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Question: toss a fair coin 𝑛 = 10000 times. How many heads?

𝑋 = ∑𝑛
𝑖=1, 𝑋𝑖 ∼ Bern(1/2). 𝔼[𝑋] = 5000. But ℙ(𝑋 = 5000) = ( 104

5000) ⋅ 2−104 ≈ 0.008.

By WLLN, ℙ(𝑋 ∈ [5000 − 𝑛𝜀, 5000 + 𝑛𝜀]) ≈ 1.

Theorem 0.1 (Central Limit Theorem)  Let 𝑋1, …, 𝑋𝑛 be IID RVs with mean 𝔼[𝑋1] =
𝜇. Let Var(𝑋1) = 𝜎2 < ∞. Then 1

𝜎
√

𝑛 ∑𝑛
𝑖=1(𝑋𝑖 − 𝜇) →

𝐷
𝑁(0, 1), i.e.

ℙ( 1
𝜎
√

𝑛
∑

𝑛

𝑖=1
(𝑋𝑖 − 𝜇) ∈ 𝐴) → ∫

𝐴

1√
2𝑛

𝑒−𝑥2/2 d𝑥

for all 𝐴.

So ℙ(𝑋 ∈ [𝑛
2 −

√
𝑛

2 𝑄−1(𝛿), 𝑛
2 +

√
𝑛

2 𝑄−1(𝛿)]) ≥ 1 − 𝛿, for 𝑛 large enough, where 𝑄(𝛿) =
∫∞

𝛿
1√
2𝑛𝑒−𝑥2/2𝑑 d𝑥. We have 𝑄−1(𝑥) ∝ √log 1

𝑥 . So interval has length ∝
√

𝑛√log 1
𝛿 .

Theorem 0.2 (Chebyshev's Inequality)  ℙ(|𝑋 − 𝜇| ≥ 𝜀) ≤ Var(𝑋)
𝜀2  for all 𝜀 > 0.

Corollary 0.3  ℙ(|∑𝑛
𝑖=1(𝑋𝑖) − 𝑛

2 | ≥ 𝑡) ≤ Var(∑𝑛
𝑖=1 𝑋𝑖)
𝑡2 = 𝑛𝜎2

𝑡2 ≤ 𝛿 where 𝑡 =
√

𝑛𝜎/
√

𝛿.

So ℙ(𝑋 ∈ [𝑛
2 −, 𝑛

2 ]) ≥ 1 − 𝛿.

Question 2: we have 𝑁  coupons. Each day receive one uniformly at random independent
of the past. How many days until all coupons received?

We have 𝑋 = ∑𝑛
𝑖=1 𝑋𝑖, 𝑋𝑖 ∼ Geom( 𝑖

𝑛). 𝔼[𝑋] = ∑𝑖 𝔼[𝑋𝑖] ≈ 𝑛 log 𝑛 (verify this).

Question 3: Let (𝑋1, …, 𝑋𝑛), (𝑌1, …, 𝑌𝑛) be IID. What is the longest common sub-
sequence, i.e. 𝑓(𝑋1, …, 𝑋𝑛, 𝑌1, …, 𝑌𝑛) = max{𝑘 : ∃𝑖1, …, 𝑖𝑘, 𝑗1, …, 𝑗𝑘 s.t. 𝑋𝑖𝑗

= 𝑌𝑖𝑗
∀𝑗 ∈

[𝑘]}. Computing 𝑓 is NP-hard. 𝑓 is smooth.

Principle: a smooth function of many independent random variables concentrates
around its mean.

Theorem 0.4 (Law of Total Expectation)  We have 𝔼𝑌 [𝔼𝑋[𝑋 | 𝑌 ]] = 𝔼𝑋[𝑋].

Theorem 0.5 (Tower Property of Conditional Expectation)  We have
𝔼[𝔼[𝑍 | 𝑋, 𝑌 ] | 𝑌 ] = 𝔼[𝑍 | 𝑌 ].

Theorem 0.6  We have 𝔼[𝑓(𝑌 )𝑋 | 𝑌 ] = 𝑓(𝑌 )𝔼[𝑋 | 𝑌 ].

Theorem 0.7 (Holder's Inequality)  Let 𝑝 ≥ 1 and 1/𝑝 + 1/𝑞 = 1. Then

𝔼[𝑋𝑌 ] ≤ 𝔼[|𝑋|𝑝]1/𝑝 ⋅ 𝔼[|𝑋|𝑞]1/𝑞.

Definition 0.8  The conditional variance of 𝑌  given 𝑋 is the random variable

Var(𝑌 | 𝑋) ≔ 𝔼[(𝑌 − 𝔼[𝑌 | 𝑋])2 | 𝑋].

1. The Chernoff-Cramer method
1.1. The Chernoff bound and Cramer transform
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Theorem 1.1 (Weak Law of Large Numbers)  Let 𝑋1, …, 𝑋𝑛 be IID RVs with mean
𝔼[𝑋1] = 𝜇. Then, for all 𝜀 > 0,

ℙ(|1
𝑛

∑
𝑛

𝑖=1
𝑋𝑖 − 𝜇| > 𝜀) → 0 as 𝑛 → ∞.

Theorem 1.2 (Markov's Inequality)  Let 𝑌  be a non-negative RV. For any 𝑡 ≥ 0,

ℙ(𝑌 ≥ 𝑡) ≤ 𝔼[𝑌 ]
𝑡

.

Proof (Hints) .  Split 𝑌  using indicator variables. □

Proof .  We have 𝑌 = 𝑌 ⋅ 𝕀{𝑌 ≥𝑡} + 𝑌 ⋅ 𝕀{𝑌 <𝑡} ≥ 𝑡 ⋅ 𝕀{𝑌 ≥𝑡}. Taking expectations gives the
result. □

Corollary 1.3  Let 𝜑 : ℝ → ℝ+ be non-decreasing, then

ℙ(𝑌 ≥ 𝑡) ≤ ℙ(𝜑(𝑌 ) ≥ 𝜑(𝑡)) ≤ 𝔼[𝜑(𝑌 )]
𝜑(𝑡)

.

For 𝜑(𝑡) = 𝑡2, we can use Var(∑𝑛
𝑖=1 𝑋𝑖) = ∑𝑛

𝑖=1 Var(𝑋𝑖).

Corollary 1.4 (Chebyshev's Inequality)  For any RV 𝑌  and 𝑡 > 0,

ℙ(|𝑌 − 𝔼[𝑌 ]| ≥ 𝑡) ≤ Var(𝑌 )
𝑡2

.

Proof (Hints) .  Straightforward. □

Proof .  Take 𝑍 = |𝑌 − 𝔼[𝑌 ]| and use Corollary 1.3 with 𝜑(𝑡) = 𝑡2. □

Exercise 1.5  Prove WLLN, assuming that Var(𝑋1) < ∞, using Chebyshev’s inequal-
ity.

Remark 1.6  If higher moments exist, we can use them in a similar way: let 𝜑(𝑡) = 𝑡𝑞
for 𝑞 > 0, then for all 𝑡 > 0,

ℙ(|𝑍 − 𝔼[𝑍]| ≥ 𝑡) ≤ 𝔼[|𝑍 − 𝔼[𝑍]|𝑞]
𝑡𝑞

.

We can then optimise over 𝑞 to pick the lowest bound on ℙ(|𝑍 − 𝔼[𝑍]| ≥ 𝑡). Note that
Chebyshev's Inequality is the most popular form of this bound due to the additivity of
variance.

Definition 1.7  The moment generating function (MGF) of 𝐹  is

𝐹(𝜆) ≔ 𝔼[𝑒𝜆𝑍] = ∑
∞

𝑘=0

𝜆𝑘𝔼[𝑍𝑘]
𝑘!

.

Definition 1.8  The log-MGF of 𝑍 is 𝜓𝑍(𝜆) = log 𝐹(𝜆).

Note that 𝜓𝑍(𝜆) is additive: if 𝑍 = ∑𝑛
𝑖=1 𝑍𝑖, with 𝑍1, …, 𝑍𝑛 independent, then
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𝜓𝑍(𝜆) = log(𝔼[𝑒𝜆𝑍]) = ∑
𝑛

𝑖=1
log 𝔼[𝑒𝜆𝑍𝑖] = ∑

𝑛

𝑖=1
𝜓𝑍𝑖

(𝜆).

Definition 1.9  The Cramer transform of 𝑍 is

𝜓∗
𝑍(𝑡) = sup{𝜆𝑡 − 𝜓𝑍(𝜆) : 𝜆 > 0}.

Proposition 1.10 (Chernoff Bound)  Let 𝑍 be an RV. For all 𝑡 > 0,

ℙ(𝑍 ≥ 𝑡) ≤ 𝑒−𝜓∗
𝑍(𝑡).

Proof .  By Corollary 1.3, we have

ℙ(𝑍 ≥ 𝑡) ≤
𝔼[𝑒𝜆𝑍]

𝑒𝜆𝑡 = 𝑒−(𝜆𝑡−𝜓𝑍(𝜆)).

Taking the infimum over all 𝜆 > 0 gives ℙ(𝑍 ≥ 𝑡) ≤ inf{𝑒−(𝜆𝑡−𝜓𝑍(𝜆)) : 𝜆 > 0}, which
gives the result. □

Remark 1.11  Our goal is to obtain an upper bound on 𝜓𝑍(𝜆), as this will give expo-
nential concentration. The function 𝜓𝑍−𝔼[𝑍](𝜆) gives upper bounds on ℙ(𝑍 − 𝔼[𝑍] ≥ 𝑡),
the function 𝜓−𝑍+𝔼[𝑍](𝜆) gives upper bounds on ℙ(𝑍 − 𝔼[𝑍] ≤ −𝑡).

Proposition 1.12
1. 𝜓𝑍(𝜆) is convex and infinitely differentiable on (0, 𝑏), where 𝑏 = sup𝜆>0{𝔼[𝑒𝜆𝑍] <

∞}.
2. 𝜓∗

𝑍(𝑡) is non-negative and convex.
3. If 𝑡 > 𝔼[𝑍], then 𝜓∗

𝑍(𝑡) = sup𝜆∈ℝ{𝜆𝑡 − 𝜓𝑍(𝜆)}, the Fenchel-Legendre dual.

Proof (Hints) .
1. Differentiability proof omitted. For convexity, use Holder's Inequality.
2. Straightforward (note that each 𝑡 ↦ 𝜆𝑡 − 𝜓𝑍(𝜆) is linear).
3. Straightforward.

□

Proof .
1. 𝜓𝑍(𝛼𝜆1 + (1 − 𝛼)𝜆2) = log 𝔼[𝑒𝛼𝜆1𝑍 ⋅ 𝑒(1−𝛼)𝜆2𝑍] ≤ 𝛼 log 𝔼[𝑒𝜆1𝑍] + (1 −

𝛼) log 𝔼[𝑒𝜆2𝑍] by Holder’s inequality. The differentiability proof is omitted.
2. 𝜆𝑡 − 𝜓𝑍(𝜆)|𝜆=0 = 0, so 𝜓∗

𝑍(𝑡) ≥ 0 by definition. Convexity follows since it is a
supremum of linear functions.

3. By convexity and Jensen’s inequality, 𝔼[𝑒𝜆𝑍] ≥ 𝑒𝜆𝔼[𝑍]. So for 𝜆 < 0, 𝜆𝑡 − 𝜓𝑍(𝜆) ≤
𝜆(𝑡 − 𝔼[𝑍]) < 0 = 𝜆𝑡 − 𝜓𝑍(𝜆)|𝜆=0.

□

Example 1.13  Let 𝑍 ∼ 𝑁(0, 𝜎2). Then the MGF of 𝑍 is

𝔼[𝑒𝜆𝑍] = ∫
∞

−∞

1√
2𝜋𝜎2

𝑒−𝑥2/2𝜎2𝑒𝜆𝑥 d𝑥

4



= ∫
∞

−∞

1√
2𝜋𝜎2

𝑒−(𝑥2−2𝜆𝜎2𝑥+𝜆2𝜎4)/2𝜎2𝑒𝜆2 𝜎2
2 d𝑥

= ∫
∞

−∞

1√
2𝜋𝜎2

𝑒−(𝑥−𝜆𝜎2)2/2𝜎2𝑒𝜆2 𝜎2
2 d𝑥

= 𝑒𝜆2𝜎2/2.

So 𝜓𝑍(𝜆) = 𝜆2𝜎2

2 . By Proposition 1.12, for 𝑡 > 0 = 𝔼[𝑍], the Cramer transform is

𝜓∗
𝑍(𝑡) = sup

𝜆∈ℝ
{𝜆𝑡 − 𝜆2𝜎2/2} ≕ sup

𝜆∈ℝ
𝑔(𝜆).

We have 𝑔′(𝜆) = 𝑡 − 𝜆𝜎2 = 0 iff 𝜆 = 𝑡/𝜎2. So 𝜓∗
𝑍(𝑡) = 𝑡2/𝜎2 − 𝜎2𝑡2/2𝜎4 = 𝑡2/2𝜎2. So

Chernoff Bound gives

ℙ(𝑍 ≥ 𝑡) ≤ 𝑒−𝑡2/2𝜎2 .

Definition 1.14  Let 𝑋 be an RV with 𝔼[𝑋] = 0. 𝑋 is sub-Gaussian with variance
parameter 𝜈 if

𝜓𝑋(𝜆) ≤ 𝜆2𝜈
2

∀𝜆 ∈ ℝ,

i.e. if its log MGF is less than that of a normally distributed random variable with mean
0 and variance 𝜈. The set of all such sub-Gaussian variables is denoted 𝒢(𝜈).

Proposition 1.15  For any sub-Gaussian RV 𝑋,
1. If 𝑋 ∈ 𝒢(𝜈), then ℙ(𝑋 ≥ 𝑡), ℙ(𝑋 ≤ −𝑡) ≤ 𝑒−𝑡2/2𝜈 for all 𝑡 > 0.
2. If 𝑋1, …, 𝑋𝑛 are independent with each 𝑋𝑖 ∈ 𝒢(𝜈𝑖) then ∑𝑛

𝑖=1 𝑋𝑖 ∈ 𝒢(∑𝑛
𝑖=1 𝜈𝑖).

3. If 𝑋 ∈ 𝒢(𝜈), then Var(𝑋) ≤ 𝜈.

Proof .  Exercise. □

Definition 1.16  The Gamma function is defined as

Γ(𝑧) ≔ ∫
∞

0
𝑡𝑧−1𝑒−𝑡 d𝑡.

Theorem 1.17  Let 𝔼[𝑋] = 0. TFAE for suitable choices of 𝜈, 𝑏, 𝑐, 𝑑:
1. 𝑋 ∈ 𝒢(𝜈).
2. ℙ(𝑋 ≥ 𝑡), ℙ(𝑋 ≤ −𝑡) ≤ 𝑒−𝑡2/2𝑏 for all 𝑡 > 0.
3. 𝔼[𝑋2𝑞] ≤ 𝑞!𝑐𝑞 for all 𝑞 ≥ ℕ.
4. 𝔼[𝑒𝑑𝑋2] ≤ 2.

Proof (Hints) .
• (1 ⇒ 2): straightforward.
• (2 ⇒ 3): Explain why we can assume 𝑏 = 1. Use that 𝔼[𝑌 ] = ∫∞

0
ℙ(𝑌 > 𝑡) d𝑡 for 𝑌 ≥

0, and the Γ function.
• (3 ⇒ 1): show that 𝔼[𝑒𝜆𝑋] ≤ 𝔼[𝑒𝜆(𝑋−𝑋′)] where 𝑋′ is an IID copy of 𝑋. Show that

𝔼[(𝑋 − 𝑋′)2𝑞] ≤ 𝔼[𝑋2𝑞]. Expand 𝔼[𝑒𝜆(𝑋−𝑋′)] as a series. Conclude that 𝑋 ∈ 𝒢(4𝑐).
• (3 ⇔ 4): exercise.
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□

Proof .  (1 ⇒ 2) instantly follows (with 𝑏 = 𝜈) by Proposition 1.15.

(2 ⇒ 3): WLOG, 𝑏 = 1. Otherwise consider 𝑋 = 𝑋/
√

𝑏. Recall that for 𝑌 ≥ 0, 𝔼[𝑌 ] =
∫∞

0
ℙ(𝑌 > 𝑡) d𝑡. Now

𝔼[𝑋2𝑞] = ∫
∞

0
ℙ(𝑋2𝑞 > 𝑡) d𝑡 = ∫

∞

0
ℙ(|𝑋| > 𝑡1/2𝑞) d𝑡

≤ 2 ∫
∞

0
𝑒−𝑡1/𝑞/2 d𝑡

= 2 ⋅ 2𝑞 ⋅ 𝑞 ∫
∞

0
𝑢𝑞−1𝑒−𝑢 d𝑢

= 2 ⋅ 2𝑞 ⋅ 𝑞 ⋅ Γ(𝑞)

= 2𝑞+1 ⋅ 𝑞! ≤ 𝑐𝑞𝑞!

for some constant 𝑐, where we use the substitution 𝑡1/𝑞/2 = 𝑢, so 𝑡 = (2𝑢)𝑞, so d𝑡 =
2𝑞𝑞𝑢𝑞−1 d𝑢.

(3 ⇒ 1): 𝔼[𝑒−𝜆𝑋] ⋅ 𝔼[𝑒𝜆𝑋] = 𝔼[𝑒𝜆(𝑋−𝑋′)], where 𝑋′ is an IID copy of 𝑋. By Jensen’s
inequality, 𝔼[𝑒−𝜆𝑋] ≥ 𝑒−𝜆𝔼[𝑋] = 1. So

𝔼[𝑒𝜆𝑋] ≤ 𝔼[𝑒𝜆(𝑋−𝑋′)] = ∑
∞

𝑞=0

𝜆2𝑞𝔼[(𝑋 − 𝑋′)2𝑞]
(2𝑞)!

(we can ignore odd powers since 𝑋 − 𝑋′ is a symmetric RV: 𝑋 − 𝑋′ has the same
distribution as 𝑋′ − 𝑋). Now

𝔼[(𝑋 − 𝑋′)2𝑞] = ∑
2𝑞

𝑘=0
(2𝑞

𝑘
)𝔼[𝑋𝑘]𝔼[(𝑋′)2𝑞−𝑘] ≤ ∑

2𝑞

𝑘=0
(2𝑞

𝑘
)𝔼[𝑋2𝑞] = 22𝑞 ⋅ 𝔼[𝑋2𝑞],

by Holder’s inequality with 𝑝 = 2𝑞/𝑘 and 𝑞 = 2𝑞/(2𝑞 − 𝑘) for each 𝑘. Thus,

𝔼[𝑒𝜆𝑋] ≤ ∑
∞

𝑞=0

𝜆2𝑞𝔼[𝑋2𝑞] ⋅ 22𝑞

(2𝑞)!

≤ ∑
∞

𝑞=0

𝜆2𝑞𝑐𝑞𝑞!22𝑞

(2𝑞)!

≤ ∑
∞

𝑞=0

𝜆2𝑞 ⋅ 𝑐𝑞2𝑞

𝑞!
= ∑

∞

𝑞=0

(𝜆2 ⋅ 2𝑐)𝑞

𝑞!
= 𝑒2𝜆2𝑐,

where we used that (2𝑞)!/𝑞! = ∏𝑞
𝑗=1(𝑞 + 1)! ≥ 2𝑞 ⋅ 𝑞!. Hence 𝜓𝑋(𝜆) = 2𝜆2𝑐 = 𝜆2⋅4𝑐

2 ,
hence 𝑋 ∈ 𝒢(4𝑐).

(3 ⇔ 4): exercise. □

1.2. Hoeffding’s and related inequalities
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Lemma 1.18 (Hoeffding's Lemma)  Let 𝑌  be a RV with 𝔼[𝑌 ] = 0 and 𝑌 ∈ [𝑎, 𝑏] almost
surely. Then 𝜓″

𝑌 (𝜆) ≤ (𝑏 − 𝑎)2/4 and 𝑌 ∈ 𝒢((𝑏 − 𝑎)2/4).

Proof (Hints) .
• Define a new distribution based on 𝜆, which should be obvious after expanding

𝜓′
𝑌 (𝜆).

• To conclude the result, use a Taylor expansion at 0 of 𝜓𝑌 (𝜆).

