Contents

1.	The	Chernoff-Cramer method
	1.1.	The Chernoff bound and Cramer transform
	1.2.	Hoeffding's and related inequalities
2.	The [·]	variance method
	2.1.	The Efron-Stein inequality
	2.2.	Functions with bounded differences 12
3.	Poine	caré inequalities
	3.1.	Poincare constant
4.	The	entropy method
	4.1.	Entropy, chain rules and Han's inequality
	4.2.	Herbst's argument
	4.3.	Log-Sobolev inequalities on the hypercube
	4.4.	The modified log-Sobolev inequality (MLSI)
	4.5.	Concentration of convex Lipschitz functions
5.	The [·]	transport method
	5.1.	Concentration via Marton's argument
	5.2.	Talagrand's inequality
6.	Log-o	concave random variables

Question: toss a fair coin n = 10000 times. How many heads?

$$\begin{split} X &= \sum_{i=1}^{n}, \, X_{i} \sim \text{Bern}(1/2). \ \mathbb{E}[X] = 5000. \ \text{But} \ \mathbb{P}(X = 5000) = \left(\frac{10^{4}}{5000}\right) \cdot 2^{-10^{4}} \approx 0.008. \\ \text{By WLLN}, \ \mathbb{P}(X \in [5000 - n\varepsilon, 5000 + n\varepsilon]) \approx 1. \end{split}$$

Theorem 0.1 (Central Limit Theorem) Let $X_1, ..., X_n$ be IID RVs with mean $\mathbb{E}[X_1] = \mu$. Let $\operatorname{Var}(X_1) = \sigma^2 < \infty$. Then $\frac{1}{\sigma\sqrt{n}} \sum_{i=1}^n (X_i - \mu) \xrightarrow{D} N(0, 1)$, i.e.

$$\mathbb{P} \Biggl(\frac{1}{\sigma \sqrt{n}} \sum_{i=1}^n (X_i - \mu) \in A \Biggr) \to \int_A \frac{1}{\sqrt{2n}} e^{-x^2/2} \, \mathrm{d} x$$

for all A.

So $\mathbb{P}\left(X \in \left[\frac{n}{2} - \frac{\sqrt{n}}{2}Q^{-1}(\delta), \frac{n}{2} + \frac{\sqrt{n}}{2}Q^{-1}(\delta)\right]\right) \ge 1 - \delta$, for n large enough, where $Q(\delta) = \int_{\delta}^{\infty} \frac{1}{\sqrt{2n}} e^{-x^2/2d} \, dx$. We have $Q^{-1}(x) \propto \sqrt{\log \frac{1}{x}}$. So interval has length $\propto \sqrt{n}\sqrt{\log \frac{1}{\delta}}$. **Theorem 0.2** (Chebyshev's Inequality) $\mathbb{P}(|X - \mu| \ge \varepsilon) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}$ for all $\varepsilon > 0$. **Corollary 0.3** $\mathbb{P}\left(\left|\sum_{i=1}^{n} (X_i) - \frac{n}{2}\right| \ge t\right) \le \frac{\operatorname{Var}(\sum_{i=1}^{n} X_i)}{t^2} = n\frac{\sigma^2}{t^2} \le \delta$ where $t = \sqrt{n}\sigma/\sqrt{\delta}$. So $\mathbb{P}(X \in [\frac{n}{2} -, \frac{n}{2}]) \ge 1 - \delta$.

Question 2: we have N coupons. Each day receive one uniformly at random independent of the past. How many days until all coupons received?

We have $X = \sum_{i=1}^{n} X_i$, $X_i \sim \text{Geom}(\frac{i}{n})$. $\mathbb{E}[X] = \sum_i \mathbb{E}[X_i] \approx n \log n$ (verify this).

Question 3: Let $(X_1, ..., X_n), (Y_1, ..., Y_n)$ be IID. What is the longest common subsequence, i.e. $f(X_1, ..., X_n, Y_1, ..., Y_n) = \max\left\{k : \exists i_1, ..., i_k, j_1, ..., j_k \text{ s.t. } X_{i_j} = Y_{i_j} \ \forall j \in [k]\right\}$. Computing f is NP-hard. f is smooth.

Principle: a smooth function of many independent random variables concentrates around its mean.

Theorem 0.4 (Law of Total Expectation) We have $\mathbb{E}_{Y}[\mathbb{E}_{X}[X \mid Y]] = \mathbb{E}_{X}[X]$.

Theorem 0.5 (Tower Property of Conditional Expectation) We have $\mathbb{E}[\mathbb{E}[Z \mid X, Y] \mid Y] = \mathbb{E}[Z \mid Y].$

Theorem 0.6 We have $\mathbb{E}[f(Y)X \mid Y] = f(Y)\mathbb{E}[X \mid Y]$.

Theorem 0.7 (Holder's Inequality) Let $p \ge 1$ and 1/p + 1/q = 1. Then

$$\mathbb{E}[XY] \le \mathbb{E}[|X|^p]^{1/p} \cdot \mathbb{E}[|X|^q]^{1/q}.$$

Definition 0.8 The conditional variance of Y given X is the random variable

$$\operatorname{Var}(Y \mid X) \coloneqq \mathbb{E}\big[(Y - \mathbb{E}[Y \mid X])^2 \mid X\big]$$

1. The Chernoff-Cramer method

1.1. The Chernoff bound and Cramer transform

Theorem 1.1 (Weak Law of Large Numbers) Let $X_1, ..., X_n$ be IID RVs with mean $\mathbb{E}[X_1] = \mu$. Then, for all $\varepsilon > 0$,

$$\mathbb{P} \left(\left| \frac{1}{n} \sum_{i=1}^n X_i - \mu \right| > \varepsilon \right) \to 0 \quad \text{as } n \to \infty.$$

Theorem 1.2 (Markov's Inequality) Let Y be a non-negative RV. For any $t \ge 0$,

$$\mathbb{P}(Y \ge t) \le \frac{\mathbb{E}[Y]}{t}.$$

Proof (Hints). Split Y using indicator variables.

Proof. We have $Y = Y \cdot \mathbb{I}_{\{Y \ge t\}} + Y \cdot \mathbb{I}_{\{Y < t\}} \ge t \cdot \mathbb{I}_{\{Y \ge t\}}$. Taking expectations gives the result.

Corollary 1.3 Let $\varphi : \mathbb{R} \to \mathbb{R}_+$ be non-decreasing, then

$$\mathbb{P}(Y \ge t) \le \mathbb{P}(\varphi(Y) \ge \varphi(t)) \le \frac{\mathbb{E}[\varphi(Y)]}{\varphi(t)}.$$

For $\varphi(t) = t^2$, we can use $\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \operatorname{Var}(X_i)$.

Corollary 1.4 (Chebyshev's Inequality) For any RV Y and t > 0,

$$\mathbb{P}(|Y - \mathbb{E}[Y]| \ge t) \le \frac{\operatorname{Var}(Y)}{t^2}.$$

Proof (Hints). Straightforward.

Proof. Take $Z = |Y - \mathbb{E}[Y]|$ and use Corollary 1.3 with $\varphi(t) = t^2$.

Exercise 1.5 Prove WLLN, assuming that $Var(X_1) < \infty$, using Chebyshev's inequality.

Remark 1.6 If higher moments exist, we can use them in a similar way: let $\varphi(t) = t^q$ for q > 0, then for all t > 0,

$$\mathbb{P}(|Z - \mathbb{E}[Z]| \ge t) \le \frac{\mathbb{E}[|Z - \mathbb{E}[Z]|^q]}{t^q}.$$

We can then optimise over q to pick the lowest bound on $\mathbb{P}(|Z - \mathbb{E}[Z]| \ge t)$. Note that Chebyshev's Inequality is the most popular form of this bound due to the additivity of variance.

Definition 1.7 The moment generating function (MGF) of F is

$$F(\lambda) := \mathbb{E}[e^{\lambda Z}] = \sum_{k=0}^{\infty} \frac{\lambda^k \mathbb{E}[Z^k]}{k!}.$$

Definition 1.8 The **log-MGF** of Z is $\psi_Z(\lambda) = \log F(\lambda)$.

Note that $\psi_Z(\lambda)$ is additive: if $Z = \sum_{i=1}^n Z_i$, with $Z_1, ..., Z_n$ independent, then

$$\psi_Z(\lambda) = \log \bigl(\mathbb{E}[e^{\lambda Z}] \bigr) = \sum_{i=1}^n \log \mathbb{E}[e^{\lambda Z_i}] = \sum_{i=1}^n \psi_{Z_i}(\lambda).$$

Definition 1.9 The **Cramer transform** of Z is

$$\psi_Z^*(t) = \sup\{\lambda t - \psi_Z(\lambda) : \lambda > 0\}.$$

Proposition 1.10 (Chernoff Bound) Let Z be an RV. For all t > 0,

$$\mathbb{P}(Z \geq t) \leq e^{-\psi_Z^*(t)}$$

Proof. By Corollary 1.3, we have

$$\mathbb{P}(Z \geq t) \leq \frac{\mathbb{E}[e^{\lambda Z}]}{e^{\lambda t}} = e^{-(\lambda t - \psi_Z(\lambda))}$$

Taking the infimum over all $\lambda > 0$ gives $\mathbb{P}(Z \ge t) \le \inf\{e^{-(\lambda t - \psi_Z(\lambda))} : \lambda > 0\}$, which gives the result.

Remark 1.11 Our goal is to obtain an upper bound on $\psi_Z(\lambda)$, as this will give exponential concentration. The function $\psi_{Z-\mathbb{E}[Z]}(\lambda)$ gives upper bounds on $\mathbb{P}(Z-\mathbb{E}[Z] \ge t)$, the function $\psi_{-Z+\mathbb{E}[Z]}(\lambda)$ gives upper bounds on $\mathbb{P}(Z-\mathbb{E}[Z] \le -t)$.

Proposition 1.12

- 1. $\psi_Z(\lambda)$ is convex and infinitely differentiable on (0, b), where $b = \sup_{\lambda>0} \{\mathbb{E}[e^{\lambda Z}] < \infty\}$.
- 2. $\psi_Z^*(t)$ is non-negative and convex.
- 3. If $t > \mathbb{E}[Z]$, then $\psi_Z^*(t) = \sup_{\lambda \in \mathbb{R}} \{\lambda t \psi_Z(\lambda)\}$, the **Fenchel-Legendre** dual.

Proof (Hints).

- 1. Differentiability proof omitted. For convexity, use Holder's Inequality.
- 2. Straightforward (note that each $t \mapsto \lambda t \psi_Z(\lambda)$ is linear).
- 3. Straightforward.

Proof.

- 1. $\psi_Z(\alpha\lambda_1 + (1-\alpha)\lambda_2) = \log \mathbb{E}\left[e^{\alpha\lambda_1 Z} \cdot e^{(1-\alpha)\lambda_2 Z}\right] \leq \alpha \log \mathbb{E}\left[e^{\lambda_1 Z}\right] + (1-\alpha)\log \mathbb{E}\left[e^{\lambda_2 Z}\right]$ by Holder's inequality. The differentiability proof is omitted.
- 2. $\lambda t \psi_Z(\lambda)|_{\lambda=0} = 0$, so $\psi_Z^*(t) \ge 0$ by definition. Convexity follows since it is a supremum of linear functions.
- 3. By convexity and Jensen's inequality, $\mathbb{E}[e^{\lambda Z}] \ge e^{\lambda \mathbb{E}[Z]}$. So for $\lambda < 0$, $\lambda t \psi_Z(\lambda) \le \lambda(t \mathbb{E}[Z]) < 0 = \lambda t \psi_Z(\lambda)|_{\lambda=0}$.

Example 1.13 Let $Z \sim N(0, \sigma^2)$. Then the MGF of Z is

$$\mathbb{E}[e^{\lambda Z}] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/2\sigma^2} e^{\lambda x} \,\mathrm{d}x$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x^2 - 2\lambda\sigma^2 x + \lambda^2\sigma^4)/2\sigma^2} e^{\lambda^2 \frac{\sigma^2}{2}} dx$$
$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x - \lambda\sigma^2)^2/2\sigma^2} e^{\lambda^2 \frac{\sigma^2}{2}} dx$$
$$= e^{\lambda^2 \sigma^2/2}$$

So $\psi_Z(\lambda) = \frac{\lambda^2 \sigma^2}{2}$. By Proposition 1.12, for $t > 0 = \mathbb{E}[Z]$, the Cramer transform is

$$\psi_Z^*(t) = \sup_{\lambda \in \mathbb{R}} \left\{ \lambda t - \lambda^2 \sigma^2 / 2 \right\} =: \sup_{\lambda \in \mathbb{R}} g(\lambda).$$

We have $g'(\lambda) = t - \lambda \sigma^2 = 0$ iff $\lambda = t/\sigma^2$. So $\psi_Z^*(t) = t^2/\sigma^2 - \sigma^2 t^2/2\sigma^4 = t^2/2\sigma^2$. So Chernoff Bound gives

$$\mathbb{P}(Z \ge t) \le e^{-t^2/2\sigma^2}.$$

Definition 1.14 Let X be an RV with $\mathbb{E}[X] = 0$. X is **sub-Gaussian** with variance parameter ν if

$$\psi_X(\lambda) \leq \frac{\lambda^2 \nu}{2} \quad \forall \lambda \in \mathbb{R},$$

i.e. if its log MGF is less than that of a normally distributed random variable with mean 0 and variance ν . The set of all such sub-Gaussian variables is denoted $\mathcal{G}(\nu)$.

Proposition 1.15 For any sub-Gaussian RV X,

1. If $X \in \mathcal{G}(\nu)$, then $\mathbb{P}(X \ge t), \mathbb{P}(X \le -t) \le e^{-t^2/2\nu}$ for all t > 0.

2. If $X_1, ..., X_n$ are independent with each $X_i \in \mathcal{G}(\nu_i)$ then $\sum_{i=1}^n X_i \in \mathcal{G}\left(\sum_{i=1}^n \nu_i\right)$.

3. If $X \in \mathcal{G}(\nu)$, then $\operatorname{Var}(X) \leq \nu$.

Proof. Exercise.

Definition 1.16 The Gamma function is defined as

$$\Gamma(z) \coloneqq \int_0^\infty t^{z-1} e^{-t} \,\mathrm{d} t.$$

Theorem 1.17 Let $\mathbb{E}[X] = 0$. TFAE for suitable choices of ν, b, c, d :

1. $X \in \mathcal{G}(\nu)$. 2. $\mathbb{P}(X \ge t), \mathbb{P}(X \le -t) \le e^{-t^2/2b}$ for all t > 0. 3. $\mathbb{E}[X^{2q}] \le q!c^q$ for all $q \ge \mathbb{N}$. 4. $\mathbb{E}[e^{dX^2}] \le 2$.

Proof (Hints).

- $(1 \Rightarrow 2)$: straightforward.
- $(2 \Rightarrow 3)$: Explain why we can assume b = 1. Use that $\mathbb{E}[Y] = \int_0^\infty \mathbb{P}(Y > t) dt$ for $Y \ge 0$, and the Γ function.
- $(3 \Rightarrow 1)$: show that $\mathbb{E}[e^{\lambda X}] \leq \mathbb{E}[e^{\lambda(X-X')}]$ where X' is an IID copy of X. Show that $\mathbb{E}[(X-X')^{2q}] \leq \mathbb{E}[X^{2q}]$. Expand $\mathbb{E}[e^{\lambda(X-X')}]$ as a series. Conclude that $X \in \mathcal{G}(4c)$.
- $(3 \Leftrightarrow 4)$: exercise.

Proof. $(1 \Rightarrow 2)$ instantly follows (with $b = \nu$) by Proposition 1.15.

 $(2 \Rightarrow 3)$: WLOG, b = 1. Otherwise consider $\widetilde{X} = X/\sqrt{b}$. Recall that for $Y \ge 0$, $\mathbb{E}[Y] = \int_0^\infty \mathbb{P}(Y > t) \, \mathrm{d}t$. Now

$$\begin{split} \mathbb{E}[X^{2q}] &= \int_0^\infty \mathbb{P}(X^{2q} > t) \, \mathrm{d}t = \int_0^\infty \mathbb{P}\big(|X| > t^{1/2q}\big) \, \mathrm{d}t \\ &\leq 2 \int_0^\infty e^{-t^{1/q}/2} \, \mathrm{d}t \\ &= 2 \cdot 2^q \cdot q \int_0^\infty u^{q-1} e^{-u} \, \mathrm{d}u \\ &= 2 \cdot 2^q \cdot q \cdot \Gamma(q) \\ &= 2^{q+1} \cdot q! \leq c^q q! \end{split}$$

for some constant c, where we use the substitution $t^{1/q}/2 = u$, so $t = (2u)^q$, so $dt = 2^q q u^{q-1} du$.

 $(3 \Rightarrow 1)$: $\mathbb{E}[e^{-\lambda X}] \cdot \mathbb{E}[e^{\lambda X}] = \mathbb{E}[e^{\lambda(X-X')}]$, where X' is an IID copy of X. By Jensen's inequality, $\mathbb{E}[e^{-\lambda X}] \ge e^{-\lambda \mathbb{E}[X]} = 1$. So

$$\mathbb{E}[e^{\lambda X}] \leq \mathbb{E}\Big[e^{\lambda(X-X')}\Big] = \sum_{q=0}^{\infty} \frac{\lambda^{2q} \mathbb{E}\Big[(X-X')^{2q}\Big]}{(2q)!}$$

(we can ignore odd powers since X - X' is a symmetric RV: X - X' has the same distribution as X' - X). Now

$$\mathbb{E}[(X - X')^{2q}] = \sum_{k=0}^{2q} \binom{2q}{k} \mathbb{E}[X^k] \mathbb{E}\left[(X')^{2q-k}\right] \le \sum_{k=0}^{2q} \binom{2q}{k} \mathbb{E}[X^{2q}] = 2^{2q} \cdot \mathbb{E}[X^{2q}],$$

by Holder's inequality with p = 2q/k and q = 2q/(2q - k) for each k. Thus,

$$\begin{split} \mathbb{E}[e^{\lambda X}] &\leq \sum_{q=0}^{\infty} \frac{\lambda^{2q} \mathbb{E}[X^{2q}] \cdot 2^{2q}}{(2q)!} \\ &\leq \sum_{q=0}^{\infty} \frac{\lambda^{2q} c^q q! 2^{2q}}{(2q)!} \\ &\leq \sum_{q=0}^{\infty} \frac{\lambda^{2q} \cdot c^q 2^q}{q!} = \sum_{q=0}^{\infty} \frac{\left(\lambda^2 \cdot 2c\right)^q}{q!} = e^{2\lambda^2 c}, \end{split}$$

where we used that $(2q)!/q! = \prod_{j=1}^q (q+1)! \ge 2^q \cdot q!$. Hence $\psi_X(\lambda) = 2\lambda^2 c = \frac{\lambda^2 \cdot 4c}{2}$, hence $X \in \mathcal{G}(4c)$.

