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1. The Khinchin axioms for entropy
Note all random variables we deal with will be discrete, unless otherwise stated. We use
log = log,.

1.1. Entropy axioms
Definition 1.1 The entropy of a discrete random variable X is a quantity H(X)

that takes real values and satisfies the Khinchin axioms: Normalisation|, [nvariance,
[Extendabilityl, Maximality], (Continuityl and [Additivityl.

Axiom 1.2 (Normalisation) If X is uniform on {0,1} (i.e. X ~ Bern(1/2)), then
H(X)=1.

Axiom 1.3 (Invariance) If Y = f(X) for some bijection f, then H(Y) = H(X).

Axiom 1.4 (Extendability) If X takes values on a set A, B is disjoint from A, Y takes
values in AU B, and for alla € A, P(Y = a) =P(X =a), then H(Y) = H(X).

Axiom 1.5 (Maximality) If X takes values in a finite set A and Y is uniformly
distributed in A, then H(X) < H(Y).

Definition 1.6 The total variance distance between X and Y is
sup|P(X € E) —P(Y € E)|.
E
Axiom 1.7 (Continuity) H depends continuously on X (with respect to total variation
distance).

Definition 1.8 Let X and Y be random variables. The conditional entropy of X
given Y is

HX|Y): ZIP’ HX|Y =vy).

Axiom 1.9 (Additivity) H(X,Y):=H(X,Y)=H(Y )+ H(X |Y).

1.2. Properties of entropy

Lemma 1.10 If X and Y are independent, then H(X,Y) = H(X) + H(Y).

Proof (Hints). Straightforward. 0

Proof. HX |Y)= Zy P(Y =y)H(X | Y =y) Since X and Y are independent, the
distribution of X is unaffected by knowing Y, so H(X | Y = y) = H(X) for all y, which
gives the result. (Note we have implicitly used here). O

Corollary 1.11 If X, ..., X,, are independent, then
H(X,,...,X,)=H(X;)+ -+ H(X,).

Proof (Hints). Straightforward. 0
Proof. By Lemma and induction. O

Lemma 1.12 (Chain Rule) Let X, ..., X,, be RVs. Then



H(Xy, .., X,) =H(X,) + H(X, | Xp) + H(X | X, Xp) + -+ H(X,, [ Xy, X ).
Proof (Hints). Straightforward. O

Proof. The case n = 2 is [Additivityl. In general,
H(Xl’ ""X’ﬂ) = H(Xl’ ""X’I’l—l) + H(X’I’L | Xl’ ""X’I’l—l)7

so the result follows by induction. O

Lemma 1.13 Let X and Y be RVs. If Y = f(X), then H(X,Y)= H(X). Also,
H(Z | X,Y)=H(Z | X).

Proof (Hints). Consider an appropriate bijection. O
Proof. The map g: x — (z, f(z)) is a bijection, and (X,Y) = g(X), so the first state-

ment follows from [[nvariancd. Also,
H(Z|X,)Y)=H(Z,X,Y)— H(X,Y) by additivity
=H(Z,X)— H(X) by first part
= H(Z | X) by additivity

(]
Lemma 1.14 If X takes only one value, then H(X) = 0.
Proof (Hints). Use that X and X are independent. O
Proof. X and X are independent (verify). So by Lemma [1.10, H(X, X) = 2H(X). But
by Ivariance, H(X,X) = H(X). So H(X) = 0. O

Proposition 1.15 If X is uniformly distributed on a set of size 2", then H(X) = n.
Proof (Hints). Straightforward. ]

Proof. Let Xy, ..., X,, be independent RVs, uniformly distributed on {0, 1}. By Corollary
1.11) and Normalisation, H (X, ..., X,,) = n. So the result follows by [nvariancel. O

Proposition 1.16 If X is uniformly distributed on a set A of size n, then H(X) = logn.

Proof (Hints). Straightforward. 0

Proof. Let r € N and let X3, ..., X, be independent copies of X. Then (X;,..., X,.) is
uniform on A", and H(X4, ..., X,.) = rH(X). Now pick k such that 2% < n" < 2¥*1 Then
by Proposition [1.15], Invariancd and Maximality, k < rH(X) <k+1. So & <logn <
% and é <HX)< % for all r € N. So H(X) = logn, as claimed. O

Theorem 1.17 (Khinchin) If H satisfies the Khinchin axioms and X takes values in
a finite set A, then

H(X) = Y py log(1/p,) = E{log %}
acA

where p, = P(X = a).



Proof (Hints).

o Explain why it is enough to prove for when the p, are rational.

o Pick n € N such that p, = ==, m, € Ny. Let Z be uniform on [n]. Let {E, : a € A}
be a partition of [n] into sets with |E,| = m,.

(]

Proof. First we do the case where all p, € Q. Pick n € N such that p, = ==, m, € Nj.

Let Z be uniform on [n]. Let {E, : a € A} be a partition of [n] into sets with |E, | =

m,. By [[nvariance, we may assume that X = a < Z € E,. Then

logn = H(Z) = H(Z,X)=H(X)+ H(Z | X)

= H(X)+ Y p,H(Z | X =0)
acA

= H(X)+ ) _p,logm,
a€A

= H(X)+ Y _p,(logp, + logn)

acA

=H(X)+ ) p,logp, +logn.

acA
Hence H(X) =—3%_ _ p,logp,.

The general result follows by [Continuityl. O
Corollary 1.18 Let X and Y be random variables. Then 0 < H(X) and 0 < H(X | Y).

Proof (Hints). Trivial. O
Proof. Immediate consequence of [Khinchin. 0
Corollary 1.19 If Y = f(X), then H(Y) < H(X).

Proof (Hints). Straightforward. O
Proof. H(X)=H(X,Y)=H(Y)+H(X|Y). But H(X | Y) > 0. O

Proposition 1.20 (Subadditivity) Let X and Y be RVs. Then H(X,Y) < H(X) +
H(Y).

Proof (Hints).

o Let p,, =P(X =a,Y =b). Explain why it is enough to show for the case when the
Dgp are rational.

o Pick n such that p,, = m,,/n with each m,, € N,. Partition [n] into sets E;, of size
m,,- Let Z be uniform on [n].

o Show that if X (or Y) is uniform, then H(X | Y) < H(X) and H(X,Y) < H(X) +
H(Y).

e Let B, =U, E,, for each b. So Y =b iff Z = E,. Now define an RV W as follows:
it Y =0, then W is uniformly distributed in E},. Use conditional independence to
conclude the result.



Proof. Note that for any two RVs X, Y,

H(X,Y) < HX) + H(Y)
= H(X|Y) < HX)
= H(Y | X) < HY)

by [Additivityl Next, observe that H(X | Y) < H(X) if X is uniform on a finite set,
since H(X | Y) =Y B(Y =) H(X | Y =y) < ¥ B(Y = y) H(X) = H(X) by
malityl By the above equivalence, we also have H(X | Y) < H(X) if Y is uniform on a
finite set. Now let p,, = P(X = a,Y = b), and assume that all p,, are rational. Pick n
such that p,, = mg,/n with each m,, € N,. Partition [n] into sets E;, of size m;,. Let

Z be uniform on [n]. WLOG (by [nvariancd), (X,Y) = (a,b) iff Z € E,,.

Let B, =U, E,, for each b. So Y =¥ iff Z = E,. Now define an RV W as follows: if
Y =b, then W € E;, but then W is uniformly distributed in F, and independent of
X (and Z). So W and X are conditionally independent given Y, and W is uniform on
[n]. Then H(X |Y)=H(X | Y,W) = H(X | W) by conditional independence and by
Lemma [1.13| (since W determines Y'). Since W is uniform, H(X | W) < H(X).