□

Proof .  Let 𝑌  have distribution 𝑃 . We have

𝜓′
𝑌 (𝜆) =

𝔼𝑌 ∼𝑃 [𝑌 𝑒𝜆𝑌 ]
𝔼𝑌 ∼𝑃 [𝑒𝜆𝑌 ]

= 𝔼𝑌 ∼𝑃 [𝑌 ⋅ 𝑒𝜆𝑌

𝔼[𝑒𝜆𝑌 ]
] = 𝔼𝑌 ∼𝑃𝜆

[𝑌 ],

where if 𝑃  is discrete, then 𝑃𝜆 is the discrete distribution with PMF

𝑃𝜆(𝑦) = 𝑒𝜆𝑦𝑃(𝑦)
∑𝑧 𝑃(𝑧)𝑒𝜆𝑧 = 𝑒𝜆𝑦𝑃(𝑦)

𝔼[𝑒𝜆𝑌 ]
,

and if 𝑃  is continuous with PDF 𝑓 , then 𝑃𝜆 is the continuous distribution with PDF

𝑓𝜆(𝑦) = 𝑒𝜆𝑦𝑓(𝑦)
∫∞

−∞
𝑓(𝑧)𝑒𝜆𝑧 d𝑧

= 𝑒𝜆𝑦𝑓(𝑦)
𝔼[𝑒𝜆𝑌 ]

.

Now

𝜓″
𝑌 (𝜆) =

𝔼𝑌 ∼𝑃 [𝑌 2𝑒𝜆𝑌 ] ⋅ 𝔼𝑌 ∼𝑃 [𝑒𝜆𝑌 ] − 𝔼𝑌 ∼𝑃 [𝑌 𝑒𝜆𝑌 ]2

𝔼𝑌 ∼𝑃 [𝑒𝜆𝑌 ]2

= 𝔼𝑌 ∼𝑃 [𝑌 2 𝑒𝜆𝑌

𝔼𝑌 ∼𝑃 [𝑒𝜆𝑌 ]
] − 𝔼[𝑌 𝑒𝜆𝑌

𝔼𝑌 ∼𝑃 [𝑒𝜆𝑌 ]
]

2

= 𝔼𝑌 ∼𝑃𝜆
[𝑌 2] − 𝔼𝑌 ∼𝑃𝜆

[𝑌 ]2 = Var𝑌 ∼𝑃𝜆
(𝑌 ).

Note that if 𝑌 ∈ [𝑎, 𝑏], then |𝑌 − 𝑏−𝑎
2 |2 ≤ (𝑏 − 𝑎)2/4. So we have

Var𝑌 ∼𝑃𝜆
(𝑌 ) = Var𝑌 ∼𝑃𝜆

(𝑌 − (𝑏 − 𝑎)/2) ≤ 𝔼𝑌 ∼𝑃𝜆
[(𝑌 − 𝑏 − 𝑎

2
)

2

] ≤ (𝑏 − 𝑎)2

4
.

Finally, using a Taylor expansion at 0, we obtain

𝜓𝑌 (𝜆) = 𝜓𝑌 (0) + 𝜆′
𝑌 (0)𝜆 + 𝜓″

𝑌 (𝜉)𝜆
2

2
= 𝜓″

𝑌 (𝜉)𝜆
2

2
≤ 𝜆2 (𝑏 − 𝑎)2

8
,

for some 𝜉 ∈ [0, 𝜆], since 𝔼𝑌 ∼𝑃 [𝑌 ] = 𝔼𝑌 ∼𝑃0
[𝑌 ] = 0. □

Remark 1.19  The distribution 𝑃𝜆 in the above proof is called the exponentially
tilted distribution.
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Theorem 1.20 (Hoeffding's Inequality)  Let 𝑋1, …, 𝑋𝑛 be independent RVs where each
𝑋𝑖 takes values in [𝑎𝑖, 𝑏𝑖]. Then for all 𝑡 ≥ 0,

ℙ(∑
𝑛

𝑖=1
(𝑋𝑖 − 𝔼[𝑋𝑖]) ≥ 𝑡) ≤ exp

(
((− 2𝑡2

∑𝑛
𝑖=1 (𝑏𝑖 − 𝑎𝑖)

2
)
)).

Proof (Hints) .  Straightforward. □

Proof .  By Hoeffding's Lemma, 𝑋𝑖 − 𝔼[𝑋𝑖] ∈ 𝒢((𝑏𝑖 − 𝑎2
𝑖 )/4) for all 𝑖. By Proposition

1.15 (part 2), we have

∑
𝑛

𝑖=1
(𝑋𝑖 − 𝔼[𝑋𝑖]) ∈ 𝒢(1

4
∑

𝑛

𝑖=1
(𝑏𝑖 − 𝑎𝑖)

2).

Hence, by Proposition 1.15 (part 1), we are done. □

Remark 1.21  A drawback of Hoeffding's Inequality is that the bound does not involve
Var(𝑋𝑖) the variance could be much smaller than the upper bound of (𝑏𝑖 − 𝑎𝑖)

2/4. This
is addressed by Bennett’s inequality:

Theorem 1.22 (Bennett's Inequality)  Let 𝑋1, …, 𝑋𝑛 be independent RVs with 𝔼[𝑋𝑖] =
0 and |𝑋𝑖| ≤ 𝑐 for all 𝑖. Let 𝜈 = Var(𝑋1) + ⋯ + Var(𝑋𝑛). Then for all 𝑡 ≥ 0,

ℙ(∑
𝑛

𝑖=1
𝑋𝑖 ≥ 𝑡) ≤ exp(− 𝜈

𝑐2 ⋅ ℎ1(
𝑐𝑡
𝜈

)),

where ℎ1(𝑥) = (1 + 𝑥) log(1 + 𝑥) − 𝑥 for 𝑥 > 0.

Proof (Hints) .
• Show that 𝔼[𝑒𝜆𝑋𝑖] = 1 + Var(𝑋𝑖)

𝑐2 (𝑒𝜆𝑐 − 𝜆𝑐 − 1).
• Deduce that 𝜓∑𝑖 𝑋𝑖

≤ 𝜈2
𝑐 (𝑒𝜆𝑐 − 𝜆𝑐 − 1).

• Find an upper lower for 𝜓∗
∑𝑖 𝑋𝑖

(𝑡).

□

Proof .  Denote 𝜎2
𝑖 = Var(𝑋𝑖) = 𝔼[𝑋2

𝑖 ] − 𝔼[𝑋𝑖]
2 = 𝔼[𝑋𝑖]

2. The MGF of 𝑋𝑖 is

𝔼[𝑒𝜆𝑋𝑖] = ∑
∞

𝑘=0

𝜆𝑘

𝑘!
𝔼[𝑋𝑘

𝑖 ] = 1 + ∑
∞

𝑘=2

𝜆𝑘

𝑘!
𝔼[𝑋𝑘−2

𝑖 𝑋2
𝑖 ]

≤ 1 + 𝑐𝑘−2 ∑
∞

𝑘=2

𝜆𝑘

𝑘!
𝔼[𝑋2

𝑖 ] = 1 + 𝜎2
𝑖

𝑐2 ∑
∞

𝑘=2

𝜆𝑘𝑐𝑘

𝑘!

= 1 + 𝜎2
𝑖

𝑐2 (∑
∞

𝑘=0

𝜆𝑘𝑐𝑘

𝑘!
− 𝜆𝑐 − 1)

= 1 + 𝜎2
𝑖

𝑐2 (𝑒𝜆𝑐 − 𝜆𝑐 − 1).

So 𝜓𝑋𝑖
(𝜆) = log(1 + 𝜎2

𝑖
𝑐2 (𝑒𝜆𝑐 − 𝜆𝑐 − 1)) ≤ 𝜎2

𝑖
𝑐2 (𝑒𝜆𝑐 − 𝜆𝑐 − 1). So by additivity of 𝜓, we

have
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𝜓∑𝑛
𝑖=1 𝑋𝑖

(𝜆) ≤ 𝜈
𝑐2 𝑒𝜆𝑐 − 𝜈

𝑐2 𝜆𝑐 − 𝜈
𝑐2 .

So for 𝑡 ≥ 0 = 𝔼[∑𝑖 𝑋𝑖], by Proposition 1.12,

𝜓∗
∑𝑖 𝑋𝑖

(𝑡) ≥ sup
𝜆∈ℝ

{𝜆𝑡 − 𝜈
𝑐2 𝑒𝜆𝑐 + 𝜈

𝑐
𝜆 + 𝜈

𝑐2 } ≕ sup
𝜆∈ℝ

{𝑔(𝜆)}

We have 𝑔′(𝜆) = 𝑡 − 𝜈
𝑐 𝑒𝜆𝑐 + 𝜈

𝑐  which is 0 iff 𝑡 + 𝜈
𝑐 = 𝜈

𝑐 𝑒𝜆𝑐, i.e. iff 𝜆 = 1
𝑐 log(1 + 𝑡 𝑐

𝑣) ≕
𝜆∗. So

𝜓∗
∑ 𝑋𝑖

(𝑡) ≥ 1
𝑐
𝑡 log(1 + 𝑡𝑐

𝜈
) − 𝜈

𝑐2 (1 + 𝑡𝑐
𝜈

) + 𝜈
𝑐2 log(1 + 𝑡𝑐

𝜈
) + 𝜈

𝑐2

= 𝜈
𝑐2 ((1 + 𝑡𝑐

𝜈
) log(1 + 𝑡𝑐

𝜈
) − 𝑡𝑐

𝜈
)

= 𝜈
𝑐2 ℎ1(

𝑡𝑐
𝜈

).

So we are done by the Chernoff Bound. □

Remark 1.23  We can show that ℎ1(𝑥) ≥ 𝑥2

2(𝑥/3+1)  for 𝑥 ≥ 0. So by Bennett's Inequality,
we obtain

ℙ(∑
𝑛

𝑖=1
𝑋𝑖 ≥ 𝑡) ≤ exp(− 𝑡2

2(𝑐𝑡/3 + 𝜈)
),

which is Bernstein’s inequality. If 𝜈 ≫ 𝑐𝑡, then this yields a sub-Gaussian tail bound,
and if 𝜈 ≪ 𝑐𝑡, then this yields an exponential bound. So Bernstein misses a log factor.

Remark 1.24  If 𝑍 ∼ Pois(𝜆), then 𝜓𝑍−𝜈(𝜆) = 𝜈(𝑒𝜆 − 𝜆 − 1).

2. The variance method
2.1. The Efron-Stein inequality
Notation 2.1  Denote 𝑋(𝑖) = (𝑋1:(𝑖−1), 𝑋(𝑖+1):𝑛) and for 𝑖 < 𝑗, denote 𝑋𝑖:𝑗 =
(𝑋𝑖, …, 𝑋𝑗).

Notation 2.2  Denote 𝐸𝑖𝑍 = 𝔼[𝑍 | 𝑋1:𝑖], 𝐸0𝑍 = 𝔼[𝑍], 𝐸(𝑖) = 𝔼[𝑍 | 𝑋(𝑖)], and
Var(𝑖)(𝑍) = Var(𝑍 | 𝑋(𝑖)).

We want to study the concentration of 𝑍 = 𝑓(𝑋1, …, 𝑋𝑛) for independent 𝑋𝑖. If 𝑍 =
∑𝑖 𝑋𝑖, then Var(∑𝑖 𝑋𝑖) = ∑𝑖 Var(𝑋𝑖) if 𝔼[𝑋𝑖𝑋𝑗] = 0 for all 𝑖 ≠ 𝑗, which holds if the
𝑋𝑖 are independent.

Theorem 2.3 (Efron-Stein Inequality)  Let 𝑋1, …, 𝑋𝑛 be independent and let 𝑍 =
𝑓(𝑋1, …, 𝑋𝑛). Then

Var(𝑍) ≤ ∑
𝑛

𝑖=1
𝔼[(𝑍 − 𝐸(𝑖)𝑍)2] = 𝔼[∑

𝑛

𝑖=1
Var(𝑖)(𝑍)].
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Proof (Hints) .
• The Law of Total Expectation and Tower Property of Conditional Expectation will

come in handy a lot…
• Let Δ𝑖 = 𝐸𝑖𝑍 − 𝐸𝑖−1𝑍. Show that 𝔼[Δ𝑖] = 0.
• Show that the Δ𝑖 are uncorrelated, i.e. 𝔼[Δ𝑖Δ𝑗] = 𝔼[Δ𝑖]𝔼[Δ𝑗].
• Show that Δ𝑖 = 𝐸𝑖(𝑍 − 𝐸(𝑖)𝑍).

□

Proof .  Let Δ𝑖 = 𝐸𝑖𝑍 − 𝐸𝑖−1𝑍. By the Law of Total Expectation, we have

𝔼[Δ𝑖] = 𝔼[𝔼[𝑍 | 𝑋1:𝑖]] − 𝔼[𝔼[𝑍 | 𝑋1:(𝑖−1)]] = 𝔼[𝑍] − 𝔼[𝑍] = 0.

Also, note that 𝑍 − 𝔼[𝑍] = 𝔼[𝑍 | 𝑋1:𝑛] − 𝔼[𝑍] = ∑𝑛
𝑖=1 Δ𝑖. We claim that the Δ𝑖 are

uncorrelated, i.e. 𝔼[Δ𝑖Δ𝑗] = 𝔼[Δ𝑖]𝔼[Δ𝑗] = 0 for 𝑖 ≠ 𝑗. Indeed, for 𝑖 < 𝑗, by the Law of
Total Expectation, we can write

𝔼[Δ𝑖Δ𝑗] = 𝔼[𝔼[Δ𝑖Δ𝑗 | 𝑋1:𝑖]] = 𝔼[Δ𝑖𝔼[Δ𝑗 | 𝑋1:𝑖]],

since Δ𝑖 is a function of 𝑋1:𝑖. But

𝔼[Δ𝑗 | 𝑋1:𝑖] = 𝔼(𝐸𝑗𝑍 − 𝐸𝑗−1𝑍 | 𝑋1:𝑖)

= 𝔼[𝔼[𝑍 | 𝑋1:𝑗] | 𝑋1:𝑖] − 𝔼[𝔼[𝑍 | 𝑋1:(𝑗−1)] | 𝑋1:𝑖]

= 𝔼[𝑍 | 𝑋1:𝑖] − 𝔼[𝑍 | 𝑋1:𝑖] = 𝐸𝑖𝑍 − 𝐸𝑖𝑍 = 0,

where on the third line we used the Tower Property of Conditional Expectation. Hence,
the Δ𝑖 are uncorrelated, which implies

Var(𝑍) = Var(𝑍 − 𝔼[𝑍]) = ∑
𝑛

𝑖=1
Var(Δ𝑖) = ∑

𝑛

𝑖=1
𝔼[Δ2

𝑖 ] − 𝔼[Δ𝑖]
2 = ∑

𝑛

𝑖=1
𝔼[Δ2

𝑖 ].

Now

𝐸𝑖(𝐸(𝑖)𝑍) = 𝔼[𝐸(𝑖)𝑍 | 𝑋1:𝑖]

= 𝔼[𝐸(𝑖)𝑍 | 𝑋1:(𝑖−1), 𝑋𝑖]

= 𝔼[𝔼[𝑍 | 𝑋(𝑖)] | 𝑋1:(𝑖−1)]

= 𝔼[𝑍 | 𝑋1:(𝑖−1)]

= 𝐸𝑖−1𝑍,

where on the third line we used that 𝑋𝑖 and 𝑋(𝑖) are independent, and on the fourth
line we used the Tower Property of Conditional Expectation. So we can rewrite Δ𝑖 =
𝐸𝑖𝑍 − 𝐸𝑖−1𝑍 = 𝐸𝑖(𝑍 − 𝐸(𝑖)𝑍), and so by Jensen’s inequality

Δ2
𝑖 = (𝐸𝑖(𝑍 − 𝐸(𝑖)𝑍))2 = 𝔼[𝑍 − 𝐸(𝑖)𝑍 | 𝑋1:𝑖]

2

≤ 𝔼[(𝑍 − 𝐸(𝑖)𝑍)2 | 𝑋1:𝑖] = 𝐸𝑖((𝑍 − 𝐸(𝑖)𝑍)2).
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Hence, by the Law of Total Expectation,

Var(𝑍) = ∑
𝑛

𝑖=1
𝔼[Δ2

𝑖 ] ≤ ∑
𝑛

𝑖=1
𝔼[𝐸𝑖((𝑍 − 𝐸(𝑖)𝑍)2)]

= ∑
𝑛

𝑖=1
𝔼[𝔼[(𝑍 − 𝐸(𝑖)𝑍)2 | 𝑋1:𝑖]] = ∑

𝑛

𝑖=1
𝔼[(𝑍 − 𝐸(𝑖)𝑍)2].

Finally, we have 𝔼[𝐸(𝑖)(𝑍 − 𝐸(𝑖)𝑍)2] = 𝔼[Var(𝑍 | 𝑋(𝑖))] = 𝔼[Var(𝑖)(𝑍)], which gives
the equality in the theorem statement. □

Theorem 2.4 (Efron-Stein Inequality)  Let 𝑋1, …, 𝑋𝑛 be independent and 𝑓 be square
integrable. Let 𝑍 = 𝑓(𝑋1, …, 𝑋𝑛). Then

Var(𝑍) ≤ 𝔼[∑
𝑛

𝑖=1
(𝑍 − 𝐸(𝑖)𝑍)2] ≕ 𝜈.

Moreover, if 𝑋′
1, …, 𝑋′

𝑛 are IID copies of 𝑋1, …, 𝑋𝑛, and 𝑍′
𝑖 = 𝑓(𝑋1:(𝑖−1), 𝑋′

𝑖 , 𝑋(𝑖+1):𝑛),
then

𝜈 = 1
2
𝔼[∑

𝑛

𝑖=1
(𝑍 − 𝑍′

𝑖 )
2] = 𝔼[∑

𝑛

𝑖=1
(𝑍 − 𝑍′

𝑖 )
2
+] = 𝔼[∑

𝑛

𝑖=1
(𝑍 − 𝑍′

𝑖 )
2
−],

where 𝑋+ = max{0, 𝑋} and 𝑋− = max{−𝑋, 0}. Moreover,

𝜈 = ∑
𝑛

𝑖=1
inf
𝑍𝑖

𝔼[(𝑍 − 𝑍𝑖)
2],

where the infimum is over all 𝑋(𝑖)-measurable and square-integrable RVs 𝑍𝑖.

Proof (Hints) .
• First part is straightforward.
• For second part, show that Var(𝑖)(𝑍) = 1

2 Var(𝑖)(𝑍 − 𝑍′
𝑖 ).

• For last part, use that Var(𝑋) = inf𝑎 𝔼[(𝑋 − 𝑎)2].

□

Proof .  The first part follows instantly from the Efron-Stein Inequality by linearity of
expectation. Now Var(𝑋) = 1

2 Var(𝑋 − 𝑌 ), if 𝑋 and 𝑌  are IID. Conditional on 𝑋(𝑖), 𝑍
and 𝑍′

𝑖  are independent. Hence, since 𝔼[𝑍] = 𝔼[𝑍′
𝑖 ],

Var(𝑖)(𝑍) = 1
2

Var(𝑖)(𝑍 − 𝑍′
𝑖 ) = 1

2
𝔼(𝑖)[(𝑍 − 𝑍′

𝑖 )
2].

Thus we have

𝜈 = 1
2

∑
𝑛

𝑖=1
𝔼[(𝑍 − 𝑍′

𝑖 )
2].

The equality with ⋅+ and ⋅− follows since 𝑍 − 𝑍′
𝑖  is a symmetric RV. Finally,

recall that Var(𝑋) = inf𝑎 𝔼[(𝑋 − 𝑎)2], with equality if 𝑎 = 𝔼[𝑋]. So Var(𝑖)(𝑍) =
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inf𝑍𝑖
𝐸(𝑖)((𝑍 − 𝑍𝑖)

2), with equality if 𝑍𝑖 = 𝐸(𝑖)𝑍. Taking expectations and summing
completes the proof. □

2.2. Functions with bounded differences
Definition 2.5  𝑓 : 𝐴𝑛 → ℝ has the bounded differences (b.d.) property if

sup
(𝒙,𝑥′

𝑖)∈𝐴𝑛+1
|𝑓(𝑥1:(𝑖−1), 𝑥𝑖, 𝑥(𝑖+1):𝑛) − 𝑓(𝑥1:(𝑖−1), 𝑥′

𝑖, 𝑥(𝑖+1):𝑛)| ≤ 𝑐𝑖 ∀𝑖 ∈ [𝑛].

