gives |𝑁(𝐵)| = |𝑁(𝐵)−| + |𝑁(𝐵)+| ≤ |𝑁(𝐴)−| + |𝑁(𝐴)+| = |𝑁(𝐴)|, which proves
the claim.

Define a sequence 𝐴0, 𝐴1, … ⊆ 𝑄𝑛 as follows:
• Set 𝐴0 = 𝐴1.
• having chosen 𝐴0, …, 𝐴𝑘, if 𝐴𝑘 is 𝑖-compressed for all 𝑖 ∈ [𝑛], then end the sequence

with 𝐴𝑘. If not, pick 𝑖 with 𝐶𝑖(𝐴𝑘) ≠ 𝐴𝑘 and set 𝐴𝑘+1 = 𝐶𝑖(𝐴𝑘), and continue.

The sequence must terminate, since ∑𝑥∈𝐴𝑘
(position of 𝑥 in simplicial order) is strictly

decreasing. The final family 𝐵 = 𝐴𝑘 satisfies |𝐵| = |𝐴|, |𝑁(𝐵)| ≤ |𝑁(𝐴)|, and is 𝑖-
compressed for all 𝑖 ∈ [𝑛].

So we are done by above lemma, since in each case certainly we have |𝑁(𝐵)| ≥ |𝑁(𝐶)|.
□

Remark 2.19
• If 𝐴 was a Hamming ball, then we would be already done by Kruskal-Katona.
• Conversely, Harper implies Kruskal-Katona: given 𝐵 ⊆ 𝑋(𝑟), apply Harper to 𝐴 =

𝑋(≤𝑟−1) ∪ 𝐵.
• We could also prove Harper using 𝑈𝑉 -compressions.
• Conversely, we can also prove Kruskal-Katona using these “codimension 1” compres-

sions.

Diagram 2.20

𝑋(<𝑟)

𝐵 ⊆ 𝑋(𝑟)

Harper implies Kruskal-Katona.

Definition 2.21  For 𝐴 ⊆ 𝑄𝑛 and 𝑡 ∈ ℕ, the 𝑡-neighbourhood of 𝐴 is

𝐴(𝑡) = 𝑁 𝑡(𝐴) ≔ {𝑥 ∈ 𝑄𝑛 : 𝑑(𝑥, 𝐴) ≤ 𝑡}.

Diagram 2.22
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𝑄𝑛
𝐴

𝑁 𝑡(𝐴)

𝑡-neighbourhood of 𝐴.

Corollary 2.23  Let 𝐴 ⊆ 𝑄𝑛 with |𝐴| ≥ ∑𝑟
𝑖=0(

𝑛
𝑖 ). Then

∀𝑡 ≤ 𝑛 − 𝑟, |𝑁 𝑡(𝐴)| ≥ ∑
𝑟+𝑡

𝑖=0
(𝑛

𝑖
).

Proof (Hints) .  By Harper’s theorem. □

Proof .  By Harper’s theorem and induction on 𝑡. □

Remark 2.24  To get a feeling for the strength of the above corollary, we’ll need some
estimates on quantities such as ∑𝑟

𝑖=0(
𝑛
𝑖 ). Note that 𝑖 = 𝑛/2 maximises (𝑛

𝑖 ), while 𝑖 =
(1/2 − 𝜀)𝑛 makes it small: we are going 𝜀

√
𝑛 standard deviations away from the mean

𝑛/2.

𝑖

(𝑛
𝑖 )

0

Proposition 2.25  Let 0 < 𝜀 < 1/4. Then

∑
⌊(1/2−𝜀)𝑛⌋

𝑖=0
(𝑛

𝑖
) ≤ 1

𝜀
𝑒−𝜀2𝑛/2 ⋅ 2𝑛.

For 𝜀 fixed and 𝑛 → ∞, the upper bound is an exponentially small fraction of 2𝑛.
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Proof (Hints) .
• Let 𝐿 = ⌊(1/2 − 𝜀)𝑛⌋ and 𝑀 = ⌊(1/2 − 𝜀/2)𝑛⌋.
• For 1 ≤ 𝑖 ≤ 𝐿, show that ( 𝑛

𝑖−1)/(𝑛
𝑖 ) ≤ 1 − 2𝜀, use this to show that

∑
𝐿

𝑖=0
(𝑛

𝑖
) ≤ 1

2𝜀
(𝑛

𝐿
).

• Use the same argument to show that

(𝑛
𝐿

) ≤ ( 𝑛
𝑀

)(1 − 𝜀)𝑀−𝐿.

• Use that 1 − 𝜀 ≤ 𝑒−𝜀 to conclude the result.

□

Proof .  Let 𝐿 = ⌊(1/2 − 𝜀)𝑛⌋. For 1 ≤ 𝑖 ≤ 𝐿,

( 𝑛
𝑖 − 1

)/(𝑛
𝑖
) = 𝑖

𝑛 − 𝑖 + 1
≤ (1/2 − 𝜀)𝑛

(1/2 + 𝜀)𝑛
= 1/2 − 𝜀

1/2 + 𝜀
= 1 − 2𝜀

1/2 + 𝜀
≤ 1 − 2𝜀.

Hence by induction, (𝑛
𝑖 ) ≤ (1 − 2𝜀)𝐿−𝑖(𝑛

𝐿) for each 0 ≤ 𝑖 ≤ 𝐿, and so

∑
𝐿

𝑖=0
(𝑛

𝑖
) ≤ 1

2𝜀
(𝑛

𝐿
)

(since this is the sum of geometric progression). Let 𝑀 = ⌊(1/2 − 𝜀/2)𝑛⌋. It is easy to
show that 𝑀 − 𝐿 > 𝜀𝑛/2 − 1. By the same argument as above, (𝑛

𝑖 ) ≤ (1 − 2𝜀
2)𝑀−𝑖( 𝑛

𝑀 )
for each 0 ≤ 𝑖 ≤ 𝑀 . In particular,

(𝑛
𝐿

) ≤ ( 𝑛
𝑀

)(1 − 2𝜀
2
)

𝑀−𝐿

(𝑛
𝐿

) ≤ ( 𝑛
𝑀

)(1 − 𝜀)𝜀𝑛/2−1

≤ 2𝑛 ⋅ 2(1 − 𝜀)𝜀𝑛/2

≤ 2𝑛 ⋅ 2𝑒−𝜀2𝑛/2

since 1 − 𝜀 ≤ 𝑒−𝜀. Combining with the previous upper bound, we obtain

∑
𝐿

𝑖=0
(𝑛

𝑖
) ≤ 1

2𝜀
⋅ 2𝑒−𝜀2𝑛/2 ⋅ 2𝑛.

□

Theorem 2.26  Let 0 < 𝜀 < 1/4, 𝐴 ⊆ 𝑄𝑛. If |𝐴|/2𝑛 ≥ 1/2, then

|𝑁𝜀𝑛(𝐴)|
2𝑛 ≥ 1 − 2

𝜀
𝑒−𝜀2𝑛/2.

So sets of at least half density have exponentially dense 𝜀𝑛-neighbourhoods.

Proof (Hints) .
• Enough to show that if 𝜀𝑛 ∈ ℕ, then |𝑁𝜀𝑛(𝐴)|/2𝑛 ≥ 1 − 1

𝜀𝑒−𝜀2𝑛/2.
• Give lower bound on |𝐴| which is a binomial sum, deduce lower bound on 𝑁𝜀𝑛(𝐴).
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• Give an upper bound on |𝑁𝜀𝑛(𝐴)𝑐| using the above proposition.

□

Proof .  It is enough to show that if 𝜀𝑛 ∈ ℕ, then |𝑁𝜀𝑛(𝐴)|/2𝑛 ≥ 1 − 1
𝜀𝑒−𝜀2𝑛/2. We have

|𝐴| ≥ ∑⌈𝑛/2−1⌉
𝑖=0 (𝑛

𝑖 ), so by Corollary 2.23,

|𝑁𝜀𝑛(𝐴)| ≥ ∑
⌈𝑛/2−1+𝜀𝑛⌉

𝑖=0
(𝑛

𝑖
).

So

|𝑁𝜀𝑛(𝐴)𝑐| ≤ ∑
𝑛

𝑖=⌈𝑛/2+𝜀𝑛⌉
(𝑛

𝑖
)

= ∑
𝑛

𝑖=⌈𝑛/2+𝜀𝑛⌉
( 𝑛

𝑛 − 𝑖
)

= ∑
⌈𝑛/2−𝜀𝑛⌉

𝑖=0
(𝑛

𝑖
)

≤ 1
𝜀
𝑒−𝜀2𝑛/2 ⋅ 2𝑛.

by Proposition 2.25. □

Remark 2.27  The same argument would give a result for “small” sets: if |𝐴|/2𝑛 ≥
2
𝜀𝑒−𝜀2𝑛/2, then |𝑁2𝜀𝑛(𝐴)|/2𝑛 ≥ 1 − 2

𝜀𝑒−𝜀2𝑛/2.

Definition 2.28  𝑓 : 𝑄𝑛 → ℝ is Lipschitz if for all adjacent 𝑥, 𝑦 ∈ 𝑄𝑛, |𝑓(𝑥) − 𝑓(𝑦)| ≤
1.

Definition 2.29  For 𝑓 : 𝑄𝑛 → ℝ, we say 𝑀 ∈ ℝ is a Levy mean (or median) of 𝑓
if |{𝑥 ∈ 𝑄𝑛 : 𝑓(𝑥) ≤ 𝑀}| ≥ 2𝑛−1 and |{𝑥 ∈ 𝑄𝑛 : 𝑓(𝑥) ≥ 𝑀}| ≥ 2𝑛−1.