The general result follows by [Continuityl. O
Corollary 1.21 H(X) > 0 for any X.
Proof (Hints). (Without using the formula) straightforward. O

Proof. (Without using the formula). By subadditivity, H(X | X) < H(X). But
H(X | X)=0. O

Corollary 1.22 Let X,,..., X,, be RVs. Then
H(X,,..,X,) <HX;)+-+H(X,).
Proof (Hints). Trivial. 0
Proof. Trivial by induction. O
Proposition 1.23 (Submodularity) Let X,Y,Z be RVs. Then
HX|Y,Z)<H(X | Z).

Proof (Hints). Use that H(X |Y,Z =2)< H(Z | Z = 2). O
Proof. H(X |Y,Z)=3 P(Z=2HX |Y,Z=2)<) P(Z=2)H(X|Z==z) =
H(X | 2). O

Remark 1.24 Submodularity] can be expressed in several equivalent ways. Expanding
using |Additivity] gives

and



HX,)Y,Z)<H(X,Z)+H(Y,Z)—H(Z)
and

HX,)Y,Z)+H(Z)<H(X,Z)+H(Y,Z).
Lemma 1.25 Let X,Y,Z be RVs with Z = f(Y). Then H(X | Y) < H(X | Z).
Proof (Hints). Straightforward. O
Proof. We have

HX|Y)=HX,Y)-H(Y)=H(X,Y,Z)— HY, Z)
<H(X,Z)-H(Z)=H(X | 2)

by Submodularityi. ]
Lemma 1.26 Let XY, Z be RVs with Z = f(X) = g(Y). Then

H(X,Y)+ H(Z) < HX) + H(Y).

Proof (Hints). Straightforward. O
Proof. By Submodularity, we have H(X,Y,Z)+ H(Z) < H(X,Z)+ H(Y, Z), which
implies the result, since Z depends on X and Y. O

Lemma 1.27 Let X be an RV taking values in a finite set A and let Y be uniform on
A. If H(X)=H(Y), then X is uniform.

Proof (Hints). Use Jensen’s inequality. O
Proof. Let p, = P(X = a). Then
1
= Zpa log(l/pa) = |A| ) EaGApa log| — |
acA Dq

The function z - zlog(1/z) is concave on [0, 1]. So by Jensen’s inequality,

H(X) < |A] - (Eoeapa) - log( ) — log|A| = H(Y),

acAPq
with equality iff a — p, is constant, i.e. X is uniform. a

Corollary 1.28 If H(X,Y) = H(X)+ H(Y), then X and Y are independent.

Proof (Hints). Go through the proof of [Subadditivity] and check when equality holds.
]

Proof. We go through the proof of subadditivity and check when equality holds. Suppose
that X is uniform on A. Then

H(X|Y)= ZIP H(X|Y =y) < H(X),



with equality iff H(X | Y = y) is uniform on A for all y (by Lemma [1.27)), which implies
that X and Y are independent.

At the last stage of the proof, wesaid H(X | Y)=H(X | Y,W)=H(X | W) < H(X),
where W was uniform. So equality holds only if X and W are independent, which
implies (since Y depends on W), that X and Y are independent. O

Definition 1.29 Let X and Y be RVs. The mutual information
I(X:Y):=H(X)+HY)— HX,Y)
=HX)—HX|Y)
=HY)-H(Y | X).
Remark 1.30 is equivalent to the statement that I(X :Y) >0, and
Corollary implies that I(X :Y) =0 iff X and Y are independent.

Note that H(X,Y)=H(X)+ H(Y)—I(X :Y) (note the similarity to the inclusion-
exclusion formula for two sets).

Definition 1.31 Let X,Y,Z be RVs. The conditional mutual information of X
and Y given Z is

I(X:Y|2): ZIP’ I(X|Z=2:Y|Z=2)
—ZIP’ HX|Z=2+HY |Z=2—-HX,Y | Z=2))

=H(X|Z)+H(Y | 2Z)—H(X,Y | Z)
= H(X,2)+H(Y,Z)—H(X,Y,Z)— H(Z).

Submodularity] is equivalent to the statement that I(X :Y | Z) > 0.

2. A special case of Sidorenko’s conjecture

Definition 2.1 Let G be a bipartite graph with (finite) vertex sets X and Y and
density a (defined to be Hi‘((@") Let H be another (think of it as small) bipartite graph
with vertex sets U and V and m edges. Now let ¢ : U — X and ¢ : V — Y. We say

that (p,%) is a homomorphism if ¢(z)p(y) € E(G) for every edge zy € E(H).

Conjecture 2.2 (Sidorenko's Conjecture) For every G, H, for random ¢ : U — X, 9 :
VY,

m

P((¢, 1) is a homomorphism) > «

Remark 2.3 [Sidorenko's Conjectured is not hard to prove when H is the complete
bipartite graph K. ; (the case K, , can be proved using Cauchy-Schwarz: exercise).

Theorem 2.4 [Sidorenko's Conjecturd is true if H is a path of length 3.
Proof (Hints).




o Let (X,Y;) be arandom edge of G (with X; € X,Y; € Y). Now let X, be a random
neighbour of Y; and Y, be a random neighbour of X,. Explain why it suffices to
prove that H(X,,Y;, X,,Y,) > log(a®m?n?).

o Find an equivalent way of choosing a uniformly random edge (X;,Y;) of G (in terms
of vertices). Use this to reaosn that X,Y; and X,Y, are uniformly random in E(G).

o Find the lower bound for H(X;,Y;, X,,Y,) using the [Chain Rule and Maximalityl.
Ll

Proof. We want to show that if G is a bipartite graph of density a with vertex sets
X,Y of size m and n, and we choose z,,z, € X, y;,y, € Y independently at random,
then P(z,y;, Y174, T2y € E(G)) > .

It would be enough to let P be a path of length 3 chosen uniformly at random and show
that H(P) > log(a*m?n?) (by Proposition [1.16). Instead, we shall define a different RV
taking values in the set of all paths of length 3 (including degenerate paths). To do this,
let (X;,Y;) be a random edge of G (with X; € X, Y; € Y). Now let X, be a random
neighbour of Y; and Y, be a random neighbour of X,. It will be enough to prove that

H(X,,Y,,X,,Y,) > log(a®m?n?).

We can choose X,Y; in three equivalent ways:

1. Pick an edge uniformly from all edges

2. Pick a vertex z with probability proportional to its degree deg(x), and then a random
neighbour Y of z.

3. Same as above with z and y exchanged.

By the equivalence, it follows that Y; =y with probability deg(y)/|E(G)|, so X,Y;
is uniform in E(G), so X, =z’ with probability d(z")/|E(G)|, so X,Y, is uniform in
E(G).

Let U, be the uniform distribution on A. Therefore, by the Chain Rulej|
H(X,,Y,,X5,Y,) =H(X,)+ HY, | X))+ H(X, | X;, Y1)+ HY, | X,,Y;, X))
:H(X1)+H(Y1 | X1)+H(X2 | Y1)+H(Y2 | X2)
= H(X,)+ H(X,,Y,) — H(Xy) + H(X,,Y,) — HY;) + H(X,,Y;) — H(Y3)
= 3H(Ugq)) — H(¥;) — H(X,)
> 3H (Up)) ~ H(Uy) — H(Uy)
= 3log(amn) — logn — logm

= log(a®*m?®n?).

So we are done, by [Maximalityl. Alternative finish to the proof: let X”,Y” be uniform in
X,Y and independent of each other and X,,Y;, X,,Y,. Then by the above inequality

and Corollary [1.11],
H(X17Y71>X27Y27X/ayl) = H(X1,Y1,X2aY2) + H(UX) + H(UY)



> 3H (Upg))-

So by Maximality], the number of paths of length 3 times | X| times |Y| is > |E(G)|>.00

3. Brigner’s theorem
Definition 3.1 Let A be an n x n matrix over R. The permanent of A is

per(A) = Z HAicr(i)a

o€s,, i=1
i.e. “the determinant without the signs”.

