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1. The Khinchin axioms for entropy
Note all random variables we deal with will be discrete, unless otherwise stated. We use
log = log2.

1.1. Entropy axioms
Definition 1.1  The entropy of a discrete random variable 𝑋 is a quantity 𝐻(𝑋)
that takes real values and satisfies the Khinchin axioms: Normalisation, Invariance,
Extendability, Maximality, Continuity and Additivity.

Axiom 1.2 (Normalisation)  If 𝑋 is uniform on {0, 1} (i.e. 𝑋 ∼ Bern(1/2)), then
𝐻(𝑋) = 1.

Axiom 1.3 (Invariance)  If 𝑌 = 𝑓(𝑋) for some bijection 𝑓 , then 𝐻(𝑌 ) = 𝐻(𝑋).

Axiom 1.4 (Extendability)  If 𝑋 takes values on a set 𝐴, 𝐵 is disjoint from 𝐴, 𝑌  takes
values in 𝐴 ⊔ 𝐵, and for all 𝑎 ∈ 𝐴, ℙ(𝑌 = 𝑎) = ℙ(𝑋 = 𝑎), then 𝐻(𝑌 ) = 𝐻(𝑋).

Axiom 1.5 (Maximality)  If 𝑋 takes values in a finite set 𝐴 and 𝑌  is uniformly
distributed in 𝐴, then 𝐻(𝑋) ≤ 𝐻(𝑌 ).

Definition 1.6  The total variance distance between 𝑋 and 𝑌  is

sup
𝐸

|ℙ(𝑋 ∈ 𝐸) − ℙ(𝑌 ∈ 𝐸)|.

Axiom 1.7 (Continuity)  𝐻 depends continuously on 𝑋 (with respect to total variation
distance).

Definition 1.8  Let 𝑋 and 𝑌  be random variables. The conditional entropy of 𝑋
given 𝑌  is

𝐻(𝑋 | 𝑌 ) ≔ ∑
𝑦

ℙ(𝑌 = 𝑦)𝐻(𝑋 | 𝑌 = 𝑦).

Axiom 1.9 (Additivity)  𝐻(𝑋, 𝑌 ) ≔ 𝐻((𝑋, 𝑌 )) = 𝐻(𝑌 ) + 𝐻(𝑋 | 𝑌 ).

1.2. Properties of entropy
Lemma 1.10  If 𝑋 and 𝑌  are independent, then 𝐻(𝑋, 𝑌 ) = 𝐻(𝑋) + 𝐻(𝑌 ).

Proof (Hints) .  Straightforward. □

Proof .  𝐻(𝑋 | 𝑌 ) = ∑𝑦 ℙ(𝑌 = 𝑦)𝐻(𝑋 | 𝑌 = 𝑦) Since 𝑋 and 𝑌  are independent, the
distribution of 𝑋 is unaffected by knowing 𝑌 , so 𝐻(𝑋 | 𝑌 = 𝑦) = 𝐻(𝑋) for all 𝑦, which
gives the result. (Note we have implicitly used Invariance here). □

Corollary 1.11  If 𝑋1, …, 𝑋𝑛 are independent, then

𝐻(𝑋1, …, 𝑋𝑛) = 𝐻(𝑋1) + ⋯ + 𝐻(𝑋𝑛).

Proof (Hints) .  Straightforward. □

Proof .  By Lemma 1.10 and induction. □

Lemma 1.12 (Chain Rule)  Let 𝑋1, …, 𝑋𝑛 be RVs. Then

2



𝐻(𝑋1, …, 𝑋𝑛) = 𝐻(𝑋1) + 𝐻(𝑋2 | 𝑋1) + 𝐻(𝑋3 | 𝑋1, 𝑋2) + ⋯ + 𝐻(𝑋𝑛 | 𝑋1, …, 𝑋𝑛−1).

Proof (Hints) .  Straightforward. □

Proof .  The case 𝑛 = 2 is Additivity. In general,

𝐻(𝑋1, …, 𝑋𝑛) = 𝐻(𝑋1, …, 𝑋𝑛−1) + 𝐻(𝑋𝑛 | 𝑋1, …, 𝑋𝑛−1),

so the result follows by induction. □

Lemma 1.13  Let 𝑋 and 𝑌  be RVs. If 𝑌 = 𝑓(𝑋), then 𝐻(𝑋, 𝑌 ) = 𝐻(𝑋). Also,
𝐻(𝑍 | 𝑋, 𝑌 ) = 𝐻(𝑍 | 𝑋).

Proof (Hints) .  Consider an appropriate bijection. □

Proof .  The map 𝑔 : 𝑥 ↦ (𝑥, 𝑓(𝑥)) is a bijection, and (𝑋, 𝑌 ) = 𝑔(𝑋), so the first state-
ment follows from Invariance. Also,

𝐻(𝑍 | 𝑋, 𝑌 ) = 𝐻(𝑍, 𝑋, 𝑌 ) − 𝐻(𝑋, 𝑌 ) by additivity
= 𝐻(𝑍, 𝑋) − 𝐻(𝑋) by first part
= 𝐻(𝑍 | 𝑋) by additivity

□

Lemma 1.14  If 𝑋 takes only one value, then 𝐻(𝑋) = 0.

Proof (Hints) .  Use that 𝑋 and 𝑋 are independent. □

Proof .  𝑋 and 𝑋 are independent (verify). So by Lemma 1.10, 𝐻(𝑋, 𝑋) = 2𝐻(𝑋). But
by Invariance, 𝐻(𝑋, 𝑋) = 𝐻(𝑋). So 𝐻(𝑋) = 0. □

Proposition 1.15  If 𝑋 is uniformly distributed on a set of size 2𝑛, then 𝐻(𝑋) = 𝑛.

Proof (Hints) .  Straightforward. □

Proof .  Let 𝑋1, …, 𝑋𝑛 be independent RVs, uniformly distributed on {0, 1}. By Corollary
1.11 and Normalisation, 𝐻(𝑋1, …, 𝑋𝑛) = 𝑛. So the result follows by Invariance. □

Proposition 1.16  If 𝑋 is uniformly distributed on a set 𝐴 of size 𝑛, then 𝐻(𝑋) = log 𝑛.