Example 2.30  Let 𝑓 : 𝑄𝑛 → ℝ, 𝑓(𝑥) = 1 if 1 ∈ 𝑥 and 𝑓(𝑥) = 0 otherwise. Then any
𝑀 ∈ [0, 1] is a Levy mean of 𝑓 .

Theorem 2.31 (Concentration of Measure Phenomenon)  Let 𝑓 : 𝑄𝑛 → ℝ be Lipschitz
with Levy mean 𝑀 . Then for all 0 < 𝜀 < 1

4 ,

|{𝑥 ∈ 𝑄𝑛 : |𝑓(𝑥) − 𝑀| ≤ 𝜀𝑛}|
2𝑛 ≥ 1 − 4

𝜀
𝑒−𝜀2𝑛/2.

So “every well-behaved function on the cube 𝑄𝑛 is roughly constant nearly everywhere”.

Diagram 2.32
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𝑄𝑛

𝜀𝑛

𝑓(𝑥) ≤ 𝑀

Proof (Hints) .
• Consider two subsets 𝐴, 𝐵 ⊆ 𝑄𝑛 of density at least 1/2, and apply Theorem 2.26

on them.
• Use the fact that 𝑓 is Lipschitz to find upper bound for the image of the 𝜀𝑛-

neighbourhood of one of 𝐴 and 𝐵, similarly find a lower bound for the image of the
𝜀𝑛-neighbourhood of the other.

□

Proof .  Let 𝐴 = {𝑥 ∈ 𝑄𝑛 : 𝑓(𝑥) ≤ 𝑀}. Then by definition, |𝐴|/2𝑛 ≥ 1/2, so by the above
theorem,

|𝑁𝜀𝑛(𝐴)|
2𝑛 ≥ 1 − 2

𝜀
𝑒−𝜀2𝑛/2.

But 𝑓 is Lipschitz, so 𝑥 ∈ 𝑁𝜀𝑛(𝐴) ⟹ 𝑓(𝑥) ≤ 𝑀 + 𝜀𝑛, so 𝑁𝜀𝑛(𝐴) ⊆ {𝑥 ∈ 𝑄𝑛 : 𝑓(𝑥) ≤
𝑀 + 𝜀𝑛} ≕ 𝐿. Thus,

|𝐿|
2𝑛 ≥ 1 − 2

𝜀
𝑒−𝜀2𝑛/2.

Similarly, let 𝑈 = {𝑥 ∈ 𝑄𝑛 : 𝑓(𝑥) ≥ 𝑀 − 𝜀𝑛}, then |𝑈|/2𝑛 ≥ 1 − 2
𝜀𝑒−𝜀2𝑛/2. Hence, we

have

|𝐿 ∩ 𝑈|
2𝑛 = |𝐿|

2𝑛 + |𝑈|
2𝑛 − |𝐿 ∪ 𝑈|

2𝑛

≥ 1 − 2
𝜀
𝑒−𝜀2𝑛/2 + 1 − 2

𝜀
𝑒−𝜀2𝑛/2 − 1

= 1 − 4
𝜀
𝑒−𝜀2𝑛/2.

□

Definition 2.33  The diameter of a graph 𝐺 = (𝑉 , 𝐸) is max{𝑑(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝑉 }.

Definition 2.34  Let 𝐺 be a graph of diameter 𝐷. Write

𝛼(𝐺, 𝜀) = max{1 −
|𝑁𝜀𝐷(𝐴)|

|𝐺|
: 𝐴 ⊆ 𝐺, |𝐴|

|𝐺|
≥ 1

2
}.

So if 𝛼(𝐺, 𝜀) is small, then sets of at least half density have large 𝜀𝐷-neighbourhoods.
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Definition 2.35  A sequence of graphs (𝐺𝑛)𝑛∈ℕ is a Levy family if

∀𝜀 > 0, 𝛼(𝐺𝑛, 𝜀) → 0 as 𝑛 → ∞.

It is a normal Levy family if for all 𝜀 > 0, 𝛼(𝐺𝑛, 𝜀) decays exponentially with 𝑛.

Example 2.36  By the above theorem, the sequence (𝑄𝑛) is a normal Levy family
(note that 𝑄𝑛 has diameter 𝑛 + 1). More generally, we have concentration of measure
for any Levy family.

Example 2.37  Many naturally-occurring families of graphs are Levy families, e.g.
(𝑆𝑛)𝑛∈ℕ, where the permutation group 𝑆𝑛 is made into a graph by including an edge
between 𝜎 and 𝜏  if 𝜏𝜎−1 is a transposition.

Example 2.38  Similarly, we can define 𝛼(𝑋, 𝜀) for any metric measure space 𝑋 (of
finite measure and finite diameter). E.g. the sequence of spheres (𝑆𝑛)𝑛∈ℕ is a Levy
family. To prove this, we have:
1. An isoperimetric inequality on 𝑆𝑛: for 𝐴 ⊆ 𝑆𝑛 and 𝐶 a circular cap with |𝐶| = |𝐴|,

we have |𝑁𝜀(𝐴)| ≥ |𝑁𝜀(𝐶)|.
2. An estimate: a circular cap 𝐶 of measure 1/2 is the cap of angle 𝜋/2. So 𝑁𝜀(𝐶) is the

circular cap of angle 𝜋/2 + 𝜀. This has measure roughly equal to ∫𝜋/2
𝜀

cos𝑛−1(𝑡) d𝑡 →
0 as 𝑛 → ∞.

𝜀 𝜋/2 x

y

0

Remark 2.39  We deduced concentration of measure from an isoperimetric inequality.
Conversely, we have:

Proposition 2.40  Let 𝐺 be a graph such that for any Lipschitz function 𝑓 : 𝐺 → ℝ
with Levy mean 𝑀 , we have

|{𝑥 ∈ 𝐺 : |𝑓(𝑥) − 𝑀| > 𝑡}|
|𝐺|

≤ 𝛼

for some given 𝑡, 𝛼 ≥ 0. Then for all 𝐴 ⊆ 𝐺 with |𝐴|/|𝐺| ≥ 1/2, we have

|𝑁 𝑡(𝐴)|
|𝐺|

≥ 1 − 𝛼.

Proof (Hints) .  Consider an appropriate Lipschitz function with Levy mean 0. □

Proof .  The function 𝑓(𝑥) = 𝑑(𝑥, 𝐴) is Lipschitz, and has 0 as a Levy mean. So
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|{𝑥 ∈ 𝐺 : 𝑑(𝑥, 𝐴) > 𝑡}|
|𝐺|

= |{𝑥 ∈ 𝐺 : 𝑥 ∉ 𝑁 𝑡(𝐴)}|
|𝐺|

≤ 𝛼.

□

2.1. Concentration of measure

2.2. Edge-isoperimetric inequalities
Definition 2.41  For a graph 𝐺 and 𝐴 ⊆ 𝑉 (𝐺), the edge-boundary of 𝐴 is

𝜕𝑒𝐴 = 𝜕𝐴 ≔ {𝑥𝑦 ∈ 𝐸 : 𝑥 ∈ 𝐴, 𝑦 ∉ 𝐴}.

Diagram 2.42

1 2

3 4

5

6 7

𝐴 = {1, 2, 4} (in blue) has edge-boundary {13, 34, 25} (in red).

Definition 2.43  An edge-isoperimetric inequality on a graph 𝐺 is an inequality
of the form

∀𝐴 ⊆ 𝐺, |𝜕𝐴| ≥ 𝑓(|𝐴|).

Example 2.44  We are interested in the case 𝐺 = 𝑄𝑛. Given |𝐴|, which 𝐴 ⊆ 𝑄𝑛 should
we take to minimise |𝜕𝐴|? Let |𝐴| = 4, 𝐴 ⊆ 𝑄3.

|𝜕𝐴| = 6 |𝜕𝐴| = 4

The diagram suggests that subcubes are best. If 2𝑘 < |𝐴| < 2𝑘+1, then it is natural to
take 𝐴 = ℙ([𝑘]) ∪ some sets in ℙ([𝑘 + 1]). If 𝐴 ⊆ 𝑄4 has size |𝐴| > 23, then it is natural
to take all of the bottom layer and |𝐴| − 23 elements in the top layer. Then the size of
the edge boundary is the number of edges from the bottom layer to the top layer (i.e.
23 − (|𝐴| − 23) = 24 − |𝐴|) plus the number of edges in the top layer. So now we want
to minimise the number of edges in the top layer.

Definition 2.45  For 𝑥, 𝑦 ∈ 𝑄𝑛, 𝑥 ≠ 𝑦, say 𝑥 < 𝑦 in the binary ordering on 𝑄𝑛 if
max(𝑥Δ𝑦) ∈ 𝑦. Equivalently,
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𝑥 < 𝑦 ⟺ ∑
𝑖∈𝑥

2𝑖 < ∑
𝑖∈𝑦

2𝑖.

“Go up in subcubes”. Effectively, we are counting the naturals up to 2𝑛−1 (where an 𝑛
-bit binary string corresponds to a subset of 𝑄𝑛 in the obvious way).

Example 2.46  The elements of 𝑄3 in ascending binary order are

∅, 1, 2, 12, 3, 13, 23, 123.

Definition 2.47  For 𝐴 ⊆ 𝑄𝑛, 1 ≤ 𝑖 ≤ 𝑛, the 𝑖-binary-compression 𝐵𝑖(𝐴) ⊆ 𝑄𝑛 is
defined by its 𝑖-sections:
• (𝐵𝑖(𝐴))(𝑖)

−  is the initial segment of binary ordering on ℙ(𝑋 − 𝑖) of size |𝐴(𝑖)
− |.