Proposition 3.2 Let G be a bipartite graph with vertex sets X,Y of size n. Given
(z,y) € X XY, let

4 {1 if zy € E(G)
w0 ifzy ¢ E(G)

i.e. A is the bipartite adjacency matrix of G. Then per(A) is the number of perfect
matchings in G. (Note that per(A) is well-defined as it is invariant under reordering of
the vertices.)

Proof (Hints). Straightforward. O

Proof. Each (perfect) matching corresponds to a bijection o : X — Y such that zo(x) €
E(G) for all z € X. 0 € S,, contributes 1 to the sum iff zo(x) is an edge of G for all
xz € X (i.e. iff o corresponds to a perfect matching), and 0 otherwise. O

Bregman’s theorem concerns how large per(A) can be if A is a 0,1 matrix and the sum
of the entries in the i-th row is d; (i.e. if the degree of z; € X is d;).

Example 3.3 Let G be a disjoint union of K, ,’s, 1 =1,...,k, with a; + -+ a; = n.

Then the number of perfect matchings in G is Hf: L il

. A W

y : il

aq,07 ag,Q2 QA

Theorem 3.4 (Bregman) Let G be a bipartite graph with vertex sets X,Y of size n.
Then the number of perfect matchings in G is at most

[T (deg(a)ty!/des).

reX

Proof (Hints).



o For an enumeration z, ..., z, of X and random matching (a bijection) o, show that
H(o) < logdeg(z,) + E, logdeg? (z5) + -+ E,logdegy . (z,) (find a suitable
expression for deg? . (z;)).

 Find another expression for degg .~

o Show that the average of log degacl,_._’wii1 (z;) is e )(log(d( x))).

n—1

(z;) in terms of deg(x).

O

Proof (by Radhakrishnan). Each (perfect) matching corresponds to a bijection o : X —
Y such that zo(x) € E(G) for all x € X. Let o be chosen uniformly from all such

bijections. Then by the [Chain Rulé,
H(U) = H( (ml)v "'7U(xn))
H(o(zy)) + H(o(zy) | o(21)) + -+ H(o(zy) | 0(21), s 0(p1)),

is some enumeration of X. We have H(o(z,)) < logdeg(z,) by

where x4, ...,z

malityl, and

n

H(o(xy) | o(z,)) <E,logdeg7 (z),
where deg? (z5) = [N(zy) \ {o(z1)}|, by the definition of conditional entropy and
Maximalityl In general,
H(o(z;) | o(zy),...,0(z;_1)) <E 1Ogdegac ..... @, 1(wi)7

where deg7, . (2;) = [N(z;) \ {o(21), ..., 0(x;_1)}-
Key idea: we now regard z, ..., ,, as a random enumeration of X and take the average.
For each x € X, define the contribution of = to be log(dghm - 1(gvi)), where z;, = z.

N g—

We shall now fix o and z € X. Let the neighbours of = be yy, ..., y,. Then one of the y;
will be o(z), say yj,. Then d7 . (x;) (given that z; = z) is

—{j:o? (yj) comes earlier than z = o~ (y,) }|.

All positions of 071 (y,,) are equally likely, so the average contribution of z is

ﬁ(log d(z) +log(d(z) — 1) + - + log(1))

= () logd(x)!.

By linearity of expectation,

1
;{d og(d(z)!)

So the number of matchings is at most [ _, (d(z))Y/d4=), O

Definition 3.5 Let G be a graph with 2n vertices. A 1-factor in G is a collection of
n disjoint edges.

10



Theorem 3.6 (Kahn-Lovasz) Let G be a graph with 2n vertices. Then the number of
1-factors in G is at most

[T (@@,

zeV(Q)

Proof (Hints).

o Let M be the set of 1-factors of G and let (M, M,) be a uniformly random element
of M x M.

o Given a cover of G by M; and M,, find an expression for the number of pairs
(M7, Mj) that could give rise to it, in terms of the number of even cycles.

o Let G5 be the bipartite graph with two vertex sets V;, V,, which are both copies of
V(G). Join x € V] to y € V, iff zy € E(G).

o Explain why each perfect matching of G, gives a cover of V(G) by isolated vertices,
edges and cycles, and find an expression for the number of such perfect matchings
that could give rise to it.

d

Proof (by Alon, Friedman). Let M be the set of 1-factors of G and let (M;, M,) be
a uniformly random element of M x M. For each M, M,, the union M; U M, is a
collection of disjoint edges and even cycles that covers all the vertices of G.

N

Call such a union a cover of G by edges and even cycles. If we are given such a
cover, then the number of pairs (M;, M,) that could give rise to it is 2%, where k is
the number of even cycles. Now let’s build a bipartite graph G, out of G. G4 has two
vertex sets V;, V5, which are both copies of V(G). Join z € V] to y € V; iff zy € E(G).

G, if G is the triangle graph

By Bregman, the number of perfect matchings in G, is at most HweV(G) (d(z))H/ =),
Each matching gives a permutation o of V(G) such that zo(z) € E(G) for all z € V(G).
Each such o has a cycle decomposition, and each cycle gives a cycle in G. So o gives
a cover of V(G) by isolated vertices, edges and cycles (not necessarily all even). Given
such a cover with k cycles, each cycle can be directed in two ways, so the number of o
that give rise to it is = 2¥. So there is an injection from M x M to the set of matchings

11



of G, since every cover by edges and and even cycles is a cover by vertices, edges and
cycles. So |M|? < Hwev(c) (d(z)))L/d@), -

4. Shearer’s lemma and applications
Notation 4.1 Given a random variable X = (X;,...,X,,)and A C [n], A ={a; < ... <
ay}, write X 4 for the random variable (Xal, ey X, )

Lemma 4.2 (Shearer) Let X = (X4, ..., X,,) be an RV and let A be a family of subsets
of [n] such that every i € [n] belongs to at least r of the sets A € A. Then

H(X,, ., X Z H(X ).
Ae/l
Proof (Hints). For each a € [n], write X_, for (X;,..., X, ;). Show that H(X,) >
Dgen HXo | Xoo)- O
Proof. For each a € [n], write X_, for (X;,..., X, ;). Foreach Ae A, A={a; <<

a}, by the [Chain Ruld and [Submodularityj,
H(X,)=H(X, )+H(X,, | X, )+-+H(X, | X, X, )

> H(X | X ) +H(Xa2 | X<a2) +“'+H(Xak | X<ak>

=) H(X, | X,).

acA
g HX ) 2r3o"  H(X, | X,)=rH(X). O
Example 4.3 H(XszaXs) (H(XlaXQ) + H(X17X3) + H(XzaX3))

Therefore, >

Lemma 4.4 Let X = (X,,...,X,,) be an RV and let A C [n] be a randomly chosen
subset of [n], according to some probability distribution. Suppose that for each i € [n],
P(i € A) > p. Then

H(X) <p - Ey [H(X )
Proof (Hints). Very similar to proof of [Shearer]. O
Proof. As in Shearer],

H(XA) > ZH(Xa ’ X<a)'
ac€A

So

EA[H(XA)] > IEA !Z H(Xa ‘ X<a)] e Zn:H(Xa ’ X<a) = H(X)

a€A

12



Definition 4.5 Let E C Z™ and let A C [n]. Then we write P,E, if A ={ay,...,a:},
for the set of u € Z* such that there exists v € ZI"\ such that [u,v] € E, where [u, v]
is u suitably intertwined with v.