Proof (Hints) .  Straightforward. □

Proof .  Let 𝑟 ∈ ℕ and let 𝑋1, …, 𝑋𝑟 be independent copies of 𝑋. Then (𝑋1, …, 𝑋𝑟) is
uniform on 𝐴𝑟, and 𝐻(𝑋1, …, 𝑋𝑟) = 𝑟𝐻(𝑋). Now pick 𝑘 such that 2𝑘 ≤ 𝑛𝑟 ≤ 2𝑘+1. Then
by Proposition 1.15, Invariance and Maximality, 𝑘 ≤ 𝑟𝐻(𝑋) ≤ 𝑘 + 1. So 𝑘

𝑟 ≤ log 𝑛 ≤
𝑘+1

𝑟  and 𝑘
𝑟 ≤ 𝐻(𝑋) ≤ 𝑘+1

𝑟  for all 𝑟 ∈ ℕ. So 𝐻(𝑋) = log 𝑛, as claimed. □

Theorem 1.17 (Khinchin)  If 𝐻 satisfies the Khinchin axioms and 𝑋 takes values in
a finite set 𝐴, then

𝐻(𝑋) = ∑
𝑎∈𝐴

𝑝𝑎 log(1/𝑝𝑎) = 𝔼[log 1
𝑃𝑋(𝑋)

],

where 𝑝𝑎 = ℙ(𝑋 = 𝑎).
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Proof (Hints) .
• Explain why it is enough to prove for when the 𝑝𝑎 are rational.
• Pick 𝑛 ∈ ℕ such that 𝑝𝑎 = 𝑚𝑎

𝑛 , 𝑚𝑎 ∈ ℕ0. Let 𝑍 be uniform on [𝑛]. Let {𝐸𝑎 : 𝑎 ∈ 𝐴}
be a partition of [𝑛] into sets with |𝐸𝑎| = 𝑚𝑎.

□

Proof .  First we do the case where all 𝑝𝑎 ∈ ℚ. Pick 𝑛 ∈ ℕ such that 𝑝𝑎 = 𝑚𝑎
𝑛 , 𝑚𝑎 ∈ ℕ0.

Let 𝑍 be uniform on [𝑛]. Let {𝐸𝑎 : 𝑎 ∈ 𝐴} be a partition of [𝑛] into sets with |𝐸𝑎| =
𝑚𝑎. By Invariance, we may assume that 𝑋 = 𝑎 ⇔ 𝑍 ∈ 𝐸𝑎. Then

log 𝑛 = 𝐻(𝑍) = 𝐻(𝑍, 𝑋) = 𝐻(𝑋) + 𝐻(𝑍 | 𝑋)

= 𝐻(𝑋) + ∑
𝑎∈𝐴

𝑝𝑎𝐻(𝑍 | 𝑋 = 𝑎)

= 𝐻(𝑋) + ∑
𝑎∈𝐴

𝑝𝑎 log 𝑚𝑎

= 𝐻(𝑋) + ∑
𝑎∈𝐴

𝑝𝑎(log 𝑝𝑎 + log 𝑛)

= 𝐻(𝑋) + ∑
𝑎∈𝐴

𝑝𝑎 log 𝑝𝑎 + log 𝑛.

Hence 𝐻(𝑋) = − ∑𝑎∈𝐴 𝑝𝑎 log 𝑝𝑎.

The general result follows by Continuity. □

Corollary 1.18  Let 𝑋 and 𝑌  be random variables. Then 0 ≤ 𝐻(𝑋) and 0 ≤ 𝐻(𝑋 | 𝑌 ).

Proof (Hints) .  Trivial. □

Proof .  Immediate consequence of Khinchin. □

Corollary 1.19  If 𝑌 = 𝑓(𝑋), then 𝐻(𝑌 ) ≤ 𝐻(𝑋).

Proof (Hints) .  Straightforward. □

Proof .  𝐻(𝑋) = 𝐻(𝑋, 𝑌 ) = 𝐻(𝑌 ) + 𝐻(𝑋 | 𝑌 ). But 𝐻(𝑋 | 𝑌 ) ≥ 0. □

Proposition 1.20 (Subadditivity)  Let 𝑋 and 𝑌  be RVs. Then 𝐻(𝑋, 𝑌 ) ≤ 𝐻(𝑋) +
𝐻(𝑌 ).

Proof (Hints) .
• Let 𝑝𝑎𝑏 = ℙ(𝑋 = 𝑎, 𝑌 = 𝑏). Explain why it is enough to show for the case when the

𝑝𝑎𝑏 are rational.
• Pick 𝑛 such that 𝑝𝑎𝑏 = 𝑚𝑎𝑏/𝑛 with each 𝑚𝑎𝑏 ∈ ℕ0. Partition [𝑛] into sets 𝐸𝑎𝑏 of size

𝑚𝑎𝑏. Let 𝑍 be uniform on [𝑛].
• Show that if 𝑋 (or 𝑌 ) is uniform, then 𝐻(𝑋 | 𝑌 ) ≤ 𝐻(𝑋) and 𝐻(𝑋, 𝑌 ) ≤ 𝐻(𝑋) +

𝐻(𝑌 ).
• Let 𝐸𝑏 = ∪𝑎 𝐸𝑎𝑏 for each 𝑏. So 𝑌 = 𝑏 iff 𝑍 = 𝐸𝑏. Now define an RV 𝑊  as follows:

if 𝑌 = 𝑏, then 𝑊  is uniformly distributed in 𝐸𝑏. Use conditional independence to
conclude the result.
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□

Proof .  Note that for any two RVs 𝑋, 𝑌 ,

𝐻(𝑋, 𝑌 ) ≤ 𝐻(𝑋) + 𝐻(𝑌 )
⟺ 𝐻(𝑋 | 𝑌 ) ≤ 𝐻(𝑋)
⟺ 𝐻(𝑌 | 𝑋) ≤ 𝐻(𝑌 )

by Additivity. Next, observe that 𝐻(𝑋 | 𝑌 ) ≤ 𝐻(𝑋) if 𝑋 is uniform on a finite set,
since 𝐻(𝑋 | 𝑌 ) = ∑𝑦 ℙ(𝑌 = 𝑦)𝐻(𝑋 | 𝑌 = 𝑦) ≤ ∑𝑦 ℙ(𝑌 = 𝑦)𝐻(𝑋) = 𝐻(𝑋) by Maxi-
mality. By the above equivalence, we also have 𝐻(𝑋 | 𝑌 ) ≤ 𝐻(𝑋) if 𝑌  is uniform on a
finite set. Now let 𝑝𝑎𝑏 = ℙ(𝑋 = 𝑎, 𝑌 = 𝑏), and assume that all 𝑝𝑎𝑏 are rational. Pick 𝑛
such that 𝑝𝑎𝑏 = 𝑚𝑎𝑏/𝑛 with each 𝑚𝑎𝑏 ∈ ℕ0. Partition [𝑛] into sets 𝐸𝑎𝑏 of size 𝑚𝑎𝑏. Let
𝑍 be uniform on [𝑛]. WLOG (by Invariance), (𝑋, 𝑌 ) = (𝑎, 𝑏) iff 𝑍 ∈ 𝐸𝑎𝑏.