• (𝐵𝑖(𝐴))(𝑖)
+  is the initial segment of binary ordering on ℙ(𝑋 − 𝑖) of size |𝐴(𝑖)

+ |.

So |𝐵𝑖(𝐴)| = |𝐴|.

Definition 2.48  𝐴 ⊆ 𝑄𝑛 is 𝑖-binary-compressed if 𝐵𝑖(𝐴) = 𝐴.

Example 2.49  A set 𝐵 ⊆ 𝑄𝑛 which is 𝑖-binary-compressed for all 1 ≤ 𝑖 ≤ 𝑛 is not
necessarily an initial segment of binary, e.g. {∅, 1, 2, 3} ⊆ 𝑄3. However, we have:

Lemma 2.50  Let 𝐵 ⊆ 𝑄𝑛 be 𝑖-binary-compressed for all 1 ≤ 𝑖 ≤ 𝑛 but not an initial
segment of binary. Then

𝐵 = ℙ([𝑛 − 1])⏟⏟⏟⏟⏟
downstairs

\ {1, 2, …, 𝑛 − 1}⏟⏟⏟⏟⏟⏟⏟
last point in binary order in ℙ([𝑛−1])

∪ {𝑛}⏟
first point in binary order not in ℙ([𝑛−1])

𝑄𝑛−1

𝑄𝑛−1

𝑄𝑛

Lose

Gain

Proof (Hints) .  For 𝑥 ∉ 𝐵 and 𝑦 ∈ 𝐵, show by contradiction that any 𝑖 ∈ [𝑛] is in exactly
one of 𝑥 and 𝑦 (it helps to visualise this), and deduce that no elements lie strictly
between 𝑥 and 𝑦 in the binary ordering. □
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Proof .  As 𝐵 is not an initial segment, there are 𝑥 < 𝑦 with 𝑥 ∉ 𝐵 and 𝑦 ∈ 𝐵. For each
1 ≤ 𝑖 ≤ 𝑛, assume that 𝑖 ∈ 𝑥, 𝑦. Since the 𝑖-section that 𝑦 lives in is an initial segment of
binary on ℙ(𝑋 \ 𝑖) (as 𝐵 is 𝑖-binary-compressed), and 𝑥 − 𝑖 < 𝑦 − 𝑖 in binary on ℙ(𝑋 \
𝑖), we have that 𝑥 − 𝑖 lives in the same 𝑖-section, and so 𝑥 ∈ 𝐵: contradiction. Similarly,
𝑖 ∉ 𝑥, 𝑦 leads to a contradiction (as then 𝑥 < 𝑦 in binary on ℙ(𝑋 \ 𝑖)). So 𝑥 = 𝑦𝑐.

Thus, for each 𝑦 ∈ 𝐵, there is at most one 𝑥 < 𝑦 with 𝑥 ∉ 𝐵 (namely 𝑥 = 𝑦𝑐), and for
each 𝑥 ∉ 𝐵, there is at most one 𝑦 > 𝑥 with 𝑦 ∈ 𝐵 (namely 𝑦 = 𝑥𝑐). So 𝐵 = {𝑧 : 𝑧 ≤
𝑦} \ {𝑥}, where 𝑥 is the predecessor of 𝑦 and 𝑦 = 𝑥𝑐. So we must have 𝑦 = {𝑛} and 𝑥 =
{1, 2, …, 𝑛 − 1}. □

Theorem 2.51 (Edge-isoperimetric Inequality in 𝑄𝑛)  Let 𝐴 ⊆ 𝑄𝑛 and let 𝐶 be the
initial segment of binary on 𝑄𝑛 with |𝐶| = |𝐴|. Then |𝜕𝐶| ≤ |𝜕𝐴|. In particular, if |𝐴| =
2𝑘, then |𝜕𝐴| ≥ 2𝑘(𝑛 − 𝑘).

Proof (Hints) .
• By induction on 𝑛.
• Prove for each 1 ≤ 𝑖 ≤ 𝑛, |𝜕𝐵𝑖(𝐴)| ≤ |𝜕𝐴|, by expressing 𝜕𝐴 as a disjoint union of

three sets (it helps to visualise this), and using that 𝐵+ and 𝐵− are nested (why?).
• Define a sequence 𝐴0, 𝐴1, … in the obvious way, show it terminates by considering a

suitable function 𝐴𝑘.
• Use above lemma to conclude the result.

□

Proof .  By induction on 𝑛. 𝑛 = 1 is trivial. For 𝑛 > 1 and 𝐴 ⊆ 𝑄𝑛, and 1 ≤ 𝑖 ≤ 𝑛, we
claim that |𝜕𝐵𝑖(𝐴)| ≤ |𝜕𝐴|.

Proof of claim .  Write 𝐵 = 𝐵𝑖(𝐴). We have (remember 𝐴−, 𝐴+ ⊆ 𝑄𝑛−1 not 𝑄𝑛)

|𝜕𝐴| = |𝜕𝐴−|⏟
downstairs

+ |𝜕𝐴+|⏟
upstairs

+ |𝐴+Δ𝐴−|⏟⏟⏟⏟⏟
across

and similarly, |𝜕𝐵| = |𝜕𝐵−| + |𝜕𝐵+| + |𝐵+Δ𝐵−|. Now, |𝜕𝐵−| ≤ |𝜕𝐴−| and |𝜕𝐵+| ≤
|𝜕𝐴+| by the induction hypothesis. Also, the sets 𝐵+ and 𝐵− are nested/comparable
(one is contained in the other), as each is an initial segment of binary on ℙ(𝑋 − 𝑖). So,
since |𝐵−| = |𝐴−| and |𝐵+| = |𝐴+| by definition, we have

|𝐵+Δ𝐵−| = |𝐵+| − |𝐵−| = |𝐴+| − |𝐴−| ≤ |𝐴+ − 𝐴−| ≤ |𝐴+Δ𝐴−|.

if 𝐵− ⊆ 𝐵+, and similarly this holds if 𝐵+ ⊆ 𝐵−. So |𝜕𝐵| ≤ |𝜕𝐴|. This proves the claim.
□

Define a sequence 𝐴0, 𝐴1, … as follows: set 𝐴0 = 𝐴. Having defined 𝐴0, …, 𝐴𝑘, if 𝐴𝑘
is 𝑖-binary-compressed for all 1 ≤ 𝑖 ≤ 𝑛, then stop the sequence with 𝐴𝑘. Otherwise,
choose 𝑖 with 𝐵𝑖(𝐴𝑘) ≠ 𝐴𝑘, and set 𝐴𝑘+1 = 𝐴𝑘. This must terminate, as the function
𝑘 ↦ ∑𝑥∈𝐴𝑘

(position of 𝑥 in binary) is strictly decreasing.
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The final family in this sequence 𝐵 = 𝐴𝑘 satisfies |𝐵| = |𝐴|, |𝜕𝐵| ≤ |𝜕𝐴|, and 𝐵 is 𝑖-
binary-compressed for all 1 ≤ 𝑖 ≤ 𝑛. Then by Lemma 2.50, we are done, since if 𝐵 is
not initial segment, then clearly we have |𝜕𝐵| ≥ |𝜕𝐶|, since in that case 𝐶 = ℙ([𝑛 − 1]).

Remark 2.52  It is vital in the proof, and of Harper’s theorem, that the extremal sets,
i.e. the 𝑖-sections of the compression (in dimension 𝑛 − 1) were nested.

Definition 2.53  The isoperimetric number of a graph 𝐺 is

𝑖(𝐺) ≔ min{|𝜕𝐴|
|𝐴|

: 𝐴 ⊆ 𝐺, |𝐴|
|𝐺|

≤ 1
2
}.

|𝜕𝐴|/|𝐴| can be thought as the average out-degree of 𝐴.

Corollary 2.54  We have 𝑖(𝑄𝑛) = 1.

Proof (Hints) .  Straightforward. □

Proof .  Taking 𝐴 = ℙ(𝑛 − 1) shows that 𝑖(𝑄𝑛) ≤ 1. To show 𝑖(𝑄𝑛) ≥ 1, by the above
theorem, we just need to show that if 𝐶 is an initial segment of binary with |𝐶| ≤ 2𝑛−1,
then |𝜕𝐶| ≥ |𝐶|. But in this case, 𝐶 ⊆ ℙ(𝑛 − 1), so certainly |𝜕𝐶| ≥ |𝐶|. □

2.3. Inequalities in the grid
Definition 2.55  For 𝑘 ≥ 2 and 𝑛 ∈ ℕ, the grid is the graph on [𝑘]𝑛 in which 𝑥 is
joined to 𝑦 if

∃1 ≤ 𝑖 ≤ 𝑛 : |𝑥𝑖 − 𝑦𝑖| = 1 and ∀𝑗 ≠ 𝑖, 𝑥𝑗 = 𝑦𝑗.

“The distance is the ℓ1 distance”. Note that for 𝑘 = 2, this is precisely the definition of
𝑄𝑛.

Diagram 2.56

The grid [5]2

Notation 2.57  For a point 𝑥 in the grid on [𝑘]𝑛, write |𝑥| for ∑𝑛
𝑖=1|𝑥𝑖| = ‖𝑥‖ℓ1

. So 𝑥
is joined to 𝑦 in the grid on [𝑘]𝑛 iff ‖𝑥 − 𝑦‖ℓ1

= 1.