Corollary 4.6 Let E C Z™ and let A be a family of subsets of [n] such that every i €
[n] is contained in at least r sets in A. Then

Bl < [T I1P.BEIV".
AcA
Proof (Hints). Straightforward. O
Proof. Let X be a uniformly random element of E. Then by Shearer,

1
log|E| = H(X) < =- Y H(X,).
r AeA

But X, takes values in P4E, so H(X ,) < log|P4E| by Maximalityl Hence,
1
1 - .
oglE| < 2 3" |P,E]
AeA
Ol

Corollary 4.7 (Discrete Loomis-Whitney Theorem) If A = {[n]\{i}:i=1,...,n},
we get

< 1/(n—1)
1Bl < Hl Pana B[
Theorem 4.8 Let G be a graph with m edges. Then G has at most %(2m)3/2 triangles.
Remark 4.9 If m = (7), then this bound is fairly sharp.

Proof (Hints). Consider a uniformly random triangle with an ordering on the vertices,

and use Shearer]. O

Proof. Let (X;,X5,X3) be a random triple of vertices such that X;X,, X; X5 and
X, X5 are all edges (so pick a random triangle with an ordering of the vertices). Let ¢
be the number of triangles in G. By [Shearer],

1
log(6t) = H(X;, X5, X5) < §(H(X1,X2) + H(Xy, X3) + H(X,, X3)).
Each (Xi,X j) (for i # j) is supported in the set of edges of G, given a direction, so

H(X,, X;) < log(2m) by Maximality, =

Definition 4.10 Let V be a set of size n and let G be a set of graphs, all with vertex
set V. Then G is A-intersecting (triangle-intersecting) if G; N G4 contains a triangle
for all G;,G5 € G.

Theorem 4.11 If |V| = n, then a A-intersecting family of graphs with vertex set V
has size at most 2(2)72

13



Proof (Hints).

o Let G be a A-intersecting family. View G € § as a characteristic function from V(2
to {0,1}. Let X = (X, : e € V(?)) be chosen uniformly at random from §.

o Let Gp = KU Ky, explain why Gp is an intersecting family, use this to give
upper bound on |Gg|.

e Give an expression for the probability that an edge e is in a random Gpg. By
considering X = taking values in the above family, conclude.

d

Proof. Let G be a A-intersecting family and let X be chosen uniformly at random from
G. We write V(2 for the set of (unordered) pairs of elements of V. We think of any G €
G as a characteristic function from V® to {0,1}. So X = (X, :e € V@), X, € {0,1}
(where we fix an ordering of V(). For each R C V, let G be the graph Kp U Ky\g-
For each R, we shall look at the projection X¢ , which we can think of as taking values
in the set {GNGR:G € G} =: Gp.

Note that if G;,G5 € G, R C [n], then G; NGy NGg # 0, since G; N G, contains a
triangle, which must intersect Gy by the pigeonhole principle (the triangle contains 3
vertices, one of which is contained in one of the two components of G). Thus, Gy is
an intersecting family, so has size at most 2/F(Gr)I=1 By Lemma 4.4

H(X) <2 Ep[H(Xg,)] <2 Eg[|E(Gg) —1] =2- (%(’;) - 1) -(5) -2

since each e belongs to G with probability 1/2 (and so Exz[|E(GR)|] = 2(%)). O

Definition 4.12 Let G be a graph and let A C V(G). The edge-boundary 0A of A
is the set of edges xy such that x € A, y ¢ A. If G =7Z" or {0,1}" and i € [n], the -
th boundary 0, A is the set of edges xy € 0A such that x —y = +e,, i.e. 9;A consists
of edges in direction 1.

Theorem 4.13 (Edge-isoperimetric Inequality in Z™) Let A C Z™ be a finite set. Then

DA| > 2n - |A|(=D/n,

Proof (Hints). Use Discrete Loomis-Whitney Theorem| and a suitable lower bound on
|0, Al. O

Proof. By the Discrete Loomis-Whitney Theorem),

A < 1:[1 P4

n 1n n/(n—1)
= P4

1/(n—-1)

i)

~

n/(n—1)
1 n
(- > [P mA’) by AM-GM inequality

IN

ni=
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But |0,A| > QIPM\ {i}A‘ since each fibre contributes at least 2. So
L& n/(n—1)
A< | — 0,A
i< (5304 )

1 oA n/(n—1)
= ((ggl041)

Theorem 4.14 (Edge-isoperimetric Inequality in the Cube) Let A C {0,1}" (where
we take usual graph on {0,1}"). Then

[0A] = |A](n — log|A]).

O

Proof (Hints).

o Let X =(Xy,..,X,) be a uniformly random element of A. Write X,;=
(X1 Xi 1, X1y s X))

o Use to show that 37 H(Xi \ X\i) < H(X).

o What are the possible values of ‘P[;]l\{i} (u)|, and what is H(XZ- | X\, = u) in each

= 17 Use this to deduce an expression for

case? How many wu satisfy P[;]l\ (W)
H(X, | X,).

O
Proof. Let X be a uniformly random element of A and write X = (X, ..., X,,). Write

X\i for (X17 o X1 X1 "‘7Xn)' By [Shearer],

H(X) < L Z: H(X\Z-)

n—1

= = ()~ H (X, X)),

=1

Hence, 3" H(X, | X\;) < H(X). But

oy i ‘P[;]l\{i}(u)‘ -
H(Xi | X\, = u) - {0 if ‘P[;]l\{i}(u)‘ -

(Note that we always have ’P[;]l\ (i) (u)’ € {0,1,2}). The number of points of the second
kind is |0;A|. So

=N

H(X, | X;) = ;P(X\i =u)H(X, | X,)

= > B(Xy=u)

u¢o; A

=1- > P(Xy=u)

u€d; A
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A
So
" 0;A|
#0023 (1=
_ o4
Al
Also, H(X) = log|A|. So we are done. O

Definition 4.15 Let A be a family of sets of size d. The lower shadow of A is

OA={B:|B|=d—1,3A € A st. BC A}.
Theorem 4.16 (Kruskal-Katona) If [A] = (}) w for some real number
t, then

t
. > .
anz(,")

Proof (Hints).
o Let X = (Xy,...,X,) be a random ordering of the elements of a uniformly random
A € A. Give an expression for H(X).
« Explain why it is enough to show H (X, ..., X, ;) >log((d — 1)!(,*,)).
o Let T ~ Bern(p) be independent of X, ..., X;_;, and given Xy, ..., X;_;, let
. X, ifT=0
X = {X:+1 if T =1
o Show that H(X, | X_,) > H(X*,T | X_;) = h(p) + pH(X},,; | X.}), and so that
H(X, | X_,)> 10g(2H(Xk+1 | Xek) 4 1).
e Using the chain rule, show that » +d — 1 <t, and use this to conclude the desired
bound on H(X_,).

a

Proof. Let X = (Xy,...,X,;) be a random ordering of the elements of a uniformly
random A € A. Then H(X) = log(d!|A]) =log(d!(})). Note that (Xi,..., X4 ) is an
ordering of the elements of some B € 0, A, so

H(Xq, ..., X, 1) <log((d—1)19,A|)

So it’s enough to show H(X;,..,X,; ;) >log((d—1)!(,*,)). Also, H(X)=
H(Xy, o Xy )+ HX, | Xy, Xy q) and  H(X) = H(X,) + H(X, | X;) + -+
H(X,; | Xq,...,X4.1). We would like an upper bound for H(X, | X_;). Our strategy
will be to obtain a lower bound for H(X, | X_;) in terms of H(X,,, | X_;.1). We
shall prove that oH(Xy | Xek) > 9H(Xpu1 | Xaps1) 41 for all k.

16



Let T be chosen independently of X. Let T' ~ Bern(1 — p) (T = 0 with probability p, p
is to be chosen later). Given X, ..., X, _4, let

. (X, T =0

Note that X, and X, have the same distribution (given X, ..., X;_;), so X* does as
well. Then

H(X, | X ) =H(X*| X_}) since X, ~ X*

(X* | X_,) by Submodularity

(X*,T | X_;,) since X, and X* determine T (since X, ; # X)
(

(

(

Y

T| X))+ H(X*|T,X,) by Additivity

T) —l-pH(X* | Xep, T'= 0) + (1 —p)H(X* | Xep, T'= 1)
T)+pH(Xpyy | Xep) + 1 —p)H(X, | Xoy)

(p) + ps.