Let 𝐸𝑏 = ∪𝑎 𝐸𝑎𝑏 for each 𝑏. So 𝑌 = 𝑏 iff 𝑍 = 𝐸𝑏. Now define an RV 𝑊  as follows: if
𝑌 = 𝑏, then 𝑊 ∈ 𝐸𝑏, but then 𝑊  is uniformly distributed in 𝐸𝑏 and independent of
𝑋 (and 𝑍). So 𝑊  and 𝑋 are conditionally independent given 𝑌 , and 𝑊  is uniform on
[𝑛]. Then 𝐻(𝑋 | 𝑌 ) = 𝐻(𝑋 | 𝑌 , 𝑊) = 𝐻(𝑋 | 𝑊) by conditional independence and by
Lemma 1.13 (since 𝑊  determines 𝑌 ). Since 𝑊  is uniform, 𝐻(𝑋 | 𝑊) ≤ 𝐻(𝑋).

The general result follows by Continuity. □

Corollary 1.21  𝐻(𝑋) ≥ 0 for any 𝑋.

Proof (Hints) .  (Without using the formula) straightforward. □

Proof .  (Without using the formula). By subadditivity, 𝐻(𝑋 | 𝑋) ≤ 𝐻(𝑋). But
𝐻(𝑋 | 𝑋) = 0. □

Corollary 1.22  Let 𝑋1, …, 𝑋𝑛 be RVs. Then

𝐻(𝑋1, …, 𝑋𝑛) ≤ 𝐻(𝑋1) + ⋯ + 𝐻(𝑋𝑛).

Proof (Hints) .  Trivial. □

Proof .  Trivial by induction. □

Proposition 1.23 (Submodularity)  Let 𝑋, 𝑌 , 𝑍 be RVs. Then

𝐻(𝑋 | 𝑌 , 𝑍) ≤ 𝐻(𝑋 | 𝑍).

Proof (Hints) .  Use that 𝐻(𝑋 | 𝑌 , 𝑍 = 𝑧) ≤ 𝐻(𝑍 | 𝑍 = 𝑧). □

Proof .  𝐻(𝑋 | 𝑌 , 𝑍) = ∑𝑧 ℙ(𝑍 = 𝑧)𝐻(𝑋 | 𝑌 , 𝑍 = 𝑧) ≤ ∑𝑧 ℙ(𝑍 = 𝑧)𝐻(𝑋 | 𝑍 = 𝑧) =
𝐻(𝑋 | 𝑍). □

Remark 1.24  Submodularity can be expressed in several equivalent ways. Expanding
using Additivity gives

𝐻(𝑋, 𝑌 , 𝑍) − 𝐻(𝑌 , 𝑍) ≤ 𝐻(𝑋, 𝑍) − 𝐻(𝑍)

and
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𝐻(𝑋, 𝑌 , 𝑍) ≤ 𝐻(𝑋, 𝑍) + 𝐻(𝑌 , 𝑍) − 𝐻(𝑍)

and

𝐻(𝑋, 𝑌 , 𝑍) + 𝐻(𝑍) ≤ 𝐻(𝑋, 𝑍) + 𝐻(𝑌 , 𝑍).

Lemma 1.25  Let 𝑋, 𝑌 , 𝑍 be RVs with 𝑍 = 𝑓(𝑌 ). Then 𝐻(𝑋 | 𝑌 ) ≤ 𝐻(𝑋 | 𝑍).

Proof (Hints) .  Straightforward. □

Proof .  We have

𝐻(𝑋 | 𝑌 ) = 𝐻(𝑋, 𝑌 ) − 𝐻(𝑌 ) = 𝐻(𝑋, 𝑌 , 𝑍) − 𝐻(𝑌 , 𝑍)
≤ 𝐻(𝑋, 𝑍) − 𝐻(𝑍) = 𝐻(𝑋 | 𝑍)

by Submodularity. □

Lemma 1.26  Let 𝑋, 𝑌 , 𝑍 be RVs with 𝑍 = 𝑓(𝑋) = 𝑔(𝑌 ). Then

𝐻(𝑋, 𝑌 ) + 𝐻(𝑍) ≤ 𝐻(𝑋) + 𝐻(𝑌 ).

Proof (Hints) .  Straightforward. □

Proof .  By Submodularity, we have 𝐻(𝑋, 𝑌 , 𝑍) + 𝐻(𝑍) ≤ 𝐻(𝑋, 𝑍) + 𝐻(𝑌 , 𝑍), which
implies the result, since 𝑍 depends on 𝑋 and 𝑌 . □

Lemma 1.27  Let 𝑋 be an RV taking values in a finite set 𝐴 and let 𝑌  be uniform on
𝐴. If 𝐻(𝑋) = 𝐻(𝑌 ), then 𝑋 is uniform.

Proof (Hints) .  Use Jensen’s inequality. □

Proof .  Let 𝑝𝑎 = ℙ(𝑋 = 𝑎). Then

𝐻(𝑋) = ∑
𝑎∈𝐴

𝑝𝑎 log(1/𝑝𝑎) = |𝐴| ⋅ 𝔼𝑎∈𝐴𝑝𝑎 log( 1
𝑝𝑎

).

The function 𝑥 ↦ 𝑥 log(1/𝑥) is concave on [0, 1]. So by Jensen’s inequality,

𝐻(𝑋) ≤ |𝐴| ⋅ (𝔼𝑎∈𝐴𝑝𝑎) ⋅ log( 1
𝔼𝑎∈𝐴𝑝𝑎

) = log|𝐴| = 𝐻(𝑌 ),

with equality iff 𝑎 ↦ 𝑝𝑎 is constant, i.e. 𝑋 is uniform. □

Corollary 1.28  If 𝐻(𝑋, 𝑌 ) = 𝐻(𝑋) + 𝐻(𝑌 ), then 𝑋 and 𝑌  are independent.

Proof (Hints) .  Go through the proof of Subadditivity and check when equality holds.
□

Proof .  We go through the proof of subadditivity and check when equality holds. Suppose
that 𝑋 is uniform on 𝐴. Then

𝐻(𝑋 | 𝑌 ) = ∑
𝑦

ℙ(𝑌 = 𝑦)𝐻(𝑋 | 𝑌 = 𝑦) ≤ 𝐻(𝑋),
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with equality iff 𝐻(𝑋 | 𝑌 = 𝑦) is uniform on 𝐴 for all 𝑦 (by Lemma 1.27), which implies
that 𝑋 and 𝑌  are independent.