So changing one of the coordinates changes the value of the function at most by a
constant.

Corollary 2.6  Let 𝑋1, …, 𝑋𝑛 be independent and 𝑍 = 𝑓(𝑋1:𝑛) have bounded differ-
ences with constants 𝑐𝑖. Then Var(𝑓(𝑍)) ≤ 1

4 ∑𝑛
𝑖=1 𝑐2

𝑖 .

Proof (Hints) .  Consider the random variable

𝑍𝑖 = 1
2
(sup

𝑥𝑖∈𝐴
𝑓(𝑋1:(𝑖−1), 𝑥𝑖, 𝑋(𝑖+1):𝑛) + inf

𝑥𝑖∈𝐴
𝑓(𝑋1:(𝑖−1), 𝑥𝑖, 𝑋(𝑖+1):𝑛)).

□

Proof .  Define

𝑍𝑖 = 1
2
(sup

𝑥𝑖∈𝐴
𝑓(𝑋1:(𝑖−1), 𝑥𝑖, 𝑋(𝑖+1):𝑛) − inf

𝑥𝑖∈𝐴
𝑓(𝑋1:(𝑖−1), 𝑥𝑖, 𝑋(𝑖+1):𝑛))

𝑍𝑖 is a function of 𝑋(𝑖). We have |𝑍 − 𝑍𝑖| ≤ 𝑐𝑖/2. By the final part of the Efron-Stein
Inequality, we have Var(𝑍) ≤ ∑𝑛

𝑖=1 𝔼[(𝑍 − 𝑍𝑖)
2] ≤ 1

4 ∑𝑛
𝑖=1 𝑐2

𝑖 . □

Example 2.7 (Bin packing)  Given 𝑥1, …, 𝑥𝑛 ∈ [0, 1], what is the minimum number 𝑘
of bins 𝐵𝑗 into which ∑𝑥∈𝐵𝑗

𝑥 ≤ 1 for each 𝑗 = 1, …, 𝑘?

Suppose 𝑋1, …, 𝑋𝑛 be independent and let 𝑍 = 𝑓(𝑋1:𝑛) be the minimum number of
bins. Note that changing any one 𝑥𝑖 changes 𝑓 by at most 1, so 𝑓 has bounded differences
with constants 𝑐𝑖 = 1. So by the Efron-Stein Inequality, Var(𝑍) ≤ 1

4𝑛.

Note that this bound is tight, e.g. when 𝑋𝑖 ∼ Bern(1/2), 𝑍 ∼ 𝐵(𝑛, 1/2), which has
variance 1/4.

Example 2.8 (Longest common sub-sequence)  Let 𝑋1:𝑛 and 𝑌1:𝑛 be independent
sequences of coin flips. Let

𝑍 = 𝑓(𝑋1:𝑛, 𝑌1:𝑛) = max{𝑘 : ∃𝑖1 < ⋯ < 𝑖𝑘, 𝑗1 < ⋯ < 𝑗𝑘 s.t. 𝑋𝑖ℓ
= 𝑌𝑖ℓ

∀ℓ ∈ [𝑘]}

Note that changing any one coin flip changes 𝑍 by at most 1, so 𝑓 has bounded
differences with constants 𝑐𝑖 = 1, so by the Efron-Stein Inequality, Var(𝑍) ≤ 𝑛/2 =
Θ(𝑛). Since it is known that 𝔼[𝑍] = Θ(𝑛), the deviations from the mean are small
compared to the mean.
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Example 2.9 (Chromatic numbers of graphs)  Let 𝐺 be an Erdos-Renyi random
graph with 𝑛 vertices, i.e. each {𝑖, 𝑗} ∈ 𝐸(𝐺) with probability 𝑝 (independently). The
chromatic number 𝜒(𝐺) of 𝐺 is the smallest number of colors on the vertices such that
there are no two adjacent vertices with the same colour. For 𝑖 < 𝑗, let 𝑋𝑖𝑗 = 𝟙{{𝑖,𝑗}∈𝐸}.
We have

𝜒(𝐺) = 𝑓({𝑋𝑖𝑗}1≤𝑖<𝑗≤𝑛
),

for some (complicated) function 𝑓 . Since adding or removing an edge changes 𝜒(𝐺) by
at most 1, 𝑓 has bounded differences with constants 𝑐𝑖𝑗 = 1. By Efron-Stein Inequality,
Var(𝑍) ≤ (𝑛

2 )/4 = Θ(𝑛2). It is known that 𝔼[𝜒(𝐺)] ≈ 𝑛/ log 𝑛, so the bound on the
variance is not useful when applying Chebyshev's Inequality. However:

Now for each 1 ≤ 𝑖 ≤ 𝑛 − 1, let 𝑌 (𝑖) be a random vector taking values in {0, 1}𝑖 where
𝑌 (𝑖)

𝑗 = 𝟙{{𝑖+1,𝑗}∈𝐸} for each 1 ≤ 𝑗 ≤ 𝑖. The 𝑌𝑖 are independent. Also, note that {𝑌𝑖}
𝑛−1
𝑖=1

determines the graph. Hence, 𝜒(𝐺) = 𝑔(𝑌1:(𝑛−1)) for some (complicated) function 𝑔.
𝑔 has bounded differences with constants 1 (e.g. by considering giving vertex 𝑖 + 1 a
new colour). Then by Efron-Stein Inequality, Var(𝜒(𝐺)) ≤ (𝑛 − 1)/4, which is a tighter
bound. This yields a useful application of Chebyshev's Inequality, which shows that
𝜒(𝐺) is close to its mean value.

3. Poincaré inequalities
Let 𝑋1, …, 𝑋𝑛 be real-valued random variables, and let 𝑍 = 𝑓(𝑋1, …, 𝑋𝑛). A Poincaré
inequality is of the form Var(𝑍) ≲ 𝔼[‖∇𝑓(𝑋)‖2]. So we have a local property (smooth-
ness) which gives a global property (bound on the variance).

Definition 3.1  Let 𝑓 : ℝ𝑑 → ℝ is separately convex if it is convex if all of its
individual arguments.

Theorem 3.2 (Convex Poincare Inequality)  Let 𝑋1:𝑛 be independent RVs supported
on [0, 1] and 𝑓 : ℝ𝑛 → ℝ be separately convex with partial derivatives that exist. Let
𝑍 = 𝑓(𝑋1:𝑛). Then

Var(𝑍) ≤ 𝔼[‖∇𝑓(𝑋1:𝑛)‖2],

where ‖⋅‖ = ‖⋅‖2 is the Euclidean norm.

Proof (Hints) .
• Let 𝑍𝑖 = inf𝑥′

𝑖
𝑓(𝑋1:(𝑖−1), 𝑥′

𝑖, 𝑋(𝑖+1):𝑛). Let 𝑋′
𝑖  be the value for which the infimum is

achieved (why is it achieved?).
• Use that |𝑍 − 𝑍𝑖|

2 ≤ |𝑋𝑖 − 𝑋′
𝑖 |

2 ⋅ ( 𝜕𝑓
𝜕𝑥𝑖

(𝑋))
2
.

□

Proof .  Let 𝑍𝑖 = inf𝑥′
𝑖
𝑓(𝑋1:(𝑖−1), 𝑥′

𝑖, 𝑋(𝑖+1):𝑛). Let 𝑋′
𝑖  be the value for which the infimum

is achieved (since 𝑓 is continuous and the domain [0, 1]𝑛 we consider is compact).
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Denote 𝑋(𝑖) = (𝑋1:(𝑖−1), 𝑋′
𝑖 , 𝑋(𝑖+1):𝑛). Note that since 𝑓 is separately convex and 𝑋′

𝑖  is
a minimiser (so 𝑓(𝑋′

(𝑖)) ≤ 𝑓(𝑋)),

|𝑍 − 𝑍𝑖|
2 = |𝑓(𝑋1:𝑛) − 𝑓(𝑋(𝑖))|

2
≤ |𝑋𝑖 − 𝑋′

𝑖 |
2 ⋅ ( 𝜕𝑓

𝜕𝑥𝑖
(𝑋1:𝑛))

2

.

By the Efron-Stein Inequality,

Var(𝑍) ≤ ∑
𝑛

𝑖=1
𝔼[(𝑍 − 𝑍𝑖)

2]

≤ ∑
𝑛

𝑖=1
𝔼[(𝑋𝑖 − 𝑋′

𝑖)
2( 𝜕𝑓

𝜕𝑥𝑖
(𝑋1:𝑛))

2

]

≤ ∑
𝑛

𝑖=1
𝔼[( 𝜕𝑓

𝜕𝑥𝑖
(𝑋1:𝑛))

2

] = 𝔼[‖∇𝑓(𝑋1:𝑛)‖2].

□

Example 3.3  Let 𝑋 ∈ ℝ𝑛×𝑑 be a random matrix with 𝑋𝑖,𝑗 ∈ [−1, 1] independent. The
spectral norm (or ℓ2-operator norm) of 𝑋 is its largest singular value:

𝜎1(𝑋) = sup{‖𝑋𝑢‖ : 𝑢 ∈ ℝ𝑑, ‖𝑢‖ = 1} = sup
𝑢∈ℝ𝑛,‖𝑢‖=1

sup
𝑢∈ℝ𝑑,‖𝑢‖=1

⟨𝑢,𝑋𝑣⟩.

𝜎1 is convex (and so separately convex) since it is a supremum of linear functions. Since
it is a norm, we have 𝜎1(𝐴 + 𝐵) ≤ 𝜎1(𝐴) + 𝜎1(𝐵) and 𝜎1(𝐴 − 𝐵) ≥ |𝜎1(𝐴) − 𝜎1(𝐵)|.
Fix 𝐴. Since 𝑓 is convex, the supremum is achieved: let 𝑢, 𝑣 achieve the supremum. Then

𝜎1(𝐴) = ⟨𝑣,𝑋𝑢⟩ ≤ ‖𝑣‖ ⋅ ‖𝑋𝑢‖ by Cauchy-Schwarz

≤ ‖𝑣‖ ⋅ ‖𝑢‖(∑
𝑖,𝑗

𝑋2
𝑖,𝑗)

1/2

= (∑
𝑖,𝑗

𝑋2
𝑖,𝑗)

1/2

= ‖𝑋‖𝐹 .

Now if 𝑋, 𝑋′ are independent, 𝑑(𝑋, 𝑋′) = ‖𝑋 − 𝑋′‖𝐹 ≥ 𝜎1(𝑋 − 𝑋′) ≥ |𝜎1(𝑋) −
𝜎1(𝑋′)| where 𝑑 is the Euclidean distance between vectorised 𝑋 and 𝑋′ (i.e. Frobenius
norm). So 𝜎1 is a 1-Lipschitz function, and note that an 𝐿-lipchitz function satisfies
‖∇𝑓‖ ≤ 𝐿. So by the Convex Poincare Inequality, Var(𝜎1(𝑋)) ≤ 4 (the RHS is 4, not
1, since 𝑋𝑖𝑗 take values in [−1, 1] instead of [0, 1]). Note that this is independent of the
dimension of 𝑋!

Theorem 3.4 (Gaussian Poincare Inequality)  Let 𝑋1:𝑛 be IID and standard Gaussian
(i.e. each 𝑋𝑖 ∼ 𝑁(0, 1)). Then for any continuously differentiable 𝑓 ∈ 𝐶1(ℝ𝑛),

Var(𝑓(𝑋1:𝑛)) ≤ 𝔼[‖∇𝑓(𝑋1:𝑛)‖2].

Proof (Hints) .
• Show, using the Efron-Stein Inequality, that it is sufficient to prove the result for

𝑛 = 1.
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• You may assume that 𝑓 ∈ 𝐶2(ℝ) (𝑓 is twice continuously differentiable) and has
compact support.

• Using the definition of conditional variance, show that Var(𝑖)(𝑍) =
1
4(𝑓(𝑆𝑛 − 𝜀𝑖√

𝑛 + 1√
𝑛) − 𝑓(𝑆𝑛 − 𝜀𝑖√

𝑛 − 1√
𝑛))

2
.

• Use Taylor’s theorem to find an upper bound for

|𝑓(𝑆𝑛 − 𝜀𝑖√
𝑛

+ 1√
𝑛

) − 𝑓(𝑆𝑛 − 𝜀𝑖√
𝑛

− 1√
𝑛

)|

• Use the central limit theorem to conclude the result.

□

Proof .  Assume the result holds for the 𝑛 = 1 case, i.e. Var(𝑓(𝑋)) ≤ 𝔼[𝑓 ′(𝑋)2] for 𝑋 ∼
𝑁(0, 1). Then by the Efron-Stein Inequality and Law of Total Expectation,

Var(𝑍) ≤ 𝔼[∑
𝑛

𝑖=1
Var(𝑖)(𝑓(𝑋1:𝑛))]

≤ 𝔼[∑
𝑛

𝑖=1
𝔼[( 𝜕𝑓

𝜕𝑥𝑖
(𝑋1:𝑛))

2

| 𝑋(𝑖)]]

= 𝔼[∑
𝑛

𝑖=1
( 𝜕𝑓

𝜕𝑥𝑖
(𝑋1:𝑛))

2

] = 𝔼[‖∇𝑓(𝑋1:𝑛)‖]2.

So it suffices to prove the result for 𝑛 = 1: WLOG, assume 𝔼[‖∇𝑓(𝑋)‖2] < ∞. Let 𝜀𝑖
be IID Rademacher random variables (taking values in {−1, 1} with equal probability).
Consider 𝑆𝑛 = 1√

𝑛 ∑𝑛
𝑖=1 𝜀𝑖. It suffices to prove the case when 𝑓 ∈ 𝐶2(ℝ) (𝑓 is twice

continuously differentiable) and has compact support. So 𝑓 ′ and 𝑓″ are bounded. By
the Efron-Stein Inequality,

Var(𝑓(𝑆𝑛)) ≤ 𝔼[∑
𝑛

𝑖=1
Var(𝑖)(𝑆𝑛)].

Note Var(𝑖) here is conditional on 𝜀(𝑖). We have 𝑆𝑛 = 𝑆𝑛 − 𝜀𝑖/
√

𝑛 ± 1/
√

𝑛 with equal
probabilities. Note that 𝑆𝑛 − 𝜀𝑖/

√
𝑛 is a function of 𝜀(𝑖). We have

𝔼(𝑖)[𝑓(𝑆𝑛)] = 1
2
𝑓(𝑆𝑛 − 𝜀𝑖/

√
𝑛 + 1/

√
𝑛) + 1

2
𝑓(𝑆𝑛 − 𝜀𝑖/

√
𝑛 − 1/

√
𝑛)

and so

Var(𝑖)(𝑓(𝑆𝑛)) = 1
2
(𝑓(𝑆𝑛 − 𝜀𝑖/

√
𝑛 + 1/

√
𝑛) − (1

2
𝑓(𝑆𝑛 − 𝜀𝑖/

√
𝑛 + 1/

√
𝑛) + 1

2
𝑓(𝑆𝑛 − 𝜀𝑖/

√
𝑛 − 1/

√
𝑛)))

2

+1
2
(𝑓(𝑆𝑛 − 𝜀𝑖/

√
𝑛 − 1/

√
𝑛) − (1

2
𝑓(𝑆𝑛 − 𝜀𝑖/

√
𝑛 + 1/

√
𝑛) + 1

2
𝑓(𝑆𝑛 − 𝜀𝑖/

√
𝑛 − 1/

√
𝑛)))

2

= 1
4
(𝑓(𝑆𝑛 − 𝜀𝑖/

√
𝑛 + 1/

√
𝑛) − 𝑓(𝑆𝑛 − 𝜀𝑖/

√
𝑛 − 1/

√
𝑛))2
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Let 𝐾 be an upper bound for |𝑓″|. Then

|𝑓(𝑆𝑛 + (1 − 𝜀𝑖)/
√

𝑛) − 𝑓(𝑆𝑛 − (1 + 𝜀𝑖)/
√

𝑛)|

= |𝑓(𝑆𝑛) + 1 − 𝜀𝑖√
𝑛

𝑓 ′(𝑆𝑛 − 𝜀𝑖/
√

𝑛) + (1 − 𝜀𝑖)
2

2𝑛
𝑓″(𝑆𝑛 − 𝜀𝑖/

√
𝑛 + 𝜉𝑖,𝑚)

−𝑓(𝑆𝑛) + 1 + 𝜀𝑖√
𝑛

𝑓 ′(𝑆𝑛 − 𝜀𝑖/
√

𝑛) − (1 + 𝜀𝑖)
2

2𝑛
𝑓″(𝑆𝑛 − 𝜀𝑖/

√
𝑛 + 𝜉(2)

𝑖,𝑚)|

≤ | 2√
𝑛

𝑓 ′(𝑆𝑛)| + 2𝐾/𝑛.

Thus, Var(𝑖)(𝑓(𝑆𝑛)) ≤ (|𝑓 ′(𝑆𝑛)/
√

𝑛| + 𝐾/𝑛)2. Hence,

Var(𝑓(𝑆𝑛)) ≤ 𝔼[∑
𝑛

𝑖=1
(|𝑓 ′(𝑆𝑛)/

√
𝑛| + 𝐾/𝑛)2] = 𝔼[𝑓 ′(𝑆𝑛)2] + 2 𝐾√

𝑛
𝔼[|𝑓 ′(𝑆𝑛)|] + 𝐾2

𝑛

As 𝑛 → ∞, Var(𝑓(𝑆𝑛)) → Var(𝑋), 𝑋 ∼ 𝑁(0, 1) by the central limit theorem. Also,
𝔼[𝑓 ′(𝑆𝑛)2] → 𝔼[𝑓 ′(𝑋)2] by the central limit theorem. So in the limit, Var(𝑓(𝑋)) ≤
𝔼[𝑓 ′(𝑋)2]. □

Remark 3.5  The above proof uses a tensorisation argument. Tensorisation roughly
means decomposing a high-dimensional function into a sum of lower-dimensional func-
tions. E.g. the formula Var(∑𝑖 𝑋𝑖) = ∑𝑖 Var(𝑋𝑖) uses the tensorisation property of
variance. Also, the Efron-Stein Inequality

Var(𝑍) ≤ ∑
𝑛

𝑖=1
𝔼[Var(𝑖)(𝑍)].

can be thought of as an example of the tensorisation of variance.

Remark 3.6  If 𝑓 is 𝐿-Lipschitz, i.e. |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐿 ⋅ ‖𝑥 − 𝑦‖, then ‖∇𝑓‖ ≤ 𝐿. The
Gaussian Poincare Inequality holds for 𝐿-Lipschitz functions (with 𝐿2 on the RHS).

Example 3.7  Recall from earlier that the operator norm 𝜎1 is 1-Lipschitz. If 𝑋 ∈ ℝ𝑛×𝑑

with each 𝑋𝑖𝑗 ∼ 𝑁(0, 1) IID, then by the Gaussian Poincare Inequality, Var(𝜎1(𝑋)) ≤
1, which is a good bound, given that it is known that 𝔼[𝜎1(𝑋)] = 𝑂(

√
𝑛 +

√
𝑑).

Example 3.8  Let 𝑋1, …, 𝑋𝑛 ∼ 𝑁(0, 1) be independent. Let 𝑍 = 𝑓(𝑋) = max𝑖 𝑋𝑖. We
have ∇𝑓 = (0, …, 1, …, 0) where 1 is at the index of the maximum. Hence, by the
Gaussian Poincare Inequality, Var(𝑍) ≤ 1, which is a good bound, given it is known
that 𝔼[𝑍𝑛] ≈ log 𝑛.

3.1. Poincare constant
Definition 3.9  Let 𝑋 be an RV taking values in ℝ𝑑. We say 𝑋 satisfies the Poincare
inequality with constant 𝐶 if

Var(𝑓(𝑋)) ≤ 𝐶 ⋅ 𝔼[‖∇𝑓(𝑋)‖2] ∀𝑓 ∈ 𝐶1(ℝ𝑑).
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The smallest such constant 𝐶𝑃 (𝑋) is the Poincare constant of 𝑋:

𝐶𝑃 (𝑋) = sup
𝑓∈𝐶1(ℝ𝑑)

Var(𝑓(𝑋))
𝔼[‖∇𝑓(𝑋)‖2]

.