Example 2.58  Which sets 𝐴 ⊆ [𝑘]𝑛 (of a given size) minimise |𝑁(𝐴)|?
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𝐴

𝑟

𝐵

𝑟

In the diagram for [𝑘]2, |𝑏(𝐴)| ≈ 𝑟 ≈ √2|𝐴| and |𝑏(𝐵)| = 2𝑟 = 2√|𝐵| suggests we “go
up in levels” according to |𝑥| = ∑𝑛

𝑖=1|𝑥𝑖|, so we’d take {𝑥 ∈ [𝑘]𝑛 : |𝑥| ≤ 𝑟}. If

|{𝑥 ∈ [𝑘]𝑛 : |𝑥| ≤ 𝑟}| < |𝐴| < |{𝑥 ∈ [𝑘]𝑛 : |𝑥| ≤ 𝑟 + 1}|,

then a reasonable guess is to take 𝐴 = {𝑥 ∈ [𝑘]𝑛 : |𝑥| ≤ 𝑟} together with some points
with 𝑥 with |𝑥| = 𝑟 + 1. As suggested in the diagram below, we should take points while
obeying the motto “keep 𝑥1 large”:

𝑥1 large

𝑥1 small

|𝑥| = ∑𝑖 𝑥𝑖 = 𝑟 + 1

This suggests the following definition:

Definition 2.59  The simplicial order on the grid [𝑘]𝑛 defines 𝑥 < 𝑦 if either |𝑥| <
|𝑦|, or |𝑥| = |𝑦| and 𝑥𝑖 > 𝑦𝑖, where 𝑖 = min{𝑗 ∈ [𝑛] : 𝑥𝑗 ≠ 𝑦𝑗}.

Note that this definition agrees with the definition of simplicial order on the cube (i.e.
when 𝑘 = 2).

Example 2.60  The elements of [3]2 in ascending simplicial order are

(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), (3, 2), (2, 3), (3, 3).

The elements of [4]3 in ascending simplicial order are
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(1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (3, 1, 1), (2, 2, 1), (2, 1, 2), (1, 3, 1), (1, 2, 2), (1, 1, 3),
(4, 1, 1), (3, 2, 1), …

Definition 2.61  For 𝐴 ⊆ [𝑘]𝑛, 𝑛 ≥ 2, and 1 ≤ 𝑖 ≤ 𝑛, the 𝑖-sections of 𝐴 are the sets

𝐴(𝑖)
𝑗 = 𝐴𝑗 ≔ {𝑥 ∈ [𝑘]𝑛−1 : (𝑥1, …, 𝑥𝑖−1, 𝑗, 𝑥𝑖+1, …, 𝑥𝑛−1) ∈ 𝐴} ⊆ [𝑘]𝑛−1.

for each 1 ≤ 𝑗 ≤ 𝑘.

Diagram 2.62

𝐴1

𝐴2

𝐴3

3

The 3-sections of 𝐴 ⊆ [𝑘]3

Definition 2.63  The 𝑖-compression of 𝐴 ⊆ [𝑘]𝑛 is the set 𝐶𝑖(𝐴) ⊆ [𝑘]𝑛 which is
defined by its 𝑖-sections: 𝐶𝑖(𝐴)𝑗 is the initial segment of simplicial on [𝑘]𝑛−1 of size |𝐴𝑗|,
for each 1 ≤ 𝑗 ≤ 𝑘.

We have |𝐶𝑖(𝐴)| = |𝐴|.

Definition 2.64  𝐴 ⊆ [𝑘]𝑛 is 𝑖-compressed if 𝐶𝑖(𝐴) = 𝐴.

Theorem 2.65 (Vertex-isoperimetric Inequality in the Grid)  Let 𝐴 ⊆ [𝑘]𝑛 and 𝐶
be the initial segment of simplicial on [𝑘]𝑛 with |𝐶| = |𝐴|. Then |𝑁(𝐶)| ≤ |𝑁(𝐴)|. In
particular,

|𝐴| ≥ |{𝑥 ∈ [𝑘]𝑛 : |𝑥| ≤ 𝑟}| ⟹ |𝑁(𝐴)| ≥ |{𝑥 ∈ [𝑘]𝑛 : |𝑥| ≤ 𝑟 + 1}|.

Proof (Hints) .
• Use induction on 𝑛.
• Prove that |𝑁(𝐶𝑖(𝐴))| ≤ |𝑁(𝐴)| by writing the 𝑖-section 𝑁(𝐴)(𝑖)

𝑗  as a union of three
sets, doing the same for 𝑁(𝐶𝑖(𝐴))(𝑖)

𝑗 , and using the fact that these three sets (for
𝐶𝑖(𝐴)) are nested (why?).

• Let 𝐵 ⊆ [𝑘]𝑛, |𝐵| = |𝐴| and |𝑁(𝐵)| ≤ |𝑁(𝐴)|, and let 𝐵 be 𝑖-compressed for all 1 ≤
𝑖 ≤ 𝑛 (find an expression to minimise which will imply 𝐵 has this property).

• Case 𝑛 = 2:
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‣ Let 𝑟 = min{|𝑥| : 𝑥 ∉ 𝐵}, 𝑠 = max{|𝑥| : 𝑥 ∈ 𝐵}.
‣ Explain why 𝑟 ≤ 𝑠 + 1 and that we can assume 𝑟 ≤ 𝑠.
‣ Show that if 𝑟 = 𝑠, then |𝑁(𝐶)| ≤ |𝑁(𝐵)|.
‣ Explain why {𝑥 ∈ [𝑘]𝑛 : |𝑥| = 𝑠} ⊆ 𝐵 implies {𝑥 ∈ [𝑘]𝑛 : |𝑥| = 𝑟} ⊆ 𝐵, reason that

this would be a contradiction. Deduce that there exist 𝑦 ∈ 𝐵, 𝑦′ ∉ 𝐵 such that
|𝑦| = |𝑦′| = 𝑠 and 𝑦′ = 𝑦 ± (1, −1).

‣ By a similar argument, show that there exist 𝑥 ∉ 𝐵, 𝑥′ ∈ 𝐵 with |𝑥| = |𝑥′| = 𝑟 and
𝑥′ = 𝑥 ± (1, −1).

‣ Consider 𝐵′ which is obtained from 𝐵 by adding an appropriate element and
removing an appropriate element.

‣ Reason that |𝑁(𝐵′)| ≤ |𝑁(𝐵)|, contradicting the minimality of 𝐵 (it helps to draw
a diagram).

• Case 𝑛 ≥ 3:
‣ For 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑥 ∈ 𝐵 with 𝑥𝑛 > 1 and 𝑥𝑖 < 𝑘 explain why 𝑥 − 𝑒𝑛 + 𝑒𝑖 ∈ 𝐵.
‣ Considering the 𝑛-sections of 𝐵, explain why 𝑁(𝐵)𝑗 ⊆ 𝐵𝑗−1 and hence that

𝑁(𝐵)𝑗 = 𝐵𝑗−1.
‣ TODO: add in a few more details maybe.
‣ Use this to show that |𝑁(𝐵)| = |𝐵| − |𝐵𝑘| + |𝑁(𝐵1)|, and similarly for 𝐶.
‣ Show that |𝐵𝑘| ≤ |𝐶𝑘|, by defining a set 𝐷 ⊆ [𝑘]𝑛 by its 𝑛-sections: 𝐷𝑘 ≔ 𝐵𝑘, and

𝐷𝑗−1 = 𝑁(𝐷𝑗) for all 𝑗, and showing that 𝐷 ⊆ 𝐶.
‣ Show that |𝐵1| ≥ |𝐶1|, by defining a set 𝐸 ⊆ [𝑘]𝑛 by its 𝑖-sections: 𝐸1 ≔ 𝐵1, 𝐸𝑗 =

{𝑥 ∈ [𝑘]𝑛−1 : 𝑁({𝑥}) ⊆ 𝐸𝑗−1}, and showing that 𝐶 ⊆ 𝐸.
‣ Conclude that |𝑁(𝐵1)| ≥ |𝑁(𝐶1)|.

□

Proof .  By induction on 𝑛. The case 𝑛 = 1 follows since if 𝐴 ⊆ [𝑘]1 and 𝐴 ≠ ∅, [𝑘]1, then
|𝑁(𝐴)| ≥ |𝐴| + 1 = |𝑁(𝐶)|. Now given 𝑛 > 1, and 𝐴 ⊆ [𝑘]𝑛, fix 1 ≤ 𝑖 ≤ 𝑛, we claim that
|𝑁(𝐶𝑖(𝐴))| ≤ |𝑁(𝐴)|.