At the last stage of the proof, we said 𝐻(𝑋 | 𝑌 ) = 𝐻(𝑋 | 𝑌 , 𝑊) = 𝐻(𝑋 | 𝑊) ≤ 𝐻(𝑋),
where 𝑊  was uniform. So equality holds only if 𝑋 and 𝑊  are independent, which
implies (since 𝑌  depends on 𝑊 ), that 𝑋 and 𝑌  are independent. □

Definition 1.29  Let 𝑋 and 𝑌  be RVs. The mutual information

𝐼(𝑋 : 𝑌 ) ≔ 𝐻(𝑋) + 𝐻(𝑌 ) − 𝐻(𝑋, 𝑌 )
= 𝐻(𝑋) − 𝐻(𝑋 | 𝑌 )
= 𝐻(𝑌 ) − 𝐻(𝑌 | 𝑋).

Remark 1.30  Subadditivity is equivalent to the statement that 𝐼(𝑋 : 𝑌 ) ≥ 0, and
Corollary 1.28 implies that 𝐼(𝑋 : 𝑌 ) = 0 iff 𝑋 and 𝑌  are independent.

Note that 𝐻(𝑋, 𝑌 ) = 𝐻(𝑋) + 𝐻(𝑌 ) − 𝐼(𝑋 : 𝑌 ) (note the similarity to the inclusion-
exclusion formula for two sets).

Definition 1.31  Let 𝑋, 𝑌 , 𝑍 be RVs. The conditional mutual information of 𝑋
and 𝑌  given 𝑍 is

𝐼(𝑋 : 𝑌 | 𝑍) ≔ ∑
𝑧

ℙ(𝑍 = 𝑧)𝐼(𝑋 | 𝑍 = 𝑧 : 𝑌 | 𝑍 = 𝑧)

= ∑
𝑧

ℙ(𝑍 = 𝑧)(𝐻(𝑋 | 𝑍 = 𝑧) + 𝐻(𝑌 | 𝑍 = 𝑧) − 𝐻(𝑋, 𝑌 | 𝑍 = 𝑧))

= 𝐻(𝑋 | 𝑍) + 𝐻(𝑌 | 𝑍) − 𝐻(𝑋, 𝑌 | 𝑍)
= 𝐻(𝑋, 𝑍) + 𝐻(𝑌 , 𝑍) − 𝐻(𝑋, 𝑌 , 𝑍) − 𝐻(𝑍).

Submodularity is equivalent to the statement that 𝐼(𝑋 : 𝑌 | 𝑍) ≥ 0.

2. A special case of Sidorenko’s conjecture
Definition 2.1  Let 𝐺 be a bipartite graph with (finite) vertex sets 𝑋 and 𝑌  and
density 𝛼 (defined to be |𝐸(𝐺)|

|𝑋|⋅|𝑌 |). Let 𝐻 be another (think of it as small) bipartite graph
with vertex sets 𝑈  and 𝑉  and 𝑚 edges. Now let 𝜑 : 𝑈 → 𝑋 and 𝜓 : 𝑉 → 𝑌 . We say
that (𝜑, 𝜓) is a homomorphism if 𝜑(𝑥)𝜑(𝑦) ∈ 𝐸(𝐺) for every edge 𝑥𝑦 ∈ 𝐸(𝐻).

Conjecture 2.2 (Sidorenko's Conjecture)  For every 𝐺, 𝐻, for random 𝜑 : 𝑈 → 𝑋, 𝜓 :
𝑉 → 𝑌 ,

ℙ((𝜑, 𝜓) is a homomorphism) ≥ 𝛼𝑚.

Remark 2.3  Sidorenko's Conjecture is not hard to prove when 𝐻 is the complete
bipartite graph 𝐾𝑟,𝑠 (the case 𝐾2,2 can be proved using Cauchy-Schwarz: exercise).

Theorem 2.4  Sidorenko's Conjecture is true if 𝐻 is a path of length 3.

Proof (Hints) .
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• Let (𝑋1, 𝑌1) be a random edge of 𝐺 (with 𝑋1 ∈ 𝑋, 𝑌1 ∈ 𝑌 ). Now let 𝑋2 be a random
neighbour of 𝑌1 and 𝑌2 be a random neighbour of 𝑋2. Explain why it suffices to
prove that 𝐻(𝑋1, 𝑌1, 𝑋2, 𝑌2) ≥ log(𝛼3𝑚2𝑛2).

• Find an equivalent way of choosing a uniformly random edge (𝑋1, 𝑌1) of 𝐺 (in terms
of vertices). Use this to reaosn that 𝑋2𝑌1 and 𝑋2𝑌2 are uniformly random in 𝐸(𝐺).

• Find the lower bound for 𝐻(𝑋1, 𝑌1, 𝑋2, 𝑌2) using the Chain Rule and Maximality.

□

Proof .  We want to show that if 𝐺 is a bipartite graph of density 𝛼 with vertex sets
𝑋, 𝑌  of size 𝑚 and 𝑛, and we choose 𝑥1, 𝑥2 ∈ 𝑋, 𝑦1, 𝑦2 ∈ 𝑌  independently at random,
then ℙ(𝑥1𝑦1, 𝑦1𝑥2, 𝑥2𝑦2 ∈ 𝐸(𝐺)) ≥ 𝛼3.

It would be enough to let 𝑃  be a path of length 3 chosen uniformly at random and show
that 𝐻(𝑃) ≥ log(𝛼3𝑚2𝑛2) (by Proposition 1.16). Instead, we shall define a different RV
taking values in the set of all paths of length 3 (including degenerate paths). To do this,
let (𝑋1, 𝑌1) be a random edge of 𝐺 (with 𝑋1 ∈ 𝑋, 𝑌1 ∈ 𝑌 ). Now let 𝑋2 be a random
neighbour of 𝑌1 and 𝑌2 be a random neighbour of 𝑋2. It will be enough to prove that

𝐻(𝑋1, 𝑌1, 𝑋2, 𝑌2) ≥ log(𝛼3𝑚2𝑛2).

We can choose 𝑋1, 𝑌1 in three equivalent ways:
1. Pick an edge uniformly from all edges
2. Pick a vertex 𝑥 with probability proportional to its degree deg(𝑥), and then a random

neighbour 𝑌  of 𝑥.
3. Same as above with 𝑥 and 𝑦 exchanged.

By the equivalence, it follows that 𝑌1 = 𝑦 with probability deg(𝑦)/|𝐸(𝐺)|, so 𝑋2𝑌1
is uniform in 𝐸(𝐺), so 𝑋2 = 𝑥′ with probability 𝑑(𝑥′)/|𝐸(𝐺)|, so 𝑋2𝑌2 is uniform in
𝐸(𝐺).