I
T & RRE

Il
>

where s = H(X,,, | X;) and h(p) = plog% + (1 —p)log ﬁ. This is maximised when

p= 252—+1 Then we get

95 1 528
log(2% + 1) — log(2° log(25 + 1
2erl(og( + 1) — log( ))+2s+1(og( + ))+28+1

= log(2° +1).

This proves the claim.
Let r = 2#(Xal X<a) Then by the claim,
H(X) = H(X,) + =+ H(X, | X.)
> log(r+d—1)+ -+ log(r)

_ log(%) :log(d!(r—i_fl_ 1))

Since H(X) =log(d!(})) is an increasing function (for ¢ > d), it follows that r 4+ d —
1<t ie.r<t+1—d. It follows that

H(X_,) = log(d!(fl)) —logr

¢!
> log(d!d!(t —d)l(t+1— d))

zlog((d—n!(djl)).

5. The union-closed conjecture
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Definition 5.1 Let A be a finite family of sets. .4 is union-closed if AU B € A for
all A,B € A.

Conjecture 5.2 (Union-closed Conjecture) If A is a non-empty union-closed family,
then there exists z that belongs to at least 1|.A| sets in A.

Theorem 5.3 (Gilmer) There exists a constant ¢ > 0 such that if 4 is any union-
closed family, then there exists « that belongs to at least ¢|A4| of the sets in A.

Example 5.4 Let A = [n]®™ U [n]((2@p—p*~0(1)n) Then with high probability, if A, B
are random elements of [n]®™) then |[AU B| > (2p — p? — o(1))n (since the intersect is
likely of size at most p?n). If 1 — (2p — p? — 0(1)) = p, then almost all of A is contained
in [n]®™). The solutions of p occur roughly when 1 — 3p + p? = 0, which has solutions

p= %(3 + \/3)
If we want to prove [Gilmer], it is natural to let A, B be independent uniformly random
elements of A and to consider H(A U B). Since A is union-closed, AU B € A, so H(AU

B) <log|A|. Now we would like to get a lower bound for H(A U B) assuming that no
z belongs to more than p|A| sets in A.

Lemma 5.5 Suppose ¢ > 0 is such that h(zy) > c(zh(y) + yh(x)) for every z,y €
[0,1]. Let A be a family of sets such that every element of U .A belongs to fewer than
p|A| members of A. Let A, B be independent uniformly members of 4. Then

H(AUB) > ¢(1— p)(H(A) + H(B)).

Proof (Hints).

o Think of A, B as characteristic functions. Write A_;, for (A, ..., 4;_1).

o Explain why it is enough to prove that H((AUB), | A_y, B.y) > c(1—
p)(H(Ay | ALy) + H(By, | Hg_,)) for all k.

o For each w,ve {0,1}*1 write p(u) =P(4,=0] A_, =u) and q(v) =P(B, =
0| B.;, =v). Find a (simple) expression for H((AU B);, | A.;, = u, B_;, = v).

o Expand H((AUB),, | A, B_}), give an upper bound, then simplify it (hint: law of
total probability).

g

Proof. Think of A, B as characteristic functions. Write A_, for (4,,..., A;_;). By the
Chain Rule, it is enough to prove for every k that

H((AUB),, | (AUB) ) > c(1 _p)<H(Ak | Ack) +H(Bk | HB<k)>'
By Lemma [1.25,
H((AUB), | (AUB) ) 2 H(AUB),, | Aoy, Boy)

For each wu,v € {0,1}*1 write p(u)=P(4,=0] A_,=u) and q(v)=P(B, =
0 | B.;, = v). Then, since A and B are independent,

H((AUB), | A, =u,B_, =)

18



1
:_ZP((AUB)k =i| Ay =u, B =v)logP((AUB), =i | A, =u, B, =)
=0

= h(p(u)q(v)).

which by hypothesis is at least ¢(p(u)h(g(v)) + q(v)h(p(u))). So

H((AUB);, | (AUB)) > ¢ P(Ay = u)P(B = v)(p(w)h(q(v)) + q(v)h(p(w)))

u,v

te- > Py, h(p(w) Y P(By =v)q(v)

But by law of total probability,
D P(Ag = wP(4, =0 | Ay =u) = P(4; =0),
and

Z]P(B<k =v)h(q(v)) = ZP(B<k =v)H(By, | B, =v) = H(By, | Boy)

Similarly for the other term, so the RHS of the inequality equals
c(P(4), = 0)H(By, | By) +P(By, = 0)H(4,, | Ay)),
which by hypothesis (since P(A4, =0) =P(B, =0) > 1 —p) is greater than
c(1—p)(H(A, | Acy) + H(By | Boy))
as required. O

Corollary 5.6 Let A, p and ¢ be as in Lemma [5.5. If A is union-closed, then we must
have p > 1—1/2c.

Proof (Hints). Straightforward. O

Proof. Let A and B be independent uniformly random elements of A. Since A is
union-closed, AU B € A, so H(AU B) < log|A|. Also, H(A) = H(B) = log|A|. Hence,
by Lemma b.5, 2¢(1 —p) < 1. O

Corollary 5.6 gives a non-trivial bound as long as ¢ > 1/2. We shall obtain 1/ (\/5 — 1).
We start by proving the diagonal case, i.e. where x = y.
Lemma 5.7 (Boppana) For every z € [0, 1],
h(a?) > ¢z h(z),
where ¢ = %(\/g-l— 1).

Proof (Hints).
o Let » = 1/¢p. Show that equality holds when =z = 1,0, 1.
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o Let f(z)=h(z?)— ¢ z-h(z). Show that f”(z) =0 iff —pz® —4z? + 3pr —4+
2¢p = 0. (Advice: use natural logs and find expressions for h'(z), h”(z) and A" (z)

first).

o Explain why f” has at most two roots in (0,1) and so f has at most five roots in
[0, 1].

o Show that f has a double root at 0 and at .

o Explain why f must have constant sign on [0, 1], and by considering small z, show
that there is z with f(z) > 0.

O

Proof. Write v =1/p = %(\/5— 1). Then 9?2 =1—1. So h(¢?) = h(1 —v) = h()
and o1 =1, so h(?) = ¢ -9 - h(1h). So equality holds when z =1, and also when
x=0,1.

Toolkit: In(2) - h(z) = —zlnz — (1 — z) In(1 — z). Then
In(2)-A(z) =—Inz—1+In(l—2z)+1=In(1l—z)—In(z)

and

and

1 1 1—2x
In(2) h"(2) = 3~ T=on = A e

So

" . —12z 8$3(1 _ 23?2) 390 gO.’E(l _ 233)
In(2) /" (z) = 22(1 — z?) T z4(1— x2)2 z(1—x) a z?(1—z)?

—12 8(1 — 2z?) 3p o(1—2x)

z(l—22)  g(1-—22)> =2(l-2) z(1-2)?

—12(1 —z%) + 8(1 — 222) + 3p(1 — z)(1 + z)? — p(1 — 2z)(1 + z)?
z(1—x)2(1+z)?

which is zero iff

—12+ 122 4+ 8 — 162% + 3p(1 + z — 2% — %) — (1 — 32% — 223)
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= —pz3 —42% + 3px — 4+ 20 = 0.