Proof of claim .  Write 𝐵 = 𝐶𝑖(𝐴). For any 1 ≤ 𝑗 ≤ 𝑘, we have

𝑁(𝐴)𝑗 = 𝑁(𝐴𝑗)⏟
from 𝑥𝑖=𝑗

∪ 𝐴𝑗−1⏟
from 𝑥𝑖=𝑗−1

∪ 𝐴𝑗+1⏟
from 𝑥𝑖=𝑗+1

where we set 𝐴0 = 𝐴𝑘+1 = ∅. Similarly, 𝑁(𝐵)𝑗 = 𝑁(𝐵𝑗) ∪ 𝐵𝑗−1 ∪ 𝐵𝑗+1. Now, |𝐵𝑗−1| =
|𝐴𝑗−1| and |𝐵𝑗+1| = |𝐴𝑗+1| by definition, and |𝑁(𝐵𝑗)| ≤ |𝑁(𝐴𝑗)| by the induction
hypothesis. But the sets 𝐵𝑗−1, 𝐵𝑗+1 and 𝑁(𝐵𝑗) are nested, as each is an initial segment
of simplicial on [𝑘]𝑛−1 (since neighbourhood of initial segment of simplicial is initial
segment of simplicial). Hence |𝑁(𝐵)𝑗| ≤ |𝑁(𝐴)𝑗| for each 1 ≤ 𝑗 ≤ 𝑘, thus |𝑁(𝐵)| ≤
|𝑁(𝐴)|. This proves the claim. □

Among all 𝐵 ⊆ [𝑘]𝑛 with |𝐵| = |𝐴| and |𝑁(𝐵)| ≤ |𝑁(𝐴)|, pick one with
∑𝑥∈𝐵(position of 𝑥 in simplicial) minimal. Then 𝐵 is 𝑖-compressed for all 1 ≤ 𝑖 ≤ 𝑛.
We consider the following cases:
• Case 𝑛 = 2: what we know is precisely that 𝐵 is a down-set (𝐴 ⊆ [𝑘]𝑛 is a down-

set if ∀𝑥 ∈ 𝐴, ∀𝑦 ∈ [𝑘]𝑛, (𝑦𝑖 ≤ 𝑥𝑖 ∀1 ≤ 𝑖 ≤ 𝑛) ⟹ 𝑦 ∈ 𝐴.)
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𝐵

[𝑘]2

Let 𝑟 = min{|𝑥| : 𝑥 ∉ 𝐵} and 𝑠 = max{|𝑥| : 𝑥 ∈ 𝐵}. We have that 𝑟 ≤ 𝑠 + 1 by defin-
ition. We may assume that 𝑟 ≤ 𝑠, since if 𝑟 = 𝑠 + 1, then 𝐵 = {𝑥 : |𝑥| ≤ 𝑟 − 1} which
is an initial segment of simplicial, hence 𝐵 = 𝐶.

𝐵

[𝑘]2

level 𝑟
level 𝑠

If 𝑟 = 𝑠, then

{𝑥 ∈ [𝑘]𝑛 : |𝑥| ≤ 𝑟 − 1} ⊆ 𝐵 ⊆ {𝑥 ∈ [𝑘]𝑛 : |𝑥| ≤ 𝑟},

so clearly |𝑁(𝐶)| ≤ |𝑁(𝐵)|.

𝑋(<𝑟)

some stuff on level 𝑟
Case when 𝑟 = 𝑠

We cannot have {𝑥 ∈ [𝑘]𝑛 : |𝑥| = 𝑠} ⊆ 𝐵 because then also {𝑥 ∈ [𝑘]𝑛 : |𝑥| = 𝑟} ⊆ 𝐵 (as
𝐵 is a down-set).
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𝑟
𝑠

𝑥 out
𝑥′ in

𝑦 in
𝑦′ out

𝑤

𝑧

Case when 𝑟 < 𝑠

So there are 𝑦, 𝑦′ with |𝑦| = |𝑦′| = 𝑠, 𝑦 ∈ 𝐵, 𝑦′ ∉ 𝐵, and 𝑦′ = 𝑦 ± (𝑒1 − 𝑒2) (where 𝑒1 =
(1, 0), 𝑒2 = (0, 1) are the standard basis vectors). Similarly, since {𝑥 ∈ [𝑘]𝑛 : |𝑥| ≠ 𝑠} ⊆
{𝑥 ∈ [𝑘]𝑛 : |𝑥| ≠ 𝑟}, we cannot have {𝑥 ∈ [𝑘]𝑛 : |𝑥| = 𝑟} ∩ 𝐵 = ∅, because then {𝑥 ∈
[𝑘]𝑛 : |𝑥| = 𝑠} ∩ 𝐵 = ∅ (since 𝐵 is a down-set): contradiction. So there are 𝑥, 𝑥′ with
|𝑥| = |𝑥′| = 𝑟, 𝑥 ∉ 𝐵, 𝑥′ ∈ 𝐵, and 𝑥′ = 𝑥 ± (𝑒1 − 𝑒2). Now let 𝐵′ = 𝐵 ∪ {𝑥} \ {𝑦}. From
𝐵 we lost at least one point in the neighbourhood (namely the unique point 𝑧 which is
joined to both 𝑦 and 𝑦′) and gained at most one point (the only point we might gain
is the unique point 𝑤 which is joined to both 𝑥 and 𝑥′), so |𝑁(𝐵′)| ≤ |𝑁(𝐵)|, but this
contradicts the minimality of 𝐵.
• Case 𝑛 ≥ 3: for any 1 ≤ 𝑖 ≤ 𝑛 − 1 and any 𝑥 ∈ 𝐵 with 𝑥𝑛 > 1 and 𝑥𝑖 < 𝑘, we have

𝑥 − 𝑒𝑛 + 𝑒𝑖 ∈ 𝐵, since 𝑥 − 𝑒𝑛 + 𝑒𝑖 < 𝑥 in simplicial and 𝐵 is 𝑗-compressed for any
𝑗 ≠ 𝑖, 𝑛. So, considering the 𝑛-sections of 𝐵, we have 𝑁(𝐵𝑗) ⊆ 𝐵𝑗−1 for all 𝑗 =
2, …, 𝑘. Recall that 𝑁(𝐵)𝑗 = 𝑁(𝐵𝑗) ∪ 𝐵𝑗+1 ∪ 𝐵𝑗−1. So in fact, 𝑁(𝐵)𝑗 = 𝐵𝑗−1 for all
𝑗 ≥ 2. Thus

|𝑁(𝐵)| = |𝐵𝑘−1|⏟
level 𝑘

+ |𝐵𝑘−2|⏟
level 𝑘−1

+ ⋯ + |𝐵1|⏟
level 2

+ |𝑁(𝐵1)|⏟
level 1

= |𝐵| − |𝐵𝑘| + |𝑁(𝐵1)|.

Similarly, |𝑁(𝐶)| = |𝐶| − |𝐶𝑘| + |𝑁(𝐶1)|. So to show |𝑁(𝐶)| ≤ |𝑁(𝐵)|, it is enough
to show that |𝐵𝑘| ≤ |𝐶𝑘| and |𝐵1| ≥ |𝐶1| (since 𝐵1, 𝐶1 and their neighbourhoods
are initial segments of simplicial).
|𝐵𝑘| ≤ |𝐶𝑘|: define a set 𝐷 ⊆ [𝑘]𝑛 by its 𝑛-sections as follows: let 𝐷𝑘 ≔ 𝐵𝑘, and for
𝑗 = 𝑘 − 1, 𝑘 − 2, …, 1, set 𝐷𝑗 ≔ 𝑁(𝐷𝑗+1). Then 𝐷 ⊆ 𝐵, so |𝐷| ≤ |𝐵|. Also, 𝐷 is an
initial segment of simplicial, since 𝐵𝑘 is an initial segment of simplicial, and so all 𝑛
-sections of 𝐷 are as well. So in fact, 𝐷 ⊆ 𝐶, whence |𝐵𝑘| = |𝐷𝑘| ≤ |𝐶𝑘|.
|𝐵1| ≥ |𝐶1|: define a set 𝐸 ⊆ [𝑘]𝑛 as follows: set 𝐸1 = 𝐵1 and for 𝑗 = 2, 3, …, 𝑘, set
𝐸𝑗 = {𝑥 ∈ [𝑘]𝑛−1 : 𝑁({𝑥}) ⊆ 𝐸𝑗−1}, so 𝐸𝑗 is the biggest set whose neighbourhood
is contained in 𝐸𝑗−1. Then 𝐵 ⊆ 𝐸, so |𝐸| ≥ |𝐵|. Also, 𝐸 is an initial segment of
simplicial. So 𝐶 ⊆ 𝐸, whence |𝐵1| = |𝐸1| ≥ |𝐶1|.

Corollary 2.66  Let 𝐴 ⊆ [𝑘]𝑛 and |𝐴| ≥ |{𝑥 ∈ [𝑘]𝑛 : |𝑥| ≤ 𝑟}|. Then |𝑁 𝑗(𝐴)| ≥ |{𝑥 ∈
[𝑘]𝑛 : |𝑥| ≤ 𝑟 + 𝑗}| for all 𝑗.

Proof (Hints) .  Trivial by above. □

Proof .  By induction, using above. □
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Remark 2.67  We can check from the above corollary that, for 𝑘 fixed, the sequence
of grids {[𝑘]𝑛 : 𝑛 ∈ ℕ} is a Levy family.

2.4. The edge-isoperimetric inequality in the grid
Example 2.68  Which set 𝐴 ⊆ [𝑘]𝑛 of given size should we take to minimise |𝜕𝐴|?

𝐴
𝑟

|𝜕𝐴| ≈ 2𝑟

𝐵

𝑟

𝑟

|𝜕𝐴| ≈ 2𝑟

The diagram above for [𝑘]2 suggests squares are best. However, the diagram below
shows we have “phase transitions” at |𝐴| ≈ 𝑘2/4 and |𝐴| ≈ 3𝑘2/4. So the extremal sets
are not nested.

𝑟

𝑟 𝑘/2

𝑘/2
𝑘

𝑘/4

𝑘

3𝑘/4

𝑘/2
𝑘/2

𝑟

𝑟

This seems to rule out all our compression methods. In [𝑘]3:
• Start with [𝑎]3,
• then the square columns [𝑎]2 × [𝑘],
• then the “half spaces” [𝑎] × [𝑘]2,
• then the complements of the square columns,
• then the complements of the cubes.

Generalising, in [𝑘]𝑛, up to |𝐴| = 𝑘𝑛/2, we get 𝑛 − 1 of these “phase transitions”.
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Theorem 2.69 (Edge-isoperimetric Inequality in the Grid)  Let 𝐴 ⊆ [𝑘]𝑛. If |𝐴| ≤
𝑘𝑛/2, then

|𝜕𝐴| ≥ min{𝑑|𝐴|1−1/𝑑𝑘𝑛/𝑑−1 : 1 ≤ 𝑑 ≤ 𝑛}.