 $(3 \Leftrightarrow 4)$: exercise.

1.2. Hoeffding's and related inequalities

Lemma 1.18 (Hoeffding's Lemma) Let Y be a RV with $\mathbb{E}[Y] = 0$ and $Y \in [a, b]$ almost surely. Then $\psi_Y''(\lambda) \leq (b-a)^2/4$ and $Y \in \mathcal{G}((b-a)^2/4)$.

Proof (Hints).

• Define a new distribution based on λ , which should be obvious after expanding $\psi'_{Y}(\lambda)$.

• To conclude the result, use a Taylor expansion at 0 of $\psi_Y(\lambda)$.

Proof. Let Y have distribution P. We have

$$\psi'_Y(\lambda) = \frac{\mathbb{E}_{Y \sim P}[Y e^{\lambda Y}]}{\mathbb{E}_{Y \sim P}[e^{\lambda Y}]} = \mathbb{E}_{Y \sim P}\left[Y \cdot \frac{e^{\lambda Y}}{\mathbb{E}[e^{\lambda Y}]}\right] = \mathbb{E}_{Y \sim P_\lambda}[Y],$$

where if P is discrete, then P_{λ} is the discrete distribution with PMF

$$P_{\lambda}(y) = \frac{e^{\lambda y} P(y)}{\sum_{z} P(z) e^{\lambda z}} = \frac{e^{\lambda y} P(y)}{\mathbb{E}[e^{\lambda Y}]}$$

and if P is continuous with PDF f, then P_{λ} is the continuous distribution with PDF

$$f_{\lambda}(y) = \frac{e^{\lambda y} f(y)}{\int_{-\infty}^{\infty} f(z) e^{\lambda z} \, \mathrm{d}z} = \frac{e^{\lambda y} f(y)}{\mathbb{E}[e^{\lambda Y}]}.$$

Now

$$\begin{split} \psi_Y''(\lambda) &= \frac{\mathbb{E}_{Y \sim P} \big[Y^2 e^{\lambda Y} \big] \cdot \mathbb{E}_{Y \sim P} \big[e^{\lambda Y} \big] - \mathbb{E}_{Y \sim P} \big[Y e^{\lambda Y} \big]^2}{\mathbb{E}_{Y \sim P} \big[e^{\lambda Y} \big]^2} \\ &= \mathbb{E}_{Y \sim P} \left[Y^2 \frac{e^{\lambda Y}}{\mathbb{E}_{Y \sim P} [e^{\lambda Y}]} \right] - \mathbb{E} \left[Y \frac{e^{\lambda Y}}{\mathbb{E}_{Y \sim P} [e^{\lambda Y}]} \right]^2 \\ &= \mathbb{E}_{Y \sim P_\lambda} \big[Y^2 \big] - \mathbb{E}_{Y \sim P_\lambda} [Y]^2 = \operatorname{Var}_{Y \sim P_\lambda} (Y). \end{split}$$

Note that if $Y \in [a, b]$, then $\left|Y - \frac{b-a}{2}\right|^2 \le (b-a)^2/4$. So we have

$$\operatorname{Var}_{Y \sim P_{\lambda}}(Y) = \operatorname{Var}_{Y \sim P_{\lambda}}(Y - (b - a)/2) \le \mathbb{E}_{Y \sim P_{\lambda}}\left\lfloor \left(Y - \frac{b - a}{2}\right)^2 \right\rfloor \le \frac{(b - a)^2}{4}.$$

Finally, using a Taylor expansion at 0, we obtain

$$\psi_Y(\lambda)=\psi_Y(0)+\lambda_Y'(0)\lambda+\psi_Y''(\xi)\frac{\lambda^2}{2}=\psi_Y''(\xi)\frac{\lambda^2}{2}\leq \lambda^2\frac{(b-a)^2}{8},$$

for some $\xi \in [0, \lambda]$, since $\mathbb{E}_{Y \sim P}[Y] = \mathbb{E}_{Y \sim P_0}[Y] = 0$.

Remark 1.19 The distribution P_{λ} in the above proof is called the **exponentially** tilted distribution.

Theorem 1.20 (Hoeffding's Inequality) Let $X_1, ..., X_n$ be independent RVs where each X_i takes values in $[a_i, b_i]$. Then for all $t \ge 0$,

$$\mathbb{P}\Biggl(\sum_{i=1}^n (X_i - \mathbb{E}[X_i]) \geq t\Biggr) \leq \exp\Biggl(-\frac{2t^2}{\sum_{i=1}^n \left(b_i - a_i\right)^2}\Biggr).$$

Proof (Hints). Straightforward.

Proof. By Hoeffding's Lemma, $X_i - \mathbb{E}[X_i] \in \mathcal{G}((b_i - a_i^2)/4)$ for all *i*. By Proposition 1.15 (part 2), we have

$$\sum_{i=1}^n (X_i - \mathbb{E}[X_i]) \in \mathcal{G}\left(\frac{1}{4}\sum_{i=1}^n \left(b_i - a_i\right)^2\right).$$

Hence, by Proposition 1.15 (part 1), we are done.

Remark 1.21 A drawback of Hoeffding's Inequality is that the bound does not involve $\operatorname{Var}(X_i)$ the variance could be much smaller than the upper bound of $(b_i - a_i)^2/4$. This is addressed by Bennett's inequality:

 $\begin{array}{l} \textbf{Theorem 1.22} \ (\text{Bennett's Inequality}) \ \ \text{Let} \ X_1,...,X_n \ \text{be independent RVs with} \ \mathbb{E}[X_i] = \\ 0 \ \text{and} \ |X_i| \leq c \ \text{for all} \ i. \ \text{Let} \ \nu = \mathrm{Var}(X_1) + \cdots + \mathrm{Var}(X_n). \ \text{Then for all} \ t \geq 0, \end{array}$

$$\mathbb{P}\left(\sum_{i=1}^n X_i \geq t\right) \leq \exp\left(-\frac{\nu}{c^2} \cdot h_1\left(\frac{ct}{\nu}\right)\right),$$

where $h_1(x) = (1+x)\log(1+x) - x$ for x > 0.

Proof (Hints).

• Show that
$$\mathbb{E}[e^{\lambda X_i}] = 1 + \frac{\operatorname{Var}(X_i)}{c^2} (e^{\lambda c} - \lambda c - 1).$$

- Deduce that $\psi_{\sum_i X_i} \leq \nu_c^2 (e^{\lambda c} \lambda c 1).$
- Find an upper lower for $\psi^*_{\sum_i X_i}(t)$.

Proof. Denote $\sigma_i^2 = \operatorname{Var}(X_i) = \mathbb{E}[X_i^2] - \mathbb{E}[X_i]^2 = \mathbb{E}[X_i]^2$. The MGF of X_i is

$$\begin{split} \mathbb{E}[e^{\lambda X_i}] &= \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \mathbb{E}\left[X_i^k\right] = 1 + \sum_{k=2}^{\infty} \frac{\lambda^k}{k!} \mathbb{E}\left[X_i^{k-2} X_i^2\right] \\ &\leq 1 + c^{k-2} \sum_{k=2}^{\infty} \frac{\lambda^k}{k!} \mathbb{E}[X_i^2] = 1 + \frac{\sigma_i^2}{c^2} \sum_{k=2}^{\infty} \frac{\lambda^k c^k}{k!} \\ &= 1 + \frac{\sigma_i^2}{c^2} \left(\sum_{k=0}^{\infty} \frac{\lambda^k c^k}{k!} - \lambda c - 1\right) \\ &= 1 + \frac{\sigma_i^2}{c^2} \left(e^{\lambda c} - \lambda c - 1\right). \end{split}$$

So $\psi_{X_i}(\lambda) = \log\left(1 + \frac{\sigma_i^2}{c^2}(e^{\lambda c} - \lambda c - 1)\right) \leq \frac{\sigma_i^2}{c^2}(e^{\lambda c} - \lambda c - 1)$. So by additivity of ψ , we have

$$\psi_{\sum_{i=1}^n X_i}(\lambda) \leq \frac{\nu}{c^2} e^{\lambda c} - \frac{\nu}{c^2} \lambda c - \frac{\nu}{c^2}.$$

So for $t \ge 0 = \mathbb{E}\left[\sum_{i} X_{i}\right]$, by Proposition 1.12,

$$\psi^*_{\sum_i X_i}(t) \geq \sup_{\lambda \in \mathbb{R}} \Bigl\{ \lambda t - \frac{\nu}{c^2} e^{\lambda c} + \frac{\nu}{c} \lambda + \frac{\nu}{c^2} \Bigr\} =: \sup_{\lambda \in \mathbb{R}} \{g(\lambda)\}$$

We have $g'(\lambda) = t - \frac{\nu}{c}e^{\lambda c} + \frac{\nu}{c}$ which is 0 iff $t + \frac{\nu}{c} = \frac{\nu}{c}e^{\lambda c}$, i.e. iff $\lambda = \frac{1}{c}\log(1 + t\frac{c}{v}) =: \lambda^*$. So

$$\begin{split} \psi^*_{\sum X_i}(t) &\geq \frac{1}{c} t \log \left(1 + \frac{tc}{\nu} \right) - \frac{\nu}{c^2} \left(1 + \frac{tc}{\nu} \right) + \frac{\nu}{c^2} \log \left(1 + \frac{tc}{\nu} \right) + \frac{\nu}{c^2} \\ &= \frac{\nu}{c^2} \left(\left(1 + \frac{tc}{\nu} \right) \log \left(1 + \frac{tc}{\nu} \right) - \frac{tc}{\nu} \right) \\ &= \frac{\nu}{c^2} h_1 \left(\frac{tc}{\nu} \right). \end{split}$$

So we are done by the Chernoff Bound.

Remark 1.23 We can show that $h_1(x) \ge \frac{x^2}{2(x/3+1)}$ for $x \ge 0$. So by Bennett's Inequality, we obtain

$$\mathbb{P}\left(\sum_{i=1}^n X_i \geq t\right) \leq \exp\left(-\frac{t^2}{2(ct/3+\nu)}\right),$$

which is **Bernstein's inequality**. If $\nu \gg ct$, then this yields a sub-Gaussian tail bound, and if $\nu \ll ct$, then this yields an exponential bound. So Bernstein misses a log factor.

 $\label{eq:Remark 1.24 If $Z \sim \operatorname{Pois}(\lambda)$, then $\psi_{Z-\nu}(\lambda) = \nu \bigl(e^\lambda - \lambda - 1\bigr)$.}$

2. The variance method

2.1. The Efron-Stein inequality

Notation 2.1 Denote $X^{(i)} = (X_{1:(i-1)}, X_{(i+1):n})$ and for i < j, denote $X_{i:j} = (X_i, ..., X_j)$.

Notation 2.2 Denote $E_i Z = \mathbb{E}[Z \mid X_{1:i}], \quad E_0 Z = \mathbb{E}[Z], \quad E^{(i)} = \mathbb{E}[Z \mid X^{(i)}], \text{ and } \operatorname{Var}^{(i)}(Z) = \operatorname{Var}(Z \mid X^{(i)}).$

We want to study the concentration of $Z = f(X_1, ..., X_n)$ for independent X_i . If $Z = \sum_i X_i$, then $\operatorname{Var}\left(\sum_i X_i\right) = \sum_i \operatorname{Var}(X_i)$ if $\mathbb{E}\left[X_i X_j\right] = 0$ for all $i \neq j$, which holds if the X_i are independent.

Theorem 2.3 (Efron-Stein Inequality) Let $X_1, ..., X_n$ be independent and let $Z = f(X_1, ..., X_n)$. Then

$$\operatorname{Var}(Z) \leq \sum_{i=1}^{n} \mathbb{E}\Big[\left(Z - E^{(i)} Z \right)^2 \Big] = \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Var}^{(i)}(Z) \right].$$

Proof (Hints).

- The Law of Total Expectation and Tower Property of Conditional Expectation will come in handy a lot...
- Let $\Delta_i = E_i Z E_{i-1} Z$. Show that $\mathbb{E}[\Delta_i] = 0$.
- Show that the Δ_i are uncorrelated, i.e. $\mathbb{E}[\Delta_i \Delta_j] = \mathbb{E}[\Delta_i]\mathbb{E}[\Delta_j]$.
- Show that $\Delta_i = E_i (Z E^{(i)}Z)$.

Proof. Let $\Delta_i = E_i Z - E_{i-1} Z$. By the Law of Total Expectation, we have

$$\mathbb{E}[\Delta_i] = \mathbb{E}[\mathbb{E}[Z \mid X_{1:i}]] - \mathbb{E}\left[\mathbb{E}\Big[Z \mid X_{1:(i-1)}\Big]\right] = \mathbb{E}[Z] - \mathbb{E}[Z] = 0.$$

Also, note that $Z - \mathbb{E}[Z] = \mathbb{E}[Z \mid X_{1:n}] - \mathbb{E}[Z] = \sum_{i=1}^{n} \Delta_i$. We claim that the Δ_i are uncorrelated, i.e. $\mathbb{E}[\Delta_i \Delta_j] = \mathbb{E}[\Delta_i]\mathbb{E}[\Delta_j] = 0$ for $i \neq j$. Indeed, for i < j, by the Law of Total Expectation, we can write

$$\mathbb{E}[\Delta_i \Delta_j] = \mathbb{E}[\mathbb{E}[\Delta_i \Delta_j \mid X_{1:i}]] = \mathbb{E}[\Delta_i \mathbb{E}[\Delta_j \mid X_{1:i}]],$$

since Δ_i is a function of $X_{1:i}$. But

$$\begin{split} \mathbb{E} \begin{bmatrix} \Delta_j \mid X_{1:i} \end{bmatrix} &= \mathbb{E} \begin{pmatrix} E_j Z - E_{j-1} Z \mid X_{1:i} \end{pmatrix} \\ &= \mathbb{E} \begin{bmatrix} \mathbb{E} \begin{bmatrix} Z \mid X_{1:j} \end{bmatrix} \mid X_{1:i} \end{bmatrix} - \mathbb{E} \begin{bmatrix} \mathbb{E} \begin{bmatrix} Z \mid X_{1:(j-1)} \end{bmatrix} \mid X_{1:i} \end{bmatrix} \\ &= \mathbb{E} [Z \mid X_{1:i}] - \mathbb{E} [Z \mid X_{1:i}] = E_i Z - E_i Z = 0, \end{split}$$

where on the third line we used the Tower Property of Conditional Expectation. Hence, the Δ_i are uncorrelated, which implies

$$\operatorname{Var}(Z) = \operatorname{Var}(Z - \mathbb{E}[Z]) = \sum_{i=1}^{n} \operatorname{Var}(\Delta_i) = \sum_{i=1}^{n} \mathbb{E}[\Delta_i^2] - \mathbb{E}[\Delta_i]^2 = \sum_{i=1}^{n} \mathbb{E}[\Delta_i^2].$$

Now

$$\begin{split} E_i \big(E^{(i)} Z \big) &= \mathbb{E} \big[E^{(i)} Z \mid X_{1:i} \big] \\ &= \mathbb{E} \big[E^{(i)} Z \mid X_{1:(i-1)}, X_i \big] \\ &= \mathbb{E} \big[\mathbb{E} \big[Z \mid X^{(i)} \big] \mid X_{1:(i-1)} \big] \\ &= \mathbb{E} \big[Z \mid X_{1:(i-1)} \big] \\ &= E_{i-1} Z, \end{split}$$

where on the third line we used that X_i and $X^{(i)}$ are independent, and on the fourth line we used the Tower Property of Conditional Expectation. So we can rewrite $\Delta_i = E_i Z - E_{i-1} Z = E_i (Z - E^{(i)} Z)$, and so by Jensen's inequality

$$\begin{split} \Delta_{i}^{2} &= \left(E_{i} \left(Z - E^{(i)} Z \right) \right)^{2} = \mathbb{E} \left[Z - E^{(i)} Z \mid X_{1:i} \right]^{2} \\ &\leq \mathbb{E} \Big[\left(Z - E^{(i)} Z \right)^{2} \mid X_{1:i} \Big] = E_{i} \Big(\left(Z - E^{(i)} Z \right)^{2} \Big). \end{split}$$

Hence, by the Law of Total Expectation,

$$\begin{aligned} \operatorname{Var}(Z) &= \sum_{i=1}^{n} \mathbb{E}[\Delta_{i}^{2}] \leq \sum_{i=1}^{n} \mathbb{E}\Big[E_{i}\Big(\big(Z - E^{(i)}Z\big)^{2}\Big)\Big] \\ &= \sum_{i=1}^{n} \mathbb{E}\Big[\mathbb{E}\Big[\big(Z - E^{(i)}Z\big)^{2} \mid X_{1:i}\Big]\Big] = \sum_{i=1}^{n} \mathbb{E}\Big[\big(Z - E^{(i)}Z\big)^{2}\Big]. \end{aligned}$$

Finally, we have $\mathbb{E}\left[E^{(i)}(Z - E^{(i)}Z)^2\right] = \mathbb{E}\left[\operatorname{Var}(Z \mid X^{(i)})\right] = \mathbb{E}\left[\operatorname{Var}^{(i)}(Z)\right]$, which gives the equality in the theorem statement.

Theorem 2.4 (Efron-Stein Inequality) Let $X_1, ..., X_n$ be independent and f be square integrable. Let $Z = f(X_1, ..., X_n)$. Then

$$\operatorname{Var}(Z) \leq \mathbb{E}\left[\sum_{i=1}^n \left(Z - E^{(i)}Z\right)^2\right] \eqqcolon \nu.$$

Moreover, if $X'_1, ..., X'_n$ are IID copies of $X_1, ..., X_n$, and $Z'_i = f\left(X_{1:(i-1)}, X'_i, X_{(i+1):n}\right)$, then

$$\nu = \frac{1}{2} \mathbb{E}\left[\sum_{i=1}^{n} \left(Z - Z'_{i}\right)^{2}\right] = \mathbb{E}\left[\sum_{i=1}^{n} \left(Z - Z'_{i}\right)^{2}_{+}\right] = \mathbb{E}\left[\sum_{i=1}^{n} \left(Z - Z'_{i}\right)^{2}_{-}\right],$$

where $X_+ = \max\{0, X\}$ and $X_- = \max\{-X, 0\}$. Moreover,

$$\nu = \sum_{i=1}^{n} \inf_{Z_i} \mathbb{E} \left[(Z - Z_i)^2 \right].$$

where the infimum is over all $X^{(i)}$ -measurable and square-integrable RVs Z_i .

Proof (Hints).

- First part is straightforward.
- For second part, show that $\operatorname{Var}^{(i)}(Z) = \frac{1}{2} \operatorname{Var}^{(i)}(Z Z'_i)$.
- For last part, use that $\operatorname{Var}(X) = \inf_a \mathbb{E}[(X-a)^2]$.