Proposition 3.10  The Poincare constant satisfies the following properties:
1. 𝐶𝑃 (𝑎𝑋 + 𝑏) = 𝑎2𝐶𝑃 (𝑋) for constants 𝑎 ∈ ℝ, 𝑏 ∈ ℝ𝑑.
2. For any unit vector 𝜃 ∈ ℝ𝑑, Var(⟨𝑋,𝜃⟩) ≤ 𝐶𝑃 (𝑋). In particular, Var(𝑋𝑖) ≤ 𝐶𝑃 (𝑋)

for all 𝑖.
3. If 𝑋1, …, 𝑋𝑛 are independent, then

𝐶𝑃 (𝑋1:𝑛) = max
𝑖

𝐶𝑃 (𝑋𝑖).

4. If 𝐶𝑃 (𝑋) < ∞, then 𝑋 has connected support.

Proof .  Exercise. □

Remark 3.11  The constant 1/𝐶𝑃 (𝑋) is called the spectral gap.

Definition 3.12  We say {𝑋𝑛}𝑛∈ℕ is a (time homogenous) Markov chain on a
finite state space 𝑆 (which WLOG we can take to be [𝑑]) if

ℙ(𝑋𝑛+1 = 𝑗 | 𝑋1:𝑛 = 𝑖1:𝑛) = ℙ(𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖𝑛)

for all 𝑛 and 𝑖1, …, 𝑖𝑛, 𝑗 ∈ 𝑆, i.e. if 𝑋𝑛+1 is conditionally independent of 𝑋1:(𝑛−1) given
𝑋𝑛 for all 𝑛.

Definition 3.13  The transition matrix 𝑃 ∈ ℝ𝑑×𝑑 of the Markov chain is defined by

𝑃𝑖𝑗 = ℙ(𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖),

and its discrete generator is Λ ≔ 𝑃 − 𝐼 .

Definition 3.14  A transition matrix 𝑃 ∈ ℝ𝑑×𝑑 is said to be reversible if 𝑃𝑖𝑗 = 𝑃𝑗𝑖
for all 1 ≤ 𝑖, 𝑗 ≤ 𝑑.

Definition 3.15  Let 𝑃  be the transition matrix of a Markov chain. A row vector 𝜋 ∈
ℝ𝑑 (which represents a distribution on [𝑑]) on state space 𝑆 is called stationary if 𝜋𝑗 =
∑𝑖 𝜋𝑖𝑃𝑖𝑗 for all 𝑗 (i.e. 𝜋𝑃 = 𝜋).

Definition 3.16  Given a Markov chain with stationary distribution 𝜋 ∈ ℝ𝑑 and 𝑓, 𝑔 ∈
ℝ𝑑, the Dirichlet form is defined as

ℰ(𝑓, 𝑔) ≔ −⟨𝑓,Λ𝑔⟩𝜋,

where ⟨𝑥,𝑦⟩𝜋 = ∑𝑑
𝑖=1 𝑥𝑖𝑦𝑖𝜋𝑖.

Proposition 3.17  Let 𝑃 ∈ ℝ𝑑×𝑑 be a reversible transition matrix with stationary
distribution 𝜋 ∈ ℝ𝑑. Let 𝑓 ∈ ℝ𝑑. Then

ℰ(𝑓, 𝑓) = 1
2
𝔼𝜋[(𝑓(𝑋𝑛+1) − 𝑓(𝑋𝑛))2],

which is the discrete gradient (we may view 𝑓 as a function 𝑖 ↦ 𝑓𝑖).
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Proof .  Since ∑𝑗 𝑃𝑖𝑗 = 1 for all 𝑖, we have

ℰ(𝑓, 𝑓) = ⟨𝑓,(𝐼 − 𝑃)𝑓⟩𝜋 = ∑
𝑖

𝑓2
𝑖 𝜋𝑖 − ∑

𝑖
𝑓𝑖𝜋𝑖 ∑

𝑗
𝑃𝑖𝑗𝑓𝑗

= 1
2
(∑

𝑖,𝑗
𝑓2

𝑖 𝜋𝑖𝑃𝑖𝑗 + ∑
𝑖,𝑗

𝑓2
𝑗 𝜋𝑗𝑃𝑗𝑖 − 2 ∑

𝑖,𝑗
𝜋𝑖𝑃𝑖𝑗𝑓𝑖𝑓𝑗)

= 1
2

∑
𝑖,𝑗

𝜋𝑖𝑃𝑖𝑗(𝑓𝑖 − 𝑓𝑗)
2

= 1
2

∑
𝑖,𝑗

ℙ(𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖)ℙ(𝑋𝑛 = 𝑖)(𝑓𝑖 − 𝑓𝑗)
2

= 1
2

∑
𝑖,𝑗

ℙ(𝑋𝑛+1 = 𝑗, 𝑋𝑛 = 𝑖)(𝑓(𝑖) − 𝑓(𝑗))2

= 1
2
𝔼[(𝑓(𝑋𝑛+1) − 𝑓(𝑋𝑛))2].

□

Remark 3.18  If the transition matrix 𝑃  is reversible, then Λ = 𝑃 − 𝐼 is self-adjoint
(with respect to ⟨⋅,⋅⟩𝜋), so has real eigenvalues 𝜆1 ≥ ⋯ ≥ 𝜆𝑛. By Proposition 3.17, we
have ⟨𝑓, − Λ𝑓⟩𝜋 ≥ 0, so −Λ is positive semi-definite, and so all 𝜆𝑖 ≤ 0. Since ∑𝑗 Λ𝑖𝑗 =
0 for all 𝑖, we have 𝜆1 = 0, corresponding to eigenvector 𝑓1 = (1, …, 1).

Now 𝜆2 = sup𝑓:⟨𝑓,𝑓1⟩𝜋=0
⟨𝑓,Λ𝑓⟩𝜋
⟨𝑓,𝑓⟩𝜋

, so

ℰ(𝑓, 𝑓) = −⟨𝑓,Λ𝑓⟩𝜋 ≥ −𝜆2⟨𝑓,𝑓⟩𝜋 = −𝜆2𝔼𝜋[𝑓(𝑋1)
2] = −𝜆2 Var𝜋(𝑓) = (𝜆1 − 𝜆2) Var𝜋(𝑓)

for all 𝑓 ∈ ℝ𝑑 such that 𝔼𝜋[𝑓(𝑋1)] = ⟨𝑓,𝑓1⟩𝜋 = 0. There is equality if 𝑓 = 𝑓2, the
eigenvector corresponding to 𝜆2.

The best constant, 𝑐, in the inequality Var𝜋(𝑓) ≤ 𝑐 ⋅ ℰ(𝑓, 𝑓) is 𝑐 = 1
𝜆1−𝜆2

, the spectral
gap.

4. The entropy method
4.1. Entropy, chain rules and Han’s inequality
In the following section, let 𝐴 be a discrete (countable) alphabet and let 𝑋 be an RV
on 𝐴.

Definition 4.1  The Shannon entropy of 𝑋 with PMF 𝑃  is

𝐻(𝑋) = 𝔼[− log 𝑃(𝑋)] = − ∑
𝑥∈𝐴

ℙ(𝑋 = 𝑥) log ℙ(𝑋 = 𝑥),

where we use the convention 0 log 0 = 0.

Example 4.2  The entropy of 𝑋 ∼ Bern(𝑝) is 𝐻(𝑋) = −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝).
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Remark 4.3  Note that for 𝑥𝑛
1 ∈ 𝐴𝑛, 𝑃𝑛(𝑥𝑛

1 ) = 𝑒−𝑛 1
𝑛 ∑𝑛

𝑖=1 − log 𝑃(𝑥𝑖) (𝑃𝑛 is the product
distribution). So 𝑃𝑛(𝑋𝑛

1 ) = 𝑒−𝑛 1
𝑛 ∑𝑛

𝑖=1 − log 𝑃(𝑋𝑖) ≈ 𝑒−𝑛𝐻(𝑋𝑖) for IID 𝑋𝑖, by the Weak Law
of Large Numbers.

Proposition 4.4  Properties of Shannon entropy:
• 𝐻 is non-negative.
• 𝐻(⋅) is concave as a functional of 𝑃 .
• If |𝐴| < ∞, then 𝐻(𝑋) ≤ log|𝐴| with equality if 𝑋 ∼ Unif(𝐴).

Proof .  Exercise. □

Definition 4.5  For PMFs 𝑄, 𝑃  on 𝐴, 𝑄 is absolutely continuous with respect to
𝑃 , written 𝑄 ≪ 𝑃 , if 𝑃(𝑥) = 0 ⇒ 𝑄(𝑥) = 0 for all 𝑥 ∈ 𝐴.

Definition 4.6  Let 𝑄, 𝑃  be PMFs on 𝐴 such that 𝑄 ≪ 𝑃  (which means if 𝑃(𝑥) = 0,
then 𝑄(𝑥) = 0). The relative entropy between 𝑄 and 𝑃  is

𝐷(𝑄 ‖ 𝑃) = 𝔼𝑄[log 𝑄(𝑋)
𝑃(𝑋)

] = ∑
𝑥∈𝐴

𝑄(𝑥) log 𝑄(𝑥)
𝑃(𝑥)

if 𝑄 ≪ 𝑃 , and 𝐷(𝑄 ‖ 𝑃) = ∞ otherwise. We use the convention that 0 log 0
0 = 0.

Proposition 4.7  Properties of relative entropy:
• 𝐷(𝑄 ‖ 𝑃) ≥ 0.
• 𝐷(𝑄 ‖ 𝑃) is convex in both arguments.
• If 𝑋 ∼ 𝑃  where 𝑃  is the uniform distribution on 𝐴, and 𝑌 ∼ 𝑄, then 𝐷(𝑄 ‖ 𝑃) =

𝐻(𝑋) − 𝐻(𝑌 ).

Proof .  Exercise. □

Definition 4.8  The conditional entropy of 𝑋 given 𝑌  is

𝐻(𝑋 | 𝑌 ) = 𝔼[− log 𝑃𝑋 | 𝑌 (𝑋 | 𝑌 )] = − ∑
𝑥,𝑦

𝑃(𝑥, 𝑦) log 𝑃(𝑥 | 𝑦)

= 𝔼𝑋[𝐻(𝑋 | 𝑌 = 𝑦)]

Theorem 4.9 (Chain Rule for Entropy)  We have

𝐻(𝑋1:𝑛) = 𝔼[− log 𝑃(𝑋1:𝑛)] = ∑
𝑛

𝑖=1
𝐻(𝑋1 | 𝑋1:(𝑖−1)).

Proof (Hints) .  Straightforward. □

Proof .  Since

ℙ(𝑋1:𝑛 = 𝑥1:𝑛) = ℙ(𝑋1 = 𝑥1)ℙ(𝑋2 = 𝑥2 | 𝑋1 = 𝑥1)⋯ℙ(𝑋𝑛 = 𝑥𝑛 | 𝑋1:(𝑛−1) = 𝑋1:(𝑛−1)),

we have

𝐻(𝑋1:𝑛) = 𝔼[− log 𝑃(𝑋1:𝑛)] = 𝔼[∑
𝑛

𝑖=1
− log 𝑃(𝑋𝑖 | 𝑋1:(𝑖−1))]
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= ∑
𝑛

𝑖=1
𝔼[− log 𝑃(𝑋𝑖 | 𝑋1:(𝑖−1))]

= ∑
𝑛

𝑖=1
𝐻(𝑋1 | 𝑋1:(𝑖−1)).

□

Proposition 4.10 (Conditioning Reduces Entropy)  𝐻(𝑋 | 𝑌 ) ≤ 𝐻(𝑋).

Proof (Hints) .  Straightforward. □

Proof .  We have

𝐻(𝑋) − 𝐻(𝑋 | 𝑌 ) = 𝔼[log 1
𝑃(𝑋)

+ log 𝑃(𝑋 | 𝑌 )]

= 𝔼[log 𝑃(𝑋 | 𝑌 )𝑃(𝑌 )
𝑃(𝑋)𝑃(𝑌 )

] = 𝐷(𝑃𝑋,𝑌 ‖ 𝑃𝑋𝑃𝑌 ) ≥ 0.

□

Proposition 4.11 (Chain Rule for Relative Entropy)  Let 𝑃 , 𝑄 be PMFs on 𝐴𝑛. Let
𝑋1:𝑛 ∼ 𝑃 . Then

𝐷(𝑄𝑋1:𝑛
‖ 𝑃𝑋1:𝑛

) = ∑
𝑛

𝑖=1
𝔼𝑄𝑋1:(𝑖−1)

[𝐷(𝑄𝑋𝑖 | 𝑋1:(𝑖−1)
‖ 𝑃𝑋𝑖 | 𝑋1:(𝑖−1)

)]

≕ ∑
𝑛

𝑖=1
𝐷(𝑄𝑋𝑖 | 𝑋1:(𝑖−1)

‖ 𝑃𝑋𝑖 | 𝑋1:(𝑖−1)
| 𝑄𝑋1:(𝑖−1)

)

Proof (Hints) .  Straightforward. □

Proof .  We have

𝐷(𝑄𝑋1:𝑛
‖ 𝑃𝑋1:𝑛

) = 𝔼𝑄[log 𝑄(𝑋1:𝑛)
𝑃 (𝑋1:𝑛)

]

= 𝔼𝑄
[
[[∑

𝑛

𝑖=1
log

𝑄𝑋𝑖 | 𝑋1:(𝑖−1)
(𝑋𝑖 | 𝑋1:(𝑖−1))

𝑃𝑋𝑖 | 𝑋1:(𝑖−1)
(𝑋𝑖 | 𝑋1:(𝑖−1)) ]

]]

= ∑
𝑛

𝑖=1
𝔼𝑄𝑋1:(𝑖−1)

[𝐷(𝑄𝑋𝑖 | 𝑋1:(𝑖−1)
‖ 𝑃𝑋𝑖 | 𝑋1:(𝑖−1)

)]

□

Remark 4.12  The Chain Rule for Relative Entropy is similar to the chain rule for
variance:

Var(𝑍) = ∑
𝑛

𝑖=1
𝔼[Δ2

𝑖 ],

Δ𝑖 = 𝔼[𝑍 | 𝑋1:𝑖] − 𝔼[𝑍 | 𝑋1:(𝑖−1)], which led to the Efron-Stein Inequality.
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Lemma 4.13 (Conditioning Reduces Conditional Entropy)  𝐻(𝑋 | 𝑌 , 𝑍) ≤ 𝐻(𝑌 ).

Proof (Hints) .  Straightforward. □

Proof .  𝐻(𝑋 | 𝑌 , 𝑍) = ∑𝑧 ℙ(𝑍 = 𝑧)𝐻(𝑋 | 𝑌 , 𝑍 = 𝑧) ≤ ∑𝑧 ℙ(𝑍 = 𝑧)𝐻(𝑋 | 𝑍 = 𝑧) =
𝐻(𝑋 | 𝑍) by Conditioning Reduces Entropy. □

Theorem 4.14 (Han's Inequality)  Let 𝑋1:𝑛 be discrete RVs. Then

𝐻(𝑋1:𝑛) ≤ 1
𝑛 − 1

∑
𝑛

𝑖=1
𝐻(𝑋(𝑖)).

Proof (Hints) .  Show that 𝐻(𝑋1:𝑛) ≤ 𝐻(𝑋(𝑖)) + 𝐻(𝑋𝑖 | 𝑋1:(𝑖−1)). □

Proof .  By the Chain Rule for Entropy and Conditioning Reduces Entropy,

𝐻(𝑋1:𝑛) = 𝐻(𝑋(𝑖)) + 𝐻(𝑋𝑖 | 𝑋(𝑖))

≤ 𝐻(𝑋(𝑖)) + 𝐻(𝑋𝑖 | 𝑋1:(𝑖−1))

Summing over 𝑖, we obtain 𝑛𝐻(𝑋1:𝑛) ≤ ∑𝑛
𝑖=1 𝐻(𝑋(𝑖)) + 𝐻(𝑋1:𝑛) by the chain rule. □

Corollary 4.15 (Loomis-Whitney Inequality)  The Loomis-Whitney inequality states
that for finite 𝐴 ⊆ ℤ𝑛,

|𝐴| ≤ ∏
𝑛

𝑖=1
|𝐴(𝑖)|1/(𝑛−1)

Proof (Hints) .  Straightforward. □

Proof .  Let 𝑋1:𝑛 be uniform on 𝐴. Then log|𝐴| = 𝐻(𝑋1:𝑛). By Han's Inequality,

𝐻(𝑋1:𝑛) ≤ 1
𝑛 − 1

∑
𝑛

𝑖=1
𝐻(𝑋(𝑖)) ≤ 1

𝑛 − 1
∑

𝑛

𝑖=1
log|𝐴(𝑖)|

□

Lemma 4.16  Let 𝑄, 𝑃  be PMFs on a discrete set 𝐴 × 𝐵 × 𝐶. Then

𝐷(𝑄𝑌 | 𝑋,𝑍 ‖ 𝑃𝑌 | 𝑄𝑋,𝑍) ≥ 𝐷(𝑄𝑌 | 𝑋 ‖ 𝑃𝑌 | 𝑄𝑋)

Proof (Hints) .  Use convexity of relative entropy. □

Proof .  By convexity of relative entropy,

𝐷(𝑄𝑌 | 𝑋,𝑍 ‖ 𝑃𝑌 | 𝑄𝑋,𝑍) ≕ ∑
𝑥,𝑧

𝑄𝑋,𝑍(𝑥, 𝑧)𝐷(𝑄𝑌 | 𝑋=𝑥,𝑍=𝑧 ‖ 𝑃𝑌 )

= ∑
𝑥

𝑄(𝑥) ∑
𝑧

𝑄(𝑧 | 𝑥)𝐷(𝑄𝑌 | 𝑋=𝑥,𝑍=𝑧 ‖ 𝑃𝑌 )

≥ ∑
𝑥

𝑄(𝑥)𝐷(∑
𝑧

𝑄(𝑧 | 𝑥)𝑄𝑌 | 𝑋=𝑥,𝑍=𝑧 ‖ 𝑃𝑌 )
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= ∑
𝑥

𝑄(𝑥)𝐷(𝑄𝑌 | 𝑋=𝑥 ‖ 𝑃𝑌 )

= 𝐷(𝑄𝑌 | 𝑋 ‖ 𝑃𝑌 | 𝑄𝑋).

□

Theorem 4.17 (Han's Inequality for Relative Entropy)  Suppose 𝑄, 𝑃  are PMFs on
𝐴𝑛, and assume that 𝑃 = 𝑃1 ⊗ ⋯ ⊗ 𝑃𝑛. Then

𝐷(𝑄 ‖ 𝑃) = 𝐷(𝑄𝑋1:𝑛
‖ 𝑃𝑋1:𝑛

) ≥ 1
𝑛 − 1

∑
𝑛

𝑖=1
𝐷(𝑄𝑋(𝑖) ‖ 𝑃𝑋(𝑖))

Equivalently,

𝐷(𝑄 ‖ 𝑃) ≤ ∑
𝑛

𝑖=1
𝐷(𝑄𝑋𝑖 | 𝑋(𝑖) ‖ 𝑃𝑋𝑖

| 𝑄𝑋(𝑖))

(this is tensorisation of 𝐷(⋅ ‖ ⋅)).

Remark 4.18  Taking 𝑃  to be uniform in Han's Inequality for Relative Entropy gives
Han's Inequality for Shannon entropy.