Proof (Hints) .  Non-examinable. □

Proof .  Non-examinable. □

Remark 2.70  Note that if 𝐴 = [𝑎]𝑑 × [𝑘]𝑛−𝑑, then

|𝜕𝐴| = 𝑑𝑎𝑑−1𝑘𝑛−𝑑 = 𝑑|𝐴|1−1/𝑑𝑘𝑛/𝑑−1.

So the Edge-isoperimetric Inequality in the Grid says that some set of the form [𝑎]𝑑 ×
[𝑘]𝑛−𝑑 minimises the edge boundary.

Remark 2.71  Very few isoperimetric inequalities are known (even approximately),
e.g. “iso in a layer”: in a graph 𝑋(𝑟), with 𝑥, 𝑦 joined if |𝑥 ∩ 𝑦| = 𝑟 − 1. This is open. A
nice special case is 𝑟 = 𝑛/2, where it is conjectured that balls are best, i.e. sets of the
form {𝑥 ∈ [2𝑟](𝑟) : |𝑥 ∩ [𝑟]| ≥ 𝑡}.

3. Intersecting families
3.1. 𝑡-intersecting families
Definition 3.1  𝐴 ⊆ ℙ(𝑋) is 𝑡-intersecting if

∀𝑥, 𝑦 ∈ 𝐴, |𝑥 ∩ 𝑦| ≥ 𝑡.

Example 3.2  How large can a 𝑡-intersecting family be? For 𝑡 = 2, we could take {𝑥 ⊆
𝑋 : 1, 2 ∈ 𝑥}, which has size 1

4 ⋅ 2𝑛, but better is {𝑥 ⊆ 𝑋 : |𝑥| ≥ 𝑛/2 + 1}, which has
size ≈ 1

2 ⋅ 2𝑛.

𝑛/2 + 1

Theorem 3.3 (Katona’s 𝑡-intersecting Theorem)  Let 𝐴 ⊆ ℙ(𝑋) be 𝑡-intersecting,
where 𝑛 ≡ 𝑡 mod 2. Then

|𝐴| ≤ |𝑋(≥(𝑛+𝑡)/2)|.

Proof (Hints) .
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• Show that 𝑁 𝑡−1(𝐴) is disjoint from 𝐴 ≔ {𝑦𝑐 : 𝑦 ∈ 𝐴}.
• Assuming the negation of the theorem statement, show that

|𝑁 𝑡−1(𝐴)| ≥ |𝑋(≥(𝑛−𝑡)/2+1)|,

and derive a contradiction (find a strict lower bound for the size of 𝐴).

□

Proof .  For any 𝑥, 𝑦 ∈ 𝐴, we have |𝑥 ∩ 𝑦| ≥ 𝑡, so 𝑑(𝑥, 𝑦𝑐) ≥ 𝑡. Writing 𝐴 = {𝑦𝑐 : 𝑦 ∈ 𝐴},
we have 𝑑(𝐴, 𝐴) ≥ 𝑡, i.e. 𝑁 𝑡−1(𝐴) is disjoint from 𝐴. Suppose for a contradiction |𝐴| >
|𝑋(≥(𝑛+𝑡)/2)|. Then by Harper, we have

|𝑁 𝑡−1(𝐴)| ≥ |𝑋(≥(𝑛+𝑡)/2−(𝑡−1))| = |𝑋(≥(𝑛−𝑡)/2+1)|.

But 𝑁 𝑡−1(𝐴) is disjoint from 𝐴 which has size |𝐴| = |𝐴| > |𝑋(≤(𝑛−𝑡)/2)|, contradicting
|𝑁 𝑡−1(𝐴)| + |𝐴| ≤ 2𝑛. □

Example 3.4  What about 𝑡-intersecting 𝐴 with 𝐴 ⊆ 𝑋(𝑟)? We might guess that the
best is 𝐴0 = {𝑥 ∈ 𝑋(𝑟) : [𝑡] ⊆ 𝑥}. We could also try 𝐴𝛼 = {𝑥 ∈ 𝑋(𝑟) : |𝑥 ∩ [𝑡 + 2𝛼]| ≥
𝑡 + 𝛼} for 𝛼 = 1, …, 𝑟 − 𝑡.
• For 2-intersecting families in [7](4): |𝐴0| = (5

2) = 10, |𝐴1| = 1 + (4
3)(3

1) = 13, |𝐴2| =
(6

4) = 15.
• For 2-intersecting families in [8](4): |𝐴0| = (6

2) = 15, |𝐴1| = 1 + (4
3)(4

1) = 17, |𝐴2| =
(6

4) = 15.
• For 2-intersecting families in [9](4): |𝐴0| = (7

2) = 21, |𝐴1| = 1 + (4
3)(5

1) = 21, |𝐴2| =
(6

4) = 15.

Note that 𝐴0 grows quadratically, 𝐴1 grows linearly, 𝐴2 is constant, so 𝐴0 is the largest
of these for large 𝑛.

1 2 3 4 5 6 7

𝐴0 𝐴1 𝐴2

Theorem 3.5 (Second Erdos-Ko-Rado Theorem)  Let 𝑋 = [𝑛] and let 𝐴 ⊆ 𝑋(𝑟) be 𝑡-
intersecting. Then, for 𝑛 sufficiently large, we have |𝐴| ≤ |𝐴0| = (𝑛−𝑡

𝑟−𝑡 ).

Proof (Hints) .
• Show by contradiction that a maximal 𝑡-intersecting family 𝐴′ ⊇ 𝐴 has 𝑥, 𝑦 ∈ 𝐴′

with |𝑥 ∩ 𝑦| = 𝑡.
• Explain why we can assume that there exists 𝑧 ∈ 𝐴′ with 𝑥 ∩ 𝑦 ⊈ 𝑧, and hence each

𝑤 ∈ 𝐴′ meets 𝑥 ∪ 𝑦 ∪ 𝑧 in ≥ 𝑡 + 1 points.
• Show that |𝐴′| is bounded above by a polynomial in 𝑛 of degree 𝑟 − 𝑡 − 1.

□

Proof .  Idea: “𝐴0 has 𝑟 − 𝑡 degrees of freedom”.

Extend 𝐴 to a maximal 𝑡-intersecting family 𝐴′, trivially |𝐴| ≤ |𝐴′|. There exist 𝑥, 𝑦 ∈
𝐴′ with |𝑥 ∩ 𝑦| = 𝑡 (if not, then by maximality, we have that ∀𝑥 ∈ 𝐴′, ∀𝑖 ∈ 𝑥, ∀𝑗 ∉ 𝑥,

37



𝑥 \ 𝑖 ∪ 𝑗 ∈ 𝐴′; repeating this, we have 𝐴′ = 𝑋(𝑟): contradiction). We may assume that
there exists 𝑧 ∈ 𝐴′ with 𝑥 ∩ 𝑦 ⊈ 𝑧; otherwise, all 𝑧 ∈ 𝐴′ contain the 𝑡-set 𝑥 ∩ 𝑦 ⊆ 𝑧,
whence |𝐴′| ≤ (𝑛−𝑡

𝑟−𝑡 ) = |𝐴0|. So each 𝑤 ∈ 𝐴′ must meet 𝑥 ∪ 𝑦 ∪ 𝑧 in ≥ 𝑡 + 1 points.

𝑥 𝑦

𝑧

|𝑥 ∩ 𝑦| = 𝑡

Thus

|𝐴′| ≤ 23𝑟⏟
𝑤 on 𝑥∪𝑦∪𝑧

⋅ (( 𝑛
𝑟 − 𝑡 − 1

) + ( 𝑛
𝑟 − 𝑡 − 2

) + ⋯ + (𝑛
0
))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑤 off 𝑥∪𝑦∪𝑧

which is a polynomial in 𝑛 of degree 𝑟 − 𝑡 − 1, so is eventually smaller than |𝐴0| =
(𝑛−𝑡

𝑟−𝑡 ), a polynomial in 𝑛 of degree 𝑟 − 𝑡. □

Remark 3.6  The bound we obtain for 𝑛 in the Second Erdos-Ko-Rado Theorem would
be ≥ (16𝑟)𝑟 (crude) or 2𝑡𝑟3 (careful).

3.2. Modular intersections
Example 3.7  For intersecting families, we ban |𝑥 ∩ 𝑦| = 0. What if we banned |𝑥 ∩
𝑦| = 0 mod 𝑘 for some 𝑘 ∈ ℕ?

For example, for 𝑘 = 2, we want 𝐴 ⊆ 𝑋(𝑟) with |𝑥 ∩ 𝑦| odd for all 𝑥 ≠ 𝑦 ∈ 𝐴. When 𝑟
is odd, we can achieve |𝐴| = ( ⌊(𝑛−1)/2⌋

(𝑟−1)/2 ) by the diagram below.

1 2 3 4 5

Take

𝑛 − 1 𝑛

Take (𝑟 − 1)/2 pairs from here

For 𝑟 odd, if we want |𝑥 ∩ 𝑦| even for all 𝑥 ≠ 𝑦 ∈ 𝐴, we can achieve 𝑛 − 𝑟 + 1 by the
diagram below, but this is only linear in 𝑛.