So the numerator of f”(x) is a cubic with negative leading coefficient and constant
term, so it has a negative root, so it has at most two roots in (0, 1). It follows (by Rolle’s
theorem) that f has at most five roots in [0, 1], up to multiplicity. But

f/(z) = 2z(log(1 — z?) — log(z?)) + p(xzlogz + (1 — x)log(1 — z)) — px(log(l — =) — log z)
So f'(0) =0, so f has a double root at 0. Now

f' () = 2¢(log ) — 2log ) + p(Ylogth + 2(1 — ¢) log 1) — (2log1h — log 1))
= —2¢log v + logy + 2¢plog ) — 2log
=2log (= +p—1)
= 2plogp(—p* —1—1) =0

So there is a double root at ¥. Also, f(1) = 0. So f is either non-negative on all of [0, 1]
or non-positive on all of [0, 1]. If z is small,

1 1 1 1
= z2log — 1—22)1 — (l — 1—2a)l )
f(@) = 2*log — + (1 — %) log —— — pu(wlog — + (1 — ) log ——

1 1
= 2z%log — — px?log — + O(z?).
T x

So, because 2 > ¢, there exists z such that f(z) > 0. O

Lemma 5.8 The function f(z,y) = % is minimised on (0, 1)? at a point where

x=y.

Proof (Hints).

o Show that we can extend f continuously to the boundary by setting f(z,y) =1
whenever z or y is 0 or 1 (for the case when x or y tend to 0 separately, consider an
expansion for xy small, and for the case when x and y tend to 1, consider when one
of z or yis 1).

e Pick any point in (0,1)? to show that f is minimised somewhere in that region.

e Let (z*,y*) be a minimum with f(z*,y*) = a. Let g(z) = h(z)/z.

o By considering the expression g(xy) — a(g(z) + ¢g(y)) and partial derivatives, show
that z*g"(z*) = y"g'(y").-

e Show that xzg’(x) is an injection by considering its derivative.

]

Proof. We can extend f continuously to the boundary by setting f(x,y) = 1 whenever
x or y is 0 or 1. To see this, note first that it is easy if neither  nor y is 0. If either =
or y is small then h(zy) = —zy(logz + logy) + O(zy), and

zh(y) + yh(z) = —x(ylogy + O(y)) — y(xzlogz + O(x))
= h(zy) up to O(xy)

So it tends to 1 again.
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We can check that f(1/2,1/2) < 1, so f is minimised somewhere in (0,1)2. Let (z*,y*)
be a minimum with f(z*,y*) = a. For convenience, let g(z) = h(z)/z and note that
flz,y) = g(g)(i?(y). Also, g(zy) — a(g(z) + g(y)) > 0 with equality at (z*,y*). So the
partial derivatives of the LHS are both 0 at (z*, y*):

z*g'(z*y") —ag'(y") = 0.

*

So x*¢’ (z*) = y*¢’(y*). So it is enough to prove that zg’(z) is an injection. We have

g = M)
g () = ()~ 2

zlogx + (1 — x)log(l — x)
x

=log(l —z) —logx +

_ log(1—x)
= - _
Differentiating gives

1 Clog(l—z) —z—(1—x)log(l—2)
z(1—x) x? N z2(1—x)

The numerator differentiates to —1 4+ 1 4 log(1 — =) which is negative. Also, it equals
0 at 0, so it has a constant sign. Thus, zg’(z) is indeed an injection. O

Combining this with we get that

h(zy) > L(h(y) + yh(z))

% o |

This allows us to take p =1 — 1 3*2
©

6. Entropy in additive combinatorics

We shall need two “simple” results from additive combinatorics due to Imre Ruzsa.

Definition 6.1 Let G be an abelian group and let A, B C G. The sumset A+ B of
A and B is the set

{r+y:z€Ayec B}
and the difference set A — B is the set

{r—y:2z€ A ye B}
Write 2A for A+ A, 3A for A+ A+ A, etc.
Definition 6.2 The Ruzsa distance d(A, B) is
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4-B
|A[1/2 | B|/2
Lemma 6.3 (Ruzsa Triangle Inequality) d(A,C) <d(A,B)-d(B,C).
Proof (Hints). Expand the stated inequality and consider an appropriate injection. [
Proof. This is equivalent to the statement
|A—C|-|B|<|A—B|-|B—C|.

For each z € A — C, pick a(z) € A, ¢(z) € C such that z = a(x) — ¢(x). Define the map

¢:(A—C)xB— (A—B)x (B—-0C),

(z,b0) = (a(x) —b,b—c(x)).

Adding the coordinates of ¢(z, b) gives x, so we can calculate a(x) and ¢(x) from (z, b),
and hence b. So ¢ is an injection. O

Lemma 6.4 (Ruzsa Covering Lemma) Let G be an abelian group and let A, BC G
be finite. Then A can be covered by at most |A + B|/|B| translates of B — B.

Proof (Hints). Consider a maximal subset {z;,...,z;} C A such that the z, + B are
disjoint. n

Proof. Let {z, ...,x;} be a maximal subset of A such that the sets z; + B are disjoint.
Then for all, a € A, there exists ¢ such that (a + B) N (z; + B) # 0, i.e. a € (z; + (B —
B)). So A can be covered by k translates of B — B. But since the z; + B are disjoint,

Blk = {2, 5} + Bl < |4+ Bl
U
Let X, Y be discrete random variables taking values in an abelian group. What is X + Y
when X and Y are independent? For each z, P(X +Y = 2) = > P(X =2)P(Y =
y). Writing p, and ¢, for P(X = z) and P(Y = y), this gives
> popy = (pxq)(2)

rt+y==z

r+y==z

where p(z) = p,, q(y) = g,. So sums of independent random variables correspond to
convolutions.

Definition 6.5 Let G be an abelian group and let X,Y be G-valued random variables.
The (entropic) Ruzsa distance between X and Y is

AX;Y)=HX —-Y')— %H(X) - %H(Y)
=H(X -Y')— %H(X’) - %H(Y’).

where X’,Y” are independent copies of X,Y.

23



Lemma 6.6 If A, B are finite subsets of G and X,Y are uniform on A, B respectively,
then

d(X;Y) <logd(A, B).
Proof (Hints). Straightforward. 0
Proof. WLOG X,Y are independent. Then

d(X,Y) = H(X —Y)— %H(X) ~ L aw

1 1
<log|A— B|— 3 log|A| — 3 log|B| = logd(A, B).

Lemma 6.7 Let X,Y be G-valued random variables. Then
HX-Y)>max{H(X),HY)} —-I(X:Y).

Proof (Hints). Usethat H X —-Y)>H(X—-Y |Y)and HX-Y)> H(X -Y | X).
(

Proof. We have
H(X-Y)

\V

X - Y|Y>by
X—Y,Y)— H(Y)

H(
H(
H(X, ) H(Y) by Invariance
H(
H(

X)+H(Y)—H(Y)—I(X:Y)
X)—I(X:Y).

We use with the bijection (z,y) = (z —y,y). By symmetry, we also have
HX—Y)> H(Y)—I(X:Y). 0

Corollary 6.8 If X,Y are G-valued RVs, then d(X;Y) > 0.
Proof (Hints). Straightforward. O

Proof. WLOG X and Y are independent. Then I(X:Y)=0, so HX—-Y) >
max{H(X), H(Y)} 2 L(H(X) + H(Y)). .

Lemma 6.9 If X,Y are G-valued RVs, then d(X;Y) =0 iff there is some (finite)
subgroup H of G such that X and Y are uniform on cosets of H.

Proof (Hints).

e <: straightforward.

o —>:assume WLOG that X and Y are independent. By considering entropy, explain
why X —Y and Y are independent.

e Deduce that for X supported on A and Y supported on B, for all z € A— B and
Y1,Ys € B,P(X = y; + 2) = P(X = y, + 2), and show that this implies that z + B C
A.
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e Deduce that A= B+ z for all z € A— B, and so that A — x is constant over x € A.
e Deduce that A — A is a subgroup.

d

Proof. <:1If X,Y are uniform on z + H,y + H then X’ —Y” is uniform on (z —y) +
H,s0 HX' —Y') = H(X) = H(Y).