Proof (Hints) .  Explain why 𝐷(𝑄 ‖ 𝑃) = 𝐷(𝑄𝑋(𝑖) ‖ 𝑃𝑋(𝑖)) + 𝐷(𝑄𝑋𝑖 | 𝑋(𝑖) ‖ 𝑃𝑋𝑖
| 𝑄𝑋(𝑖)),

then use Lemma 4.16. □

Proof .  By the Chain Rule for Relative Entropy and Lemma 4.16,

𝐷(𝑄 ‖ 𝑃) = 𝐷(𝑄𝑋(𝑖) ‖ 𝑃𝑋(𝑖)) + 𝐷(𝑄𝑋𝑖 | 𝑋(𝑖) ‖ 𝑃𝑋𝑖 | 𝑋(𝑖) | 𝑄𝑋(𝑖))

= 𝐷(𝑄𝑋(𝑖) ‖ 𝑃𝑋(𝑖)) + 𝐷(𝑄𝑋𝑖 | 𝑋(𝑖) ‖ 𝑃𝑋𝑖
| 𝑄𝑋(𝑖))

≥ 𝐷(𝑄𝑋(𝑖) ‖ 𝑃𝑋(𝑖)) + 𝐷(𝑄𝑋𝑖 | 𝑋1:(𝑖−1)
‖ 𝑃𝑋𝑖

| 𝑄𝑋1:(𝑖−1)
)

Summing over 𝑖, we obtain 𝑛𝐷(𝑄 ‖ 𝑃) ≥ ∑𝑛
𝑖=1 𝐷(𝑄𝑋(𝑖) ‖ 𝑃𝑋(𝑖)) + 𝐷(𝑄 ‖ 𝑃) by the

Chain Rule for Relative Entropy, hence

𝐷(𝑄 ‖ 𝑃) ≥ 1
𝑛 − 1

∑
𝑛

𝑖=1
𝐷(𝑄𝑋(𝑖) ‖ 𝑃𝑋(𝑖))

= 1
𝑛 − 1

∑
𝑛

𝑖=1
(𝐷(𝑄 ‖ 𝑃) − 𝐷(𝑄𝑋𝑖 | 𝑋(𝑖) ‖ 𝑃𝑋𝑖

| 𝑄𝑋(𝑖))

⟺ 𝑛
𝑛 − 1

𝐷(𝑄 ‖ 𝑃) − 𝐷(𝑄 ‖ 𝑃) ≤ 1
𝑛 − 1

∑
𝑛

𝑖=1
𝐷(𝑄𝑋𝑖 | 𝑋(𝑖) ‖ 𝑃𝑋𝑖

| 𝑄𝑋(𝑖))

□

Definition 4.19  There is another notion of entropy. Let 𝑍 ≥ 0 almost surely. Let
𝜑(𝑥) = 𝑥 log 𝑥 for 𝑥 > 0 and 𝜑(0) = 0. The entropy of 𝑍 is defined as

Ent(𝑍) = 𝔼[𝜑(𝑍)] − 𝜑(𝔼[𝑍]),
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Note the similarity to the definition Var(𝑍) = 𝔼[𝑍2] − 𝔼[𝑍]2. Also, since 𝜑 is convex,
Ent(𝑍) is non-negative by Jensen’s inequality.

Proposition 4.20  Let 𝑋 ∼ 𝑃 , where 𝑄 ≪ 𝑃  are PMFs on a countable alphabet 𝐴.
Let 𝑍 = 𝑄(𝑋)

𝑃(𝑋) . Then

Ent(𝑍) = 𝐷(𝑄 ‖ 𝑃).

Proof (Hints) .  Straightforward. □

Proof .  We have

Ent(𝑍) = 𝔼𝑃 [𝑄(𝑋)
𝑃(𝑋)

log 𝑄(𝑋)
𝑃(𝑋)

] − (𝔼𝑃
𝑄(𝑋)
𝑃(𝑋)

) log 𝔼𝑃 [𝑄(𝑋)
𝑃(𝑋)

]

= 𝐷(𝑄 ‖ 𝑃) − 1 log 1 = 𝐷(𝑄 ‖ 𝑃).

□

Remark 4.21  In general, when 𝑍 is the Radon-Nikodym derivative d𝑄
d𝑃 (𝑋) and 𝑋 ∼

𝑃 , then Ent(𝑍) = 𝐷(𝑄 ‖ 𝑃).

Theorem 4.22 (Tensorisation of Entropy)  Let 𝑋1, …, 𝑋𝑛 be independent RVs taking
values in a countable set 𝐴, and let 𝑓 : 𝐴𝑛 → ℝ≥0. Let 𝑍 = 𝑓(𝑋1:𝑛) = 𝑓(𝑋). Then

Ent(𝑍) ≤ 𝔼[∑
𝑛

𝑖=1
Ent(𝑖)(𝑍)],

where

Ent(𝑖)(𝑍) = 𝐸(𝑖)[𝑍 log 𝑍] − 𝐸(𝑖)[𝑍] log 𝐸(𝑖)[𝑍]

= 𝔼[𝑍 log 𝑍 | 𝑋(𝑖)] − 𝔼[𝑍 | 𝑋(𝑖)] log 𝔼[𝑍 | 𝑋(𝑖)].

Remark 4.23  Tensorisation of Entropy is analogous to the Efron-Stein Inequality.

Proof (Hints) .
• Show that Ent(𝑎𝑍) = 𝑎 Ent(𝑍), and so can assume WLOG that 𝔼[𝑍] = 1, so 𝑄

is PMF.
• Show that

𝑄𝑋𝑖 | 𝑋(𝑖)(𝑥𝑖 | 𝑥(𝑖)) = 𝑃(𝑥𝑖)𝑓(𝑥)
𝔼[𝑓(𝑋) | 𝑋(𝑖) = 𝑥(𝑖)]

.

• Show that 𝑄(𝑖)(𝑥(𝑖)) = 𝑃 (𝑖)(𝑥(𝑖))𝔼[𝑓(𝑋) | 𝑋(𝑖) = 𝑥(𝑖)], and so that
𝔼[𝐷(𝑄𝑋𝑖 | 𝑋(𝑖) ‖ 𝑃𝑋𝑖

| 𝑄𝑋(𝑖))] = 𝔼𝑃 [Ent(𝑖)(𝑓(𝑋))].

□

Proof .  Let 𝑋 ∼ 𝑃 = 𝑃1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑃𝑛. Let 𝑄(𝑥) = 𝑓(𝑥)𝑃(𝑥). Since

Ent(𝑎𝑍) = 𝑎𝔼[𝑍 log 𝑍] + 𝑎𝔼[𝑍 log 𝑎] − 𝑎𝔼[𝑍] log 𝔼[𝑍] − 𝑎𝔼[𝑍] log 𝑎 = 𝑎 Ent(𝑍),
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we may assume WLOG that 𝔼[𝑍] = 1, and so 𝑄 is a valid PMF. By Han's Inequality
for Relative Entropy,

𝐷(𝑄 ‖ 𝑃) ≤ ∑
𝑛

𝑖=1
𝔼[𝐷(𝑄𝑋𝑖 | 𝑋(𝑖) ‖ 𝑃𝑋𝑖

| 𝑄𝑋(𝑖))]

Now

𝑄𝑋𝑖 | 𝑋(𝑖)(𝑥𝑖 | 𝑥(𝑖)) = 𝑄𝑋(𝑥)
𝑄𝑋(𝑖)(𝑥(𝑖))

= 𝑃(𝑥)𝑓(𝑥)
∑𝑥′

𝑖∈𝐴 𝑄(𝑥1:(𝑖−1), 𝑥′
𝑖, 𝑥(𝑖+1):𝑛)

=
𝑃𝑖(𝑥𝑖)𝑃 (𝑖)(𝑥(𝑖))𝑓(𝑥)

∑𝑥′
𝑖∈𝐴 𝑃𝑖(𝑥′

𝑖)𝑃 (𝑖)(𝑥(𝑖))𝑓(𝑥(𝑖), 𝑥′
𝑖)

= 𝑃𝑖(𝑥𝑖)𝑓(𝑥)
𝔼[𝑓(𝑋) | 𝑋(𝑖) = 𝑥(𝑖)]

(write 𝑓(𝑥(𝑖), 𝑥′
𝑖) = 𝑓(𝑥1:(𝑖−1), 𝑥′

𝑖, 𝑥(𝑖+1):𝑛)). By definition,

𝔼[𝐷(𝑄𝑋𝑖 | 𝑋(𝑖) ‖ 𝑃𝑋𝑖
| 𝑄𝑋(𝑖))]

= ∑
𝑥(𝑖)∈𝐴𝑛−1

𝑄(𝑖)(𝑥(𝑖)) ∑
𝑥𝑖∈𝐴

𝑃𝑖(𝑥𝑖)𝑓(𝑥)
𝔼[𝑓(𝑋) | 𝑋(𝑖) = 𝑥(𝑖)]

log 𝑓(𝑥)
𝔼[𝑓(𝑋) | 𝑋(𝑖) = 𝑥(𝑖)]

But 𝑄(𝑖)(𝑥(𝑖)) = 𝑃 (𝑖)(𝑥(𝑖))𝔼[𝑓(𝑋) | 𝑋(𝑖) = 𝑥(𝑖)]. So,

𝔼[𝐷(𝑄𝑋𝑖 | 𝑋(𝑖) ‖ 𝑃𝑋𝑖
| 𝑄𝑋(𝑖))]

= ∑
𝑥(𝑖)∈𝐴𝑛−1

𝑃 (𝑖)(𝑥(𝑖))( ∑
𝑥𝑖∈𝐴

𝑃𝑖(𝑥𝑖)𝑓(𝑥) log 𝑓(𝑥) − 𝔼[𝑓(𝑋) | 𝑋(𝑖) = 𝑥(𝑖)] log 𝔼[𝑓(𝑋) | 𝑋(𝑖) = 𝑥(𝑖)])

= ∑
𝑥(𝑖)∈𝐴𝑛−1

𝑃 (𝑖)(𝑥(𝑖))(𝔼[𝑓(𝑋) log 𝑓(𝑋) | 𝑋(𝑖) = 𝑥(𝑖)] − 𝔼[𝑓(𝑋) | 𝑋(𝑖) = 𝑥(𝑖)] log 𝔼[𝑓(𝑋) | 𝑋(𝑖) = 𝑥(𝑖)])

= 𝔼𝑃 [Ent(𝑖)(𝑓(𝑋))]

So Ent(𝑓(𝑋)) = 𝐷(𝑄 ‖ 𝑃) ≤ ∑𝑛
𝑖=1 𝔼[Ent(𝑖)(𝑓(𝑋))]. □

4.2. Herbst’s argument
Theorem 4.24 (Herbst's Argument)  Suppose 𝑍 is a real-valued RV and 𝔼[𝑒𝜆𝑍] < ∞
for all 𝜆 > 0. If there exists 𝜈 > 0 such that for all 𝜆 > 0, Ent(𝑒𝜆𝑍) ≤ 𝜆2 𝜈

2𝔼[𝑒𝜆𝑍], then

𝜓ℤ−𝔼[𝑍](𝜆) = log 𝔼[𝑒𝜆(𝑍−𝔼[𝑍])] ≤ 𝜆2 𝜈
2

∀𝜆 > 0.

Proof (Hints) .
• Show that Ent(𝑒𝜆𝑍)

𝔼[𝑒𝜆𝑍] = 𝜆2𝐺′(𝜆), where 𝐺(𝜆) = 1
𝜆𝜓𝑍−𝔼[𝑍](𝜆).

• Given an upper bound for ∫𝜆
0

𝐺′(𝑡) d𝑡 (explain using a Taylor expansion why this
integral is valid).

□
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Proof .  Write 𝜓 = 𝜓𝑍−𝔼[𝑍]. We have

Ent(𝑒𝜆𝑍) = 𝜆𝔼[𝑒𝜆𝑍 ⋅ 𝑍] − 𝔼[𝑒𝜆𝑍] log 𝔼[𝑒𝜆𝑍]

= 𝔼[𝑒𝜆𝑍](𝜆𝔼[ 𝑍𝑒𝜆𝑍

𝔼[𝑒𝜆𝑍 ]
] − log 𝔼[𝑒𝜆𝑍])

But

𝜓′(𝜆) = (𝜓𝑍(𝜆) − 𝜆𝔼[𝑍])′ = 𝔼[ 𝑍𝑒𝜆𝑍

𝔼[𝑒𝜆𝑍 ]
] − 𝔼[𝑍].

So by the above expression for Ent,

Ent(𝑒𝜆𝑍)
𝔼[𝑒𝜆𝑍 ]

= [𝜆𝜓′(𝜆) + 𝜆𝔼[𝑍] − 𝜆𝔼[𝑍] − 𝜓(𝜆)]

= 𝜆2(1
𝜆

𝜓′(𝜆) − 1
𝜆2 𝜓(𝜆)) = 𝜆2𝐺′(𝜆)

where 𝐺(𝜆) = 1
𝜆𝜓(𝜆). Also, by assumption,

Ent(𝑒𝜆𝑍)
𝔼[𝑒𝜆𝑍 ]

≤ 𝜆2 𝜈
2

By Taylor’s theorem, 𝐺(𝜆) = 1
𝜆(𝜓(0) + 𝜆𝜓′(0) + 𝑂(𝜆2)) = 1

𝜆𝑂(𝜆2) = 𝑂(𝜆) → 0 as 𝜆 →
0. Hence, we may integrate 𝐺′(𝜃) from 0 to 𝜆:

𝐺(𝜆) = ∫
𝜆

0
𝐺′(𝜃) d𝜃 ≤ ∫

𝜆

0

𝜈
2

d𝜃 since 𝜃2𝐺′(𝜃) ≤ 𝜃2 𝜈
2

= 𝜆𝜈
2

So 𝜓(𝜆) ≤ 𝜆2 𝜈
2 . □

Theorem 4.25 (Bounded Differences Inequality)  Let 𝑋 = (𝑋1, …, 𝑋𝑛), where the 𝑋𝑖
are independent. Let 𝑓 have bounded differences with constants 𝑐𝑖. Let 𝑍 = 𝑓(𝑋). Then
for all 𝑡 > 0,

ℙ(𝑍 − 𝔼[𝑍] ≥ 𝑡), ℙ(𝑍 − 𝔼[𝑍] ≤ −𝑡) ≤ 𝑒−2𝑡2/ ∑𝑛
𝑖=1 𝑐2

𝑖 = 𝑒−𝑡2/2𝜈 ,

where 𝜈 = 1
4 ∑𝑛

𝑖=1 𝑐2
𝑖 .

Proof (Hints) .
• Use Hoeffding's Lemma and an equality from the proof of Herbst's Argument to

show that Ent(𝑖)(𝑒𝜆𝑍)
𝔼[𝑒𝜆𝑍 | 𝑋(𝑖)] ≤ 1

8𝜆2𝑐2
𝑖  (you should use an integral somewhere).

• Use Tensorisation of Entropy and Herbst's Argument to show that 𝑍 − 𝔼[𝑍] has
sub-Gaussian right tail with parameter 𝜈.

• Why does the result also hold for −𝑓?

□
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Proof .  The first step is tensorisation of entropy: by Tensorisation of Entropy, we have

Ent(𝑒𝜆𝑍) ≤ 𝔼[∑
𝑛

𝑖=1
Ent(𝑖)(𝑒𝜆𝑍)]

Write 𝑓𝑋(𝑖)(𝑥𝑖) = 𝑓(𝑋1:(𝑖−1), 𝑥𝑖, 𝑋(𝑖+1):𝑛). Conditional on 𝑋(𝑖), 𝑓𝑋(𝑖) takes values on an
interval of length ≤ 𝑐𝑖 by the bounded differences property.

The second step is to apply Hoeffding's Lemma. Let 𝜓𝑖(𝜆) = log 𝔼[𝑒𝜆(𝑍−𝔼[𝑍]) | 𝑋(𝑖)]. As
in the proof of Herbst's Argument, we have

Ent(𝑒𝜆𝑍)
𝔼[𝑒𝜆𝑍 ]

= 𝜆𝜓′
𝑍−𝔼[𝑍](𝜆) − 𝜓𝑍−𝔼[𝑍](𝜆).

Note that this holds for the random variable 𝑍 | 𝑋(𝑖) = 𝑥(𝑖), for any value of 𝑥(𝑖). By
Hoeffding's Lemma, we have 𝜓″

𝑖 (𝜆) ≤ 𝑐2
𝑖 /4, and so

Ent(𝑖)(𝑒𝜆𝑍)
𝔼[𝑒𝜆𝑍 | 𝑋(𝑖)]

= 𝜆𝜓′
𝑖(𝜆) − 𝜓𝑖(𝜆) = ∫

𝜆

0
𝜃𝜓″

𝑖 (𝜃) d𝜃

≤ ∫
𝜆

0
𝜃𝑐2

𝑖
4

d𝜃

= 1
8
𝜆2𝑐2

𝑖

The third step is using Herbst's Argument: we have

Ent(𝑒𝜆𝑍) ≤ 𝔼[∑
𝑛

𝑖=1
Ent(𝑖)(𝑒𝜆𝑍)] ≤ 𝔼[∑

𝑛

𝑖=1

1
8
𝜆2𝑐2

𝑖 𝔼[𝑒𝜆𝑍 | 𝑋(𝑖)]]

= 1
2
𝜆2 ⋅ 1

4
∑

𝑛

𝑖=1
𝑐2
𝑖 𝔼[𝑒𝜆𝑍]

by Law of Total Expectation. By Herbst's Argument, we have

𝜓𝑍−𝔼[𝑍](𝜆) ≤ 𝜆2𝜈
2

∀𝜆 > 0,

and so the Chernoff Bound gives ℙ(𝑍 − 𝔼[𝑍]) ≤ 𝑒−𝑡2/2𝜈 . Now noting that −𝑓 also has
bounded differences with the same constants, we obtain the left-tail bound. □

4.3. Log-Sobolev inequalities on the hypercube
Notation 4.26  Let 𝑋1, …, 𝑋𝑛 be IID and uniform on {−1, 1}, so 𝑋 = 𝑋1:𝑛 is uniform
on the hypercube {−1, 1}𝑛. Let 𝑍 = 𝑓(𝑋). By Efron-Stein Inequality, Var(𝑍) ≤
1
2𝔼[∑𝑛

𝑖=1 (𝑍 − 𝑍′
𝑖 )

2] ≕ 𝜈, where 𝑍′
𝑖 = 𝑓(𝑋1:(𝑖−1), 𝑋′

𝑖 , 𝑋(𝑖+1):𝑛) and 𝑋′
𝑖  is an indepen-

dent copy of 𝑋𝑖. Define ℰ(𝑓) as

𝜈 = 1
4
𝔼[∑

𝑛

𝑖=1
(𝑓(𝑋) − 𝑓(𝑋(𝑖)))

2
]
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= 1
2
𝔼[∑

𝑛

𝑖=1
(𝑓(𝑋) − 𝑓(𝑋(𝑖)))

2

+
] ≕ ℰ(𝑓),

where 𝑋(𝑖) = (𝑋1:(𝑖−1), −𝑋𝑖, 𝑋(𝑖+1):𝑛). 1
2(𝑓(𝑋) − 𝑓(𝑋(𝑖))) looks like a discrete partial

derivative in the 𝑖-th direction. So ℰ(𝑓) is a discrete analogue of 𝔼[‖∇𝑓(𝑋)‖2].

Theorem 4.27 (Log-Sobolev Inequality for Bernoullis)  Let 𝑋 be uniformly distributed
on {−1, 1}𝑛 and 𝑓 : {−1, 1}𝑛 → ℝ. Then

Ent(𝑓2(𝑋)) ≤ 2 ⋅ ℰ(𝑓).

Proof (Hints) .
• Use Tensorisation of Entropy to show that it is enough to prove the result for 𝑛 = 1.
• Based on the one-dimensional inequality that needs to be shown, construct a suitable

function ℎ(𝑎, 𝑏). Let 𝑔(𝑎) = ℎ(𝑎, 𝑏) for fixed 𝑏. Show that 𝑔(𝑏) = 0, 𝑔′(𝑏) = 0, and
𝑔″(𝑎) ≤ 0 for all 𝑎 ≥ 𝑏.

□

Proof .  Let 𝑍 = 𝑓(𝑋). By Tensorisation of Entropy,

Ent(𝑍2) ≤ 𝔼[∑
𝑛

𝑖=1
Ent(𝑖)(𝑍2)]

If the result was true for 𝑛 = 1, then we would have Ent(𝑖)(𝑍2) ≤ 1
2(𝑓(𝑋) − 𝑓(𝑋(𝑖)))

2

(since when 𝑋(𝑖) is fixed, we may think of 𝑍2 as being a function of 𝑋𝑖, and this function
is 𝑓(𝑋)2 or 𝑓(𝑋(𝑖))

2
 with equal probability) and so Ent(𝑍2) ≤ 2ℰ(𝑓). So it suffices

to prove the 𝑛 = 1 case. Let 𝑓(1) = 𝑎, 𝑓(−1) = 𝑏. In the 𝑛 = 1 case, the inequality we
want to show is

1
2
𝑎2 log(𝑎2) + 1

2
𝑏2 log(𝑏2) − 1

2
(𝑎2 + 𝑏2) log(𝑎2 + 𝑏2

2
) ≤ 1

2
(𝑏 − 𝑎)2.