Let 𝑈𝐴 be the uniform distribution on 𝐴. Therefore, by the Chain Rule,

𝐻(𝑋1, 𝑌1, 𝑋2, 𝑌2) = 𝐻(𝑋1) + 𝐻(𝑌1 | 𝑋1) + 𝐻(𝑋2 | 𝑋1, 𝑌1) + 𝐻(𝑌2 | 𝑋1, 𝑌1, 𝑋2)
= 𝐻(𝑋1) + 𝐻(𝑌1 | 𝑋1) + 𝐻(𝑋2 | 𝑌1) + 𝐻(𝑌2 | 𝑋2)
= 𝐻(𝑋1) + 𝐻(𝑋1, 𝑌1) − 𝐻(𝑋1) + 𝐻(𝑋2, 𝑌1) − 𝐻(𝑌1) + 𝐻(𝑋2, 𝑌2) − 𝐻(𝑌2)

= 3𝐻(𝑈𝐸(𝐺)) − 𝐻(𝑌1) − 𝐻(𝑋2)

≥ 3𝐻(𝑈𝐸(𝐺)) − 𝐻(𝑈𝑌 ) − 𝐻(𝑈𝑋)

= 3 log(𝛼𝑚𝑛) − log 𝑛 − log 𝑚

= log(𝛼3𝑚2𝑛2).

So we are done, by Maximality. Alternative finish to the proof: let 𝑋′, 𝑌 ′ be uniform in
𝑋, 𝑌  and independent of each other and 𝑋1, 𝑌1, 𝑋2, 𝑌2. Then by the above inequality
and Corollary 1.11,

𝐻(𝑋1, 𝑌1, 𝑋2, 𝑌2, 𝑋′, 𝑌 ′) = 𝐻(𝑋1, 𝑌1, 𝑋2, 𝑌2) + 𝐻(𝑈𝑋) + 𝐻(𝑈𝑌 )
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≥ 3𝐻(𝑈𝐸(𝐺)).

So by Maximality, the number of paths of length 3 times |𝑋| times |𝑌 | is ≥ |𝐸(𝐺)|3.□

3. Brigner’s theorem
Definition 3.1  Let 𝐴 be an 𝑛 × 𝑛 matrix over ℝ. The permanent of 𝐴 is

per(𝐴) ≔ ∑
𝜎∈𝑆𝑛

∏
𝑛

𝑖=1
𝐴𝑖𝜎(𝑖),

i.e. “the determinant without the signs”.

Proposition 3.2  Let 𝐺 be a bipartite graph with vertex sets 𝑋, 𝑌  of size 𝑛. Given
(𝑥, 𝑦) ∈ 𝑋 × 𝑌 , let

𝐴𝑥𝑦 = {1 if 𝑥𝑦 ∈ 𝐸(𝐺)
0 if 𝑥𝑦 ∉ 𝐸(𝐺),

i.e. 𝐴 is the bipartite adjacency matrix of 𝐺. Then per(𝐴) is the number of perfect
matchings in 𝐺. (Note that per(𝐴) is well-defined as it is invariant under reordering of
the vertices.)

Proof (Hints) .  Straightforward. □

Proof .  Each (perfect) matching corresponds to a bijection 𝜎 : 𝑋 → 𝑌  such that 𝑥𝜎(𝑥) ∈
𝐸(𝐺) for all 𝑥 ∈ 𝑋. 𝜎 ∈ 𝑆𝑛 contributes 1 to the sum iff 𝑥𝜎(𝑥) is an edge of 𝐺 for all
𝑥 ∈ 𝑋 (i.e. iff 𝜎 corresponds to a perfect matching), and 0 otherwise. □

Bregman’s theorem concerns how large per(𝐴) can be if 𝐴 is a 0, 1 matrix and the sum
of the entries in the 𝑖-th row is 𝑑𝑖 (i.e. if the degree of 𝑥𝑖 ∈ 𝑋 is 𝑑𝑖).

Example 3.3  Let 𝐺 be a disjoint union of 𝐾𝑎𝑖,𝑎𝑖
’s, 𝑖 = 1, …, 𝑘, with 𝑎1 + ⋯ + 𝑎𝑘 = 𝑛.

Then the number of perfect matchings in 𝐺 is ∏𝑘
𝑖=1 𝑎𝑖!.

𝑋

𝑌

𝐾𝑎1,𝑎1
𝐾𝑎2,𝑎2

⋅ ⋅ ⋅

⋅ ⋅ ⋅

𝐾𝑎𝑘,𝑎𝑘

Theorem 3.4 (Bregman)  Let 𝐺 be a bipartite graph with vertex sets 𝑋, 𝑌  of size 𝑛.
Then the number of perfect matchings in 𝐺 is at most

∏
𝑥∈𝑋

(deg(𝑥)!)1/ deg(𝑥).

Proof (Hints) .
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• For an enumeration 𝑥1, …, 𝑥𝑛 of 𝑋 and random matching (a bijection) 𝜎, show that
𝐻(𝜎) ≤ log deg(𝑥1) + 𝔼𝜎 log deg𝜎

𝑥1
(𝑥2) + ⋯ + 𝔼𝜎 log deg𝜎

𝑥1,…,𝑥𝑛−1
(𝑥𝑛) (find a suitable

expression for deg𝜎
𝑥1,…,𝑥𝑖−1

(𝑥𝑖)).
• Find another expression for deg𝜎

𝑥1,…,𝑥𝑖−1
(𝑥𝑖) in terms of deg(𝑥).

• Show that the average of log deg𝜎
𝑥1,…,𝑥𝑖−1

(𝑥𝑖) is 1
𝑑(𝑥)(log(𝑑(𝑥)!)).

□

Proof (by Radhakrishnan) .  Each (perfect) matching corresponds to a bijection 𝜎 : 𝑋 →
𝑌  such that 𝑥𝜎(𝑥) ∈ 𝐸(𝐺) for all 𝑥 ∈ 𝑋. Let 𝜎 be chosen uniformly from all such
bijections. Then by the Chain Rule,

𝐻(𝜎) = 𝐻(𝜎(𝑥1), …, 𝜎(𝑥𝑛))
= 𝐻(𝜎(𝑥1)) + 𝐻(𝜎(𝑥2) | 𝜎(𝑥1)) + ⋯ + 𝐻(𝜎(𝑥𝑛) | 𝜎(𝑥1), …, 𝜎(𝑥𝑛−1)),

where 𝑥1, …, 𝑥𝑛 is some enumeration of 𝑋. We have 𝐻(𝜎(𝑥1)) ≤ log deg(𝑥1) by Maxi-
mality, and

𝐻(𝜎(𝑥2) | 𝜎(𝑥1)) ≤ 𝔼𝜎 log deg𝜎
𝑥1

(𝑥2),

where deg𝜎
𝑥1

(𝑥2) = |𝑁(𝑥2) \ {𝜎(𝑥1)}|, by the definition of conditional entropy and
Maximality. In general,

𝐻(𝜎(𝑥𝑖) | 𝜎(𝑥1), …, 𝜎(𝑥𝑖−1)) ≤ 𝔼𝜎 log deg𝜎
𝑥1,…,𝑥𝑖−1

(𝑥𝑖),

where deg𝜎
𝑥1,…,𝑥𝑖−1

(𝑥𝑖) = |𝑁(𝑥𝑖) \ {𝜎(𝑥1), …, 𝜎(𝑥𝑖−1)}|.