[𝑟 − 1]

[𝑛]

Take all of this Take 1 point from here

Example 3.8  Similarly, for 𝑟 even, if we want |𝑥 ∩ 𝑦| even for all 𝑥 ≠ 𝑦 ∈ 𝐴, we can
achieve |𝐴| = ( ⌊𝑛/2⌋

𝑟/2 ) by the diagram below.
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1 2 3 4 𝑛 − 1 𝑛

Take 𝑟/2 pairs from here

If we want |𝑥 ∩ 𝑦| odd for all 𝑥 ≠ 𝑦 ∈ 𝐴, can achieve 𝑛 − 𝑟 + 1 by the diagram below.

[𝑟 − 1]

[𝑛]

Take all of this Take 1 point from here

It seems to be that banning |𝑥 ∩ 𝑦| = 𝑟(mod 2) forces the family to be very small
(polynomial in 𝑛; in fact, a linear polynomial). Remarkably, we cannot beat linear.

Proposition 3.9  Let 𝑟 be odd and 𝐴 ⊆ 𝑋(𝑟). If |𝑥 ∩ 𝑦| is even for all 𝑥 ≠ 𝑦 ∈ 𝐴, then
|𝐴| ≤ 𝑛.

Proof (Hints) .  Identify each 𝑥 ∈ ℙ(𝑋) with a point 𝑥 in an appropriate vector space,
and by considering dot products, show that {𝑥 : 𝑥 ∈ 𝐴} is linearly independent. □

Proof .  Idea: find |𝐴| linearly independent vectors in a vector space of dimension 𝑛,
namely 𝑄𝑛.

View ℙ(𝑋) as 𝔽𝑛
2 , the 𝑛-dimensional vector space over 𝔽2, by identifying each 𝑥 ∈

ℙ(𝑋) with 𝑥, its characteristic sequence (where we count from the left, so {1, 3, 4} ↔
1011000…0). Then we have 𝑥.𝑥 ≠ 0 for all 𝑥 ∈ 𝐴 (as 𝑟 is odd). Also, 𝑥.𝑦 = 0 for all 𝑥 ≠
𝑦 ∈ 𝐴, as |𝑥 ∩ 𝑦| is even. Hence {𝑥 : 𝑥 ∈ 𝐴} is linearly independent (if ∑𝑖 𝜆𝑖𝑥𝑖, dot with
𝑥𝑗 to get 𝜆𝑗 = 0). So |𝐴| ≤ 𝑛. □

Corollary 3.10  Hence also, if 𝐴 ⊆ 𝑋(𝑟) with 𝑟 even with |𝑥 ∩ 𝑦| odd for all 𝑥 ≠ 𝑦 ∈
𝐴, then |𝐴| ≤ 𝑛 + 1.

Proof (Hints) .  Use the above proposition. □

Proof .  Just add 𝑛 + 1 to each 𝑥 ∈ 𝐴 and apply above proposition. □

This mod 2 behaviour generalises: namely, allowing 𝑠 values for |𝑥 ∩ 𝑦| mod 𝑝 implies
that |𝐴| is bounded above by a polynomial of degree 𝑠.

Theorem 3.11 (Frankl-Wilson)  Let 𝑝 be prime and 𝐴 ⊆ 𝑋(𝑟). Suppose that for all
𝑥 ≠ 𝑦 ∈ 𝐴, we have |𝑥 ∩ 𝑦| ≡ 𝜆𝑖 mod 𝑝 for some 𝑖, where 𝑠 ≤ 𝑟 and 𝜆1, …, 𝜆𝑠 ∈ ℤ with
no 𝜆𝑖 ≡ 𝑟 mod 𝑝. Then |𝐴| ≤ (𝑛

𝑠 ).

Proof (Hints) .
• For each 𝑖 ≤ 𝑗, let 𝑀(𝑖, 𝑗) be the (𝑛

𝑖 ) × (𝑛
𝑗 ) matrix with rows indexed by 𝑋(𝑖),

columns indexed by 𝑋(𝑗), with

𝑀(𝑖, 𝑗)𝑥𝑦 = {1 if 𝑥 ⊆ 𝑦
0 otherwise, 𝑥 ∈ 𝑋(𝑖), 𝑦 ∈ 𝑋(𝑗).
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• Let 𝑉  be the vector space over ℝ spanned by the rows of 𝑀(𝑠, 𝑟).
• By finding an expression for each of its entries, show that 𝑀(𝑖, 𝑠)𝑀(𝑠, 𝑟) =

(𝑟−𝑖
𝑠−𝑖)𝑀(𝑖, 𝑟).

• Let 𝑀(𝑖) = 𝑀(𝑖, 𝑟)𝑇 𝑀(𝑖, 𝑟). Explain why each row of each 𝑀(𝑖) is in 𝑉 .
• Let 𝑀 = ∑𝑠

𝑖=0 𝑎𝑖𝑀(𝑖), where the 𝑎𝑖 are chosen so that 𝑀𝑥𝑦 = (|𝑥 ∩ 𝑦| − 𝜆1) ⋯ (|𝑥 ∩
𝑦| − 𝜆𝑠) (explain why each 𝑎𝑖 ∈ ℤ).

• Consider the submatrix of 𝑀  spanned by the rows and columns corresponding to
the elements of 𝐴.

□

Proof .  Idea: try to find |𝐴| linearly independent points in a vector space of dimension
(𝑛

𝑠 ), by somehow “applying” the polynomial (𝑡 − 𝜆1) ⋯ (𝑡 − 𝜆𝑠) to |𝑥 ∩ 𝑦|.

For each 𝑖 ≤ 𝑗, let 𝑀(𝑖, 𝑗) be the (𝑛
𝑖 ) × (𝑛

𝑗 ) matrix with rows indexed by 𝑋(𝑖), columns
indexed by 𝑋(𝑗), with

𝑀(𝑖, 𝑗)𝑥𝑦 = {1 if 𝑥 ⊆ 𝑦
0 otherwise, 𝑥 ∈ 𝑋(𝑖), 𝑦 ∈ 𝑋(𝑗).

Let 𝑉  be the vector space over ℝ spanned by the rows of 𝑀(𝑠, 𝑟), so dim(𝑉 ) ≤ (𝑛
𝑠 ). For

𝑖 ≤ 𝑠, consider the matrix 𝑀(𝑖, 𝑠)𝑀(𝑠, 𝑟). Each row of this matrix belongs to 𝑉 , as we
have left-multiplied 𝑀(𝑠, 𝑟) by a matrix. For 𝑥 ∈ 𝑋(𝑖), 𝑦 ∈ 𝑋(𝑟),

(𝑀(𝑖, 𝑠)𝑀(𝑠, 𝑟))𝑥𝑦 = number of 𝑠-sets 𝑧 with 𝑥 ⊆ 𝑧 and 𝑧 ⊆ 𝑦 = {
0 if 𝑥 ⊈ 𝑦
(𝑟−𝑖

𝑠−𝑖) if 𝑥 ⊆ 𝑦.

So 𝑀(𝑖, 𝑠)𝑀(𝑠, 𝑟) = (𝑟−𝑖
𝑠−𝑖)𝑀(𝑖, 𝑟). So all rows of 𝑀(𝑖, 𝑟) belong to 𝑉 . Let 𝑀(𝑖) =

𝑀(𝑖, 𝑟)𝑇 𝑀(𝑖, 𝑟). Again, each row of this matrix is in 𝑉 , since we have left-multiplied
𝑀(𝑖, 𝑟) by a matrix. For 𝑥, 𝑦 ∈ 𝑋(𝑟), we have

𝑀(𝑖)𝑥𝑦 = number of 𝑖-sets 𝑧 with 𝑧 ⊆ 𝑥 and 𝑧 ⊆ 𝑦 = (|𝑥 ∩ 𝑦|
𝑖

).

Write the integer polynomial (𝑡 − 𝜆1) ⋯ (𝑡 − 𝜆𝑠) as ∑𝑠
𝑖=0 𝑎𝑖( 𝑡

𝑖) with all 𝑎𝑖 ∈ ℤ. This
is possible since 𝑡(𝑡 − 1)⋯(𝑡 − 𝑖 + 1) = 𝑖!( 𝑡

𝑖). Let 𝑀 = ∑𝑠
𝑖=0 𝑎𝑖𝑀(𝑖). Note each row of

each 𝑀(𝑖) is in 𝑉 . Then for all 𝑥, 𝑦 ∈ 𝑋(𝑟),

𝑀𝑥𝑦 = ∑
𝑠

𝑖=0
𝑎𝑖(

|𝑥 ∩ 𝑦|
𝑖

) = (|𝑥 ∩ 𝑦| − 𝜆1) ⋯ (|𝑥 ∩ 𝑦| − 𝜆𝑠).

So the submatrix of 𝑀  spanned by the rows and columns corresponding to the elements
of 𝐴 is

[
[
[≢ 0 mod 𝑝

0
⋱

0

≢ 0 mod 𝑝]
]
]
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Hence the rows of 𝑀  corresponding to 𝐴 are linearly independent over 𝔽𝑝, so also over
ℤ, so also over ℚ, so also over ℝ. So |𝐴| ≤ dim(𝑉 ) = (𝑛

𝑠 ). □

Remark 3.12
• The bound in Frankl-Wilson is a polynomial in 𝑛, even as 𝑟 varies!
• The bound is essentially the best possible: we can achieve |𝐴| = ( 𝑛

𝑛−𝑟+𝑠) ≈ (𝑛
𝑠 ) for

large 𝑛, as shown in the diagram below.

[𝑟 − 𝑠]

[𝑛]

any 𝑠-set

• The condition 𝜆𝑖 ≢ 𝑟 mod 𝑝 for all 𝑖 is necessary: indeed, if 𝑛 = 𝑎 + 𝜆𝑝, 0 ≤ 𝑎 ≤ 𝑝 −
1, then can have 𝐴 ⊆ 𝑋𝑎+𝑘𝑝 with |𝐴| = (𝜆

𝑘) and all |𝑥 ∩ 𝑦| ≡ 𝑎 mod 𝑝, but (𝜆
𝑘) is not

a polynomial in 𝑛 (as we can choose any 𝑘).