We may assume 𝑎, 𝑏 ≥ 0, since (𝑏−𝑎)2

2 ≥ (|𝑏|−|𝑎|)2

2 . Also, by symmetry, WLOG we assume
𝑎 ≥ 𝑏. For fixed 𝑏 ≥ 0, define

ℎ(𝑎) = 1
2
𝑎2 log(𝑎2) + 1

2
𝑏2 log(𝑏2) − 1

2
(𝑎2 + 𝑏2) log(𝑎2 + 𝑏2

2
) − 1

2
(𝑏 − 𝑎)2.

Since ℎ(𝑏) = 0, it is enough to show that ℎ′(𝑏) = 0 and ℎ″(𝑎) ≤ 0 (so ℎ is convex).
We have

ℎ′(𝑎) = 𝑎 log 2𝑎2

𝑎2 + 𝑏2 − (𝑎 − 𝑏)

Hence, ℎ′(𝑏) = 0. Also,

ℎ″(𝑎) = 1 + log 2𝑎2

𝑎2 + 𝑏2 − 2𝑎2

𝑎2 + 𝑏2 ≤ 0,
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since log 𝑥 ≤ 𝑥 − 1. □

Remark 4.28  Log-Sobolev Inequality for Bernoullis is stronger than Efron-Stein
Inequality. Also, the constant 2 on the RHS is tight.

Theorem 4.29 (Gaussian Log-Sobolev Inequality)  Let 𝑋 = (𝑋1, …, 𝑋𝑛) be a vector
of 𝑛 independent RVs with each 𝑋𝑖 ∼ 𝑁(0, 1), let 𝑓 : ℝ𝑛 → ℝ be continuously differen-
tiable. Then

Ent(𝑓2(𝑋)) ≤ 2 ⋅ 𝔼[‖∇𝑓(𝑋)‖2].

Proof .  Exercise (use tensorisation and the central limit theorem). □

Definition 4.30  𝑓 : ℝ𝑛 → ℝ is 𝐿-Lipschitz if

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐿 ⋅ ‖𝑥 − 𝑦‖ ∀𝑥, 𝑦 ∈ ℝ𝑛.

Theorem 4.31 (Gaussian Concentration Inequality)  Let 𝑋 = (𝑋1, …, 𝑋𝑛) be a vector
of 𝑛 independent RVs with each 𝑋𝑖 ∼ 𝑁(0, 1). Let 𝑓 : ℝ𝑛 → ℝ be 𝐿-Lipschitz and 𝑍 =
𝑓(𝑋). Then 𝑍 − 𝔼[𝑍] ∈ 𝒢(𝐿2), i.e. for all 𝜆 ∈ ℝ,

𝜓𝑍−𝔼[𝑍](𝜆) ≤ 𝜆2𝐿2

2
,

and so for all 𝑡 > 0,

ℙ(𝑍 − 𝔼[𝑍] ≥ 𝑡) ≤ 𝑒−𝑡2/2𝐿2 , and 𝑃(𝑍 − 𝔼[𝑍] ≤ −𝑡) ≤ 𝑒−𝑡2/2𝐿2 .

Note that these bounds are independent of the dimension 𝑛.

Proof (Hints) .
• Explain why we can assume 𝑓 is continuously differentiable (think sequences).
• Use the Gaussian Log-Sobolev Inequality on 𝑒𝜆𝑓/2 to obtain an upper bound that is

a suitable assumption for Herbst's Argument.

□

Proof .  WLOG, we can assume 𝑓 is continuously differentiable (otherwise, we can
approximate 𝑓 with a sequence of contiuously differentiable functions which converge to
𝑓). Note that ‖∇𝑓(𝑋)‖ ≤ 𝐿. By the Gaussian Log-Sobolev Inequality for 𝑒𝜆𝑓/2, we have

Ent(𝑒𝜆𝑓(𝑋)) ≤ 2 ⋅ 𝔼[‖∇𝑒𝜆𝑓(𝑋)/2‖2]

= 2 ⋅ 𝔼[‖𝜆
2
∇(𝑓(𝑋)) ⋅ 𝑒𝜆𝑓(𝑋)/2‖

2

]

= 𝜆2

2
𝔼[𝑒𝜆𝑓(𝑋)‖∇𝑓(𝑋)‖2]

≤ 𝜆2𝐿2

2
𝔼[𝑒𝜆𝑓(𝑋)]

So by Herbst's Argument,
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𝜓𝑍−𝔼[𝑍](𝜆) ≤ 𝜆2𝐿2

2
,

and the Chernoff Bound gives the right tail bound. The left tail bound follows from the
fact that −𝑓 is also 𝐿-Lipschitz. □

Theorem 4.32 (Concentration on the Hypercube)  Let 𝑓 : {−1, 1}𝑛 → ℝ and let 𝑋 =
(𝑋1, …, 𝑋𝑛) be uniform on {−1, 1}𝑛. Let 𝑍 = 𝑓(𝑋) and assume

max
𝑥∈{−1,1}𝑛

∑
𝑛

𝑖=1
(𝑓(𝑥) − 𝑓(𝑥(𝑖)))2

+
> 0 ≤ 𝜈

for some 𝜈 > 0. Then for all 𝑡 > 0,

ℙ(𝑍 − 𝔼[𝑍] ≥ 𝑡) ≤ 𝑒−𝑡2/𝜈 ,

i.e. 𝑍 has a sub-Gaussian right tail with variance parameter 𝜈/2.

Proof (Hints) .
• Explain why 𝑒𝑧/2−𝑒𝑦/2

(𝑧−𝑦)/2 ≤ 𝑒𝑧/2 for 𝑧 > 𝑦.
• Use the Log-Sobolev Inequality for Bernoullis on an appropriate function to obtain

an upper bound that is a suitable assumption for Herbst's Argument.

□

Proof .  We use the Log-Sobolev Inequality for Bernoullis for the function 𝑒𝜆𝑓/2: for 𝜆 >
0, we have

Ent(𝑒𝜆𝑓(𝑋)) ≤ 1
2
𝔼[∑

𝑛

𝑖=1
(𝑒𝜆𝑓(𝑋)/2 − 𝑒𝜆𝑓(𝑋(𝑖)/2))

2
]

= 𝔼[∑
𝑛

𝑖=1
(𝑒𝜆𝑓(𝑋)/2 − 𝑒𝜆𝑓(𝑋(𝑖))/2)

2

+
]

Since for 𝑧 > 𝑦, 𝑒𝑧/2−𝑒𝑦/2

(𝑧−𝑦)/2 ≤ 𝑒𝑧/2 (by convexity of exp),

Ent(𝑒𝜆𝑓(𝑋)) ≤ 𝔼[∑
𝑛

𝑖=1

𝜆2

22 (𝑓(𝑋) − 𝑓(𝑋(𝑖)))
2

+
⋅ 𝑒𝜆𝑓(𝑋)]

≤ 𝜈𝜆2

4
𝔼[𝑒𝜆𝑓(𝑋)].

By Herbst's Argument, we thus have 𝜓𝑍−𝔼[𝑍](𝜆) ≤ 𝜆2𝜈/2
2  for all 𝜆 > 0, and the Chernoff

Bound gives ℙ(𝑍 − 𝔼[𝑍] ≥ 𝑡) ≤ 𝑒−𝑡2/𝜈 . □

Remark 4.33
• If the same condition for the negative part (⋅)− holds, then we get the analogous left

tail bound.
• If max𝑥∈{−1,1}𝑛 ∑𝑛

𝑖=1 (𝑓(𝑥) − 𝑓(𝑥(𝑖)))2 ≤ 𝜈, then 𝑍 − 𝔼[𝑍] ∈ 𝒢(𝜈/2). In fact, more
careful analysis shows that 𝑍 − 𝔼[𝑍] ∈ 𝒢(𝜈/4).

• If 𝑓 has bounded differences with constants 𝑐𝑖 where ∑𝑛
𝑖=1 𝑐2

𝑖 ≤ 𝜈, then 𝑓 also satisfies
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max
𝑥∈{−1,1}𝑛

∑
𝑛

𝑖=1
(𝑓(𝑥) − 𝑓(𝑥(𝑖)))2 ≤ 𝜈

so 𝑍 − 𝔼[𝑍] ∈ 𝒢(𝜈/4). Bounded Differences Inequality also gives 𝑍 − 𝔼[𝑍] ∈ 𝒢(𝜈/4)
under stronger assumptions. So we are able to prove a result that is as strong as
Bounded Differences Inequality but under a weaker assumption.

• The Efron-Stein Inequality gives

Var(𝑍) ≤ 𝔼[∑
𝑛

𝑖=1
(𝑍 − 𝑍′

𝑖 )
2
+] = 1

2
𝔼[∑

𝑛

𝑖=1
(𝑍 − 𝑍(𝑖))

2
] ≤ 𝜈/2

if 𝔼[∑𝑛
𝑖=1 (𝑍 − 𝑍(𝑖))

2
] ≤ 𝜈. Note that this a weaker result, but makes a weaker

assumption than Concentration on the Hypercube.

4.4. The modified log-Sobolev inequality (MLSI)
Lemma 4.34 (Variational Principle for Entropy)  For any non-negative random vari-
able 𝑌 ,

Ent(𝑌 ) = inf
𝑢>0

𝔼[𝑌 (log 𝑌 − log 𝑢) − (𝑌 − 𝑢)]

and the infimum is achieved at 𝑢 = 𝔼[𝑌 ].

Proof (Hints) .  Use the inequality log 𝑥 ≤ 𝑥 − 1. □

Proof .  We have

Ent(𝑌 ) − 𝔼[𝑌 log 𝑌 + 𝑌 log 𝑢 − (𝑌 − 𝑢)] = 𝔼[𝑌 log 𝑢
𝔼[𝑌 ]

+ 𝑌 − 𝑢]

≤ 𝔼[𝑌 ]
𝔼[𝑌 ]

𝑢 − 𝔼[𝑌 ] + 𝔼[𝑌 ] − 𝑢 = 0

since log 𝑥 ≤ 𝑥 − 1. For 𝑢 = 𝔼[𝑌 ],

𝔼[𝑌 log 𝑌 ] − 𝔼[𝑌 log 𝑢 + 𝑌 − 𝑢] = Ent(𝑌 ).

□

Remark 4.35  This is an entropy analogue of Var(𝑌 ) = inf𝑎∈ℝ 𝔼[(𝑌 − 𝑎)2]. In fact, for
any convex function 𝜑, we can prove that the infimum

inf
𝑢>0

𝔼[𝜑(𝑌 ) − 𝜑(𝑢) − 𝜑′(𝑢)(𝑌 − 𝑢)]

is achieved when 𝑢 = 𝔼[𝑌 ]. The Variational Principle for Entropy is a special case for
𝜑(𝑥) = 𝑥 log 𝑥.

Theorem 4.36 (Modified Log-Sobolev Inequality)  Let 𝑋1, …, 𝑋𝑛 be independent RVs
taking values on 𝐴. Let 𝑓 : 𝐴𝑛 → ℝ and 𝑍 = 𝑓(𝑋). Let 𝑓𝑖 : 𝐴𝑛−1 → ℝ be an arbitrary
function and 𝑍𝑖 = 𝑓𝑖(𝑋(𝑖)) for each 𝑖 ∈ [𝑛]. Then
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Ent(𝑒𝜆𝑍) ≤ ∑
𝑛

𝑖=1
𝔼[𝑒𝜆𝑍𝜑(−𝜆(𝑍 − 𝑍𝑖))] ∀𝜆 > 0,

where 𝜑(𝑥) = 𝑒𝑥 − 𝑥 − 1.

For 𝜆 > 0 and 𝑍 ≥ 𝑍𝑖, we may use the inequality 𝜑(−𝑥) ≤ 𝑥2/2 for 𝑥 ≥ 0 to give a
simpler upper bound:

Ent(𝑒𝜆𝑍) ≤ 𝜆2

2
∑

𝑛

𝑖=1
𝔼[𝑒𝜆𝑍(𝑍 − 𝑍𝑖)

2].

Proof (Hints) .  Use Tensorisation of Entropy and the Variational Principle for Entropy,
with 𝑢 = 𝑌𝑖 (conditional on 𝑋(𝑖)). □

Proof .  Let 𝑌 = 𝑒𝜆𝑍 and 𝑌𝑖 = 𝑒𝜆𝑍𝑖 . By Tensorisation of Entropy,

Ent(𝑌 ) ≤ 𝔼[∑
𝑛

𝑖=1
Ent(𝑖)(𝑌 )]

We will bound each of the 𝑛 terms on the RHS. Conditional on 𝑋(𝑖), take 𝑢 = 𝑌𝑖 (note
that 𝑢 > 0). By the Variational Principle for Entropy,

Ent(𝑖)(𝑌 ) ≤ 𝔼[𝑌 log 𝑌
𝑌𝑖

− (𝑌 − 𝑌𝑖) | 𝑋(𝑖)]

= 𝔼[𝑒𝜆𝑍𝜆(𝑍 − 𝑍𝑖) − (𝑒𝜆𝑍 − 𝑒𝜆𝑍𝑖) | 𝑋(𝑖)]

= 𝔼[𝑒𝜆𝑍(𝜆(𝑍 − 𝑍𝑖) + 𝑒−𝜆(𝑍−𝑍𝑖) − 1) | 𝑋(𝑖)]

= 𝔼[𝑒𝜆𝑍𝜑(−𝜆(𝑍 − 𝑍𝑖)) | 𝑋(𝑖)].

The result follows by summing and taking expectations. □

Theorem 4.37 (Relaxed Bounded Differences)  Let 𝑍 = 𝑓(𝑋1, …, 𝑋𝑛) for independent
RVs 𝑋1, …, 𝑋𝑛 which take values on 𝐴 and 𝑓 : 𝐴𝑛 → ℝ. Let

𝑍𝑖 = inf
𝑥′

𝑖

𝑓(𝑋1:(𝑖−1), 𝑥′
𝑖, 𝑋(𝑖+1):𝑛).

Suppose that

∑
𝑛

𝑖=1
(𝑍 − 𝑍𝑖)

2 ≤ 𝜈

almost surely for some 𝜈 > 0. Then for all 𝑡 > 0,

ℙ(𝑍 − 𝔼[𝑍] ≥ 𝑡) ≤ 𝑒−𝑡2/2𝜈 .

Proof (Hints) .  Straightforward. □

Proof .  By the Modified Log-Sobolev Inequality,
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Ent(𝑒𝜆𝑍) ≤ 𝜆2

2
𝔼[𝑒𝜆𝑍 ∑

𝑛

𝑖=1
(𝑍 − 𝑍𝑖)

2] ≤ 𝜆2𝜈
2

𝔼[𝑒𝜆𝑍]

The result follows by Herbst's Argument and the Chernoff Bound. □

Remark 4.38  If 𝑍𝑖 = sup𝑥′
𝑖
𝑓(𝑋1:(𝑖−1), 𝑥′

𝑖, 𝑋(𝑖+1):𝑛) and ∑𝑛
𝑖=1 (𝑍 − 𝑍𝑖)

2 ≤ 𝜈, then we
also obtain a left tail bound. If this condition holds for the supremum and the infimum,
then 𝑍 ∈ 𝒢(𝜈).

4.5. Concentration of convex Lipschitz functions
Let 𝑓 : [0, 1]𝑛 → ℝ be separately convex and 1-Lipschitz. The Convex Poincare Inequal-
ity says that Var(𝑓(𝑋)) ≤ 𝔼[‖∇𝑓(𝑋)‖2] ≤ 1.

Theorem 4.39  Let 𝑓 : [0, 1]𝑛 → ℝ be separately convex and 1-Lipschitz. Let 𝑍 =
𝑓(𝑋1, …, 𝑋𝑛) where 𝑋1, …, 𝑋𝑛 are independent and are supported on [0, 1]. Then for
all 𝑡 > 0,

ℙ(𝑍 − 𝔼[𝑍] ≥ 𝑡) ≤ 𝑒−𝑡2/2,

so 𝑍 − 𝔼[𝑍] has a sub-Gaussian right tail.

Proof (Hints) .
• You may assume the partial derivatives of 𝑓 exist.
• Find an appropriate upper bound for ∑𝑛

𝑖=1 (𝑓(𝑋) − 𝑓(𝑋′
(𝑖)))

2
, where 𝑋′

(𝑖) =
(𝑋1:(𝑖−1), 𝑋′

𝑖 , 𝑋(𝑖+1):𝑛) and 𝑋′
𝑖  is the value for which the infimum is achieved (why

is the infimum achieved?).
• Conclude using Relaxed Bounded Differences.

□

Proof .  We may assume the partial derivatives of 𝑓 exist (by approximating 𝑓 as a
sequence of differentiable functions if necessary). By Relaxed Bounded Differences, it
is enough to show that ∑𝑛

𝑖=1 (𝑍 − 𝑍𝑖)
2 ≤ 1, where 𝑍𝑖 = inf𝑥′

𝑖
𝑓(𝑋1:(𝑖−1), 𝑥′

𝑖, 𝑋(𝑖+1):𝑛).
We have

∑
𝑛

𝑖=1
(𝑍 − 𝑍𝑖)

2 = ∑
𝑛

𝑖=1
(𝑓(𝑋) − 𝑓(𝑋′

(𝑖)))
2
,

where 𝑋′
(𝑖) = (𝑋1:(𝑖−1), 𝑋′

𝑖 , 𝑋(𝑖+1):𝑛) and 𝑋′
𝑖  is the value for which the infimum is

achieved. (The infimum is achieved since 𝑓 is continuous and [0, 1] is compact) By
convexity and the fact that 𝑋′

𝑖  is a minimiser (so 𝑓(𝑋′
(𝑖)) ≤ 𝑓(𝑋)),

∑
𝑛

𝑖=1
(𝑓(𝑋) − 𝑓(𝑋′

(𝑖)))
2

≤ ∑
𝑛

𝑖=1
(𝑋𝑖 − 𝑋′

𝑖)
2( 𝜕

𝜕𝑥𝑖
𝑓(𝑋))

2

≤ ∑
𝑛

𝑖=1
( 𝜕

𝜕𝑥𝑖
𝑓(𝑋))

2

= ‖∇𝑓(𝑋)‖2 ≤ 1
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since 𝑓 is 1-Lipschitz. □

Remark 4.40  The proof wouldn’t work for a left-tail bound, since −𝑓 is concave not
convex. The entropy method does not seem to give a left tail.

Remark 4.41  The naive bound using just the Lipschitz-ness of 𝑓 would give
∑𝑛

𝑖=1 (𝑍 − 𝑍𝑖)
2 ≤ 𝑛, so convexity gives a big improvement.

5. The transport method
Definition 5.1  Let Ω be a countable set and 𝒜 be a collection of subsets of Ω which
is a 𝜎-algebra. A probability space is (Ω, 𝒜, 𝑃), where 𝑃  is a probability measure.

Definition 5.2  A real-valued RV 𝑍 is a map Ω → ℝ. We define

ℙ(𝑍 ∈ 𝐴) = ∑
𝜔∈Ω:𝑋(𝜔)∈𝐴

𝑃(𝜔)

for 𝐴 ⊆ ℝ. We define 𝔼[𝑍] = ∑𝜔∈Ω 𝑃(𝜔)𝑍(𝜔). If 𝑄 ≪ 𝑃 , write 𝔼𝑄[𝑍] =
∑𝜔∈Ω 𝑄(𝜔)𝑍(𝜔).

Theorem 5.3 (Variational Representation for log-MGF and Relative Entropy)  Let
(Ω, 𝐴, 𝑃 ) be a countable probability space and 𝑍 be a random variable with 𝔼[|𝑍|] <
∞. Then

log 𝔼[𝑒𝑍] = log 𝔼𝑃 [𝑒𝑍] = sup
𝑄≪𝑃

(𝔼𝑄[𝑍] − 𝐷(𝑄 ‖ 𝑃))

where the supremum is taken over all probability measures 𝑄 that are absolutely
continuous with respect to 𝑃  such that 𝔼𝑄[|𝑍|] < ∞.

Conversely, fix 𝑄 ≪ 𝑃 . Then

𝐷(𝑄 ‖ 𝑃) = sup
𝑍

(𝔼𝑄𝑍 − log 𝔼𝑃 [𝑒𝑍]),

where the supremum is over all RVs 𝑍 such that 𝔼𝑃 [|𝑍|], 𝔼𝑄[|𝑍|] < ∞.