Key idea: we now regard 𝑥1, …, 𝑥𝑛 as a random enumeration of 𝑋 and take the average.
For each 𝑥 ∈ 𝑋, define the contribution of 𝑥 to be log(𝑑𝜎

𝑥1,…,𝑥𝑖−1
(𝑥𝑖)), where 𝑥𝑖 = 𝑥.

We shall now fix 𝜎 and 𝑥 ∈ 𝑋. Let the neighbours of 𝑥 be 𝑦1, …, 𝑦𝑘. Then one of the 𝑦𝑗
will be 𝜎(𝑥), say 𝑦ℎ. Then 𝑑𝜎

𝑥1,…,𝑥𝑖−1
(𝑥𝑖) (given that 𝑥𝑖 = 𝑥) is

𝑑(𝑥) − |{𝑗 : 𝜎−1(𝑦𝑗) comes earlier than 𝑥 = 𝜎−1(𝑦ℎ)}|.

All positions of 𝜎−1(𝑦ℎ) are equally likely, so the average contribution of 𝑥 is

1
𝑑(𝑥)

(log 𝑑(𝑥) + log(𝑑(𝑥) − 1) + ⋯ + log(1))

= 1
𝑑(𝑥)

log 𝑑(𝑥)!.

By linearity of expectation,

𝐻(𝜎) ≤ ∑
𝑥∈𝑋

1
𝑑(𝑥)

log(𝑑(𝑥)!)

So the number of matchings is at most ∏𝑥∈𝑋 (𝑑(𝑥)!)1/𝑑(𝑥). □

Definition 3.5  Let 𝐺 be a graph with 2𝑛 vertices. A 1-factor in 𝐺 is a collection of
𝑛 disjoint edges.
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Theorem 3.6 (Kahn-Lovasz)  Let 𝐺 be a graph with 2𝑛 vertices. Then the number of
1-factors in 𝐺 is at most

∏
𝑥∈𝑉 (𝐺)

(𝑑(𝑥)!)1/2𝑑(𝑥).

Proof (Hints) .
• Let 𝑀  be the set of 1-factors of 𝐺 and let (𝑀1, 𝑀2) be a uniformly random element

of 𝑀 × 𝑀 .
• Given a cover of 𝐺 by 𝑀1 and 𝑀2, find an expression for the number of pairs

(𝑀 ′
1, 𝑀 ′

2) that could give rise to it, in terms of the number of even cycles.
• Let 𝐺2 be the bipartite graph with two vertex sets 𝑉1, 𝑉2, which are both copies of

𝑉 (𝐺). Join 𝑥 ∈ 𝑉1 to 𝑦 ∈ 𝑉2 iff 𝑥𝑦 ∈ 𝐸(𝐺).
• Explain why each perfect matching of 𝐺2 gives a cover of 𝑉 (𝐺) by isolated vertices,

edges and cycles, and find an expression for the number of such perfect matchings
that could give rise to it.

□

Proof (by Alon, Friedman) .  Let 𝑀  be the set of 1-factors of 𝐺 and let (𝑀1, 𝑀2) be
a uniformly random element of 𝑀 × 𝑀 . For each 𝑀1, 𝑀2, the union 𝑀1 ∪ 𝑀2 is a
collection of disjoint edges and even cycles that covers all the vertices of 𝐺.

Call such a union a cover of 𝐺 by edges and even cycles. If we are given such a
cover, then the number of pairs (𝑀1, 𝑀2) that could give rise to it is 2𝑘, where 𝑘 is
the number of even cycles. Now let’s build a bipartite graph 𝐺2 out of 𝐺. 𝐺2 has two
vertex sets 𝑉1, 𝑉2, which are both copies of 𝑉 (𝐺). Join 𝑥 ∈ 𝑉1 to 𝑦 ∈ 𝑉2 iff 𝑥𝑦 ∈ 𝐸(𝐺).

𝐺2 if 𝐺 is the triangle graph

By Bregman, the number of perfect matchings in 𝐺2 is at most ∏𝑥∈𝑉 (𝐺) (𝑑(𝑥)!)1/𝑑(𝑥).
Each matching gives a permutation 𝜎 of 𝑉 (𝐺) such that 𝑥𝜎(𝑥) ∈ 𝐸(𝐺) for all 𝑥 ∈ 𝑉 (𝐺).
Each such 𝜎 has a cycle decomposition, and each cycle gives a cycle in 𝐺. So 𝜎 gives
a cover of 𝑉 (𝐺) by isolated vertices, edges and cycles (not necessarily all even). Given
such a cover with 𝑘 cycles, each cycle can be directed in two ways, so the number of 𝜎
that give rise to it is = 2𝑘. So there is an injection from 𝑀 × 𝑀  to the set of matchings
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of 𝐺2, since every cover by edges and and even cycles is a cover by vertices, edges and
cycles. So |𝑀|2 ≤ ∏𝑥∈𝑉 (𝐺) (𝑑(𝑥)!)1/𝑑(𝑥). □

4. Shearer’s lemma and applications
Notation 4.1  Given a random variable 𝑋 = (𝑋1, …, 𝑋𝑛) and 𝐴 ⊆ [𝑛], 𝐴 = {𝑎1 < … <
𝑎𝑘}, write 𝑋𝐴 for the random variable (𝑋𝑎1

, …, 𝑋𝑎𝑘
).

Lemma 4.2 (Shearer)  Let 𝑋 = (𝑋1, …, 𝑋𝑛) be an RV and let 𝒜 be a family of subsets
of [𝑛] such that every 𝑖 ∈ [𝑛] belongs to at least 𝑟 of the sets 𝐴 ∈ 𝒜. Then

𝐻(𝑋1, …, 𝑋𝑛) ≤ 1
𝑟

∑
𝐴∈𝒜

𝐻(𝑋𝐴).