Proof. The first part follows instantly from the Efron-Stein Inequality by linearity of expectation. Now $\operatorname{Var}(X) = \frac{1}{2} \operatorname{Var}(X - Y)$, if X and Y are IID. Conditional on $X^{(i)}$, Z and Z'_i are independent. Hence, since $\mathbb{E}[Z] = \mathbb{E}[Z'_i]$,

$$\operatorname{Var}^{(i)}(Z) = \frac{1}{2} \operatorname{Var}^{(i)}(Z - Z'_i) = \frac{1}{2} \mathbb{E}^{(i)} \left[(Z - Z'_i)^2 \right].$$

Thus we have

$$\nu = \frac{1}{2} \sum_{i=1}^{n} \mathbb{E} \left[(Z - Z'_i)^2 \right]$$

The equality with \cdot_+ and \cdot_- follows since $Z - Z'_i$ is a symmetric RV. Finally, recall that $\operatorname{Var}(X) = \inf_a \mathbb{E}[(X-a)^2]$, with equality if $a = \mathbb{E}[X]$. So $\operatorname{Var}^{(i)}(Z) =$

 $\inf_{Z_i} E^{(i)} ((Z - Z_i)^2)$, with equality if $Z_i = E^{(i)}Z$. Taking expectations and summing completes the proof.

2.2. Functions with bounded differences

Definition 2.5 $f: A^n \to \mathbb{R}$ has the **bounded differences (b.d.)** property if

$$\sup_{(\mathbf{x}, x_i') \in A^{n+1}} \left| f \left(x_{1:(i-1)}, x_i, x_{(i+1):n} \right) - f \left(x_{1:(i-1)}, x_i', x_{(i+1):n} \right) \right| \le c_i \quad \forall i \in [n].$$

So changing one of the coordinates changes the value of the function at most by a constant.

Corollary 2.6 Let $X_1, ..., X_n$ be independent and $Z = f(X_{1:n})$ have bounded differences with constants c_i . Then $\operatorname{Var}(f(Z)) \leq \frac{1}{4} \sum_{i=1}^n c_i^2$.

Proof (Hints). Consider the random variable

$$Z_{i} = \frac{1}{2} \left(\sup_{x_{i} \in A} f\left(X_{1:(i-1)}, x_{i}, X_{(i+1):n}\right) + \inf_{x_{i} \in A} f\left(X_{1:(i-1)}, x_{i}, X_{(i+1):n}\right) \right).$$

Proof. Define

$$Z_i = \frac{1}{2} \Biggl(\sup_{x_i \in A} f\Bigl(X_{1:(i-1)}, x_i, X_{(i+1):n}\Bigr) - \inf_{x_i \in A} f\Bigl(X_{1:(i-1)}, x_i, X_{(i+1):n}\Bigr) \Biggr)$$

 Z_i is a function of $X^{(i)}$. We have $|Z - Z_i| \le c_i/2$. By the final part of the Efron-Stein Inequality, we have $\operatorname{Var}(Z) \le \sum_{i=1}^n \mathbb{E}\left[(Z - Z_i)^2\right] \le \frac{1}{4} \sum_{i=1}^n c_i^2$.

Example 2.7 (Bin packing) Given $x_1, ..., x_n \in [0, 1]$, what is the minimum number k of bins B_j into which $\sum_{x \in B_j} x \leq 1$ for each j = 1, ..., k?

Suppose $X_1, ..., X_n$ be independent and let $Z = f(X_{1:n})$ be the minimum number of bins. Note that changing any one x_i changes f by at most 1, so f has bounded differences with constants $c_i = 1$. So by the Efron-Stein Inequality, $\operatorname{Var}(Z) \leq \frac{1}{4}n$.

Note that this bound is tight, e.g. when $X_i \sim \text{Bern}(1/2)$, $Z \sim B(n, 1/2)$, which has variance 1/4.

Example 2.8 (Longest common sub-sequence) Let $X_{1:n}$ and $Y_{1:n}$ be independent sequences of coin flips. Let

$$Z = f(X_{1:n}, Y_{1:n}) = \max \Big\{ k : \exists i_1 < \dots < i_k, j_1 < \dots < j_k \text{ s.t. } X_{i_\ell} = Y_{i_\ell} \; \forall \ell \in [k] \Big\}$$

Note that changing any one coin flip changes Z by at most 1, so f has bounded differences with constants $c_i = 1$, so by the Efron-Stein Inequality, $\operatorname{Var}(Z) \leq n/2 = \Theta(n)$. Since it is known that $\mathbb{E}[Z] = \Theta(n)$, the deviations from the mean are small compared to the mean.

Example 2.9 (Chromatic numbers of graphs) Let G be an **Erdos-Renyi random** graph with n vertices, i.e. each $\{i, j\} \in E(G)$ with probability p (independently). The chromatic number $\chi(G)$ of G is the smallest number of colors on the vertices such that there are no two adjacent vertices with the same colour. For i < j, let $X_{ij} = \mathbb{1}_{\{\{i,j\}\in E\}}$. We have

$$\chi(G) = f \Big(\big\{ X_{ij} \big\}_{1 \leq i < j \leq n} \Big)$$

for some (complicated) function f. Since adding or removing an edge changes $\chi(G)$ by at most 1, f has bounded differences with constants $c_{ij} = 1$. By Efron-Stein Inequality, $\operatorname{Var}(Z) \leq \binom{n}{2}/4 = \Theta(n^2)$. It is known that $\mathbb{E}[\chi(G)] \approx n/\log n$, so the bound on the variance is not useful when applying Chebyshev's Inequality. However:

Now for each $1 \leq i \leq n-1$, let $Y^{(i)}$ be a random vector taking values in $\{0,1\}^i$ where $Y_j^{(i)} = \mathbb{1}_{\{\{i+1,j\}\in E\}}$ for each $1 \leq j \leq i$. The Y_i are independent. Also, note that $\{Y_i\}_{i=1}^{n-1}$ determines the graph. Hence, $\chi(G) = g(Y_{1:(n-1)})$ for some (complicated) function g. g has bounded differences with constants 1 (e.g. by considering giving vertex i+1 a new colour). Then by Efron-Stein Inequality, $\operatorname{Var}(\chi(G)) \leq (n-1)/4$, which is a tighter bound. This yields a useful application of Chebyshev's Inequality, which shows that $\chi(G)$ is close to its mean value.

3. Poincaré inequalities

Let $X_1, ..., X_n$ be real-valued random variables, and let $Z = f(X_1, ..., X_n)$. A Poincaré inequality is of the form $\operatorname{Var}(Z) \leq \mathbb{E}[\|\nabla f(X)\|^2]$. So we have a local property (smoothness) which gives a global property (bound on the variance).

Definition 3.1 Let $f : \mathbb{R}^d \to \mathbb{R}$ is separately convex if it is convex if all of its individual arguments.

Theorem 3.2 (Convex Poincare Inequality) Let $X_{1:n}$ be independent RVs supported on [0,1] and $f : \mathbb{R}^n \to \mathbb{R}$ be separately convex with partial derivatives that exist. Let $Z = f(X_{1:n})$. Then

$$\operatorname{Var}(Z) \le \mathbb{E} \Big[\left\| \nabla f(X_{1:n}) \right\|^2 \Big],$$

where $\|\cdot\| = \|\cdot\|_2$ is the Euclidean norm.

Proof (Hints).

- Let $Z_i = \inf_{x'_i} f(X_{1:(i-1)}, x'_i, X_{(i+1):n})$. Let X'_i be the value for which the infimum is achieved (why is it achieved?).
- Use that $|Z Z_i|^2 \le |X_i X'_i|^2 \cdot \left(\frac{\partial f}{\partial x_i}(X)\right)^2$.

Proof. Let $Z_i = \inf_{x'_i} f(X_{1:(i-1)}, x'_i, X_{(i+1):n})$. Let X'_i be the value for which the infimum is achieved (since f is continuous and the domain $[0, 1]^n$ we consider is compact).

Denote $\overline{X}^{(i)} = (X_{1:(i-1)}, X'_i, X_{(i+1):n})$. Note that since f is separately convex and X'_i is a minimiser (so $f(X'_{(i)}) \leq f(X)$),

$$|Z-Z_i|^2 = \Big|f(X_{1:n}) - f\Big(\overline{X}^{(i)}\Big)\Big|^2 \leq |X_i - X_i'|^2 \cdot \left(\frac{\partial f}{\partial x_i}(X_{1:n})\right)^2.$$

By the Efron-Stein Inequality,

$$\begin{split} \operatorname{Var}(Z) &\leq \sum_{i=1}^{n} \mathbb{E}\Big[(Z - Z_{i})^{2} \Big] \\ &\leq \sum_{i=1}^{n} \mathbb{E}\left[(X_{i} - X_{i}')^{2} \Big(\frac{\partial f}{\partial x_{i}}(X_{1:n}) \Big)^{2} \right] \\ &\leq \sum_{i=1}^{n} \mathbb{E}\left[\Big(\frac{\partial f}{\partial x_{i}}(X_{1:n}) \Big)^{2} \Big] = \mathbb{E}\big[\|\nabla f(X_{1:n})\|^{2} \big]. \end{split}$$

Example 3.3 Let $X \in \mathbb{R}^{n \times d}$ be a random matrix with $X_{i,j} \in [-1, 1]$ independent. The spectral norm (or ℓ_2 -operator norm) of X is its largest singular value:

$$\sigma_1(X) = \sup\{\|Xu\| : u \in \mathbb{R}^d, \|u\| = 1\} = \sup_{u \in \mathbb{R}^n, \|u\| = 1} \sup_{u \in \mathbb{R}^d, \|u\| = 1} \langle u, Xv \rangle.$$

 σ_1 is convex (and so separately convex) since it is a supremum of linear functions. Since it is a norm, we have $\sigma_1(A+B) \leq \sigma_1(A) + \sigma_1(B)$ and $\sigma_1(A-B) \geq |\sigma_1(A) - \sigma_1(B)|$. Fix A. Since f is convex, the supremum is achieved: let u, v achieve the supremum. Then

$$\begin{split} \sigma_1(A) &= \langle v, Xu \rangle \leq \|v\| \cdot \|Xu\| \quad \text{by Cauchy-Schwarz} \\ &\leq \|v\| \cdot \|u\| \left(\sum_{i,j} X_{i,j}^2\right)^{1/2} = \left(\sum_{i,j} X_{i,j}^2\right)^{1/2} = \|X\|_F. \end{split}$$

Now if X, X' are independent, $d(X, X') = ||X - X'||_F \ge \sigma_1(X - X') \ge |\sigma_1(X) - \sigma_1(X')|$ where d is the Euclidean distance between vectorised X and X' (i.e. Frobenius norm). So σ_1 is a 1-Lipschitz function, and note that an L-lipchitz function satisfies $||\nabla f|| \le L$. So by the Convex Poincare Inequality, $\operatorname{Var}(\sigma_1(X)) \le 4$ (the RHS is 4, not 1, since X_{ij} take values in [-1, 1] instead of [0, 1]). Note that this is independent of the dimension of X!

Theorem 3.4 (Gaussian Poincare Inequality) Let $X_{1:n}$ be IID and standard Gaussian (i.e. each $X_i \sim N(0, 1)$). Then for any continuously differentiable $f \in C^1(\mathbb{R}^n)$,

$$\operatorname{Var}(f(X_{1:n})) \leq \mathbb{E} \Big[\|\nabla f(X_{1:n})\|^2 \Big].$$

Proof (Hints).

• Show, using the Efron-Stein Inequality, that it is sufficient to prove the result for n = 1.

- You may assume that $f \in C^2(\mathbb{R})$ (f is twice continuously differentiable) and has compact support.
- Using the definition of conditional variance, show that $\operatorname{Var}^{(i)}(Z) = \frac{1}{4} \left(f \left(S_n \frac{\varepsilon_i}{\sqrt{n}} + \frac{1}{\sqrt{n}} \right) f \left(S_n \frac{\varepsilon_i}{\sqrt{n}} \frac{1}{\sqrt{n}} \right) \right)^2$.
- Use Taylor's theorem to find an upper bound for

$$\left| f \left(S_n - \frac{\varepsilon_i}{\sqrt{n}} + \frac{1}{\sqrt{n}} \right) - f \left(S_n - \frac{\varepsilon_i}{\sqrt{n}} - \frac{1}{\sqrt{n}} \right) \right|$$

• Use the central limit theorem to conclude the result.

Proof. Assume the result holds for the n = 1 case, i.e. $\operatorname{Var}(f(X)) \leq \mathbb{E}[f'(X)^2]$ for $X \sim N(0, 1)$. Then by the Efron-Stein Inequality and Law of Total Expectation,

$$\begin{split} \operatorname{Var}(Z) &\leq \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Var}^{(i)}(f(X_{1:n}))\right] \\ &\leq \mathbb{E}\left[\sum_{i=1}^{n} \mathbb{E}\left[\left(\frac{\partial f}{\partial x_{i}}(X_{1:n})\right)^{2} \mid X^{(i)}\right]\right] \\ &= \mathbb{E}\left[\sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}(X_{1:n})\right)^{2}\right] = \mathbb{E}[\|\nabla f(X_{1:n})\|]^{2}. \end{split}$$

So it suffices to prove the result for n = 1: WLOG, assume $\mathbb{E}[\|\nabla f(X)\|^2] < \infty$. Let ε_i be IID Rademacher random variables (taking values in $\{-1, 1\}$ with equal probability). Consider $S_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \varepsilon_i$. It suffices to prove the case when $f \in C^2(\mathbb{R})$ (f is twice continuously differentiable) and has compact support. So f' and f'' are bounded. By the Efron-Stein Inequality,

$$\operatorname{Var}(f(S_n)) \leq \mathbb{E} \Bigg[\sum_{i=1}^n \operatorname{Var}^{(i)}(S_n) \Bigg].$$

Note $\mathrm{Var}^{(i)}$ here is conditional on $\varepsilon^{(i)}$. We have $S_n=S_n-\varepsilon_i/\sqrt{n}\pm 1/\sqrt{n}$ with equal probabilities. Note that $S_n-\varepsilon_i/\sqrt{n}$ is a function of $\varepsilon^{(i)}$. We have

$$\mathbb{E}^{(i)}[f(S_n)] = \frac{1}{2}f\big(S_n - \varepsilon_i/\sqrt{n} + 1/\sqrt{n}\big) + \frac{1}{2}f\big(S_n - \varepsilon_i/\sqrt{n} - 1/\sqrt{n}\big)$$

and so

$$\begin{split} \mathrm{Var}^{(i)}(f(S_n)) &= \frac{1}{2} \Big(f\big(S_n - \varepsilon_i/\sqrt{n} + 1/\sqrt{n}\big) - \Big(\frac{1}{2}f\big(S_n - \varepsilon_i/\sqrt{n} + 1/\sqrt{n}\big) + \frac{1}{2}f\big(S_n - \varepsilon_i/\sqrt{n} - 1/\sqrt{n}\big)\Big) \Big)^2 \\ &+ \frac{1}{2} \Big(f\big(S_n - \varepsilon_i/\sqrt{n} - 1/\sqrt{n}\big) - \Big(\frac{1}{2}f\big(S_n - \varepsilon_i/\sqrt{n} + 1/\sqrt{n}\big) + \frac{1}{2}f\big(S_n - \varepsilon_i/\sqrt{n} - 1/\sqrt{n}\big) \Big) \Big)^2 \\ &= \frac{1}{4} \big(f\big(S_n - \varepsilon_i/\sqrt{n} + 1/\sqrt{n}\big) - f\big(S_n - \varepsilon_i/\sqrt{n} - 1/\sqrt{n}\big) \big)^2 \end{split}$$

Let K be an upper bound for |f''|. Then

$$\begin{split} \left| f \big(S_n + (1 - \varepsilon_i) / \sqrt{n} \big) - f \big(S_n - (1 + \varepsilon_i) / \sqrt{n} \big) \right| \\ &= \left| f(S_n) + \frac{1 - \varepsilon_i}{\sqrt{n}} f' \big(S_n - \varepsilon_i / \sqrt{n} \big) + \frac{(1 - \varepsilon_i)^2}{2n} f'' \big(S_n - \varepsilon_i / \sqrt{n} + \xi_{i,m} \big) \right| \\ &- f(S_n) + \frac{1 + \varepsilon_i}{\sqrt{n}} f' \big(S_n - \varepsilon_i / \sqrt{n} \big) - \frac{(1 + \varepsilon_i)^2}{2n} f'' \Big(S_n - \varepsilon_i / \sqrt{n} + \xi_{i,m}^{(2)} \Big) \right| \\ &\leq \left| \frac{2}{\sqrt{n}} f'(S_n) \right| + 2K/n. \end{split}$$

Thus, $\mathrm{Var}^{(i)}(f(S_n)) \leq \left(\left|f'(S_n)/\sqrt{n}\right| + K/n\right)^2.$ Hence,

$$\operatorname{Var}(f(S_n)) \leq \mathbb{E}\left[\sum_{i=1}^n \left(\left|f'(S_n)/\sqrt{n}\right| + K/n\right)^2\right] = \mathbb{E}\left[f'(S_n)^2\right] + 2\frac{K}{\sqrt{n}}\mathbb{E}[\left|f'(S_n)\right|] + \frac{K^2}{n}$$

As $n \to \infty$, $\operatorname{Var}(f(S_n)) \to \operatorname{Var}(X)$, $X \sim N(0, 1)$ by the central limit theorem. Also, $\mathbb{E}[f'(S_n)^2] \to \mathbb{E}[f'(X)^2]$ by the central limit theorem. So in the limit, $\operatorname{Var}(f(X)) \leq \mathbb{E}[f'(X)^2]$.

Remark 3.5 The above proof uses a **tensorisation** argument. Tensorisation roughly means decomposing a high-dimensional function into a sum of lower-dimensional functions. E.g. the formula $\operatorname{Var}(\sum_i X_i) = \sum_i \operatorname{Var}(X_i)$ uses the tensorisation property of variance. Also, the Efron-Stein Inequality

$$\operatorname{Var}(Z) \leq \sum_{i=1}^n \mathbb{E} \big[\operatorname{Var}^{(i)}(Z) \big].$$

can be thought of as an example of the tensorisation of variance.

Remark 3.6 If f is L-Lipschitz, i.e. $|f(x) - f(y)| \le L \cdot ||x - y||$, then $||\nabla f|| \le L$. The Gaussian Poincare Inequality holds for L-Lipschitz functions (with L^2 on the RHS).

Example 3.7 Recall from earlier that the operator norm σ_1 is 1-Lipschitz. If $X \in \mathbb{R}^{n \times d}$ with each $X_{ij} \sim N(0, 1)$ IID, then by the Gaussian Poincare Inequality, $\operatorname{Var}(\sigma_1(X)) \leq 1$, which is a good bound, given that it is known that $\mathbb{E}[\sigma_1(X)] = O(\sqrt{n} + \sqrt{d})$.

Example 3.8 Let $X_1, ..., X_n \sim N(0, 1)$ be independent. Let $Z = f(X) = \max_i X_i$. We have $\nabla f = (0, ..., 1, ..., 0)$ where 1 is at the index of the maximum. Hence, by the Gaussian Poincare Inequality, $\operatorname{Var}(Z) \leq 1$, which is a good bound, given it is known that $\mathbb{E}[Z_n] \approx \log n$.