Proof (Hints) .  Define

𝑄∗(𝜔) = 𝑒𝑍(𝜔)𝑃(𝜔)
𝔼𝑃 [𝑒𝑍 ]

and show that 0 ≤ 𝐷(𝑄 ‖ 𝑃) + log 𝔼𝑃 [𝑒𝑍] − 𝔼𝑄[𝑍]. When is equality achieved? □

Proof .  Define

𝑄∗(𝜔) = 𝑒𝑍(𝜔)𝑃(𝜔)
𝔼𝑃 [𝑒𝑍 ]

.

Note that 𝑄∗ is a valid PMF. For any 𝑄 ≪ 𝑃  such that 𝔼𝑄[|𝑍|] < ∞, we have

0 ≤ 𝐷(𝑄 ‖ 𝑄∗)

33



= 𝔼𝑌 ∼𝑄[log 𝑄(𝑌 )
𝑄∗(𝑌 )

]

= 𝔼𝑌 ∼𝑄[log(𝑄(𝑌 )
𝑃(𝑌 )

𝑃(𝑌 )
𝑄∗(𝑌 )

)]

= 𝔼𝑌 ∼𝑄[log 𝑄(𝑌 )
𝑃(𝑌 )

] + 𝔼𝑄[log
𝑃(𝑌 )𝔼𝑍∼𝑃 [𝑒𝑍]

𝑃 (𝑌 )𝑒𝑍 ]

= 𝐷(𝑄 ‖ 𝑃) + log 𝔼𝑃 [𝑒𝑍] − 𝔼𝑄[𝑍]

Hence log 𝔼[𝑒𝑍] ≥ 𝔼𝑄𝑍 − 𝐷(𝑄 ‖ 𝑃), with equality iff 𝑄 = 𝑄∗. The result follows since
𝑄∗ ≪ 𝑃 . For the second statement, note that 𝐷(𝑄 ‖ 𝑃) ≥ 𝔼𝑄[𝑍] − log 𝔼[𝑒𝑍], for any
𝑄 ≪ 𝑃  and 𝑍. There is equality if 𝑍(𝜔) = log 𝑄(𝜔)

𝑃(𝜔) . (Note that 𝔼𝑄[|𝑍|] = 𝔼𝑄[|log 𝑄
𝑃 |] <

∞ since 𝐷(𝑄 ‖ 𝑃) < ∞ and the negative part of 𝑥 log 𝑥 is finitely bounded.) Note it
can be shown that the result holds when 𝐷(𝑄 ‖ 𝑃) < ∞ and when 𝔼𝑃 [𝑒𝑍] = ∞. □

Corollary 5.4  For all 𝜆 ∈ ℝ, we have

log 𝔼𝑃 [𝑒𝜆(𝑍−𝔼𝑃 [𝑍])] = sup
𝑄≪𝑃

(𝜆(𝔼𝑄𝑍 − 𝔼𝑃 𝑍) − 𝐷(𝑄 ‖ 𝑃))

Theorem 5.5 (Marton's Argument)  Let 𝑃  be a PMF and 𝑍 ∼ 𝑃 . If there exists 𝜈 >
0 such that

𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍] ≤ √2𝜈𝐷(𝑄 ‖ 𝑃)

for all PMFs 𝑄 such that 𝑄 ≪ 𝑃 , then

log 𝔼𝑃 [𝑒𝜆(𝑍−𝔼𝑃 [𝑍])] ≤ 𝜆2𝜈
2

∀𝜆 > 0,

(and so also ℙ(𝑍 − 𝔼[𝑍] ≥ 𝑡) ≤ 𝑒−𝑡2/2𝜈 by the Chernoff Bound). Conversely, if there
exists 𝜈 > 0 such that log 𝔼𝑃 [𝑒𝜆(𝑍−𝔼𝑃 [𝑍])] ≤ 𝜆2𝜈

2  for all 𝜆 > 0, then

𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍] ≤ √2𝜈𝐷(𝑄 ‖ 𝑃)

for all 𝑄 ≪ 𝑃 .

Proof (Hints) .
• Show that log 𝔼𝑃 [𝑒𝜆(𝑍−𝔼[𝑍])] ≤ sup𝑡≥0(𝜆

√
2𝜈𝑡 − 𝑡).

• For converse, may assume that 𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍] ≥ 0 (why?). The proof is similar to
the first proof.

□

Proof .  By the Variational Representation for log-MGF and Relative Entropy,

log 𝔼𝑃 [𝑒𝜆(𝑍−𝔼[𝑍])] = sup
𝑄≪𝑃

(𝜆(𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍]) − 𝐷(𝑄 ‖ 𝑃))

≤ sup
𝑄≪𝑃

(𝜆√2𝜈𝐷(𝑄 ‖ 𝑃) − 𝐷(𝑄 ‖ 𝑃))
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≤ sup
𝑡≥0

(𝜆
√

2𝜈𝑡 − 𝑡).

Let 𝑓(𝑡) = 𝜆
√

2𝜈𝑡 − 𝑡. Then 𝑓 ′(𝑡) = 0 iff 𝑡 = 𝜆2𝜈
2 , and so the sup𝑡≥0 𝑓(𝑡) = 𝜆2𝜈

2 .

For the converse, we may assume that 𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍] ≥ 0, since otherwise we are
trivially done. By Variational Representation for log-MGF and Relative Entropy, for
all 𝜆 > 0,

𝐷(𝑄 ‖ 𝑃) ≥ 𝜆(𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍]) − log 𝔼𝑃 𝑒𝜆(𝑍−𝔼𝑃 [𝑍]) ≥ 𝜆(𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍]) − 𝜆2𝜈
2

Taking the supremum over 𝜆 > 0, we obtain

𝐷(𝑄 ‖ 𝑃) ≥ sup
𝜆>0

(𝜆(𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍]) − 𝜆2𝜈
2

)

Differentiating the RHS, we see that it is maximised when 𝜆 = 1
𝜈(𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍]),

and so

𝐷(𝑄 ‖ 𝑃) ≥
(𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍])2

2𝜈
.

□

5.1. Concentration via Marton’s argument
Definition 5.6  Let 𝑃 , 𝑄 be distributions on 𝐴. Let 𝑋 ∼ 𝑃  and 𝑌 ∼ 𝑄. A coupling
𝜋 is a joint distribution on (𝑋, 𝑌 ) such that 𝑋 has marginal 𝑃  (w.r.t 𝜋) and 𝑌  has
marginal 𝑄 (w.r.t. 𝜋). Write Π(𝑃 , 𝑄) for the set of all couplings.

Example 5.7  𝑃 ⊗ 𝑄 is the independent coupling.

Lemma 5.8  𝑓 : 𝐴𝑛 → ℝ such that 𝑓(𝑦) − 𝑓(𝑥) ≤ ∑𝑛
𝑖=1 𝑐𝑖𝑑(𝑥𝑖, 𝑦𝑖) for some constants

𝑐𝑖 and distance 𝑑(⋅, ⋅). Let 𝑋 ∼ 𝑃1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑃𝑛 ≕ 𝑃 , 𝑍 = 𝑓(𝑋). Let 𝐶 > 0 be such that

inf
𝜋∈Π(𝑃,𝑄)

∑
𝑛

𝑖=1
𝔼𝜋[𝑑(𝑋𝑖, 𝑌𝑖)]

2 ≤ 2𝐶𝐷(𝑄 ‖ 𝑃).

for all 𝑄 ≪ 𝑃 . Then

ℙ(𝑍 − 𝔼[𝑍] ≥ 𝑡) ≤ 𝑒−𝑡2/2𝜈 ,

where 𝜈 = 𝐶 ∑𝑛
𝑖=1 𝑐2

𝑖 .

Proof (Hints) .  Let 𝑄 ≪ 𝑃  and 𝑌 ∼ 𝑄. Show that

𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍] ≤ (∑
𝑛

𝑖=1
𝑐2
𝑖 )

1/2

(∑
𝑛

𝑖=1
𝔼𝜋[𝑑(𝑋𝑖, 𝑌𝑖)]

2)
1/2

,

and conclude the result using Marton's Argument. □

Proof .  Let 𝑄 ≪ 𝑃  and 𝑌 ∼ 𝑄. Then
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𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍] = 𝔼[𝑓(𝑌 )] − 𝔼[𝑓(𝑋)]

= 𝔼𝜋[𝑓(𝑌 ) − 𝑓(𝑋)] for all 𝜋 ∈ Π(𝑃 , 𝑄)

≤ 𝔼𝜋[∑
𝑛

𝑖=1
𝑐𝑖𝑑(𝑋𝑖, 𝑌𝑖)]

= ∑
𝑛

𝑖=1
𝑐𝑖𝔼𝜋[𝑑(𝑋𝑖, 𝑌𝑖)]

≤ (∑
𝑛

𝑖=1
𝑐2
𝑖 )

1/2

(∑
𝑛

𝑖=1
𝔼𝜋[𝑑(𝑋𝑖, 𝑌𝑖)]

2)
1/2

by Cauchy-Schwarz

So

𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍] ≤ (∑
𝑛

𝑖=1
𝑐2
𝑖 )

1/2

( inf
𝜋∈Π(𝑃,𝑄)

∑
𝑛

𝑖=1
𝔼𝜋[𝑑(𝑋𝑖, 𝑌𝑖)]

2)
1/2

Since

inf
𝜋∈Π(𝑃,𝑄)

∑
𝑛

𝑖=1
𝔼𝜋[𝑑(𝑋𝑖, 𝑌𝑖)]

2 ≤ 2𝐶𝐷(𝑄 ‖ 𝑃)

we have 𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍] ≤ √2𝜈𝐷(𝑄 ‖ 𝑃), where 𝜈 = 𝐶 ∑𝑛
𝑖=1 𝑐2

𝑖 . The result follows by
Marton's Argument. □

Definition 5.9  Let 𝑋 ∼ 𝑃  and 𝑌 ∼ 𝑄. The transportation cost from 𝑄 to 𝑃  w.r.t
a distance 𝑑(⋅, ⋅) is

inf
𝜋∈Π(𝑃,𝑄)

𝔼𝜋[𝑑(𝑋, 𝑌 )].

Definition 5.10  Let 𝑃  and 𝑄 be distributions on the same space (Ω, 𝒜). The total
variation distance between 𝑃  and 𝑄 is

𝑑TV(𝑃 , 𝑄) ≔ sup
𝐴∈𝒜

|𝑃 (𝐴) − 𝑄(𝐴)|.

Proposition 5.11  Let 𝐴∗ = {𝜔 ∈ Ω : 𝑃(𝜔) ≥ 𝑄(𝜔)}. We have the alternative expres-
sions

𝑑TV(𝑃 , 𝑄) = 1
2

∑
𝜔∈Ω

|𝑃 (𝜔) − 𝑄(𝜔)| = ∑
𝜔∈Ω

(𝑃 (𝜔) − 𝑄(𝜔))+

= 𝑃(𝐴∗) − 𝑄(𝐴∗) = 1 − ∑
𝜔∈Ω

min{𝑃(𝜔), 𝑄(𝜔)}.

Proof (Hints) .
• For second equality, consider the + and − parts.
• For the first equality, show ≤ by splitting sum over 𝐴 and 𝐴𝑐 for 𝐴 ∈ 𝒜, show ≥ by

considering 𝐴∗ = {𝜔 : 𝑃(𝜔) ≥ 𝑄(𝜔)}.
• For the third equality, show the fourth expression is equal to the third.
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□

Proof .  For the first inequality: for any 𝐴 ∈ 𝒜, by the triangle inequality,

∑
𝜔∈Ω

|𝑃 (𝜔) − 𝑄(𝜔)| = ∑
𝜔∈𝐴

|𝑃 (𝜔) − 𝑄(𝜔)| + ∑
𝜔∈𝐴𝑐

|𝑃 (𝜔) − 𝑄(𝜔)|

≥ 𝑃(𝐴) − 𝑄(𝐴) + 𝑄(𝐴𝑐) − 𝑃(𝐴𝑐) = 2(𝑃(𝐴) − 𝑄(𝐴))

and similarly ∑𝜔∈Ω|𝑃 (𝜔) − 𝑄(𝜔)| ≥ 2(𝑄(𝐴) − 𝑃(𝐴)). Conversely,

𝑑TV(𝑃 , 𝑄) ≥ 𝑃(𝐴∗) − 𝑄(𝐴∗)

= ∑
𝜔∈Ω

(𝑃 (𝜔) − 𝑄(𝜔))+ = 1
2

∑
𝜔∈Ω

|𝑃 (𝜔) − 𝑄(𝜔)|,

since ∑𝜔∈Ω (𝑃 (𝜔) − 𝑄(𝜔))+ = ∑𝜔∈Ω (𝑃 (𝜔) − 𝑄(𝜔))−. For the third inequality,

1 − ∑
𝜔∈Ω

min{𝑃(𝜔), 𝑄(𝜔)} = ∑
𝜔∈Ω

𝑃(𝜔) − min{𝑃(𝜔), 𝑄(𝜔)}

= ∑
𝜔∈Ω

(𝑃 (𝜔) − 𝑄(𝜔))+

□

Lemma 5.12  Let 𝑃  and 𝑄 be distributions on the same space. Then if 𝑋 ∼ 𝑃  and
𝑌 ∼ 𝑄,

inf
𝜋∈Π(𝑃,𝑄)

ℙ𝜋(𝑋 ≠ 𝑌 ) = 𝑑TV(𝑃 , 𝑄) ∈ [0, 1].

Proof (Hints) .  Show that LHS ≥ RHS by taking a supremum and infimum, then
consider

𝜋(𝜔1, 𝜔2) =

{{
{
{{min{𝑃(𝜔), 𝑄(𝜔)} if 𝜔1 = 𝜔2 = 𝜔

1
𝑑TV(𝑃 ,𝑄)(𝑃 (𝜔1) − 𝑄(𝜔1))(𝑄(𝜔2) − 𝑃(𝜔2)) if (𝜔1, 𝜔2) ∈ 𝐴∗ × (𝐴∗)𝑐

0 otherwise.

□

Proof .  Let 𝜋 ∈ Π(𝑃 , 𝑄) and 𝐴 ∈ 𝒜. Since |𝕀{𝑋∈𝐴} − 𝕀{𝑌 ∈𝐴}| ≤ 𝕀{𝑋≠𝑌 } We have

|𝑃 (𝐴) − 𝑄(𝐴)| = |𝔼𝜋[𝕀{𝑋∈𝐴} − 𝕀{𝑌 ∈𝐴}]|

≤ 𝔼𝜋[|𝕀{𝑋∈𝐴} − 𝕀{𝑌 ∈𝐴}|]

≤ 𝔼[𝕀{𝑋≠𝑌 }] pointwise

= ℙ(𝑋 ≠ 𝑌 ).

Taking the supremum over all 𝐴 ∈ 𝒜 and the infimum over all couplings gives
𝑑TV(𝑃 , 𝑄) ≤ inf𝜋∈Π(𝑃,𝑄) ℙ(𝑋 ≠ 𝑌 ). We will construct 𝜋 such that ℙ(𝑋 ≠ 𝑌 ) =
𝑑TV(𝑃 , 𝑄). Intuitively, we want to place as much mass as possible on the “diagonal”,
i.e. make 𝜋(𝜔, 𝜔) as large as possible.
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For (𝜔1, 𝜔2) ∈ Ω × Ω, let

𝜋(𝜔1, 𝜔2) =

{{
{
{{min{𝑃(𝜔), 𝑄(𝜔)} if 𝜔1 = 𝜔2 = 𝜔

1
𝑑TV(𝑃 ,𝑄)(𝑃 (𝜔1) − 𝑄(𝜔1))(𝑄(𝜔2) − 𝑃(𝜔2)) if (𝜔1, 𝜔2) ∈ 𝐴∗ × (𝐴∗)𝑐

0 otherwise.

Clearly, ℙ𝜋(𝑋 = 𝑌 ) = ∑𝜔∈Ω 𝜋(𝜔, 𝜔) = ∑𝜔∈Ω min{𝑃(𝜔), 𝑄(𝜔)}, and so by Proposition
5.11, ℙ𝜋(𝑋 ≠ 𝑌 ) = 1 − ∑𝜔∈Ω min{𝑃(𝜔), 𝑄(𝜔)} = 𝑑TV(𝑃 , 𝑄). Also, 𝜋 is indeed a valid
coupling:

∑
𝜔1∈Ω

𝜋(𝜔1, 𝜔2) = ∑
𝜔1∈𝐴∗

(𝑃 (𝜔1) − 𝑄(𝜔1))
𝑄(𝜔2) − 𝑃(𝜔2)

𝑑TV(𝑃 , 𝑄)
𝕀{𝜔2∈(𝐴∗)𝑐} + min{𝑃(𝜔2), 𝑄(𝜔2)}

= 𝑄(𝜔2),

and similarly ∑𝜔2∈Ω 𝜋(𝜔1, 𝜔2) = 𝑃(𝜔1). □

Definition 5.13  The minimising coupling

𝜋(𝜔1, 𝜔2) =

{{
{
{{min{𝑃(𝜔), 𝑄(𝜔)} if 𝜔1 = 𝜔2 = 𝜔

1
𝑑TV(𝑃 ,𝑄)(𝑃 (𝜔1) − 𝑄(𝜔1))(𝑄(𝜔2) − 𝑃(𝜔2)) if (𝜔1, 𝜔2) ∈ 𝐴∗ × (𝐴∗)𝑐

0 otherwise.

in the proof of Lemma 5.12 is called the optimal total variation coupling.

Lemma 5.14 (Pinsker's Inequality)  Let 𝑃  and 𝑄 be PMFs such that 𝑄 ≪ 𝑃 . Then

𝑑TV(𝑃 , 𝑄)2 ≤ 1
2
𝐷(𝑄 ‖ 𝑃).

Proof (Hints) .  Let 𝑌 (𝜔) = 𝑄(𝜔)
𝑃(𝜔)  and 𝑍 = 𝕀{𝑌 ≥1}. Use Hoeffding's Lemma and Marton's

Argument. □

Proof .  Let 𝑌 (𝜔) = 𝑄(𝜔)
𝑃(𝜔) . Let 𝑍 = 𝕀{𝑌 ≥1}. By Hoeffding's Lemma,

𝜓𝑍−𝔼[𝑍](𝜆) ≤ 𝜆2

8
.

But then by Marton's Argument,

𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍] ≤ √2 ⋅ 1
4

⋅ 𝐷(𝑄 ‖ 𝑃),

i.e. 𝑑TV(𝑃 , 𝑄) = 𝑄(𝐴) − 𝑃(𝐴) ≤ √1
2 ⋅ 𝐷(𝑄 ‖ 𝑃), where 𝐴 = {𝜔 ∈ Ω : 𝑄(𝜔) ≥ 𝑃(𝜔)},

by Proposition 5.11. □

Theorem 5.15 (Marton's Transport Cost Inequality)  Let 𝑃 = 𝑃1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑃𝑛 and 𝑄 ≪
𝑃 . Let 𝑋 ∼ 𝑃  and 𝑌 ∼ 𝑄. Then

inf
𝜋∈Π(𝑃,𝑄)

∑
𝑛

𝑖=1
𝔼𝜋[𝕀{𝑋𝑖≠𝑌𝑖}]

2
= inf

𝜋∈Π(𝑃,𝑄)
∑

𝑛

𝑖=1
ℙ𝜋(𝑋𝑖 ≠ 𝑌𝑖)

2 ≤ 1
2
𝐷(𝑄 ‖ 𝑃).
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Proof .  We use induction on 𝑛. The 𝑛 = 1 case follows from Lemma 5.12 and Pinsker's
Inequality. Assume that for every 𝑛 ≤ 𝑘, there exists a coupling 𝜋𝑛 on (𝑋1:𝑛, 𝑌1:𝑛)
such that ∑𝑛

𝑖=1 ℙ(𝑋𝑖 ≠ 𝑌𝑖)
2 ≤ 1

2𝐷(𝑄 ‖ 𝑃). We will extend it to a coupling 𝜋𝑘+1 on
(𝑋1:(𝑘+1), 𝑌1:(𝑘+1)). Write

∑
𝑘+1

𝑖=1
ℙ(𝑋𝑖 ≠ 𝑌𝑖)

2 = ∑
𝑘

𝑖=1
ℙ(𝑋𝑖 ≠ 𝑌𝑖)

2 + ℙ(𝑋𝑘+1 ≠ 𝑌𝑘+1)
2

For fixed 𝑦1:𝑘, let 𝜋𝑦1:𝑘
∈ Π(𝑃𝑋𝑘+1

, 𝑄𝑌𝑘+1 | 𝑌1:𝑘=𝑦1:𝑘
) be the optimal total variation

coupling of 𝑋𝑘+1 and 𝑌𝑘+1 | 𝑌1:𝑘 = 𝑦1:𝑘. Define

𝜋𝑘+1(𝑥1:(𝑘+1), 𝑦1:(𝑘+1)) ≔ 𝜋𝑘(𝑥1:𝑘, 𝑦1:𝑘) ⋅ 𝜋𝑦1:𝑘
(𝑥𝑘+1, 𝑦𝑘+1)

= ℙ(𝑋1:𝑘 = 𝑥1:𝑘, 𝑌1:𝑘 = 𝑦1:𝑘)ℙ(𝑋𝑘+1 = 𝑥𝑘+1)ℙ(𝑌𝑘+1 = 𝑦𝑘+1 | 𝑋𝑘+1 = 𝑥𝑘+1)

This new coupling has two properties:
1. Given (𝑋1:𝑘, 𝑌1:𝑘), the distribution of (𝑋𝑘+1, 𝑌𝑘+1) depends only on 𝑌1:𝑘, i.e. 𝑋1:𝑘 −

𝑌1:𝑘 − (𝑋𝑘+1, 𝑌𝑘+1) form a Markov chain.
2. Also, 𝑋𝑘+1 is independent of (𝑋1:𝑘, 𝑌1:𝑘).