Proof (Hints) .  For each 𝑎 ∈ [𝑛], write 𝑋<𝑎 for (𝑋1, …, 𝑋𝑎−1). Show that 𝐻(𝑋𝐴) ≥
∑𝑎∈𝐴 𝐻(𝑋𝑎 | 𝑋<𝑎). □

Proof .  For each 𝑎 ∈ [𝑛], write 𝑋<𝑎 for (𝑋1, …, 𝑋𝑎−1). For each 𝐴 ∈ 𝒜, 𝐴 = {𝑎1 < ⋯ <
𝑎𝑘}, by the Chain Rule and Submodularity,

𝐻(𝑋𝐴) = 𝐻(𝑋𝑎1
) + 𝐻(𝑋𝑎2

| 𝑋𝑎1
) + ⋯ + 𝐻(𝑋𝑎𝑘

| 𝑋𝑎1
, …, 𝑋𝑎𝑘−1

)

≥ 𝐻(𝑋𝑎1
| 𝑋<𝑎1

) + 𝐻(𝑋𝑎2
| 𝑋<𝑎2

) + ⋯ + 𝐻(𝑋𝑎𝑘
| 𝑋<𝑎𝑘

)

= ∑
𝑎∈𝐴

𝐻(𝑋𝑎 | 𝑋<𝑎).

Therefore, ∑𝐴∈𝒜 𝐻(𝑋𝐴) ≥ 𝑟 ∑𝑛
𝑎=1 𝐻(𝑋𝑎 | 𝑋<𝑎) = 𝑟𝐻(𝑋). □

Example 4.3  𝐻(𝑋1, 𝑋2, 𝑋3) ≤ 1
2(𝐻(𝑋1, 𝑋2) + 𝐻(𝑋1, 𝑋3) + 𝐻(𝑋2, 𝑋3)).

Lemma 4.4  Let 𝑋 = (𝑋1, …, 𝑋𝑛) be an RV and let 𝐴 ⊆ [𝑛] be a randomly chosen
subset of [𝑛], according to some probability distribution. Suppose that for each 𝑖 ∈ [𝑛],
ℙ(𝑖 ∈ 𝐴) ≥ 𝜇. Then

𝐻(𝑋) ≤ 𝜇−1 ⋅ 𝔼𝐴[𝐻(𝑋𝐴)].

Proof (Hints) .  Very similar to proof of Shearer. □

Proof .  As in Shearer,

𝐻(𝑋𝐴) ≥ ∑
𝑎∈𝐴

𝐻(𝑋𝑎 | 𝑋<𝑎).

So

𝔼𝐴[𝐻(𝑋𝐴)] ≥ 𝔼𝐴[∑
𝑎∈𝐴

𝐻(𝑋𝑎 | 𝑋<𝑎)] ≥ 𝜇 ⋅ ∑
𝑛

𝑎=1
𝐻(𝑋𝑎 | 𝑋<𝑎) = 𝜇 ⋅ 𝐻(𝑋).

□
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Definition 4.5  Let 𝐸 ⊆ ℤ𝑛 and let 𝐴 ⊆ [𝑛]. Then we write 𝑃𝐴𝐸, if 𝐴 = {𝑎1, …, 𝑎𝑘},
for the set of 𝑢 ∈ ℤ𝐴 such that there exists 𝑣 ∈ ℤ[𝑛]\𝐴 such that [𝑢, 𝑣] ∈ 𝐸, where [𝑢, 𝑣]
is 𝑢 suitably intertwined with 𝑣.

Corollary 4.6  Let 𝐸 ⊆ ℤ𝑛 and let 𝒜 be a family of subsets of [𝑛] such that every 𝑖 ∈
[𝑛] is contained in at least 𝑟 sets in 𝒜. Then

|𝐸| ≤ ∏
𝐴∈𝒜

|𝑃𝐴𝐸|1/𝑟.

Proof (Hints) .  Straightforward. □

Proof .  Let 𝑋 be a uniformly random element of 𝐸. Then by Shearer,

log|𝐸| = 𝐻(𝑋) ≤ 1
𝑟

⋅ ∑
𝐴∈𝒜

𝐻(𝑋𝐴).

But 𝑋𝐴 takes values in 𝑃𝐴𝐸, so 𝐻(𝑋𝐴) ≤ log|𝑃𝐴𝐸| by Maximality. Hence,

log|𝐸| ≤ 1
𝑟

∑
𝐴∈𝒜

|𝑃𝐴𝐸|.

□

Corollary 4.7 (Discrete Loomis-Whitney Theorem)  If 𝒜 = {[𝑛] \ {𝑖} : 𝑖 = 1, …, 𝑛},
we get

|𝐸| ≤ ∏
𝑛

𝑖=1
|𝑃[𝑛]\{𝑖}𝐸|

1/(𝑛−1)
.

Theorem 4.8  Let 𝐺 be a graph with 𝑚 edges. Then 𝐺 has at most 1
6(2𝑚)3/2 triangles.

Remark 4.9  If 𝑚 = (𝑛
2 ), then this bound is fairly sharp.

Proof (Hints) .  Consider a uniformly random triangle with an ordering on the vertices,
and use Shearer. □

Proof .  Let (𝑋1, 𝑋2, 𝑋3) be a random triple of vertices such that 𝑋1𝑋2, 𝑋1𝑋3 and
𝑋2𝑋3 are all edges (so pick a random triangle with an ordering of the vertices). Let 𝑡
be the number of triangles in 𝐺. By Shearer,

log(6𝑡) = 𝐻(𝑋1, 𝑋2, 𝑋3) ≤ 1
2
(𝐻(𝑋1, 𝑋2) + 𝐻(𝑋1, 𝑋3) + 𝐻(𝑋2, 𝑋3)).

Each (𝑋𝑖, 𝑋𝑗) (for 𝑖 ≠ 𝑗) is supported in the set of edges of 𝐺, given a direction, so
𝐻(𝑋𝑖, 𝑋𝑗) ≤ log(2𝑚) by Maximality. □

Definition 4.10  Let 𝑉  be a set of size 𝑛 and let 𝒢 be a set of graphs, all with vertex
set 𝑉 . Then 𝒢 is Δ-intersecting (triangle-intersecting) if 𝐺1 ∩ 𝐺2 contains a triangle
for all 𝐺1, 𝐺2 ∈ 𝒢.

Theorem 4.11  If |𝑉 | = 𝑛, then a Δ-intersecting family of graphs with vertex set 𝑉
has size at most 2(𝑛

2 )−2.

13



Proof (Hints) .
• Let 𝒢 be a Δ-intersecting family. View 𝐺 ∈ 𝒢 as a characteristic function from 𝑉 (2)

to {0, 1}. Let 𝑋 = (𝑋𝑒 : 𝑒 ∈ 𝑉 (2)) be chosen uniformly at random from 𝒢.
• Let 𝐺𝑅 = 𝐾𝑅 ∪ 𝐾𝑉 \𝑅, explain why 𝐺𝑅 is an intersecting family, use this to give

upper bound on |𝐺𝑅|.
• Give an expression for the probability that an edge 𝑒 is in a random 𝐺𝑅. By

considering 𝑋𝐺𝑅
 taking values in the above family, conclude.