3.1. Poincare constant

Definition 3.9 Let X be an RV taking values in \mathbb{R}^d . We say X satisfies the Poincare inequality with constant C if

$$\operatorname{Var}(f(X)) \leq C \cdot \mathbb{E} \big[\|\nabla f(X)\|^2 \big] \quad \forall f \in C^1 \big(\mathbb{R}^d \big).$$

The smallest such constant $C_P(X)$ is the **Poincare constant** of X:

$$C_P(X) = \sup_{f \in C^1(\mathbb{R}^d)} \frac{\operatorname{Var}(f(X))}{\mathbb{E}[\|\nabla f(X)\|^2]}.$$

Proposition 3.10 The Poincare constant satisfies the following properties:

- 1. $C_P(aX+b) = a^2 C_P(X)$ for constants $a \in \mathbb{R}, b \in \mathbb{R}^d$.
- 2. For any unit vector $\theta \in \mathbb{R}^d$, $\operatorname{Var}(\langle X, \theta \rangle) \leq C_P(X)$. In particular, $\operatorname{Var}(X_i) \leq C_P(X)$ for all i.
- 3. If $X_1, ..., X_n$ are independent, then

$$C_P(X_{1:n}) = \max_i C_P(X_i)$$

4. If $C_P(X) < \infty$, then X has connected support.

Proof. Exercise.

Remark 3.11 The constant $1/C_P(X)$ is called the spectral gap.

Definition 3.12 We say $\{X_n\}_{n \in \mathbb{N}}$ is a (time homogenous) Markov chain on a finite state space S (which WLOG we can take to be [d]) if

$$\mathbb{P}(X_{n+1} = j \mid X_{1:n} = i_{1:n}) = \mathbb{P}(X_{n+1} = j \mid X_n = i_n)$$

for all n and $i_1, ..., i_n, j \in S$, i.e. if X_{n+1} is conditionally independent of $X_{1:(n-1)}$ given X_n for all n.

Definition 3.13 The transition matrix $P \in \mathbb{R}^{d \times d}$ of the Markov chain is defined by

$$P_{ij} = \mathbb{P}(X_{n+1} = j \mid X_n = i),$$

and its **discrete generator** is $\Lambda := P - I$.

Definition 3.14 A transition matrix $P \in \mathbb{R}^{d \times d}$ is said to be **reversible** if $P_{ij} = P_{ji}$ for all $1 \leq i, j \leq d$.

Definition 3.15 Let P be the transition matrix of a Markov chain. A row vector $\pi \in \mathbb{R}^d$ (which represents a distribution on [d]) on state space S is called **stationary** if $\pi_j = \sum_i \pi_i P_{ij}$ for all j (i.e. $\pi P = \pi$).

Definition 3.16 Given a Markov chain with stationary distribution $\pi \in \mathbb{R}^d$ and $f, g \in \mathbb{R}^d$, the **Dirichlet form** is defined as

$$\mathcal{E}(f,g)\coloneqq-\langle f,\Lambda g\rangle_{\pi},$$

where $\langle x, y \rangle_{\pi} = \sum_{i=1}^{d} x_i y_i \pi_i$.

Proposition 3.17 Let $P \in \mathbb{R}^{d \times d}$ be a reversible transition matrix with stationary distribution $\pi \in \mathbb{R}^d$. Let $f \in \mathbb{R}^d$. Then

$$\mathcal{E}(f,f) = \frac{1}{2} \mathbb{E}_{\pi} \left[\left(f(X_{n+1}) - f(X_n) \right)^2 \right],$$

which is the **discrete gradient** (we may view f as a function $i \mapsto f_i$).

Proof. Since $\sum_{j} P_{ij} = 1$ for all i, we have

$$\begin{split} \mathcal{E}(f,f) &= \langle f, (I-P)f \rangle_{\pi} = \sum_{i} f_{i}^{2} \pi_{i} - \sum_{i} f_{i} \pi_{i} \sum_{j} P_{ij} f_{j} \\ &= \frac{1}{2} \left(\sum_{i,j} f_{i}^{2} \pi_{i} P_{ij} + \sum_{i,j} f_{j}^{2} \pi_{j} P_{ji} - 2 \sum_{i,j} \pi_{i} P_{ij} f_{i} f_{j} \right) \\ &= \frac{1}{2} \sum_{i,j} \pi_{i} P_{ij} (f_{i} - f_{j})^{2} \\ &= \frac{1}{2} \sum_{i,j} \mathbb{P}(X_{n+1} = j \mid X_{n} = i) \mathbb{P}(X_{n} = i) (f_{i} - f_{j})^{2} \\ &= \frac{1}{2} \sum_{i,j} \mathbb{P}(X_{n+1} = j, X_{n} = i) (f(i) - f(j))^{2} \\ &= \frac{1}{2} \mathbb{E} \Big[(f(X_{n+1}) - f(X_{n}))^{2} \Big]. \end{split}$$

Remark 3.18 If the transition matrix P is reversible, then $\Lambda = P - I$ is self-adjoint (with respect to $\langle \cdot, \cdot \rangle_{\pi}$), so has real eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$. By Proposition 3.17, we have $\langle f, -\Lambda f \rangle_{\pi} \geq 0$, so $-\Lambda$ is positive semi-definite, and so all $\lambda_i \leq 0$. Since $\sum_j \Lambda_{ij} = 0$ for all i, we have $\lambda_1 = 0$, corresponding to eigenvector $f_1 = (1, ..., 1)$.

Now
$$\lambda_2 = \sup_{f:\langle f, f_1 \rangle_{\pi} = 0} \frac{\langle f, \Lambda f \rangle_{\pi}}{\langle f, f \rangle_{\pi}}$$
, so
 $\mathcal{E}(f, f) = -\langle f, \Lambda f \rangle_{\pi} \ge -\lambda_2 \langle f, f \rangle_{\pi} = -\lambda_2 \mathbb{E}_{\pi} \left[f(X_1)^2 \right] = -\lambda_2 \operatorname{Var}_{\pi}(f) = (\lambda_1 - \lambda_2) \operatorname{Var}_{\pi}(f)$

for all $f \in \mathbb{R}^d$ such that $\mathbb{E}_{\pi}[f(X_1)] = \langle f, f_1 \rangle_{\pi} = 0$. There is equality if $f = f_2$, the eigenvector corresponding to λ_2 .

The best constant, c, in the inequality $\operatorname{Var}_{\pi}(f) \leq c \cdot \mathcal{E}(f, f)$ is $c = \frac{1}{\lambda_1 - \lambda_2}$, the spectral gap.

4. The entropy method

4.1. Entropy, chain rules and Han's inequality

In the following section, let A be a discrete (countable) alphabet and let X be an RV on A.

Definition 4.1 The Shannon entropy of X with PMF P is

$$H(X) = \mathbb{E}[-\log P(X)] = -\sum_{x \in A} \mathbb{P}(X = x) \log \mathbb{P}(X = x),$$

where we use the convention $0 \log 0 = 0$.

Example 4.2 The entropy of $X \sim \text{Bern}(p)$ is $H(X) = -p \log p - (1-p) \log(1-p)$.

Remark 4.3 Note that for $x_1^n \in A^n$, $P^n(x_1^n) = e^{-n\frac{1}{n}\sum_{i=1}^n -\log P(x_i)}$ (P^n is the product distribution). So $P^n(X_1^n) = e^{-n\frac{1}{n}\sum_{i=1}^n -\log P(X_i)} \approx e^{-nH(X_i)}$ for IID X_i , by the Weak Law of Large Numbers.

Proposition 4.4 Properties of Shannon entropy:

- *H* is non-negative.
- $H(\cdot)$ is concave as a functional of P.
- If $|A| < \infty$, then $H(X) \le \log|A|$ with equality if $X \sim \text{Unif}(A)$.

Proof. Exercise.

Definition 4.5 For PMFs Q, P on A, Q is absolutely continuous with respect to P, written $Q \ll P$, if $P(x) = 0 \Rightarrow Q(x) = 0$ for all $x \in A$.

Definition 4.6 Let Q, P be PMFs on A such that $Q \ll P$ (which means if P(x) = 0, then Q(x) = 0). The **relative entropy** between Q and P is

$$D(Q \parallel P) = \mathbb{E}_Q \left[\log \frac{Q(X)}{P(X)} \right] = \sum_{x \in A} Q(x) \log \frac{Q(x)}{P(x)}$$

if $Q \ll P$, and $D(Q \parallel P) = \infty$ otherwise. We use the convention that $0 \log \frac{0}{0} = 0$.

Proposition 4.7 Properties of relative entropy:

- $\bullet \ D(Q \parallel P) \geq 0.$
- $D(Q \parallel P)$ is convex in both arguments.
- If $X \sim P$ where P is the uniform distribution on A, and $Y \sim Q$, then $D(Q \parallel P) = H(X) H(Y)$.

Proof. Exercise.

Definition 4.8 The conditional entropy of X given Y is

$$\begin{split} H(X \mid Y) &= \mathbb{E}\Big[-\log P_{X \mid Y}(X \mid Y)\Big] = -\sum_{x,y} P(x,y) \log P(x \mid y) \\ &= \mathbb{E}_X[H(X \mid Y = y)] \end{split}$$

Theorem 4.9 (Chain Rule for Entropy) We have

$$H(X_{1:n}) = \mathbb{E}[-\log P(X_{1:n})] = \sum_{i=1}^{n} H\Big(X_1 \mid X_{1:(i-1)}\Big)$$

Proof (Hints). Straightforward.

Proof. Since

$$\mathbb{P}(X_{1:n} = x_{1:n}) = \mathbb{P}(X_1 = x_1)\mathbb{P}(X_2 = x_2 \mid X_1 = x_1)\cdots\mathbb{P}\Big(X_n = x_n \mid X_{1:(n-1)} = X_{1:(n-1)}\Big),$$

we have

$$H(X_{1:n}) = \mathbb{E}[-\log P(X_{1:n})] = \mathbb{E}\left[\sum_{i=1}^n -\log P\Big(X_i \mid X_{1:(i-1)}\Big)\right]$$

$$= \sum_{i=1}^{n} \mathbb{E}\left[-\log P\left(X_{i} \mid X_{1:(i-1)}\right)\right]$$
$$= \sum_{i=1}^{n} H\left(X_{1} \mid X_{1:(i-1)}\right).$$

Proposition 4.10 (Conditioning Reduces Entropy) $H(X \mid Y) \leq H(X)$.

Proof (Hints). Straightforward.

Proof. We have

$$\begin{split} H(X) - H(X \mid Y) &= \mathbb{E} \left[\log \frac{1}{P(X)} + \log P(X \mid Y) \right] \\ &= \mathbb{E} \left[\log \frac{P(X \mid Y) P(Y)}{P(X) P(Y)} \right] = D \left(P_{X,Y} \parallel P_X P_Y \right) \ge 0. \end{split}$$

Proposition 4.11 (Chain Rule for Relative Entropy) Let P, Q be PMFs on A^n . Let $X_{1:n} \sim P$. Then

$$\begin{split} D\Big(Q_{X_{1:n}} \parallel P_{X_{1:n}}\Big) &= \sum_{i=1}^{n} \mathbb{E}_{Q_{X_{1}:(i-1)}}\Big[D\Big(Q_{X_{i} \mid X_{1:(i-1)}} \parallel P_{X_{i} \mid X_{1:(i-1)}}\Big)\Big] \\ &=: \sum_{i=1}^{n} D\Big(Q_{X_{i} \mid X_{1:(i-1)}} \parallel P_{X_{i} \mid X_{1:(i-1)}} \mid Q_{X_{1:(i-1)}}\Big) \end{split}$$

Proof (Hints). Straightforward.

Proof. We have

$$\begin{split} D\Big(Q_{X_{1:n}} \parallel P_{X_{1:n}}\Big) &= \mathbb{E}_Q \bigg[\log \frac{Q(X_{1:n})}{P(X_{1:n})} \bigg] \\ &= \mathbb{E}_Q \bigg[\sum_{i=1}^n \log \frac{Q_{X_i \mid X_{1:(i-1)}} \Big(X_i \mid X_{1:(i-1)}\Big)}{P_{X_i \mid X_{1:(i-1)}} \Big(X_i \mid X_{1:(i-1)}\Big)} \bigg] \\ &= \sum_{i=1}^n \mathbb{E}_{Q_{X_1:(i-1)}} \bigg[D\Big(Q_{X_i \mid X_{1:(i-1)}} \parallel P_{X_i \mid X_{1:(i-1)}}\Big) \bigg] \end{split}$$

Remark 4.12 The Chain Rule for Relative Entropy is similar to the chain rule for variance:

$$\operatorname{Var}(Z) = \sum_{i=1}^{n} \mathbb{E}[\Delta_{i}^{2}],$$

 $\Delta_i = \mathbb{E}[Z \mid X_{1:i}] - \mathbb{E}\Big[Z \mid X_{1:(i-1)}\Big], \text{ which led to the Efron-Stein Inequality}.$

Lemma 4.13 (Conditioning Reduces Conditional Entropy) $H(X \mid Y, Z) \leq H(Y)$. *Proof (Hints)*. Straightforward.

 $\begin{array}{ll} \textit{Proof.} & H(X \mid Y, Z) = \sum_{z} \mathbb{P}(Z = z) H(X \mid Y, Z = z) \leq \sum_{z} \mathbb{P}(Z = z) H(X \mid Z = z) = \\ H(X \mid Z) \text{ by Conditioning Reduces Entropy.} \\ & \Box \end{array}$

Theorem 4.14 (Han's Inequality) Let $X_{1:n}$ be discrete RVs. Then

$$H(X_{1:n}) \leq \frac{1}{n-1} \sum_{i=1}^{n} H\bigl(X^{(i)}\bigr).$$

Proof (Hints). Show that $H(X_{1:n}) \leq H(X^{(i)}) + H(X_i \mid X_{1:(i-1)})$. Proof. By the Chain Rule for Entropy and Conditioning Reduces Entropy,

$$\begin{split} H(X_{1:n}) &= H\left(X^{(i)}\right) + H\left(X_i \mid X^{(i)}\right) \\ &\leq H\left(X^{(i)}\right) + H\left(X_i \mid X_{1:(i-1)}\right) \end{split}$$

Summing over *i*, we obtain $nH(X_{1:n}) \leq \sum_{i=1}^{n} H(X^{(i)}) + H(X_{1:n})$ by the chain rule. **Corollary 4.15** (Loomis-Whitney Inequality) The Loomis-Whitney inequality states that for finite $A \subseteq \mathbb{Z}^n$,

$$|A| \leq \prod_{i=1}^n \left|A^{(i)}\right|^{1/(n-1)}$$

Proof (Hints). Straightforward.

Proof. Let $X_{1:n}$ be uniform on A. Then $\log |A| = H(X_{1:n})$. By Han's Inequality,

$$H(X_{1:n}) \le \frac{1}{n-1} \sum_{i=1}^{n} H(X^{(i)}) \le \frac{1}{n-1} \sum_{i=1}^{n} \log |A^{(i)}|$$

Lemma 4.16 Let Q, P be PMFs on a discrete set $A \times B \times C$. Then

$$D\left(Q_{Y\mid X,Z} \parallel P_{Y} \mid Q_{X,Z}\right) \ge D\left(Q_{Y\mid X} \parallel P_{Y} \mid Q_{X}\right)$$

Proof (Hints). Use convexity of relative entropy.

Proof. By convexity of relative entropy,

$$\begin{split} D\Big(Q_{Y\mid X,Z} \parallel P_Y \mid Q_{X,Z}\Big) &=: \sum_{x,z} Q_{X,Z}(x,z) D\Big(Q_{Y\mid X=x,Z=z} \parallel P_Y\Big) \\ &= \sum_x Q(x) \sum_z Q(z\mid x) D\Big(Q_{Y\mid X=x,Z=z} \parallel P_Y\Big) \\ &\geq \sum_x Q(x) D\left(\sum_z Q(z\mid x) Q_{Y\mid X=x,Z=z} \parallel P_Y\right) \end{split}$$

$$= \sum_{x} Q(x) D(Q_{Y \mid X=x} \parallel P_{Y})$$
$$= D(Q_{Y \mid X} \parallel P_{Y} \mid Q_{X}).$$

Theorem 4.17 (Han's Inequality for Relative Entropy) Suppose Q, P are PMFs on A^n , and assume that $P = P_1 \otimes \cdots \otimes P_n$. Then

$$D(Q \parallel P) = D\Big(Q_{X_{1:n}} \parallel P_{X_{1:n}}\Big) \geq \frac{1}{n-1} \sum_{i=1}^n D(Q_{X^{(i)}} \parallel P_{X^{(i)}})$$

Equivalently,

$$D(Q \parallel P) \leq \sum_{i=1}^n D\Big(Q_{X_i \mid X^{(i)}} \parallel P_{X_i} \mid Q_{X^{(i)}}\Big)$$

(this is tensorisation of $D(\cdot \| \cdot)$).

Remark 4.18 Taking P to be uniform in Han's Inequality for Relative Entropy gives Han's Inequality for Shannon entropy.

 $\begin{array}{l} Proof \ (Hints). \ \text{Explain why} \ D(Q \parallel P) = D(Q_{X^{(i)}} \parallel P_{X^{(i)}}) + D\left(Q_{X_i \mid X^{(i)}} \parallel P_{X_i} \mid Q_{X^{(i)}}\right), \\ \text{then use Lemma 4.16}. \end{array}$

Proof. By the Chain Rule for Relative Entropy and Lemma 4.16,

$$\begin{split} D(Q \parallel P) &= D(Q_{X^{(i)}} \parallel P_{X^{(i)}}) + D\Big(Q_{X_i \mid X^{(i)}} \parallel P_{X_i \mid X^{(i)}} \mid Q_{X^{(i)}}\Big) \\ &= D(Q_{X^{(i)}} \parallel P_{X^{(i)}}) + D\Big(Q_{X_i \mid X^{(i)}} \parallel P_{X_i} \mid Q_{X^{(i)}}\Big) \\ &\geq D(Q_{X^{(i)}} \parallel P_{X^{(i)}}) + D\Big(Q_{X_i \mid X_{1:(i-1)}} \parallel P_{X_i} \mid Q_{X_{1:(i-1)}}\Big) \end{split}$$

Summing over i, we obtain $nD(Q \parallel P) \ge \sum_{i=1}^{n} D(Q_{X^{(i)}} \parallel P_{X^{(i)}}) + D(Q \parallel P)$ by the Chain Rule for Relative Entropy, hence

$$\begin{split} D(Q \parallel P) &\geq \frac{1}{n-1} \sum_{i=1}^{n} D(Q_{X^{(i)}} \parallel P_{X^{(i)}}) \\ &= \frac{1}{n-1} \sum_{i=1}^{n} (D(Q \parallel P) - D\left(Q_{X_{i} \mid X^{(i)}} \parallel P_{X_{i}} \mid Q_{X^{(i)}}\right) \\ \Leftrightarrow \frac{n}{n-1} D(Q \parallel P) - D(Q \parallel P) &\leq \frac{1}{n-1} \sum_{i=1}^{n} D\left(Q_{X_{i} \mid X^{(i)}} \parallel P_{X_{i}} \mid Q_{X^{(i)}}\right) \\ \Box \end{split}$$

Definition 4.19 There is another notion of entropy. Let $Z \ge 0$ almost surely. Let $\varphi(x) = x \log x$ for x > 0 and $\varphi(0) = 0$. The **entropy** of Z is defined as

$$\operatorname{Ent}(Z) = \mathbb{E}[\varphi(Z)] - \varphi(\mathbb{E}[Z]),$$

Note the similarity to the definition $\operatorname{Var}(Z) = \mathbb{E}[Z^2] - \mathbb{E}[Z]^2$. Also, since φ is convex, $\operatorname{Ent}(Z)$ is non-negative by Jensen's inequality.