These properties imply that (𝑋𝑘+1, 𝑌𝑘+1)| 𝑋1:𝑘 = 𝑥1:𝑘, 𝑌1:𝑘 = 𝑦1:𝑘 ∼ 𝜋𝑦1:𝑘
. Hence,

ℙ(𝑋𝑘+1 ≠ 𝑌𝑘+1 | 𝑋1:𝑘 = 𝑥1:𝑘, 𝑌1:𝑘 = 𝑦1:𝑘) = 𝑑TV(𝑃𝑋𝑘+1
, 𝑄𝑌𝑘+1 | 𝑌1:𝑘=𝑦1:𝑘

)

≤ √1
2
𝐷(𝑄𝑌𝑘+1 | 𝑌1:𝑘=𝑦1:𝑘

‖ 𝑃𝑋𝑘+1
)

by the 𝑛 = 1 result. Taking expectation over 𝜋𝑘 on the LHS gives

ℙ(𝑋𝑘+1 ≠ 𝑌𝑘+1) = 𝔼𝜋𝑘
[ℙ(𝑋𝑘+1 ≠ 𝑌𝑘+1 | 𝑋1:𝑘, 𝑌1:𝑘)]

≤ 𝔼𝑄𝑌1:𝑘
[√1

2
𝐷(𝑄𝑌𝑘+1 | 𝑌1:𝑘

‖ 𝑃𝑋𝑘+1
)]

Squaring and using Jensen’s inequality gives

ℙ(𝑋𝑘+1 ≠ 𝑌𝑘+1)
2 ≤ 1

2
𝔼𝑄𝑌1:𝑘

[𝐷(𝑄𝑌𝑘+1 | 𝑌1:𝑘
‖ 𝑃𝑋𝑘+1

)]

= 1
2
𝐷(𝑄𝑌𝑘+1 | 𝑌1:𝑘

‖ 𝑃𝑋𝑘+1
| 𝑄𝑌1:𝑘

)

By the induction hypothesis,

∑
𝑘+1

𝑖=1
ℙ(𝑋1 ≠ 𝑌𝑖)

2 ≤ 1
2
(𝐷(𝑄𝑌1:𝑘

‖ 𝑃𝑋1:𝑘
) + 𝐷(𝑄𝑌𝑘+1 | 𝑌1:𝑘

‖ 𝑃𝑋𝑘+1
| 𝑄𝑌1:𝑘

))

= 1
2
𝐷(𝑄𝑌1:(𝑘+1)

‖ 𝑃𝑋1:(𝑘+1)
)

by the Chain Rule for Relative Entropy. □
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Remark 5.16  We can recover the Bounded Differences Inequality from Marton's
Transport Cost Inequality: the conditions of Lemma 5.8 are satisfied with 𝐶 = 1

4 , since
𝑓 having bounded differences with constant 𝑐𝑖 implies

𝑓(𝑦) − 𝑓(𝑥) ≤ ∑
𝑛

𝑖=1
𝑐𝑖𝑑(𝑥𝑖, 𝑦𝑖),

where 𝑑(𝑥𝑖, 𝑦𝑖) = 𝕀{𝑥𝑖≠𝑦𝑖}. This gives the concentration bound.

5.2. Talagrand’s inequality
Lemma 5.17  Let 𝑃  and 𝑄 be distributions on the same space (Ω, 𝒜). Then

inf
𝜋∈Π(𝑃,𝑄)

∑
𝑛

𝑖=1
𝔼[ℙ(𝑋𝑖 ≠ 𝑌𝑖 | 𝑋)2] = 𝑑2

2(𝑄, 𝑃 ).

Proof .  We have

ℙ(𝑋 = 𝑌 | 𝑋 = 𝑥) = ℙ(𝑋 = 𝑥, 𝑌 = 𝑥)
ℙ(𝑋 = 𝑥)

≤ min{1, 𝑄(𝑥)
𝑃(𝑥)

}.

So for any coupling 𝜋,

𝔼𝜋[ℙ(𝑋 ≠ 𝑌 | 𝑋)2] ≥ 𝔼𝑃 [(1 − min{1, 𝑄(𝑋)
𝑃(𝑋)

})
2

] = 𝔼𝑃 [(1 − 𝑄(𝑋)
𝑃(𝑋)

)
2

+
] = 𝑑2

2(𝑄, 𝑃 ).

□

Definition 5.18  Marton’s divergence is

𝑑2
2(𝑄, 𝑃 ) = 𝔼[(1 − 𝑄(𝑋)

𝑃(𝑋)
)

2

+
] = ∑

𝜔:𝑃(𝜔)>0

(𝑃 (𝜔) − 𝑄(𝜔))2
+

𝑃(𝜔)
.

Lemma 5.19 (Pinsker's Inequality for Marton Divergence)  Let 𝑃 , 𝑄 be distributions
on the same space (Ω, 𝐴) with 𝑄 ≪ 𝑃 . Then

𝑑2
2(𝑄, 𝑃 ) ≤ 2𝐷(𝑄 ‖ 𝑃).

Proof .  Let ℎ(𝑡) = (1 − 𝑡) log(1 − 𝑡) + 𝑡 for 0 ≤ 𝑡 ≤ 1 and 𝑞(𝑋) = 𝑄(𝑋)
𝑃(𝑋) . Then

𝐷(𝑄 ‖ 𝑃) = 𝔼[ℎ(1 − 𝑞(𝑋))].

We have ℎ(𝑡) = −(1 − 𝑡) log(1 + 𝑡
1−𝑡) + 𝑡 ≥ −𝑡 + 𝑡 ≥ 0. ℎ(𝑡) ≥ 𝑡2/2 for 𝑡 ∈ [0, 1] since

log 𝑥 ≤ 𝑥 − 1, and ℎ′(𝑡) = −1 − log(1 − 𝑡) + 1 = − log(1 − 𝑡). Hence,

d
d𝑡

(ℎ(𝑡) − 𝑡2

2
) = − log(1 − 𝑡) − 𝑡 ≥ (1 − 𝑡) + 1 − 𝑡 = 0.

So we have
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𝐷(𝑄 ‖ 𝑃) = 𝔼[ℎ(1 − 𝑞(𝑋))] ≥ 𝔼[ℎ((1 − 𝑞(𝑋))+)] ≥ 𝔼[
(1 − 𝑞(𝑋))2

+
2

] = 1
2
𝑑2

2(𝑄, 𝑃 ).

where first inequality is since ℎ ≥ 0. □

Theorem 5.20 (Marton's Conditional Transport Cost Inequality)  Let 𝑋 =
(𝑋1, …, 𝑋𝑛), 𝑋 ∼ 𝑃 = 𝑃1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑃𝑛, and let 𝑄 ≪ 𝑃 . Then

inf
𝜋∈Π(𝑃,𝑄)

∑
𝑛

𝑖=1
𝔼𝜋[𝑃 (𝑋𝑖 ≠ 𝑌𝑖 | 𝑋)2] ≤ 2𝐷(𝑄 ‖ 𝑃).

Proof (Hints) .  Explain why ℙ(𝑋 = 𝑌 | 𝑋 = 𝑥) ≤ min{1, 𝑄(𝑥)/𝑃(𝑥)}, then take expec-
tation. □

Proof .  The 𝑛 = 1 case follows by the above two lemmas. Now we use induc-
tion on 𝑛. Assume that for every 𝑛 ≤ 𝑘, there exists a 𝜋𝑘 ∈ Π(𝑃 , 𝑄) such that
∑𝑛

𝑖=1 𝔼[ℙ(𝑋𝑖 ≠ 𝑌𝑖 | 𝑋)2] ≤ 2𝐷(𝑄 ‖ 𝑃). We will find a coupling 𝜋𝑘+1 such that

∑
𝑘

𝑖=1
𝔼[ℙ(𝑋𝑖 ≠ 𝑌𝑖 | 𝑋1:(𝑘+1))

2
] + 𝔼[ℙ(𝑋𝑘+1 ≠ 𝑌𝑘+1) | 𝑋1:(𝑘+1)] = ∑

𝑘+1

𝑖=1
𝔼[ℙ(𝑋𝑖 ≠ 𝑌𝑖 | 𝑋1:(𝑘+1))

2
]

≤ 𝐷(𝑄𝑌1:(𝑘+1)
‖ 𝑃𝑋1:(𝑘+1)

)

For fixed 𝑦1:𝑘, let 𝜋𝑦1:𝑘
 be the optimal total variation coupling of 𝑋𝑘+1 and 𝑌𝑘+1 | 𝑌1:𝑘 =

𝑦1:𝑘. Let

𝜋𝑘+1(𝑥1:(𝑘+1), 𝑦1:(𝑘+1)) = 𝜋𝑘(𝑥1:𝑘, 𝑦1:𝑘) ⋅ 𝜋𝑦1:𝑘
(𝑥𝑘+1, 𝑦𝑘+1).

This coupling has two properties:
• 𝑋1:𝑘 − 𝑌1:𝑘 − (𝑋𝑘+1, 𝑌𝑘+1) form a Markov chain.
• 𝑋𝑘+1 is independent of (𝑋1:𝑘, 𝑌1:𝑘). By the induction hypothesis,

∑
𝑘

𝑖=1
𝔼𝜋𝑘+1

[ℙ(𝑋𝑖 ≠ 𝑌𝑖 | 𝑋1:(𝑘+1))] = ∑
𝑘

𝑖=1
𝔼𝜋𝑘+1

[ℙ(𝑋𝑖 ≠ 𝑌𝑖 | 𝑋1:𝑘)2] by second property

≤ 2𝐷(𝑄𝑌1:𝑘
‖ 𝑃𝑋1:𝑘

).

We want to show

𝔼[ℙ(𝑋𝑘+1 ≠ 𝑌𝑘+1 | 𝑋1:(𝑘+1))
2
] ≤ 2𝐷(𝑄𝑌𝑘+1 | 𝑌1:𝑘

‖ 𝑃𝑋𝑘+1
| 𝑄𝑌1:𝑘

)

From the 𝑛 = 1 case, we know that

𝔼𝜋𝑦1:𝑘
[ℙ(𝑋𝑘+1 ≠ 𝑌𝑘+1 | 𝑋𝑘+1, 𝑌1:𝑘 = 𝑦1:𝑘)2] ≤ 2𝐷(𝑄𝑌𝑘+1 | 𝑌1:𝑘=𝑦1:𝑘

‖ 𝑃𝑋𝑘+1
).

By the two properties of 𝜋𝑘+1,

ℙ(𝑋𝑘+1 ≠ 𝑌𝑘+1 | 𝑋𝑘+1, 𝑌1:𝑘 = 𝑦1:𝑘) = ℙ(𝑋𝑘+1 ≠ 𝑌𝑘+1 | 𝑋1:(𝑘+1), 𝑌1:𝑘 = 𝑦1:𝑘)
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Taking 𝔼𝑌1:𝑘
(⋅) in the above, we obtain

𝔼ℙ(𝑋𝑘+1 ≠ 𝑌𝑘+1 | 𝑋1:(𝑘+1), 𝑌1:𝑘)
2

= 𝔼ℙ(𝑋𝑘+1 ≠ 𝑌𝑘+1 | 𝑋𝑘+1, 𝑌𝑘+1)
2 ≤ 2𝐷(𝑄𝑌𝑘+1 | 𝑌1:𝑘

‖ 𝑃𝑋𝑘+1
| 𝑄𝑌1:𝑘

)

The LHS is equal to

𝔼𝔼[𝔼[𝕀{𝑋𝑘+1≠𝑌𝑘+1} | 𝑋1:(𝑘+1), 𝑌1:𝑘]
2

| 𝑋1:(𝑘+1)]

≥ 𝔼𝔼[𝔼[𝕀{𝑋𝑘+1≠𝑌𝑘+1} | 𝑋1:(𝑘+1), 𝑌1:𝑘] | 𝑋1:(𝑘+1)]
2

by Jensen

= 𝔼𝔼[𝕀{𝑋𝑘+1≠𝑌𝑘+1} | 𝑋1:(𝑘+1)]
2

by tower property

= 𝔼ℙ(𝑋𝑘+1 ≠ 𝑌𝑘+1 | 𝑋1:(𝑘+1))
2

So ∑𝑘
𝑖=1 𝔼ℙ(𝑋𝑖 ≠ 𝑌𝑖 | 𝑋1:(𝑘+1))

2
+

𝔼ℙ(𝑋𝑘+1 ≠ 𝑌𝑘+1 | 𝑋1:𝑘)2 ≤ 2𝐷(𝑄𝑌1:𝑘
‖ 𝑃𝑋1:𝑘

) + 2𝐷(𝑄𝑌𝑘+1 | 𝑌1:𝑘
‖ 𝑃𝑋𝑘+1

| 𝑄𝑌1:𝑘
) =

2𝐷(𝑄 ‖ 𝑃) by the Chain Rule for Relative Entropy.

□

Definition 5.21  𝑓 : 𝐴𝑛 → ℝ satisfies the one-sided bounded differences property
if

𝑓(𝑦) − 𝑓(𝑥) ≤ ∑
𝑛

𝑖=1
𝕀{𝑥𝑖≠𝑦𝑖}𝑐𝑖(𝑥) ∀𝑥, 𝑦 ∈ 𝐴𝑛,

where 𝑐𝑖 : 𝐴𝑛 → ℝ≥0.

Remark 5.22  We can’t apply results for bounded differences on functions with this
property, since it is a weaker property.

Remark 5.23  By Relaxed Bounded Differences, if ∑𝑛
𝑖=1 (𝑍𝑖 − 𝑍)2 ≤ 𝜈, where

𝑍𝑖 = sup𝑥𝑖
𝑓(𝑋1:(𝑖−1), 𝑥𝑖, 𝑋(𝑖+1):𝑛), then ℙ(𝑍 − 𝔼[𝑍] ≤ −𝑡) ≤ 𝑒−𝑡2/2𝜈 . Under one-sided

bounded differences,

0 ≤ ∑
𝑛

𝑖=1
(𝑍𝑖 − 𝑍)2 ≤ ∑

𝑛

𝑖=1
𝑐𝑖(𝑋)2 ≤ sup

𝑥∈𝐴𝑛
∑

𝑛

𝑖=1
𝑐𝑖(𝑥)2 ≕ 𝜈∞,

so we obtain the left-tail bound ℙ(𝑍 − 𝔼[𝑍] ≤ −𝑡) ≤ 𝑒−𝑡2/2𝜈∞ . But now if 𝑍𝑖 =
inf𝑥𝑖

𝑓(𝑋1:(𝑖−1), 𝑥𝑖, 𝑋(𝑖+1):𝑛), with infimum achieved at (𝑋′)(𝑖) = (𝑋1:(𝑖−1), 𝑥′
𝑖, 𝑋(𝑖+1):𝑛),

then

0 ≤ ∑
𝑛

𝑖=1
(𝑍 − 𝑍𝑖)

2 ≤ ∑
𝑛

𝑖=1
𝑐𝑖((𝑋′)(𝑖))

2
.

We generally can’t say that this is ≤ sup𝑥∈𝐴𝑛 ∑𝑛
𝑖=1 𝑐𝑖(𝑥)2, so can’t immediately deduce

a right tail bound.

However, the transport method gives us a right-tail bound with a better parameter 𝜈 =
𝔼[∑𝑛

𝑖=1 𝑐𝑖(𝑋)2] ≤ 𝜈∞.
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Theorem 5.24 (Talagrand's One-sided Bounded Differences Inequality)  Let 𝑋 =
(𝑋1, …, 𝑋𝑛) ∼ 𝑃1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑃𝑛, 𝑋𝑖 independent. Let 𝑓 : 𝐴𝑛 → ℝ be a function with one-
sided bounded differences with associated functions 𝑐𝑖. Let 𝑍 = 𝑓(𝑋) and let 𝜈 =
𝔼[∑𝑛

𝑖=1 𝑐𝑖(𝑋)2]. Then

𝜓𝑍−𝔼[𝑍](𝜆) ≤ 𝜆2𝜈
2

∀𝜆 > 0

which implies that

ℙ(𝑍 − 𝔼[𝑍] ≥ 𝑡) ≤ 𝑒−𝑡2/2𝜈 ∀𝑡 > 0.

Proof (Hints) .
• For 𝑄 ≪ 𝑃  and 𝜋 ∈ Π(𝑃 , 𝑄), show that, using Law of Total Expectation,

𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍] ≤ ∑
𝑛

𝑖=1
𝔼𝜋[𝑐𝑖(𝑋)ℙ(𝑋𝑖 ≠ 𝑌𝑖 | 𝑋)],

where ℙ(𝑋𝑖 ≠ 𝑌𝑖 | 𝑋) = 𝔼𝜋[𝕀{𝑋𝑖≠𝑌𝑖} | 𝑋].
• Apply Cauchy-Schwarz twice.
• Conclude using Marton's Argument.

□

Proof .  Let 𝑄 ≪ 𝑃 . Then for all 𝜋 ∈ Π(𝑃 , 𝑄),

𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍] = 𝔼𝜋[𝑓(𝑌 ) − 𝑓(𝑋)]

≤ 𝔼𝜋[∑
𝑛

𝑖=1
𝑐𝑖(𝑋)𝕀{𝑋𝑖≠𝑌𝑖}] by assumption

= ∑
𝑛

𝑖=1
𝔼𝜋𝔼𝜋[𝕀{𝑋𝑖≠𝑌𝑖}𝑐𝑖(𝑋) | 𝑋] by Law of Total Expectation

= ∑
𝑛

𝑖=1
𝔼𝜋[𝑐𝑖(𝑋)ℙ(𝑋𝑖 ≠ 𝑌𝑖 | 𝑋)]

≤ ∑
𝑛

𝑖=1
(𝔼𝜋[𝑐𝑖(𝑋)2])1/2(𝔼𝜋[ℙ(𝑋𝑖 ≠ 𝑌𝑖 | 𝑋)2])

1/2
by Cauchy-Schwarz

≤ (∑
𝑛

𝑖=1
𝔼𝜋[𝑐𝑖(𝑋)2])

1/2

(∑
𝑛

𝑖=1
𝔼[ℙ(𝑋𝑖 ≠ 𝑌𝑖 | 𝑋)2])

1/2

by Cauchy-Schwarz

where we write ℙ(𝑋𝑖 ≠ 𝑌𝑖 | 𝑋) = 𝔼𝜋[𝕀{𝑋𝑖≠𝑌𝑖} | 𝑋]. We claim that

inf
𝜋∈Π(𝑃,𝑄)

∑
𝑛

𝑖=1
𝔼[ℙ(𝑋𝑖 ≠ 𝑌𝑖 | 𝑋)2] ≤ 2𝐷(𝑄 ‖ 𝑃).

This will imply that

𝔼𝑄[𝑍] − 𝔼𝑃 [𝑍] ≤ √𝜈 ⋅ 2 ⋅ 𝐷(𝑄 ‖ 𝑃)
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amd so by Marton's Argument, 𝜓𝑍−𝔼[𝑍](𝜆) ≤ 𝜆2𝜈
2  for all 𝜆 > 0, which gives the right

tail bound by the Chernoff Bound.

Now we prove the claim: □

6. Log-concave random variables
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