=: WLOG X and Y are independent. We have H(X —Y) = 2(H(X) + H(Y)). So
equality must hold throughout the proof of Lemma 6.7 and Corollary /6.8, thus H(X —
Y |Y)=H(X —Y). Therefore, X —Y and Y are independent. So for every z € A — B
and yq,y, € B,

PX =Y =z|Y=y)=PX-Y=2[Y=y,),
where A ={z:P(X =z) # 0} and B = {y : P(Y = y) # 0}. We can write this as
P(X =y, +2) =P(X =y, + 2)
So P(X = x) is constant on z+ B. In particular, 2+ B C A (P(X = z) must be non-
zero on z + B, as otherwise (z+ B)NA =0, i.e. z¢ A— B). By the same argument,
A—2CB. So A=B+z for all z€ A— B. So for every x € A and y€ B, A= B+

x—1vy,s0 A—x = B —y. Hence, A — z is the same for every x € A. Therefore, A —x =
Upea (A—x) =A— Afor all z € A. It follows that

A-A+A—-A=(A—-A)—-(A-A)=A—-z—(A—x)=A— A
So A—x = A— Ais asubgroup, and so A is a coset of A — A. B= A+ z, so B is also

a coset of A — A. Also, as stated above, X is uniform on z+ B = A and Y is uniform
on A—z=B0B. O

Lemma 6.10 (Entropic Ruzsa Triangle Inequality) Let X,Y,Z be G-valued random
variables. Then d(X;Z) < d(X;Y)+d(Y; Z).

Proof (Hints). Simplify the desired inequality and use Lemma (where X — Z
depends on two different (pairs of) random variables). O

Proof. We must show (assuming WLOG that X,Y, Z are independent) that

H(X—2Z)— %H(X) — %H(Z)
<HX-Y)- %H(X) — %H(Y) +HY -2)— %H(Y) - %H(Z),

ie that HX—2Z)+ HY)<H(X-Y)+ H(Y — Z). Since X — Z depends on (X —
Y,Y — Z) and on (X, Z), by Lemma [1.26,

HX-Y,Y-ZX,2)+HX-2)<HX-Y,Y—-2)+ H(X,Z)

ie. HX,Y,Z)+HX—-2Z)<H(X,Z)+HX-Y,Y —Z). By independence and
Subadditivity, we get H(X —Z)+ H(Y)< HX-Y)+ H(Y — 2). O

Lemma 6.11 (Submodularity for Sums) If XY, Z are independent G-valued RVs, then
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HX+Y+2Z)+H(Z)<HX+2Z)+H(Y + 2).

Proof (Hints). Use Lemma [1.26. O

Proof. X +Y + Z is a function of (X + Z,Y) and of (X,Y + Z). Therefore, by Lemma
1.26,

HX+ZY,X,Y+Z)+HX+Y +2)<HX+Z,Y)+ HX,Y + Z),

thus H(X,) Y, Z)+ HX+Y+2)<HX+2Z2)+ H(Y)+ H(X)+ HY + Z). By in-
dependence and cancelling equal terms, we get the desired inequality. O

Lemma 6.12 Let G be an abelian group and let X be a G-valued random variable.
Then d(X; —X) < 2d(X; X).

Proof (Hints). Consider independent copies X7, X,, X3 of X, use Lemma 6.7 O
Proof. Let X, X5, X5 be independent copies of X. Then by Lemma [6.7,

A(X; ~X) = H(X, + Xy) — 2 H(X,) — S H(X;)

by Submodularity for Sums and since X;, X,, X5 are all copies of X. O
<

Corollary 6.13 Let X and Y be G-valued random variables. Then d(X;—Y)
5d(X;Y).

Proof (Hints). Straightforward. O
Proof. By the Entropic Ruzsa Triangle Inequality],
d(X;—Y) < d(X;Y) +d(Y;—Y)
<d(X;Y) +2d(Y;Y)
<d(X;Y)+2d(Y; X)+d(X;Y)) =5d(X;Y).
O

Definition 6.14 Let X,Y,U,V be G-valued random variables. The conditional
distance is

AX|U;Y [ V) =) PU=wP(V=20)dX |U=wuY |V =u).

Definition 6.15 Let X,Y,U be G-valued random variables. The simultaneous
conditional distance of X to Y given U is

d(X;Y | U): ZIP’ dX|U=wY |U=u).
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Definition 6.16 We say that X', Y’ are conditionally independent trials of X,Y
given U if X’ is distributed like X, Y like Y, and for each u, X’ | U = w is distributed
like X | U=u,Y" | U =uisdistributed like Y | U =u,and X’ |U =wand Y’ |U =
u are independent.
In that case, d(X;Y | U)=H(X' =Y’ |U) — %H(X’ | U) — %H(Y’ | U).
Lemma 6.17 (Entropic BSG Theorem) Let A, B be G-valued RVs. Then

d(A;B| A+ B)<3I(A:B)+2H(A+ B)— H(A) — H(B).

Proof (Hints).

o Let A’, B’ be conditionally independent trials of A, B given A + B.

o Show that H(A" | A+ B)=H(A)+ H(B)—I(A: B)— H(A+ B).

e Let (A;, By) and (A,, B,) be conditionally independent trials of (A, B) given A + B.

o Explain why H(A,—B,) <H(A,—B,,A,)+ H(A, — By,,B;) — H(A, —
B,, A, B,).

e Usethat A; + B; = A, + B, to bound each of the first two terms on the RHS of the
above, and rewrite the H(A; — B,, A, B;) term, using the conditional independence
of (A;, By) and (A,, B,), to conclude the result.

O
Proof. We have

ﬂABnA+BﬁdﬂA—BﬂA+&—%HMWA+&—%H@ﬂA+BL

where A’, B’ are conditionally independent trials of A, B given A + B. Now
HA |A+B)=H(A|A+B)=H(AJA+B)— H(A+ B)

H(A,B)— H(A+ B)

H(A)+ H(B)—I(A:B)— H(A+ B).

)+

Similarly, H(B' | A+ B)=H(A)+ H(B) —I(A: B)— H(A+ B), so

1
SHA | A+B)+ H(B' | A+ B)

is also the same. By Subadditivity, H(A"— B’ | A+ B) < H(A’ — B’). Let (4, B;)
and (A,, By) be conditionally independent trials of (A, B) given A + B (here, A; plays
the role of A’, B, plays the role of B’, and each comes with another RV since we know
the value of A+ B). Then H(A’ — B") = H(A; — B,). By Submodularity},

H(A; — B,;) <H(A; — By, Ay) + H(A, — By, B;) —H(A, — By, A, By)

Also,
H(A, — By, Ay) = H(A,,By) < H(A;) + H(By) = H(A) + H(B)

and since A; + B; = A, + B,,
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H(A, — By, By) = H(A; — By, By) = H(Ay, B,) < H(A) + H(B).
Finally, since A; + B; = Ay + B,,
H(A, — By, Ay, By) = H(Ay, By, Ay, By)
=H(A,,B;,A,,B, | A+ B)+ H(A+ B)
=2H(A,B| A+ B)+ H(A+ B)
=2H(A,B)— H(A+ B)
=2H(A)+2H(B)—2I(A: B)— H(A+ B).

where the third line is by conditional independence of (A;, B;) and (A,, By). Adding
or subtracting as appropriate all these terms gives the required inequality. O

7. A proof of Marton’s conjecture in I3
We shall prove the following theorem.

Theorem 7.1 (Green, Manners, Tao, Gowers) There is a polynomial p with the
following property: if n € N and A C F} is such that |[A + A| < C|A|, then there is a
subspace H C F of size at most |A| such that A is contained in the union of at most
p(C) translates of H. Equivalently, there exists K CF,, |K| < p(C), such that A C
K+ H.