Proposition 4.20 Let $X \sim P$, where $Q \ll P$ are PMFs on a countable alphabet A. Let $Z = \frac{Q(X)}{P(X)}$. Then

$$\operatorname{Ent}(Z) = D(Q \parallel P).$$

Proof (Hints). Straightforward.

Proof. We have

$$\begin{split} \operatorname{Ent}(Z) &= \mathbb{E}_{P} \bigg[\frac{Q(X)}{P(X)} \log \frac{Q(X)}{P(X)} \bigg] - \bigg(\mathbb{E}_{P} \frac{Q(X)}{P(X)} \bigg) \log \mathbb{E}_{P} \bigg[\frac{Q(X)}{P(X)} \bigg] \\ &= D(Q \parallel P) - 1 \log 1 = D(Q \parallel P). \end{split}$$

Remark 4.21 In general, when Z is the Radon-Nikodym derivative $\frac{dQ}{dP}(X)$ and $X \sim P$, then $\text{Ent}(Z) = D(Q \parallel P)$.

Theorem 4.22 (Tensorisation of Entropy) Let $X_1, ..., X_n$ be independent RVs taking values in a countable set A, and let $f : A^n \to \mathbb{R}_{\geq 0}$. Let $Z = f(X_{1:n}) = f(X)$. Then

$$\operatorname{Ent}(Z) \leq \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Ent}^{(i)}(Z)\right],$$

where

$$\begin{split} \operatorname{Ent}^{(i)}(Z) &= E^{(i)}[Z\log Z] - E^{(i)}[Z]\log E^{(i)}[Z] \\ &= \mathbb{E}\left[Z\log Z \mid X^{(i)} \right] - \mathbb{E}\left[Z \mid X^{(i)} \right] \log \mathbb{E}\left[Z \mid X^{(i)} \right]. \end{split}$$

Remark 4.23 Tensorisation of Entropy is analogous to the Efron-Stein Inequality.

Proof (Hints).

- Show that $\operatorname{Ent}(aZ) = a \operatorname{Ent}(Z)$, and so can assume WLOG that $\mathbb{E}[Z] = 1$, so Q is PMF.
- Show that

$$Q_{X_i \mid X^{(i)}} \big(x_i \mid x^{(i)} \big) = \frac{P(x_i) f(x)}{\mathbb{E}[f(X) \mid X^{(i)} = x^{(i)}]}.$$

• Show that $Q^{(i)}(x^{(i)}) = P^{(i)}(x^{(i)})\mathbb{E}[f(X) \mid X^{(i)} = x^{(i)}]$, and so that $\mathbb{E}\left[D\left(Q_{X_i \mid X^{(i)}} \parallel P_{X_i} \mid Q_{X^{(i)}}\right)\right] = \mathbb{E}_P\left[\operatorname{Ent}^{(i)}(f(X))\right]$.

Proof. Let
$$X \sim P = P_1 \otimes \cdots \otimes P_n$$
. Let $Q(x) = f(x)P(x)$. Since
 $\operatorname{Ent}(aZ) = a\mathbb{E}[Z\log Z] + a\mathbb{E}[Z\log a] - a\mathbb{E}[Z]\log \mathbb{E}[Z] - a\mathbb{E}[Z]\log a = a\operatorname{Ent}(Z),$

we may assume WLOG that $\mathbb{E}[Z] = 1$, and so Q is a valid PMF. By Han's Inequality for Relative Entropy,

$$D(Q \parallel P) \leq \sum_{i=1}^{n} \mathbb{E} \Big[D \Big(Q_{X_i \mid X^{(i)}} \parallel P_{X_i} \mid Q_{X^{(i)}} \Big) \Big]$$

Now

$$\begin{split} Q_{X_i \mid X^{(i)}} \big(x_i \mid x^{(i)} \big) &= \frac{Q_X(x)}{Q_{X^{(i)}}(x^{(i)})} = \frac{P(x)f(x)}{\sum_{x'_i \in A} Q\big(x_{1:(i-1)}, x'_i, x_{(i+1):n}\big)} \\ &= \frac{P_i(x_i)P^{(i)}\big(x^{(i)}\big)f(x)}{\sum_{x'_i \in A} P_i(x'_i)P^{(i)}(x^{(i)})f(x^{(i)}, x'_i)} \\ &= \frac{P_i(x_i)f(x)}{\mathbb{E}[f(X) \mid X^{(i)} = x^{(i)}]} \end{split}$$

(write $f(x^{(i)}, x'_i) = f(x_{1:(i-1)}, x'_i, x_{(i+1):n})$). By definition, $\mathbb{E} \Big[D \big(Q_{X_i \mid X^{(i)}} \parallel P_{X_i} \mid Q_{X^{(i)}} \big) \Big]$ $= \sum_{x^{(i)} \in A^{n-1}} Q^{(i)}(x^{(i)}) \sum_{x \in A} \frac{P_i(x_i)f(x)}{\mathbb{E}[f(X) \mid X^{(i)} = x^{(i)}]} \log \frac{f(x)}{\mathbb{E}[f(X) \mid X^{(i)} = x^{(i)}]}$ But $Q^{(i)}(x^{(i)}) = P^{(i)}(x^{(i)})\mathbb{E}[f(X) \mid X^{(i)} = x^{(i)}]$. So, $\mathbb{E}\Big[D\big(Q_{X_i \mid X^{(i)}} \parallel P_{X_i} \mid Q_{X^{(i)}}\big)\Big]$ $= \sum_{x^{(i)} \in A^{n-1}} P^{(i)} \left(x^{(i)} \right) \left(\sum_{x_i \in A} P_i(x_i) f(x) \log f(x) - \mathbb{E} \left[f(X) \mid X^{(i)} = x^{(i)} \right] \log \mathbb{E} \left[f(X) \mid X^{(i)} = x^{(i)} \right] \right)$ $= \sum_{x^{(i)} \in A^{n-1}} P^{(i)} \big(x^{(i)} \big) \big(\mathbb{E} \big[f(X) \log f(X) \mid X^{(i)} = x^{(i)} \big] - \mathbb{E} \big[f(X) \mid X^{(i)} = x^{(i)} \big] \log \mathbb{E} \big[f(X) \mid X^{(i)} = x^{(i)} \big] \big)$

 $= \mathbb{E}_{P} \left[\operatorname{Ent}^{(i)}(f(X)) \right]$

So
$$\operatorname{Ent}(f(X)) = D(Q \parallel P) \le \sum_{i=1}^{n} \mathbb{E}\left[\operatorname{Ent}^{(i)}(f(X))\right].$$

4.2. Herbst's argument

Theorem 4.24 (Herbst's Argument) Suppose Z is a real-valued RV and $\mathbb{E}[e^{\lambda Z}] < \infty$ for all $\lambda > 0$. If there exists $\nu > 0$ such that for all $\lambda > 0$, $\operatorname{Ent}(e^{\lambda Z}) \leq \lambda^2 \frac{\nu}{2} \mathbb{E}[e^{\lambda Z}]$, then

$$\psi_{\mathbb{Z}-\mathbb{E}[Z]}(\lambda) = \log \mathbb{E}\left[e^{\lambda(Z-\mathbb{E}[Z])}\right] \le \lambda^2 \frac{\nu}{2} \quad \forall \lambda > 0.$$

- Proof (Hints). Show that $\frac{\operatorname{Ent}(e^{\lambda Z})}{\mathbb{E}[e^{\lambda Z}]} = \lambda^2 G'(\lambda)$, where $G(\lambda) = \frac{1}{\lambda} \psi_{Z-\mathbb{E}[Z]}(\lambda)$. Given an upper bound for $\int_0^{\lambda} G'(t) dt$ (explain using a Taylor expansion why this integral is valid).

Proof. Write $\psi = \psi_{Z - \mathbb{E}[Z]}$. We have

$$\operatorname{Ent}(e^{\lambda Z}) = \lambda \mathbb{E}[e^{\lambda Z} \cdot Z] - \mathbb{E}[e^{\lambda Z}] \log \mathbb{E}[e^{\lambda Z}]$$
$$= \mathbb{E}[e^{\lambda Z}] \left(\lambda \mathbb{E}\left[\frac{Ze^{\lambda Z}}{\mathbb{E}[e^{\lambda Z}]}\right] - \log \mathbb{E}[e^{\lambda Z}]\right)$$

But

$$\psi'(\lambda) = \left(\psi_Z(\lambda) - \lambda \mathbb{E}[Z]\right)' = \mathbb{E}\left[\frac{Ze^{\lambda Z}}{\mathbb{E}[e^{\lambda Z}]}\right] - \mathbb{E}[Z].$$

So by the above expression for Ent,

$$\begin{split} \frac{\mathrm{Ent} \left(e^{\lambda Z} \right)}{\mathbb{E} [e^{\lambda Z}]} &= [\lambda \psi'(\lambda) + \lambda \mathbb{E} [Z] - \lambda \mathbb{E} [Z] - \psi(\lambda)] \\ &= \lambda^2 \bigg(\frac{1}{\lambda} \psi'(\lambda) - \frac{1}{\lambda^2} \psi(\lambda) \bigg) = \lambda^2 G'(\lambda) \end{split}$$

where $G(\lambda) = \frac{1}{\lambda}\psi(\lambda)$. Also, by assumption,

$$\frac{\operatorname{Ent}(e^{\lambda Z})}{\mathbb{E}[e^{\lambda Z}]} \leq \lambda^2 \frac{\nu}{2}$$

By Taylor's theorem, $G(\lambda) = \frac{1}{\lambda} (\psi(0) + \lambda \psi'(0) + O(\lambda^2)) = \frac{1}{\lambda} O(\lambda^2) = O(\lambda) \to 0$ as $\lambda \to 0$. Hence, we may integrate $G'(\theta)$ from 0 to λ :

$$\begin{split} G(\lambda) &= \int_0^{\lambda} G'(\theta) \, \mathrm{d}\theta \leq \int_0^{\lambda} \frac{\nu}{2} \, \mathrm{d}\theta \quad \text{since } \theta^2 G'(\theta) \leq \theta^2 \frac{\nu}{2} \\ &= \lambda \frac{\nu}{2} \end{split}$$

So $\psi(\lambda) \leq \lambda^2 \frac{\nu}{2}$.

Theorem 4.25 (Bounded Differences Inequality) Let $X = (X_1, ..., X_n)$, where the X_i are independent. Let f have bounded differences with constants c_i . Let Z = f(X). Then for all t > 0,

$$\mathbb{P}(Z - \mathbb{E}[Z] \ge t), \mathbb{P}(Z - \mathbb{E}[Z] \le -t) \le e^{-2t^2 / \sum_{i=1}^n c_i^2} = e^{-t^2/2\nu},$$

where $\nu = \frac{1}{4} \sum_{i=1}^{n} c_i^2$.

Proof (Hints).

- Use Hoeffding's Lemma and an equality from the proof of Herbst's Argument to show that $\frac{\operatorname{Ent}^{(i)}(e^{\lambda Z})}{\mathbb{E}[e^{\lambda Z} \mid X^{(i)}]} \leq \frac{1}{8}\lambda^2 c_i^2$ (you should use an integral somewhere).
- Use Tensorisation of Entropy and Herbst's Argument to show that $Z \mathbb{E}[Z]$ has sub-Gaussian right tail with parameter ν .
- Why does the result also hold for -f?

Proof. The first step is tensorisation of entropy: by Tensorisation of Entropy, we have

$$\operatorname{Ent}\!\left(e^{\lambda Z}\right) \leq \mathbb{E}\!\left[\sum_{i=1}^{n} \operatorname{Ent}^{(i)}\!\left(e^{\lambda Z}\right)\right]$$

Write $f_{X^{(i)}}(x_i) = f(X_{1:(i-1)}, x_i, X_{(i+1):n})$. Conditional on $X^{(i)}$, $f_{X^{(i)}}$ takes values on an interval of length $\leq c_i$ by the bounded differences property.

The second step is to apply Hoeffding's Lemma. Let $\psi_i(\lambda) = \log \mathbb{E}\left[e^{\lambda(Z - \mathbb{E}[Z])} \mid X^{(i)}\right]$. As in the proof of Herbst's Argument, we have

$$\frac{\operatorname{Ent}(e^{\lambda Z})}{\mathbb{E}[e^{\lambda Z}]} = \lambda \psi'_{Z-\mathbb{E}[Z]}(\lambda) - \psi_{Z-\mathbb{E}[Z]}(\lambda).$$

Note that this holds for the random variable $Z \mid X^{(i)} = x^{(i)}$, for any value of $x^{(i)}$. By Hoeffding's Lemma, we have $\psi_i''(\lambda) \leq c_i^2/4$, and so

$$\begin{split} \frac{\mathrm{Ent}^{(i)}(e^{\lambda Z})}{\mathbb{E}[e^{\lambda Z} \mid X^{(i)}]} &= \lambda \psi_i'(\lambda) - \psi_i(\lambda) = \int_0^\lambda \theta \psi_i''(\theta) \, \mathrm{d}\theta \\ &\leq \int_0^\lambda \theta \frac{c_i^2}{4} \, \mathrm{d}\theta \\ &= \frac{1}{8} \lambda^2 c_i^2 \end{split}$$

The third step is using Herbst's Argument: we have

$$\begin{split} \operatorname{Ent}(e^{\lambda Z}) &\leq \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Ent}^{(i)}(e^{\lambda Z})\right] \leq \mathbb{E}\left[\sum_{i=1}^{n} \frac{1}{8}\lambda^{2}c_{i}^{2}\mathbb{E}\left[e^{\lambda Z} \mid X^{(i)}\right]\right] \\ &= \frac{1}{2}\lambda^{2} \cdot \frac{1}{4}\sum_{i=1}^{n}c_{i}^{2}\mathbb{E}\left[e^{\lambda Z}\right] \end{split}$$

by Law of Total Expectation. By Herbst's Argument, we have

$$\psi_{Z-\mathbb{E}[Z]}(\lambda) \leq \frac{\lambda^2\nu}{2} \quad \forall \lambda > 0,$$

and so the Chernoff Bound gives $\mathbb{P}(Z - \mathbb{E}[Z]) \leq e^{-t^2/2\nu}$. Now noting that -f also has bounded differences with the same constants, we obtain the left-tail bound.

4.3. Log-Sobolev inequalities on the hypercube

Notation 4.26 Let $X_1, ..., X_n$ be IID and uniform on $\{-1, 1\}$, so $X = X_{1:n}$ is uniform on the hypercube $\{-1, 1\}^n$. Let Z = f(X). By Efron-Stein Inequality, $\operatorname{Var}(Z) \leq \frac{1}{2} \mathbb{E} \left[\sum_{i=1}^n (Z - Z'_i)^2 \right] =: \nu$, where $Z'_i = f \left(X_{1:(i-1)}, X'_i, X_{(i+1):n} \right)$ and X'_i is an independent copy of X_i . Define $\mathcal{E}(f)$ as

$$\nu = \frac{1}{4} \mathbb{E} \left[\sum_{i=1}^{n} \left(f(X) - f\left(\overline{X}^{(i)} \right) \right)^2 \right]$$

$$= \frac{1}{2} \mathbb{E} \left[\sum_{i=1}^n \left(f(X) - f\left(\overline{X}^{(i)}\right) \right)_+^2 \right] \eqqcolon \mathcal{E}(f),$$

where $\overline{X}^{(i)} = (X_{1:(i-1)}, -X_i, X_{(i+1):n})$. $\frac{1}{2}(f(X) - f(\overline{X}^{(i)}))$ looks like a discrete partial derivative in the *i*-th direction. So $\mathcal{E}(f)$ is a discrete analogue of $\mathbb{E}[\|\nabla f(X)\|^2]$.

Theorem 4.27 (Log-Sobolev Inequality for Bernoullis) Let X be uniformly distributed on $\{-1,1\}^n$ and $f: \{-1,1\}^n \to \mathbb{R}$. Then

$$\operatorname{Ent}(f^2(X)) \le 2 \cdot \mathcal{E}(f).$$

Proof (Hints).

- Use Tensorisation of Entropy to show that it is enough to prove the result for n = 1.
- Based on the one-dimensional inequality that needs to be shown, construct a suitable function h(a, b). Let g(a) = h(a, b) for fixed b. Show that g(b) = 0, g'(b) = 0, and $g''(a) \le 0$ for all $a \ge b$.

Proof. Let Z = f(X). By Tensorisation of Entropy,

$$\operatorname{Ent}(Z^2) \leq \mathbb{E}\left[\sum_{i=1}^n \operatorname{Ent}^{(i)}(Z^2)\right]$$

If the result was true for n = 1, then we would have $\operatorname{Ent}^{(i)}(Z^2) \leq \frac{1}{2}(f(X) - f(\overline{X}^{(i)}))^2$ (since when $X^{(i)}$ is fixed, we may think of Z^2 as being a function of X_i , and this function is $f(X)^2$ or $f(\overline{X}^{(i)})^2$ with equal probability) and so $\operatorname{Ent}(Z^2) \leq 2\mathcal{E}(f)$. So it suffices to prove the n = 1 case. Let f(1) = a, f(-1) = b. In the n = 1 case, the inequality we want to show is

$$\frac{1}{2}a^2\log(a^2) + \frac{1}{2}b^2\log(b^2) - \frac{1}{2}(a^2 + b^2)\log\left(\frac{a^2 + b^2}{2}\right) \le \frac{1}{2}(b - a)^2$$

We may assume $a, b \ge 0$, since $\frac{(b-a)^2}{2} \ge \frac{(|b|-|a|)^2}{2}$. Also, by symmetry, WLOG we assume $a \ge b$. For fixed $b \ge 0$, define

$$h(a) = \frac{1}{2}a^2\log(a^2) + \frac{1}{2}b^2\log(b^2) - \frac{1}{2}(a^2 + b^2)\log\left(\frac{a^2 + b^2}{2}\right) - \frac{1}{2}(b - a)^2$$

Since h(b) = 0, it is enough to show that h'(b) = 0 and $h''(a) \le 0$ (so h is convex). We have

$$h'(a) = a \log \frac{2a^2}{a^2 + b^2} - (a - b)$$

Hence, h'(b) = 0. Also,

$$h''(a) = 1 + \log \frac{2a^2}{a^2 + b^2} - \frac{2a^2}{a^2 + b^2} \le 0,$$

since $\log x \le x - 1$.