Take 𝑘 of these

𝑎

Take

𝑝 𝑝 𝑝 𝑝

Remark 3.13  We do need 𝑝 prime. Grolmusz constructed, for each 𝑛, a value of 𝑟 ≡
0 mod 6 and a family 𝐴 ⊆ [𝑛](𝑟) such that ∀𝑥 ≠ 𝑦 ∈ 𝐴, we have |𝑥 ∩ 𝑦| ≢ 0 mod 6 and
|𝐴| > 𝑛𝑐 log 𝑛/ log log 𝑛, which is not a polynomial in 𝑛.

Corollary 3.14  Let 𝐴 ⊆ [𝑛](𝑟) with |𝑥 ∩ 𝑦| ≢ 𝑟 mod 𝑝 for all 𝑥 ≠ 𝑦 ∈ 𝐴, where 𝑝 < 𝑟 is
prime. Then |𝐴| ≤ ( 𝑛

𝑝−1).

Proof (Hints) .  Trivial by Frankl-Wilson. □

Proof .  We are allowed 𝑝 − 1 values of |𝑥 ∩ 𝑦| mod 𝑝, so done by Frankl-Wilson. □

Two (𝑛/2)-sets in [𝑛] typically meet in ≈ 𝑛/4 points, but having the exact equality |𝑥 ∩
𝑦| = 𝑛/4 is very unlikely. But remarkably:

Corollary 3.15  Let 𝑝 be prime, and 𝐴 ⊆ [4𝑝](2𝑝) with |𝑥 ∩ 𝑦| ≠ 𝑝 for all 𝑥 ≠ 𝑦 ∈ 𝐴.
Then |𝐴| ≤ 2( 4𝑝

𝑝−1).

Proof (Hints) .  Remove all complements from 𝐴 and use Corollary 3.14. □

Proof .  By halving |𝐴| if necessary, we may assume that no 𝑥, 𝑥𝑐 ∈ 𝐴 (for any 𝑥 ∈
[4𝑝](2𝑝)). Then for 𝑥 ≠ 𝑦 ∈ 𝐴, |𝑥 ∩ 𝑦| ≠ 0, 𝑝, 2𝑝, so |𝑥 ∩ 𝑦| ≢ 0 mod 𝑝. So |𝐴| ≤ ( 4𝑝

𝑝−1) by
Corollary 3.14. □

Remark 3.16  |𝑥 ∩ 𝑦| ≠ 𝑝 for all 𝑥 ≠ 𝑦 ∈ 𝐴 is a weak constraint, yet 2( 4𝑝
𝑝−1) is a tiny

(exponentially small) fraction of (4𝑝
2𝑝). Indeed, ( 𝑛

𝑛/2) ≈ 𝑐 ⋅ 2𝑛/
√

𝑛, for some constant 𝑐,
whereas ( 𝑛

𝑛/4) ≤ 4𝑒−𝑛/322𝑛 by Proposition 2.25.

3.3. Borsuk’s conjecture
Let 𝑆 ⊆ ℝ𝑛 be bounded. How few pieces can we break 𝑆 into, such that each piece has
smaller diameter than that of 𝑆?
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Diagram 3.17

𝑆 ⊆ ℝ2

3

21

A partition of 𝑆 into three pieces

The example of a regular 𝑛-simplex in ℝ𝑛 (𝑛 + 1 points, all at distance 1) shows that
we may need 𝑛 + 1 pieces.

Conjecture 3.18 (Borsuk)  𝑛 + 1 pieces is always sufficient.

Borsuk is true when 𝑛 = 1 (trivial), 𝑛 = 2 (doable), 𝑛 = 3 (hard), and also when 𝑆 is
a smooth convex body in ℝ𝑛 (e.g. sphere), or a symmetric (𝑥 ∈ 𝑆 ⇒ −𝑥 ∈ 𝑆) convex
body in ℝ𝑛 (e.g. octohedron).

However, in general, Borsuk is massively false:

Theorem 3.19 (Kahn, Kalai)  For all 𝑛 ∈ ℕ, there exists a bounded 𝑆 ⊆ ℝ𝑛 such that
to break 𝑆 into pieces of smaller diameter, we need at least 𝐶

√
𝑛 pieces for some constant

𝐶 > 1.

Remark 3.20  Our proof will show Borsuk is false for 𝑛 ≥ 2000.

Proof (Hints) .
• Prove for all 𝑛 of the form, (4𝑝

2 ) for 𝑝 prime.
• For 𝑥, 𝑦 ∈ [𝑛](𝑟), find an expression for ‖𝑥 − 𝑦‖2 in terms of |𝑥 ∩ 𝑦|.
• Identify [𝑛] with the edge set of an appropriate graph, and for each 𝑥 ∈ [4𝑝](2𝑝), let

𝐺𝑥 be the complete bipartite graph with vertex classes 𝑥 and 𝑥𝑐.
• Show that the number of edges in 𝐺𝑥 ∩ 𝐺𝑦 is |𝐺𝑥 ∩ 𝐺𝑦| = |𝑥 ∩ 𝑦|2 + (2𝑝 − |𝑥 ∩ 𝑦|)2

and give the value of |𝑥 ∩ 𝑦| which minimises this.
• Let 𝑆 be an appropriate set of size |𝑆| = 1

2(4𝑝
2𝑝). Using Corollary 3.15, show that any

subset 𝑆′ ⊆ 𝑆 of smaller diameter than 𝑆 has size at most 2( 4𝑝
𝑝−1).

• Use Proposition 2.25 and the fact that ( 𝑛
𝑛/2) ≈ 𝑐 ⋅ 2𝑛/

√
𝑛 to conclude the result. □

Proof .  We will prove it for all 𝑛 of the form (4𝑝
2 ) where 𝑝 is prime. Then we are done

for all 𝑛 ∈ ℕ (with a different constant 𝐶), e.g. because there exists prime 𝑝 with 𝑛/2 ≤
𝑝 ≤ 𝑛. We’ll find 𝑆 ⊆ 𝑄𝑛 ⊆ ℝ𝑛. In fact, 𝑆 ⊆ [𝑛](𝑟) for some 𝑟. (These are genuine ideas).
Since 𝑆 ⊆ [𝑛](𝑟), we have ∀𝑥, 𝑦 ∈ 𝑆,

‖𝑥 − 𝑦‖2 = number of coordinates where 𝑥, 𝑦 differ
= |𝑥Δ𝑦| = |𝑥 \ 𝑦| + |𝑦 \ 𝑥| = 2(𝑟 − |𝑥 ∩ 𝑦|).
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[𝑛]

𝑥 𝑦

The diameter of 𝑆 is max{‖𝑥 − 𝑦‖ : 𝑥, 𝑦 ∈ 𝑆}, so we seek 𝑆 with min{|𝑥 ∩ 𝑦| : 𝑥, 𝑦 ∈
𝑆} = 𝑘, where every subset 𝑆′ ⊆ 𝑆 with min{|𝑥 ∩ 𝑦| : 𝑥, 𝑦 ∈ 𝑆′} > 𝑘 is very small (so
need many pieces).

Identify [𝑛] with the edge set of the complete graph 𝐾4𝑝 on 4𝑝 points. For each 𝑥 ∈
[4𝑝](2𝑝), let 𝐺𝑥 be the complete bipartite graph with vertex classes 𝑥, 𝑥𝑐. Let 𝑆 = {𝐺𝑥 :
𝑥 ∈ [4𝑝](2𝑝)}. So 𝑆 ⊆ [𝑛](4𝑝2), and |𝑆| = 1

2(4𝑝
2𝑝) (since 𝐺𝑥 = 𝐺𝑥𝑐). Now, the number of

edges in 𝐺𝑥 ∩ 𝐺𝑦 is

|𝐺𝑥 ∩ 𝐺𝑦| = |𝑥 ∩ 𝑦| ⋅ |𝑥𝑐 ∩ 𝑦𝑐| + |𝑥𝑐 ∩ 𝑦| ⋅ |𝑥 ∩ 𝑦𝑐|

= |𝑥 ∩ 𝑦|2 + |𝑥𝑐 ∩ 𝑦|2

= 𝑑2 + (2𝑝 − 𝑑)2, where 𝑑 = |𝑥 ∩ 𝑦|,

which is minimised when 𝑑 = |𝑥 ∩ 𝑦| = 𝑝.

[4𝑝]

𝑥 𝑥𝑐

𝑦

𝑦𝑐

Now let 𝑆′ ⊆ 𝑆 have smaller diameter than that of 𝑆: 𝑆′ = {𝐺𝑥 : 𝑥 ∈ 𝐴}, where 𝐴 ⊊
[4𝑝]2𝑝. So we must have that ∀𝑥 ≠ 𝑦 ∈ 𝐴, |𝑥 ∩ 𝑦| ≠ 𝑝 (as otherwise diameter of 𝑆′ is
equal to diameter of 𝑆). Thus |𝐴| ≤ 2( 4𝑝

𝑝−1) by Corollary 3.15.

So by Proposition 2.25, the number of pieces needed is at least

1
2(4𝑝

2𝑝)

2( 4𝑝
𝑝−1)

≥
𝑐 ⋅ 24𝑝/√𝑝
𝑒−𝑝/824𝑝 for some 𝑐

≥ (𝑐′)𝑝 for some 𝑐′

≥ (𝑐″)
√

𝑛 for some 𝑐″. □
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