In fact, we shall prove the following statement:

Theorem 7.2 (EPFR) Let G = F7. There is an absolute constant a with the following

property:

Let X,Y be G-valued random variables. Then there exists a subgroup H of G such that
d(X;Up) +d(Ug;Y) < 0d(X;Y),

where Uy is a random variable distributed uniformly on H.

Lemma 7.3 Let X be a discrete random variable and write p, = P(X = z). Then
there exists x such that p, > 27HX),

Proof (Hints). By contradiction. 0
Proof. If not, then H(X) = 3. p,log(1/p,) > H(X)>__p, = H(X): contradiction. [J
Proposition 7.4 implies Green, Manners, Tao, Gowers.

Proof (Hints).

o Let ACFY and |A+ A| < C|A|. Let Uy be uniformly distributed on H, let X and
Y be independent copies of U,. Show that d(X;Uy) < falogC.

e Deduce that there exists z such that

P(X + Uy = 2) 2 |[A|7V2|H|[TV2C0

and find an expression for the LHS.
o Let B=AN(z+ H). Show that A can be covered by at most |4+ 5|

B translates of H.
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e Use that B C A, z+ H to show that

|A+B| o241 AT |12 a+l
B < e sC

» Consider the cases |[H| < |A| and |H| > |A|: if the latter, then consider a subgroup
H’ of H of size between |A|/2 and |A| (why does this exist?).
(]

Proof. Let A CFZ and |[A+ Al < C|A|. Let X and Y be independent copies of U,.
Then by E , there exists a subgroup H such that d(X;Ug) + d(Uy; X) < ad(X;Y),
so d(X;Ug) < o‘d(X Y'). But since we are in F7,

A(X;Y) = H(U; — U4) — s H(U) ~ s H(UL) = H(U4 + U}) — H(U,)

<logC|A| —log|A| =log C,

by Maximalityl So d(X;Uy) < alogC, ie.
1

1 1

1 1 1
= —logl|A — log|H —al .
5 og| |-|—2 og| |+2a ogC

Therefore by Lemma, [7.3, there exists z such that

B(X + Uy = 2) > |A| V2 H| 120012,

But P(X + Uy =2) = A&ﬁ;ﬁ) = A&ﬁ}rf'{ So there exists z € G such that

AN (z+ H)| > C~/2|A|7Y2|H|7/2.

Let B=AN(z+ H). Let B= AN (z+ H). By Ruzsa Covering Lemmal, we can cover

A by at most |AU§‘B| translatesof B— B=B+ B.ButBCz+ HsoB+BC2z+ H +

H = H. So A can be covered by at most 14 |+| translates of H. But since B C A, |A +
B| < |A+ A| < C|A]. So
A+Bl_ CIAL apa A
|B|  ~ C—o/2|A|'/2|H|\/2 |H|/2

Since B is contained in z + H, |H| > C~*/2| A|Y/2|H|'/2, which implies |H| > C~%|A|. So

a21|A| a+1
co/2+ IH\1/2_C+

If |[H| < |A|, then we are done (with polynomial p(x) = z**1). Otherwise, since B C A,
|A| > C~/2|A|Y?|H|'/?| which implies |H| < C®|A|. Pick a subgroup H’ of H of size
between |A|/2 and |A|. Then H is a union of |H|/|H'| < 2C* translates of H’, so A is
a union of at most 2C?**! translates of H'. O

Now we reduce further. We shall prove the following statement.
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Theorem 7.5 (EPFR') There is an absolute constant n > 0 such that if X and Y are
any two Ff-valued RVs, with d(X;Y) > 0, then there exist Fy-valued RVs U and V
such that

Tx,y(U; V) :==d(U; V) + n(d(U; X) +d(V;Y)) < d(X;Y).

Proposition 7.6 with constant n implies with constant 1/7.

Proof (Hints).

o By compactness, we can find Fy-valued RVs U, V such that 7y (U; V') is minimised.

o Assuming that d(U;V) # 0, use the [Ruzsa Triangle Inequality] to derive a contra-
diction.

« Conclude using Lemma [6.9.

a

Proof. By compactness, we can find Fg-valued RVs U,V such that TX7y(U ; V) is
minimised. If d(U; V) # 0, then by EPFR/, there exist F§-valued RVs Z, W such that
oy (Z; W) < d(U; V). But then by the Ruzsa Triangle Inequality},
Tx,y(Z; W) =d(Z; W) +n(d(Z; X) + d(W;Y))
<d(Z;W) +n(d(Z;U) +d(W; V) +n(d(U; X) +d(V;Y))
<d(U; V) +n(dU; X) +d(V;Y))
= TX,Y(U§ V),

which is a contradiction. It follows that d(U;V) = 0. So by Lemma 6.9, there exists H
such that U and V are uniform on cosets of H, so

n(d(U; X) +d(V;Y)) =n(d(Uy; X) +d(Uy;Y)) <d(X;Y),

since d(+; -) is invariant under constant shifts of either of its arguments. This gives
with constant 1/7. O

Notation 7.7 Write 7x (U | Z;V | W) for 30 P(Z=2)P(W =w)txy(U | Z =
zV | W=w)and 7x y(U;V | Z) for 3] P(Z =2)1x (U | Z =2V =Z = 2).
Remark 7.8 If we can prove [EPFR/| for conditioned random variables, then by

averaging, we get it for some pair of random variables (e.g. of the form U | Z = z and
VIW=w).

Lemma 7.9 (Fibring) Let G and H be abelian groups and let ¢ : G — H be a
homomorphism. Let X,Y be G-valued random variables. Then

d(X;Y) = d(p(X); o(Y)) + d(X | o(X); Y | oY) + I(X =Y : (p(X), 0(Y)) [ (X) — ¢(Y)).

Proof (Hints).
e May assume WLOG that X and Y are independent.
e Use Lemma [1.13 and |Additivityl.
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Proof. We may assume WLOG that X and Y are independent. We have

d(X:Y) = H(X —Y)— %H(X) _ %H(Y)
=H(p(X) — oY)+ HX =Y | p(X) —p(Y))
S H(p(X)) ~ SH(X | p(X)) -
=d(p(X);0(Y)) +d(X | p(X);Y | (Y))
FH(X =Y [ p(X) —¢(Y)) - HX =Y | p(X),p(Y))

H(p(Y)) ~ SH(Y | o(Y))

N —

But the last line equals
HX =Y [ o(X) = ¢(Y)) = H(X =Y | o(X),p(Y), p(X) — ¢(Y))
=I(X =Y : (p(X),0(Y)) | p(X) —(Y)).

We shall be interested in the following special case.

Corollary 7.10 Let G =F35 and let X, X,, X3, X, be independent G-valued RVs.
Then

d(Xy; X3) +d(Xy; Xy) = d((X1, Xy); (X3, Xy))
=d(X; + Xo; X3+ Xy) +d(X; | X; + X5 X5 | X3+ Xy)
FI(X) + X3, Xo + Xy 0 Xy + X, X3+ Xy | Xy + X + X3+ Xy).

Proof (Hints). Straightforward. O
Proof. The first equality is easy to see. For the second, apply with X =
(X17X2)7 Y:(X3aX4) and (,O(ZE,y) ::E_f—y U

We shall now set W = X; + X, + X5+ X,.

Recall that d(X;Y | X+Y)<3I(X:Y)+2H(X+Y)—-H(X)—H(Y). Equiva-

lently, I(X :Y) > 3(d(X;Y | X+Y)+ H(X)+ H(Y)—2H(X +Y)). Applying this

to the mutual information term in Corollary [7.10, we get that it is at least

1 1

§d(X1 + X5, Xo + Xy X + X0, X+ Xy | X+ X5, W) + §H(X1 + X5, Xo + Xy | W)
1 2

which simplifies to

1
gd(Xl + X3, Xo + X X, + X, Xa + Xy | Xy + X3, W)

1 1 2
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