Remark 4.28 Log-Sobolev Inequality for Bernoullis is stronger than Efron-Stein Inequality. Also, the constant 2 on the RHS is tight.

Theorem 4.29 (Gaussian Log-Sobolev Inequality) Let $X = (X_1, ..., X_n)$ be a vector of n independent RVs with each $X_i \sim N(0, 1)$, let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable. Then

$$\operatorname{Ent}(f^2(X)) \le 2 \cdot \mathbb{E}[\|\nabla f(X)\|^2].$$

Proof. Exercise (use tensorisation and the central limit theorem).

Definition 4.30 $f : \mathbb{R}^n \to \mathbb{R}$ is *L*-Lipschitz if

$$|f(x)-f(y)| \leq L \cdot \|x-y\| \quad \forall x,y \in \mathbb{R}^n.$$

Theorem 4.31 (Gaussian Concentration Inequality) Let $X = (X_1, ..., X_n)$ be a vector of n independent RVs with each $X_i \sim N(0, 1)$. Let $f : \mathbb{R}^n \to \mathbb{R}$ be L-Lipschitz and Z = f(X). Then $Z - \mathbb{E}[Z] \in \mathcal{G}(L^2)$, i.e. for all $\lambda \in \mathbb{R}$,

$$\psi_{Z-\mathbb{E}[Z]}(\lambda) \leq \frac{\lambda^2 L^2}{2},$$

and so for all t > 0,

$$\mathbb{P}(Z-\mathbb{E}[Z]\geq t)\leq e^{-t^2/2L^2}, \quad \text{and} \quad P(Z-\mathbb{E}[Z]\leq -t)\leq e^{-t^2/2L^2}.$$

Note that these bounds are independent of the dimension n.

Proof (Hints).

- Explain why we can assume f is continuously differentiable (think sequences).
- Use the Gaussian Log-Sobolev Inequality on $e^{\lambda f/2}$ to obtain an upper bound that is a suitable assumption for Herbst's Argument.

Proof. WLOG, we can assume f is continuously differentiable (otherwise, we can approximate f with a sequence of continuously differentiable functions which converge to f). Note that $\|\nabla f(X)\| \leq L$. By the Gaussian Log-Sobolev Inequality for $e^{\lambda f/2}$, we have

$$\begin{aligned} \operatorname{Ent}(e^{\lambda f(X)}) &\leq 2 \cdot \mathbb{E} \Big[\left\| \nabla e^{\lambda f(X)/2} \right\|^2 \Big] \\ &= 2 \cdot \mathbb{E} \left[\left\| \frac{\lambda}{2} \nabla (f(X)) \cdot e^{\lambda f(X)/2} \right\|^2 \right] \\ &= \frac{\lambda^2}{2} \mathbb{E} \big[e^{\lambda f(X)} \| \nabla f(X) \|^2 \big] \\ &\leq \frac{\lambda^2 L^2}{2} \mathbb{E} \big[e^{\lambda f(X)} \big] \end{aligned}$$

So by Herbst's Argument,

$$\psi_{Z-\mathbb{E}[Z]}(\lambda) \le \frac{\lambda^2 L^2}{2},$$

and the Chernoff Bound gives the right tail bound. The left tail bound follows from the fact that -f is also *L*-Lipschitz.

Theorem 4.32 (Concentration on the Hypercube) Let $f : \{-1, 1\}^n \to \mathbb{R}$ and let $X = (X_1, ..., X_n)$ be uniform on $\{-1, 1\}^n$. Let Z = f(X) and assume

$$\max_{x\in\{-1,1\}^n}\sum_{i=1}^n \left(f(x)-f\left(\overline{x}^{(i)}\right)\right)_+^2>0\leq\nu$$

for some $\nu > 0$. Then for all t > 0,

$$\mathbb{P}(Z - \mathbb{E}[Z] \ge t) \le e^{-t^2/\nu},$$

i.e. Z has a sub-Gaussian right tail with variance parameter $\nu/2$.

Proof (Hints).

- Explain why $\frac{e^{z/2}-e^{y/2}}{(z-y)/2} \le e^{z/2}$ for z > y.
- Use the Log-Sobolev Inequality for Bernoullis on an appropriate function to obtain an upper bound that is a suitable assumption for Herbst's Argument.

Proof. We use the Log-Sobolev Inequality for Bernoullis for the function $e^{\lambda f/2}$: for $\lambda > 0$, we have

$$\begin{split} \mathrm{Ent} & \left(e^{\lambda f(X)} \right) \leq \frac{1}{2} \mathbb{E} \left[\sum_{i=1}^{n} \left(e^{\lambda f(X)/2} - e^{\lambda f\left(\overline{X}^{(i)}/2\right)} \right)^{2} \right] \\ & = \mathbb{E} \left[\sum_{i=1}^{n} \left(e^{\lambda f(X)/2} - e^{\lambda f\left(\overline{X}^{(i)}\right)/2} \right)_{+}^{2} \right] \end{split}$$

Since for z > y, $\frac{e^{z/2} - e^{y/2}}{(z-y)/2} \le e^{z/2}$ (by convexity of exp),

$$\begin{split} \mathrm{Ent} & \left(e^{\lambda f(X)} \right) \leq \mathbb{E} \left[\sum_{i=1}^{n} \frac{\lambda^2}{2^2} \Big(f(X) - f \Big(\overline{X}^{(i)} \Big) \Big)_+^2 \cdot e^{\lambda f(X)} \right] \\ & \leq \frac{\nu \lambda^2}{4} \mathbb{E} \big[e^{\lambda f(X)} \big]. \end{split}$$

By Herbst's Argument, we thus have $\psi_{Z-\mathbb{E}[Z]}(\lambda) \leq \frac{\lambda^2 \nu/2}{2}$ for all $\lambda > 0$, and the Chernoff Bound gives $\mathbb{P}(Z - \mathbb{E}[Z] \geq t) \leq e^{-t^2/\nu}$.

Remark 4.33

- If the same condition for the negative part (·)_ holds, then we get the analogous left tail bound.
- If $\max_{x \in \{-1,1\}^n} \sum_{i=1}^n \left(f(x) f(\overline{x}^{(i)})\right)^2 \leq \nu$, then $Z \mathbb{E}[Z] \in \mathcal{G}(\nu/2)$. In fact, more careful analysis shows that $Z \mathbb{E}[Z] \in \mathcal{G}(\nu/4)$.
- If f has bounded differences with constants c_i where $\sum_{i=1}^n c_i^2 \leq \nu$, then f also satisfies

$$\max_{x\in\{-1,1\}^n}\sum_{i=1}^n \left(f(x)-f\big(\overline{x}^{(i)}\big)\right)^2 \leq \nu$$

so $Z - \mathbb{E}[Z] \in \mathcal{G}(\nu/4)$. Bounded Differences Inequality also gives $Z - \mathbb{E}[Z] \in \mathcal{G}(\nu/4)$ under stronger assumptions. So we are able to prove a result that is as strong as Bounded Differences Inequality but under a weaker assumption.

• The Efron-Stein Inequality gives

$$\operatorname{Var}(Z) \leq \mathbb{E}\left[\sum_{i=1}^{n} \left(Z - Z'_{i}\right)_{+}^{2}\right] = \frac{1}{2} \mathbb{E}\left[\sum_{i=1}^{n} \left(Z - \overline{Z}^{(i)}\right)^{2}\right] \leq \nu/2$$

if $\mathbb{E}\left[\sum_{i=1}^{n} \left(Z - \overline{Z}^{(i)}\right)^{2}\right] \leq \nu$. Note that this a weaker result, but makes a weaker assumption than Concentration on the Hypercube.

4.4. The modified log-Sobolev inequality (MLSI)

Lemma 4.34 (Variational Principle for Entropy) For any non-negative random variable Y,

$$\operatorname{Ent}(Y) = \inf_{u \ge 0} \mathbb{E}[Y(\log Y - \log u) - (Y - u)]$$

and the infimum is achieved at $u = \mathbb{E}[Y]$.

Proof (Hints). Use the inequality $\log x \le x - 1$.

Proof. We have

$$\begin{split} \operatorname{Ent}(Y) &- \mathbb{E}[Y \log Y + Y \log u - (Y - u)] = \mathbb{E}\bigg[Y \log \frac{u}{\mathbb{E}[Y]} + Y - u\bigg] \\ &\leq \frac{\mathbb{E}[Y]}{\mathbb{E}[Y]}u - \mathbb{E}[Y] + \mathbb{E}[Y] - u = 0 \end{split}$$

since $\log x \leq x - 1$. For $u = \mathbb{E}[Y]$,

$$\mathbb{E}[Y \log Y] - \mathbb{E}[Y \log u + Y - u] = \operatorname{Ent}(Y).$$

Remark 4.35 This is an entropy analogue of $\operatorname{Var}(Y) = \inf_{a \in \mathbb{R}} \mathbb{E}[(Y-a)^2]$. In fact, for any convex function φ , we can prove that the infimum

$$\inf_{u>0}\mathbb{E}[\varphi(Y)-\varphi(u)-\varphi'(u)(Y-u)]$$

is achieved when $u = \mathbb{E}[Y]$. The Variational Principle for Entropy is a special case for $\varphi(x) = x \log x$.

Theorem 4.36 (Modified Log-Sobolev Inequality) Let $X_1, ..., X_n$ be independent RVs taking values on A. Let $f: A^n \to \mathbb{R}$ and Z = f(X). Let $f_i: A^{n-1} \to \mathbb{R}$ be an arbitrary function and $Z_i = f_i(X^{(i)})$ for each $i \in [n]$. Then

$$\mathrm{Ent} \big(e^{\lambda Z} \big) \leq \sum_{i=1}^n \mathbb{E} \big[e^{\lambda Z} \varphi (-\lambda (Z-Z_i)) \big] \quad \forall \lambda > 0,$$

where $\varphi(x) = e^x - x - 1$.

For $\lambda > 0$ and $Z \ge Z_i$, we may use the inequality $\varphi(-x) \le x^2/2$ for $x \ge 0$ to give a simpler upper bound:

$$\mathrm{Ent}\!\left(e^{\lambda Z}\right) \leq \frac{\lambda^2}{2} \sum_{i=1}^n \mathbb{E}\!\left[e^{\lambda Z} (Z-Z_i)^2\right]\!.$$

Proof (Hints). Use Tensorisation of Entropy and the Variational Principle for Entropy, with $u = Y_i$ (conditional on $X^{(i)}$).

Proof. Let $Y = e^{\lambda Z}$ and $Y_i = e^{\lambda Z_i}$. By Tensorisation of Entropy,

$$\operatorname{Ent}(Y) \leq \mathbb{E}\left[\sum_{i=1}^n \operatorname{Ent}^{(i)}(Y)\right]$$

We will bound each of the *n* terms on the RHS. Conditional on $X^{(i)}$, take $u = Y_i$ (note that u > 0). By the Variational Principle for Entropy,

$$\begin{split} \mathrm{Ent}^{(i)}(Y) &\leq \mathbb{E}\bigg[Y\log\frac{Y}{Y_i} - (Y - Y_i) \mid X^{(i)}\bigg] \\ &= \mathbb{E}\big[e^{\lambda Z}\lambda(Z - Z_i) - \left(e^{\lambda Z} - e^{\lambda Z_i}\right) \mid X^{(i)}\big] \\ &= \mathbb{E}\big[e^{\lambda Z}\big(\lambda(Z - Z_i) + e^{-\lambda(Z - Z_i)} - 1\big) \mid X^{(i)}\big] \\ &= \mathbb{E}\big[e^{\lambda Z}\varphi(-\lambda(Z - Z_i)) \mid X^{(i)}\big]. \end{split}$$

The result follows by summing and taking expectations.

Theorem 4.37 (Relaxed Bounded Differences) Let $Z = f(X_1, ..., X_n)$ for independent RVs $X_1, ..., X_n$ which take values on A and $f : A^n \to \mathbb{R}$. Let

$$Z_i = \inf_{x'_i} f\Big(X_{1:(i-1)}, x'_i, X_{(i+1):n}\Big).$$

Suppose that

$$\sum_{i=1}^n \left(Z-Z_i\right)^2 \leq \nu$$

almost surely for some $\nu > 0$. Then for all t > 0,

$$\mathbb{P}(Z - \mathbb{E}[Z] \ge t) \le e^{-t^2/2\nu}.$$

Proof (Hints). Straightforward.

Proof. By the Modified Log-Sobolev Inequality,

$$\mathrm{Ent}\!\left(e^{\lambda Z}\right) \leq \frac{\lambda^2}{2} \mathbb{E}\!\left[e^{\lambda Z} \sum_{i=1}^n \left(Z-Z_i\right)^2\right] \leq \frac{\lambda^2 \nu}{2} \mathbb{E}\!\left[e^{\lambda Z}\right]$$

The result follows by Herbst's Argument and the Chernoff Bound.

Remark 4.38 If $Z_i = \sup_{x'_i} f(X_{1:(i-1)}, x'_i, X_{(i+1):n})$ and $\sum_{i=1}^n (Z - Z_i)^2 \leq \nu$, then we also obtain a left tail bound. If this condition holds for the supremum and the infimum, then $Z \in \mathcal{G}(\nu)$.

4.5. Concentration of convex Lipschitz functions

Let $f: [0,1]^n \to \mathbb{R}$ be separately convex and 1-Lipschitz. The Convex Poincare Inequality says that $\operatorname{Var}(f(X)) \leq \mathbb{E}[\|\nabla f(X)\|^2] \leq 1$.

Theorem 4.39 Let $f:[0,1]^n \to \mathbb{R}$ be separately convex and 1-Lipschitz. Let $Z = f(X_1, ..., X_n)$ where $X_1, ..., X_n$ are independent and are supported on [0,1]. Then for all t > 0,

$$\mathbb{P}(Z - \mathbb{E}[Z] \ge t) \le e^{-t^2/2},$$

so $Z - \mathbb{E}[Z]$ has a sub-Gaussian right tail.

Proof (Hints).

- You may assume the partial derivatives of f exist.
- Find an appropriate upper bound for $\sum_{i=1}^{n} (f(X) f(X'_{(i)}))^2$, where $X'_{(i)} = (X_{1:(i-1)}, X'_i, X_{(i+1):n})$ and X'_i is the value for which the infimum is achieved (why is the infimum achieved?).
- Conclude using Relaxed Bounded Differences.

Proof. We may assume the partial derivatives of f exist (by approximating f as a sequence of differentiable functions if necessary). By Relaxed Bounded Differences, it is enough to show that $\sum_{i=1}^{n} (Z - Z_i)^2 \leq 1$, where $Z_i = \inf_{x'_i} f(X_{1:(i-1)}, x'_i, X_{(i+1):n})$. We have

$$\sum_{i=1}^n \left(Z-Z_i\right)^2 = \sum_{i=1}^n \left(f(X) - f\left(X'_{(i)}\right)\right)^2,$$

where $X'_{(i)} = (X_{1:(i-1)}, X'_i, X_{(i+1):n})$ and X'_i is the value for which the infimum is achieved. (The infimum is achieved since f is continuous and [0, 1] is compact) By convexity and the fact that X'_i is a minimiser (so $f(X'_{(i)}) \leq f(X)$),

$$\begin{split} \sum_{i=1}^n \left(f(X) - f\left(X'_{(i)}\right) \right)^2 &\leq \sum_{i=1}^n \left(X_i - X'_i\right)^2 \left(\frac{\partial}{\partial x_i} f(X)\right)^2 \\ &\leq \sum_{i=1}^n \left(\frac{\partial}{\partial x_i} f(X)\right)^2 \\ &= \|\nabla f(X)\|^2 \leq 1 \end{split}$$

since f is 1-Lipschitz.

Remark 4.40 The proof wouldn't work for a left-tail bound, since -f is concave not convex. The entropy method does not seem to give a left tail.

Remark 4.41 The naive bound using just the Lipschitz-ness of f would give $\sum_{i=1}^{n} (Z - Z_i)^2 \leq n$, so convexity gives a big improvement.

5. The transport method

Definition 5.1 Let Ω be a countable set and \mathcal{A} be a collection of subsets of Ω which is a σ -algebra. A **probability space** is (Ω, \mathcal{A}, P) , where P is a probability measure.

Definition 5.2 A real-valued RV Z is a map $\Omega \to \mathbb{R}$. We define

$$\mathbb{P}(Z \in A) = \sum_{\omega \in \Omega: X(\omega) \in A} P(\omega)$$

 $\begin{array}{lll} \text{for} \quad A\subseteq\mathbb{R}. \quad \text{We} \quad \text{define} \quad \mathbb{E}[Z]=\sum_{\omega\in\Omega}P(\omega)Z(\omega). \quad \text{If} \quad Q\ll P, \quad \text{write} \quad \mathbb{E}_Q[Z]=\sum_{\omega\in\Omega}Q(\omega)Z(\omega). \end{array}$

Theorem 5.3 (Variational Representation for log-MGF and Relative Entropy) Let (Ω, A, P) be a countable probability space and Z be a random variable with $\mathbb{E}[|Z|] < \infty$. Then

$$\log \mathbb{E}\big[e^Z\big] = \log \mathbb{E}_P\big[e^Z\big] = \sup_{Q \ll P} \bigl(\mathbb{E}_Q[Z] - D(Q \parallel P)\bigr)$$

where the supremum is taken over all probability measures Q that are absolutely continuous with respect to P such that $\mathbb{E}_{Q}[|Z|] < \infty$.

Conversely, fix $Q \ll P$. Then

$$D(Q \parallel P) = \sup_{Z} \bigl(\mathbb{E}_{Q} Z - \log \mathbb{E}_{P} \big[e^{Z} \big] \bigr),$$

where the supremum is over all RVs Z such that $\mathbb{E}_{P}[|Z|], \mathbb{E}_{Q}[|Z|] < \infty$.

Proof (Hints). Define

$$Q^*(\omega) = \frac{e^{Z(\omega)}P(\omega)}{\mathbb{E}_P[e^Z]}$$

and show that $0 \leq D(Q \parallel P) + \log \mathbb{E}_P[e^Z] - \mathbb{E}_Q[Z]$. When is equality achieved? *Proof.* Define

$$Q^*(\omega) = \frac{e^{Z(\omega)}P(\omega)}{\mathbb{E}_P[e^Z]}.$$

Note that Q^* is a valid PMF. For any $Q \ll P$ such that $\mathbb{E}_Q[|Z|] < \infty$, we have $0 \leq D(Q \parallel Q^*)$

$$\begin{split} &= \mathbb{E}_{Y \sim Q} \left[\log \frac{Q(Y)}{Q^*(Y)} \right] \\ &= \mathbb{E}_{Y \sim Q} \left[\log \left(\frac{Q(Y)}{P(Y)} \frac{P(Y)}{Q^*(Y)} \right) \right] \\ &= \mathbb{E}_{Y \sim Q} \left[\log \frac{Q(Y)}{P(Y)} \right] + \mathbb{E}_Q \left[\log \frac{P(Y) \mathbb{E}_{Z \sim P}[e^Z]}{P(Y) e^Z} \right] \\ &= D(Q \parallel P) + \log \mathbb{E}_P[e^Z] - \mathbb{E}_Q[Z] \end{split}$$

Hence $\log \mathbb{E}[e^Z] \ge \mathbb{E}_Q Z - D(Q \parallel P)$, with equality iff $Q = Q^*$. The result follows since $Q^* \ll P$. For the second statement, note that $D(Q \parallel P) \ge \mathbb{E}_Q[Z] - \log \mathbb{E}[e^Z]$, for any $Q \ll P$ and Z. There is equality if $Z(\omega) = \log \frac{Q(\omega)}{P(\omega)}$. (Note that $\mathbb{E}_Q[|Z|] = \mathbb{E}_Q\left[\left|\log \frac{Q}{P}\right|\right] < \infty$ since $D(Q \parallel P) < \infty$ and the negative part of $x \log x$ is finitely bounded.) Note it can be shown that the result holds when $D(Q \parallel P) < \infty$ and when $\mathbb{E}_P[e^Z] = \infty$. \Box

Corollary 5.4 For all $\lambda \in \mathbb{R}$, we have

$$\log \mathbb{E}_{P} \big[e^{\lambda(Z - \mathbb{E}_{P}[Z])} \big] = \sup_{Q \ll P} \big(\lambda \big(\mathbb{E}_{Q} Z - \mathbb{E}_{P} Z \big) - D(Q \parallel P) \big)$$

Theorem 5.5 (Marton's Argument) Let P be a PMF and $Z \sim P$. If there exists $\nu > 0$ such that

$$\mathbb{E}_Q[Z] - \mathbb{E}_P[Z] \leq \sqrt{2\nu D(Q \parallel P)}$$

for all PMFs Q such that $Q \ll P$, then

$$\log \mathbb{E}_{P} \left[e^{\lambda (Z - \mathbb{E}_{P}[Z])} \right] \leq \frac{\lambda^{2} \nu}{2} \quad \forall \lambda > 0,$$

(and so also $\mathbb{P}(Z - \mathbb{E}[Z] \ge t) \le e^{-t^2/2\nu}$ by the Chernoff Bound). Conversely, if there exists $\nu > 0$ such that $\log \mathbb{E}_P[e^{\lambda(Z - \mathbb{E}_P[Z])}] \le \frac{\lambda^2 \nu}{2}$ for all $\lambda > 0$, then

$$\mathbb{E}_Q[Z] - \mathbb{E}_P[Z] \leq \sqrt{2\nu D(Q \parallel P)}$$

for all $Q \ll P$.

Proof (Hints).

- Show that $\log \mathbb{E}_P \left[e^{\lambda (Z \mathbb{E}[Z])} \right] \leq \sup_{t \geq 0} \left(\lambda \sqrt{2\nu t} t \right).$
- For converse, may assume that $\mathbb{E}_Q[Z] \mathbb{E}_P[Z] \ge 0$ (why?). The proof is similar to the first proof.

Proof. By the Variational Representation for log-MGF and Relative Entropy,

$$\begin{split} \log \mathbb{E}_{P} \left[e^{\lambda(Z - \mathbb{E}[Z])} \right] &= \sup_{Q \ll P} \left(\lambda \left(\mathbb{E}_{Q}[Z] - \mathbb{E}_{P}[Z] \right) - D(Q \parallel P) \right) \\ &\leq \sup_{Q \ll P} \left(\lambda \sqrt{2\nu D(Q \parallel P)} - D(Q \parallel P) \right) \end{split}$$

$$\leq \sup_{t\geq 0} \Bigl(\lambda\sqrt{2\nu t} - t\Bigr).$$

Let $f(t) = \lambda \sqrt{2\nu t} - t$. Then f'(t) = 0 iff $t = \frac{\lambda^2 \nu}{2}$, and so the $\sup_{t \ge 0} f(t) = \frac{\lambda^2 \nu}{2}$. For the converse, we may assume that $\mathbb{E}_Q[Z] - \mathbb{E}_P[Z] \ge 0$, since otherwise we are trivially done. By Variational Representation for log-MGF and Relative Entropy, for all $\lambda > 0$,

$$D(Q \parallel P) \geq \lambda \left(\mathbb{E}_Q[Z] - \mathbb{E}_P[Z] \right) - \log \mathbb{E}_P e^{\lambda (Z - \mathbb{E}_P[Z])} \geq \lambda \left(\mathbb{E}_Q[Z] - \mathbb{E}_P[Z] \right) - \frac{\lambda^2 \nu}{2}$$

Taking the supremum over $\lambda > 0$, we obtain

$$D(Q \parallel P) \geq \sup_{\lambda > 0} \Biggl(\lambda \Bigl(\mathbb{E}_Q[Z] - \mathbb{E}_P[Z] \Bigr) - \frac{\lambda^2 \nu}{2} \Biggr)$$

Differentiating the RHS, we see that it is maximised when $\lambda = \frac{1}{\nu} (\mathbb{E}_Q[Z] - \mathbb{E}_P[Z])$, and so

$$D(Q \parallel P) \geq \frac{\left(\mathbb{E}_Q[Z] - \mathbb{E}_P[Z]\right)^2}{2\nu}$$

5.1. Concentration via Marton's argument

Definition 5.6 Let P, Q be distributions on A. Let $X \sim P$ and $Y \sim Q$. A coupling π is a joint distribution on (X, Y) such that X has marginal P (w.r.t π) and Y has marginal Q (w.r.t. π). Write $\Pi(P, Q)$ for the set of all couplings.

Example 5.7 $P \otimes Q$ is the independent coupling.

Lemma 5.8 $f: A^n \to \mathbb{R}$ such that $f(y) - f(x) \leq \sum_{i=1}^n c_i d(x_i, y_i)$ for some constants c_i and distance $d(\cdot, \cdot)$. Let $X \sim P_1 \otimes \cdots \otimes P_n =: P, Z = f(X)$. Let C > 0 be such that

$$\inf_{\pi\in\Pi(P,Q)}\sum_{i=1}^{n}\mathbb{E}_{\pi}[d(X_{i},Y_{i})]^{2}\leq 2CD(Q\parallel P).$$

for all $Q \ll P$. Then

$$\mathbb{P}(Z-\mathbb{E}[Z]\geq t)\leq e^{-t^2/2\nu},$$

where $\nu = C \sum_{i=1}^{n} c_i^2$.

Proof (Hints). Let $Q \ll P$ and $Y \sim Q$. Show that

$$\mathbb{E}_Q[Z] - \mathbb{E}_P[Z] \le \left(\sum_{i=1}^n c_i^2\right)^{1/2} \left(\sum_{i=1}^n \mathbb{E}_{\pi}[d(X_i, Y_i)]^2\right)^{1/2},$$

and conclude the result using Marton's Argument.

Proof. Let $Q \ll P$ and $Y \sim Q$. Then

$$\begin{split} \mathbb{E}_Q[Z] - \mathbb{E}_P[Z] &= \mathbb{E}[f(Y)] - \mathbb{E}[f(X)] \\ &= \mathbb{E}_{\pi}[f(Y) - f(X)] \quad \text{for all } \pi \in \Pi(P,Q) \\ &\leq \mathbb{E}_{\pi}\left[\sum_{i=1}^n c_i d(X_i,Y_i)\right] \\ &= \sum_{i=1}^n c_i \mathbb{E}_{\pi}[d(X_i,Y_i)] \\ &\leq \left(\sum_{i=1}^n c_i^2\right)^{1/2} \left(\sum_{i=1}^n \mathbb{E}_{\pi}[d(X_i,Y_i)]^2\right)^{1/2} \quad \text{by Cauchy-Schwarz} \end{split}$$

So

$$\mathbb{E}_Q[Z] - \mathbb{E}_P[Z] \le \left(\sum_{i=1}^n c_i^2\right)^{1/2} \left(\inf_{\pi \in \Pi(P,Q)} \sum_{i=1}^n \mathbb{E}_{\pi}[d(X_i,Y_i)]^2\right)^{1/2}$$

Since

$$\inf_{\pi\in\Pi(P,Q)}\sum_{i=1}^{n}\mathbb{E}_{\pi}[d(X_{i},Y_{i})]^{2}\leq 2CD(Q\parallel P)$$

we have $\mathbb{E}_Q[Z] - \mathbb{E}_P[Z] \le \sqrt{2\nu D(Q \parallel P)}$, where $\nu = C \sum_{i=1}^n c_i^2$. The result follows by Marton's Argument.

Definition 5.9 Let $X \sim P$ and $Y \sim Q$. The transportation cost from Q to P w.r.t a distance $d(\cdot, \cdot)$ is

$$\inf_{\pi\in\Pi(P,Q)}\mathbb{E}_{\pi}[d(X,Y)].$$

Definition 5.10 Let P and Q be distributions on the same space (Ω, \mathcal{A}) . The **total** variation distance between P and Q is

$$d_{\mathrm{TV}}(P,Q) \coloneqq \sup_{A \in \mathcal{A}} |P(A) - Q(A)|.$$

Proposition 5.11 Let $A^* = \{ \omega \in \Omega : P(\omega) \ge Q(\omega) \}$. We have the alternative expressions

$$\begin{split} d_{\mathrm{TV}}(P,Q) &= \frac{1}{2} \sum_{\omega \in \Omega} |P(\omega) - Q(\omega)| = \sum_{\omega \in \Omega} \left(P(\omega) - Q(\omega) \right)_+ \\ &= P(A^*) - Q(A^*) = 1 - \sum_{\omega \in \Omega} \min\{P(\omega), Q(\omega)\}. \end{split}$$

Proof (Hints).

- For second equality, consider the + and parts.
- For the first equality, show \leq by splitting sum over A and A^c for $A \in \mathcal{A}$, show \geq by considering $A^* = \{ \omega : P(\omega) \geq Q(\omega) \}.$
- For the third equality, show the fourth expression is equal to the third.

Proof. For the first inequality: for any $A \in \mathcal{A}$, by the triangle inequality,

$$\begin{split} \sum_{\omega \in \Omega} |P(\omega) - Q(\omega)| &= \sum_{\omega \in A} |P(\omega) - Q(\omega)| + \sum_{\omega \in A^c} |P(\omega) - Q(\omega)| \\ &\geq P(A) - Q(A) + Q(A^c) - P(A^c) = 2(P(A) - Q(A)) \end{split}$$

and similarly $\sum_{\omega\in\Omega}|P(\omega)-Q(\omega)|\geq 2(Q(A)-P(A)).$ Conversely,

$$\begin{split} d_{\mathrm{TV}}(P,Q) &\geq P(A^*) - Q(A^*) \\ &= \sum_{\omega \in \Omega} \left(P(\omega) - Q(\omega) \right)_+ = \frac{1}{2} \sum_{\omega \in \Omega} |P(\omega) - Q(\omega)|, \end{split}$$

since $\sum_{\omega \in \Omega} (P(\omega) - Q(\omega))^+ = \sum_{\omega \in \Omega} (P(\omega) - Q(\omega))_-$. For the third inequality, $1 - \sum \min\{P(\omega), Q(\omega)\} = \sum P(\omega) - \min\{P(\omega), Q(\omega)\}$

$$= \sum_{\omega \in \Omega} (P(\omega) - Q(\omega))_{+}$$

Lemma 5.12 Let P and Q be distributions on the same space. Then if $X \sim P$ and $Y \sim Q$,

$$\inf_{\pi\in\Pi(P,Q)}\mathbb{P}_{\pi}(X\neq Y)=d_{\mathrm{TV}}(P,Q)\in[0,1].$$

Proof (Hints). Show that LHS \geq RHS by taking a supremum and infimum, then consider

$$\pi(\omega_1,\omega_2) = \begin{cases} \min\{P(\omega),Q(\omega)\} & \text{if } \omega_1 = \omega_2 = \omega \\ \frac{1}{d_{\text{TV}}(P,Q)}(P(\omega_1) - Q(\omega_1))(Q(\omega_2) - P(\omega_2)) & \text{if } (\omega_1,\omega_2) \in A^* \times (A^*)^c \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Let $\pi \in \Pi(P, Q)$ and $A \in \mathcal{A}$. Since $\left|\mathbb{I}_{\{X \in A\}} - \mathbb{I}_{\{Y \in A\}}\right| \leq \mathbb{I}_{\{X \neq Y\}}$ We have $|P(A) - Q(A)| = \left|\mathbb{E}_{\pi}\left[\mathbb{I}_{\{X \in A\}} - \mathbb{I}_{\{Y \in A\}}\right]\right|$ $\leq \mathbb{E}_{\pi}\left[\left|\mathbb{I}_{\{X \in A\}} - \mathbb{I}_{\{Y \in A\}}\right|\right]$ $\leq \mathbb{E}\left[\mathbb{I}_{\{X \neq Y\}}\right]$ pointwise $= \mathbb{P}(X \neq Y).$

Taking the supremum over all $A \in \mathcal{A}$ and the infimum over all couplings gives $d_{\mathrm{TV}}(P,Q) \leq \inf_{\pi \in \Pi(P,Q)} \mathbb{P}(X \neq Y)$. We will construct π such that $\mathbb{P}(X \neq Y) = d_{\mathrm{TV}}(P,Q)$. Intuitively, we want to place as much mass as possible on the "diagonal", i.e. make $\pi(\omega, \omega)$ as large as possible.

For $(\omega_1, \omega_2) \in \Omega \times \Omega$, let

$$\pi(\omega_1,\omega_2) = \begin{cases} \min\{P(\omega),Q(\omega)\} & \text{if } \omega_1 = \omega_2 = \omega \\ \frac{1}{d_{\text{TV}}(P,Q)}(P(\omega_1) - Q(\omega_1))(Q(\omega_2) - P(\omega_2)) & \text{if } (\omega_1,\omega_2) \in A^* \times (A^*)^c \\ 0 & \text{otherwise.} \end{cases}$$

Clearly, $\mathbb{P}_{\pi}(X = Y) = \sum_{\omega \in \Omega} \pi(\omega, \omega) = \sum_{\omega \in \Omega} \min\{P(\omega), Q(\omega)\}$, and so by Proposition 5.11, $\mathbb{P}_{\pi}(X \neq Y) = 1 - \sum_{\omega \in \Omega} \min\{P(\omega), Q(\omega)\} = d_{\mathrm{TV}}(P, Q)$. Also, π is indeed a valid coupling:

$$\begin{split} \sum_{\omega_1 \in \Omega} \pi(\omega_1, \omega_2) &= \sum_{\omega_1 \in A^*} (P(\omega_1) - Q(\omega_1)) \frac{Q(\omega_2) - P(\omega_2)}{d_{\mathrm{TV}}(P, Q)} \mathbb{I}_{\{\omega_2 \in (A^*)^c\}} + \min\{P(\omega_2), Q(\omega_2)\} \\ &= Q(\omega_2), \end{split}$$

and similarly $\sum_{\omega_2\in\Omega}\pi(\omega_1,\omega_2)=P(\omega_1).$

Definition 5.13 The minimising coupling

$$\pi(\omega_1,\omega_2) = \begin{cases} \min\{P(\omega),Q(\omega)\} & \text{if } \omega_1 = \omega_2 = \omega \\ \frac{1}{d_{\text{TV}}(P,Q)}(P(\omega_1) - Q(\omega_1))(Q(\omega_2) - P(\omega_2)) & \text{if } (\omega_1,\omega_2) \in A^* \times (A^*)^c \\ 0 & \text{otherwise.} \end{cases}$$

in the proof of Lemma 5.12 is called the **optimal total variation coupling**.

Lemma 5.14 (Pinsker's Inequality) Let P and Q be PMFs such that $Q \ll P$. Then

$$d_{\mathrm{TV}}(P,Q)^2 \leq \frac{1}{2} D(Q \parallel P).$$

Proof (Hints). Let $Y(\omega) = \frac{Q(\omega)}{P(\omega)}$ and $Z = \mathbb{I}_{\{Y \ge 1\}}$. Use Hoeffding's Lemma and Marton's Argument.

Proof. Let $Y(\omega) = \frac{Q(\omega)}{P(\omega)}$. Let $Z = \mathbb{I}_{\{Y \ge 1\}}$. By Hoeffding's Lemma,

$$\psi_{Z-\mathbb{E}[Z]}(\lambda) \leq \frac{\lambda^2}{8}.$$

But then by Marton's Argument,

$$\mathbb{E}_Q[Z] - \mathbb{E}_P[Z] \leq \sqrt{2 \cdot \frac{1}{4} \cdot D(Q \parallel P)},$$

 $\begin{array}{ll} \text{i.e.} & d_{\mathrm{TV}}(P,Q) = Q(A) - P(A) \leq \sqrt{\frac{1}{2} \cdot D(Q \parallel P)}, \ \text{where} \ A = \{\omega \in \Omega : Q(\omega) \geq P(\omega)\}, \\ \text{by Proposition 5.11}. \end{array}$

Theorem 5.15 (Marton's Transport Cost Inequality) Let $P = P_1 \otimes \cdots \otimes P_n$ and $Q \ll P$. Let $X \sim P$ and $Y \sim Q$. Then

$$\inf_{\pi\in\Pi(P,Q)}\sum_{i=1}^{n}\mathbb{E}_{\pi}\left[\mathbb{I}_{\{X_{i}\neq Y_{i}\}}\right]^{2} = \inf_{\pi\in\Pi(P,Q)}\sum_{i=1}^{n}\mathbb{P}_{\pi}(X_{i}\neq Y_{i})^{2} \leq \frac{1}{2}D(Q\parallel P).$$

Proof. We use induction on *n*. The n = 1 case follows from Lemma 5.12 and Pinsker's Inequality. Assume that for every $n \le k$, there exists a coupling π_n on $(X_{1:n}, Y_{1:n})$ such that $\sum_{i=1}^{n} \mathbb{P}(X_i \ne Y_i)^2 \le \frac{1}{2}D(Q \parallel P)$. We will extend it to a coupling π_{k+1} on $(X_{1:(k+1)}, Y_{1:(k+1)})$. Write

$$\sum_{i=1}^{k+1} \mathbb{P}(X_i \neq Y_i)^2 = \sum_{i=1}^k \mathbb{P}(X_i \neq Y_i)^2 + \mathbb{P}(X_{k+1} \neq Y_{k+1})^2$$

For fixed $y_{1:k}$, let $\pi_{y_{1:k}} \in \Pi(P_{X_{k+1}}, Q_{Y_{k+1} \mid Y_{1:k} = y_{1:k}})$ be the optimal total variation coupling of X_{k+1} and $Y_{k+1} \mid Y_{1:k} = y_{1:k}$. Define

$$\begin{split} \pi_{k+1}\Big(x_{1:(k+1)}, y_{1:(k+1)}\Big) &\coloneqq \pi_k(x_{1:k}, y_{1:k}) \cdot \pi_{y_{1:k}}(x_{k+1}, y_{k+1}) \\ &= \mathbb{P}(X_{1:k} = x_{1:k}, Y_{1:k} = y_{1:k}) \mathbb{P}(X_{k+1} = x_{k+1}) \mathbb{P}(Y_{k+1} = y_{k+1} \mid X_{k+1} = x_{k+1}) \end{split}$$

This new coupling has two properties:

- 1. Given $(X_{1:k}, Y_{1:k})$, the distribution of (X_{k+1}, Y_{k+1}) depends only on $Y_{1:k}$, i.e. $X_{1:k} Y_{1:k} (X_{k+1}, Y_{k+1})$ form a Markov chain.
- 2. Also, X_{k+1} is independent of $(X_{1:k}, Y_{1:k})$.

These properties imply that $(X_{k+1}, Y_{k+1})| X_{1:k} = x_{1:k}, Y_{1:k} = y_{1:k} \sim \pi_{y_{1:k}}$. Hence,

$$\begin{split} \mathbb{P}\big(X_{k+1} \neq Y_{k+1} \mid X_{1:k} = x_{1:k}, Y_{1:k} = y_{1:k}\big) &= d_{\mathrm{TV}}\Big(P_{X_{k+1}}, Q_{Y_{k+1} \mid Y_{1:k} = y_{1:k}}\Big) \\ &\leq \sqrt{\frac{1}{2} D\Big(Q_{Y_{k+1} \mid Y_{1:k} = y_{1:k}} \parallel P_{X_{k+1}}\Big)} \end{split}$$

by the n = 1 result. Taking expectation over π_k on the LHS gives

$$\begin{split} \mathbb{P}(X_{k+1} \neq Y_{k+1}) &= \mathbb{E}_{\pi_k} \big[\mathbb{P}(X_{k+1} \neq Y_{k+1} \mid X_{1:k}, Y_{1:k}) \big] \\ &\leq \mathbb{E}_{Q_{Y_{1:k}}} \left[\sqrt{\frac{1}{2} D \Big(Q_{Y_{k+1} \mid Y_{1:k}} \parallel P_{X_{k+1}} \Big)} \right] \end{split}$$

Squaring and using Jensen's inequality gives

$$\begin{split} \mathbb{P}(X_{k+1} \neq Y_{k+1})^2 &\leq \frac{1}{2} \mathbb{E}_{Q_{Y_{1:k}}} \left[D \left(Q_{Y_{k+1} \mid Y_{1:k}} \parallel P_{X_{k+1}} \right) \right] \\ &= \frac{1}{2} D \left(Q_{Y_{k+1} \mid Y_{1:k}} \parallel P_{X_{k+1}} \mid Q_{Y_{1:k}} \right) \end{split}$$

By the induction hypothesis,

$$\begin{split} \sum_{i=1}^{k+1} \mathbb{P}(X_1 \neq Y_i)^2 &\leq \frac{1}{2} \Big(D\Big(Q_{Y_{1:k}} \parallel P_{X_{1:k}} \Big) + D\Big(Q_{Y_{k+1} \mid Y_{1:k}} \parallel P_{X_{k+1}} \mid Q_{Y_{1:k}} \Big) \Big) \\ &= \frac{1}{2} D\Big(Q_{Y_{1:(k+1)}} \parallel P_{X_{1:(k+1)}} \Big) \end{split}$$

by the Chain Rule for Relative Entropy.

Remark 5.16 We can recover the Bounded Differences Inequality from Marton's Transport Cost Inequality: the conditions of Lemma 5.8 are satisfied with $C = \frac{1}{4}$, since f having bounded differences with constant c_i implies

$$f(y)-f(x) \leq \sum_{i=1}^n c_i d(x_i,y_i),$$

where $d(x_i, y_i) = \mathbb{I}_{\{x_i \neq y_i\}}$. This gives the concentration bound.

5.2. Talagrand's inequality

Lemma 5.17 Let P and Q be distributions on the same space (Ω, \mathcal{A}) . Then

$$\inf_{\pi\in\Pi(P,Q)}\sum_{i=1}^n \mathbb{E}\Big[\mathbb{P}(X_i\neq Y_i\mid X)^2\Big] = d_2^2(Q,P).$$

Proof. We have

$$\mathbb{P}(X = Y \mid X = x) = \frac{\mathbb{P}(X = x, Y = x)}{\mathbb{P}(X = x)} \le \min\bigg\{1, \frac{Q(x)}{P(x)}\bigg\}.$$

So for any coupling π ,

$$\mathbb{E}_{\pi}\left[\mathbb{P}(X \neq Y \mid X)^{2}\right] \geq \mathbb{E}_{P}\left[\left(1 - \min\left\{1, \frac{Q(X)}{P(X)}\right\}\right)^{2}\right] = \mathbb{E}_{P}\left[\left(1 - \frac{Q(X)}{P(X)}\right)^{2}_{+}\right] = d_{2}^{2}(Q, P).$$

Definition 5.18 Marton's divergence is

$$d_2^2(Q,P) = \mathbb{E}\left[\left(1 - \frac{Q(X)}{P(X)}\right)_+^2\right] = \sum_{\omega:P(\omega)>0} \frac{(P(\omega) - Q(\omega))_+^2}{P(\omega)}.$$

Lemma 5.19 (Pinsker's Inequality for Marton Divergence) Let P, Q be distributions on the same space (Ω, A) with $Q \ll P$. Then

$$d_2^2(Q,P) \le 2D(Q \parallel P).$$

Proof. Let $h(t) = (1-t)\log(1-t) + t$ for $0 \le t \le 1$ and $q(X) = \frac{Q(X)}{P(X)}$. Then $D(Q \parallel P) = \mathbb{E}[h(1 - q(X))]$

$$D(Q \parallel P) = \mathbb{E}[h(1 - q(X))]$$

We have $h(t) = -(1-t)\log(1+\frac{t}{1-t}) + t \ge -t + t \ge 0$. $h(t) \ge t^2/2$ for $t \in [0,1]$ since $\log x \le x - 1$, and $h'(t) = -1 - \log(1 - t) + 1 = -\log(1 - t)$. Hence,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(h(t) - \frac{t^2}{2} \right) = -\log(1-t) - t \ge (1-t) + 1 - t = 0$$

So we have

$$D(Q \parallel P) = \mathbb{E}[h(1 - q(X))] \ge \mathbb{E}[h((1 - q(X))_+)] \ge \mathbb{E}\left[\frac{(1 - q(X))_+^2}{2}\right] = \frac{1}{2}d_2^2(Q, P).$$

where first inequality is since $h \ge 0$.

Theorem 5.20 (Marton's Conditional Transport Cost Inequality) Let $X = (X_1, ..., X_n), X \sim P = P_1 \otimes \cdots \otimes P_n$, and let $Q \ll P$. Then

$$\inf_{\pi\in\Pi(P,Q)}\sum_{i=1}^{n}\mathbb{E}_{\pi}\Big[P(X_{i}\neq Y_{i}\mid X)^{2}\Big]\leq 2D(Q\parallel P).$$

Proof (Hints). Explain why $\mathbb{P}(X = Y \mid X = x) \leq \min\{1, Q(x)/P(x)\}$, then take expectation.

Proof. The n = 1 case follows by the above two lemmas. Now we use induction on n. Assume that for every $n \leq k$, there exists a $\pi_k \in \Pi(P, Q)$ such that $\sum_{i=1}^n \mathbb{E}\left[\mathbb{P}(X_i \neq Y_i \mid X)^2\right] \leq 2D(Q \parallel P)$. We will find a coupling π_{k+1} such that

$$\begin{split} \sum_{i=1}^{k} \mathbb{E}\Big[\mathbb{P}\Big(X_{i} \neq Y_{i} \mid X_{1:(k+1)}\Big)^{2}\Big] + \mathbb{E}\Big[\mathbb{P}\big(X_{k+1} \neq Y_{k+1}\big) \mid X_{1:(k+1)}\Big] &= \sum_{i=1}^{k+1} \mathbb{E}\Big[\mathbb{P}\Big(X_{i} \neq Y_{i} \mid X_{1:(k+1)}\Big)^{2}\Big] \\ &\leq D\Big(Q_{Y_{1:(k+1)}} \parallel P_{X_{1:(k+1)}}\Big) \end{split}$$

For fixed $y_{1:k}$, let $\pi_{y_{1:k}}$ be the optimal total variation coupling of X_{k+1} and $Y_{k+1} | Y_{1:k} = y_{1:k}$. Let

$$\pi_{k+1}\Big(x_{1:(k+1)},y_{1:(k+1)}\Big) = \pi_k(x_{1:k},y_{1:k})\cdot\pi_{y_{1:k}}(x_{k+1},y_{k+1}).$$

This coupling has two properties:

- $X_{1:k} Y_{1:k} (X_{k+1}, Y_{k+1})$ form a Markov chain.
- X_{k+1} is independent of $(X_{1:k}, Y_{1:k})$. By the induction hypothesis,

$$\begin{split} \sum_{i=1}^k \mathbb{E}_{\pi_{k+1}} \Big[\mathbb{P} \Big(X_i \neq Y_i \mid X_{1:(k+1)} \Big) \Big] &= \sum_{i=1}^k \mathbb{E}_{\pi_{k+1}} \Big[\mathbb{P} (X_i \neq Y_i \mid X_{1:k})^2 \Big] \text{ by second property} \\ &\leq 2D \Big(Q_{Y_{1:k}} \parallel P_{X_{1:k}} \Big). \end{split}$$

We want to show

$$\mathbb{E}\Big[\mathbb{P}\Big(X_{k+1} \neq Y_{k+1} \mid X_{1:(k+1)}\Big)^2\Big] \leq 2D\Big(Q_{Y_{k+1} \mid Y_{1:k}} \parallel P_{X_{k+1}} \mid Q_{Y_{1:k}}\Big)$$

From the n = 1 case, we know that

$$\mathbb{E}_{\pi_{y_{1:k}}} \Big[\mathbb{P} \big(X_{k+1} \neq Y_{k+1} \mid X_{k+1}, Y_{1:k} = y_{1:k} \big)^2 \Big] \leq 2D \Big(Q_{Y_{k+1} \mid Y_{1:k} = y_{1:k}} \parallel P_{X_{k+1}} \Big).$$

By the two properties of π_{k+1} ,

$$\mathbb{P}(X_{k+1} \neq Y_{k+1} \mid X_{k+1}, Y_{1:k} = y_{1:k}) = \mathbb{P}\Big(X_{k+1} \neq Y_{k+1} \mid X_{1:(k+1)}, Y_{1:k} = y_{1:k}\Big)$$

Taking $\mathbb{E}_{Y_{1\cdot k}}(\cdot)$ in the above, we obtain

$$\mathbb{EP}\left(X_{k+1} \neq Y_{k+1} \mid X_{1:(k+1)}, Y_{1:k}\right)^2 = \mathbb{EP}\left(X_{k+1} \neq Y_{k+1} \mid X_{k+1}, Y_{k+1}\right)^2 \leq 2D\left(Q_{Y_{k+1} \mid Y_{1:k}} \parallel P_{X_{k+1}} \mid Q_{Y_{1:k}}\right)^2 \leq 2D\left(Q_{Y_{k+1} \mid Y_{1:k}} \parallel P_{X_{k+1}} \mid Q_{Y_{1:k}}\right)^2$$

The LHS is equal to

$$\begin{split} & \mathbb{E}\mathbb{E}\Big[\mathbb{E}\Big[\mathbb{I}_{\{X_{k+1} \neq Y_{k+1}\}} \mid X_{1:(k+1)}, Y_{1:k}\Big]^2 \mid X_{1:(k+1)}\Big] \\ & \geq \mathbb{E}\mathbb{E}\Big[\mathbb{E}\Big[\mathbb{I}_{\{X_{k+1} \neq Y_{k+1}\}} \mid X_{1:(k+1)}, Y_{1:k}\Big] \mid X_{1:(k+1)}\Big]^2 \quad \text{by Jensen} \\ & = \mathbb{E}\mathbb{E}\Big[\mathbb{I}_{\{X_{k+1} \neq Y_{k+1}\}} \mid X_{1:(k+1)}\Big]^2 \quad \text{by tower property} \\ & = \mathbb{E}\mathbb{P}\Big(X_{k+1} \neq Y_{k+1} \mid X_{1:(k+1)}\Big)^2 \end{split}$$

a

So
$$\sum_{i=1}^{k} \mathbb{EP}(X_i \neq Y_i \mid X_{1:(k+1)})^2 + \mathbb{EP}(X_{k+1} \neq Y_{k+1} \mid X_{1:k})^2 \leq 2D(Q_{Y_{1:k}} \parallel P_{X_{1:k}}) + 2D(Q_{Y_{k+1} \mid Y_{1:k}} \parallel P_{X_{k+1}} \mid Q_{Y_{1:k}}) = 2D(Q \parallel P)$$
by the Chain Rule for Relative Entropy.

Definition 5.21 $f: A^n \to \mathbb{R}$ satisfies the **one-sided bounded differences** property if

$$f(y)-f(x) \leq \sum_{i=1}^n \mathbb{I}_{\{x_i \neq y_i\}} c_i(x) \quad \forall x,y \in A^n,$$

where $c_i : A^n \to \mathbb{R}_{>0}$.

Remark 5.22 We can't apply results for bounded differences on functions with this property, since it is a weaker property.

Remark 5.23 By Relaxed Bounded Differences, if $\sum_{i=1}^{n} (Z_i - Z)^2 \leq \nu$, where $Z_i = \sup_{x_i} f(X_{1:(i-1)}, x_i, X_{(i+1):n})$, then $\mathbb{P}(Z - \mathbb{E}[Z] \leq -t) \leq e^{-t^2/2\nu}$. Under one-sided bounded differences,

$$0 \leq \sum_{i=1}^n \left(Z_i - Z \right)^2 \leq \sum_{i=1}^n c_i(X)^2 \leq \sup_{x \in A^n} \sum_{i=1}^n c_i(x)^2 \eqqcolon \nu_\infty,$$

so we obtain the left-tail bound $\mathbb{P}(Z - \mathbb{E}[Z] \leq -t) \leq e^{-t^2/2\nu_{\infty}}$. But now if $Z_i = \inf_{x_i} f\left(X_{1:(i-1)}, x_i, X_{(i+1):n}\right)$, with infimum achieved at $(X')^{(i)} = \left(X_{1:(i-1)}, x_i', X_{(i+1):n}\right)$, then

$$0 \leq \sum_{i=1}^{n} (Z - Z_i)^2 \leq \sum_{i=1}^{n} c_i \left((X')^{(i)} \right)^2.$$

We generally can't say that this is $\leq \sup_{x \in A^n} \sum_{i=1}^n c_i(x)^2$, so can't immediately deduce a right tail bound.

However, the transport method gives us a right-tail bound with a better parameter $\nu =$ $\mathbb{E} \Big[\sum_{i=1}^n c_i(X)^2 \Big] \leq \nu_\infty.$

Theorem 5.24 (Talagrand's One-sided Bounded Differences Inequality) Let X = $(X_1,...,X_n) \sim P_1 \otimes \cdots \otimes P_n, X_i$ independent. Let $f: A^n \to \mathbb{R}$ be a function with onesided bounded differences with associated functions c_i . Let Z = f(X) and let $\nu =$ $\mathbb{E}\left[\sum_{i=1}^{n} c_i(X)^2\right]$. Then

$$\psi_{Z-\mathbb{E}[Z]}(\lambda) \leq \frac{\lambda^2\nu}{2} \quad \forall \lambda > 0$$

which implies that

$$\mathbb{P}(Z - \mathbb{E}[Z] \ge t) \le e^{-t^2/2\nu} \quad \forall t > 0.$$

Proof (Hints).

• For $Q \ll P$ and $\pi \in \Pi(P, Q)$, show that, using Law of Total Expectation,

$$\mathbb{E}_Q[Z] - \mathbb{E}_P[Z] \leq \sum_{i=1}^n \mathbb{E}_\pi[c_i(X)\mathbb{P}(X_i \neq Y_i ~|~ X)],$$

where $\mathbb{P}(X_i \neq Y_i \mid X) = \mathbb{E}_{\pi} \left[\mathbb{I}_{\{X_i \neq Y_i\}} \mid X \right].$ • Apply Cauchy-Schwarz twice.

- Conclude using Marton's Argument.

Proof. Let $Q \ll P$. Then for all $\pi \in \Pi(P, Q)$,

$$\begin{split} \mathbb{E}_{Q}[Z] - \mathbb{E}_{P}[Z] &= \mathbb{E}_{\pi}[f(Y) - f(X)] \\ &\leq \mathbb{E}_{\pi}\left[\sum_{i=1}^{n} c_{i}(X)\mathbb{I}_{\{X_{i} \neq Y_{i}\}}\right] \quad \text{by assumption} \\ &= \sum_{i=1}^{n} \mathbb{E}_{\pi}\mathbb{E}_{\pi}\left[\mathbb{I}_{\{X_{i} \neq Y_{i}\}}c_{i}(X) \mid X\right] \quad \text{by Law of Total Expectation} \\ &= \sum_{i=1}^{n} \mathbb{E}_{\pi}[c_{i}(X)\mathbb{P}(X_{i} \neq Y_{i} \mid X)] \\ &\leq \sum_{i=1}^{n} \left(\mathbb{E}_{\pi}[c_{i}(X)^{2}]\right)^{1/2} \left(\mathbb{E}_{\pi}\left[\mathbb{P}(X_{i} \neq Y_{i} \mid X)^{2}\right]\right)^{1/2} \quad \text{by Cauchy-Schwarz} \\ &\leq \left(\sum_{i=1}^{n} \mathbb{E}_{\pi}[c_{i}(X)^{2}]\right)^{1/2} \left(\sum_{i=1}^{n} \mathbb{E}\left[\mathbb{P}(X_{i} \neq Y_{i} \mid X)^{2}\right]\right)^{1/2} \quad \text{by Cauchy-Schwarz} \end{split}$$

where we write $\mathbb{P}(X_i \neq Y_i \mid X) = \mathbb{E}_{\pi} \big[\mathbb{I}_{\{X_i \neq Y_i\}} \mid X \big].$ We claim that

$$\inf_{\pi \in \Pi(P,Q)} \sum_{i=1}^{n} \mathbb{E} \Big[\mathbb{P}(X_i \neq Y_i \mid X)^2 \Big] \le 2D(Q \parallel P).$$

This will imply that

$$\mathbb{E}_Q[Z] - \mathbb{E}_P[Z] \leq \sqrt{\nu \cdot 2 \cdot D(Q \parallel P)}$$

and so by Marton's Argument, $\psi_{Z-\mathbb{E}[Z]}(\lambda) \leq \frac{\lambda^2 \nu}{2}$ for all $\lambda > 0$, which gives the right tail bound by the Chernoff Bound.

Now we prove the claim:

6. Log-concave random variables