□

Proof .  Let 𝒢 be a Δ-intersecting family and let 𝑋 be chosen uniformly at random from
𝒢. We write 𝑉 (2) for the set of (unordered) pairs of elements of 𝑉 . We think of any 𝐺 ∈
𝒢 as a characteristic function from 𝑉 (2) to {0, 1}. So 𝑋 = (𝑋𝑒 : 𝑒 ∈ 𝑉 (2)), 𝑋𝑒 ∈ {0, 1}
(where we fix an ordering of 𝑉 (2)). For each 𝑅 ⊆ 𝑉 , let 𝐺𝑅 be the graph 𝐾𝑅 ∪ 𝐾𝑉 \𝑅.
For each 𝑅, we shall look at the projection 𝑋𝐺𝑅

, which we can think of as taking values
in the set {𝐺 ∩ 𝐺𝑅 : 𝐺 ∈ 𝒢} ≕ 𝒢𝑅.

Note that if 𝐺1, 𝐺2 ∈ 𝒢, 𝑅 ⊆ [𝑛], then 𝐺1 ∩ 𝐺2 ∩ 𝐺𝑅 ≠ ∅, since 𝐺1 ∩ 𝐺2 contains a
triangle, which must intersect 𝐺𝑅 by the pigeonhole principle (the triangle contains 3
vertices, one of which is contained in one of the two components of 𝐺𝑅). Thus, 𝒢𝑅 is
an intersecting family, so has size at most 2|𝐸(𝐺𝑅)|−1. By Lemma 4.4,

𝐻(𝑋) ≤ 2 ⋅ 𝔼𝑅[𝐻(𝑋𝐺𝑅
)] ≤ 2 ⋅ 𝔼𝑅[|𝐸(𝐺𝑅)| − 1] = 2 ⋅ (1

2
(𝑛

2
) − 1) = (𝑛

2
) − 2,

since each 𝑒 belongs to 𝐺𝑅 with probability 1/2 (and so 𝔼𝑅[|𝐸(𝐺𝑅)|] = 1
2(𝑛

2 )). □

Definition 4.12  Let 𝐺 be a graph and let 𝐴 ⊆ 𝑉 (𝐺). The edge-boundary 𝜕𝐴 of 𝐴
is the set of edges 𝑥𝑦 such that 𝑥 ∈ 𝐴, 𝑦 ∉ 𝐴. If 𝐺 = ℤ𝑛 or {0, 1}𝑛 and 𝑖 ∈ [𝑛], the 𝑖-
th boundary 𝜕𝑖𝐴 is the set of edges 𝑥𝑦 ∈ 𝜕𝐴 such that 𝑥 − 𝑦 = ±𝑒𝑖, i.e. 𝜕𝑖𝐴 consists
of edges in direction 𝑖.

Theorem 4.13 (Edge-isoperimetric Inequality in ℤ𝑛)  Let 𝐴 ⊆ ℤ𝑛 be a finite set. Then

|𝜕𝐴| ≥ 2𝑛 ⋅ |𝐴|(𝑛−1)/𝑛.

Proof (Hints) .  Use Discrete Loomis-Whitney Theorem and a suitable lower bound on
|𝜕𝑖𝐴|. □

Proof .  By the Discrete Loomis-Whitney Theorem,

|𝐴| ≤ ∏
𝑛

𝑖=1
|𝑃[𝑛]\{𝑖}𝐴|

1/(𝑛−1)

= (∏
𝑛

𝑖=1
|𝑃[𝑛]\{𝑖}𝐴|

1/𝑛
)

𝑛/(𝑛−1)

≤ (1
𝑛

∑
𝑛

𝑖=1
|𝑃[𝑛]\{𝑖}𝐴|)

𝑛/(𝑛−1)

by AM-GM inequality
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But |𝜕𝑖𝐴| ≥ 2|𝑃[𝑛]\{𝑖}𝐴| since each fibre contributes at least 2. So

|𝐴| ≤ ( 1
2𝑛

∑
𝑛

𝑖=1
|𝜕𝑖𝐴|)

𝑛/(𝑛−1)

= ( 1
2𝑛

|𝜕𝐴|)
𝑛/(𝑛−1)

□

Theorem 4.14 (Edge-isoperimetric Inequality in the Cube)  Let 𝐴 ⊆ {0, 1}𝑛 (where
we take usual graph on {0, 1}𝑛). Then

|𝜕𝐴| ≥ |𝐴|(𝑛 − log|𝐴|).

Proof (Hints) .
• Let 𝑋 = (𝑋1, …, 𝑋𝑛) be a uniformly random element of 𝐴. Write 𝑋\𝑖 =

(𝑋1, …, 𝑋𝑖−1, 𝑋𝑖+1, …, 𝑋𝑛).
• Use Shearer to show that ∑𝑛

𝑖=1 𝐻(𝑋𝑖 | 𝑋\𝑖) ≤ 𝐻(𝑋).
• What are the possible values of |𝑃−1

[𝑛]\{𝑖}(𝑢)|, and what is 𝐻(𝑋𝑖 | 𝑋\𝑖 = 𝑢) in each
case? How many 𝑢 satisfy |𝑃−1

[𝑛]\{𝑖}(𝑢)| = 1? Use this to deduce an expression for
𝐻(𝑋𝑖 | 𝑋\𝑖).

□

Proof .  Let 𝑋 be a uniformly random element of 𝐴 and write 𝑋 = (𝑋1, …, 𝑋𝑛). Write
𝑋\𝑖 for (𝑋1, …, 𝑋𝑖−1, 𝑋𝑖+1, …, 𝑋𝑛). By Shearer,

𝐻(𝑋) ≤ 1
𝑛 − 1

∑
𝑛

𝑖=1
𝐻(𝑋\𝑖)

= 1
𝑛 − 1

∑
𝑛

𝑖=1
(𝐻(𝑋) − 𝐻(𝑋𝑖 | 𝑋\𝑖)).

Hence, ∑𝑛
𝑖=1 𝐻(𝑋𝑖 | 𝑋\𝑖) ≤ 𝐻(𝑋). But

𝐻(𝑋𝑖 | 𝑋\𝑖 = 𝑢) =
{{
{
{{1 if |𝑃−1

[𝑛]\{𝑖}(𝑢)| = 2
0 if |𝑃−1

[𝑛]\{𝑖}(𝑢)| = 1

(Note that we always have |𝑃−1
[𝑛]\{𝑖}(𝑢)| ∈ {0, 1, 2}). The number of points of the second

kind is |𝜕𝑖𝐴|. So

𝐻(𝑋𝑖 | 𝑋\𝑖) = ∑
𝑢

ℙ(𝑋\𝑖 = 𝑢)𝐻(𝑋𝑖 | 𝑋\𝑖=𝑢)

= ∑
𝑢∉𝜕𝑖𝐴

ℙ(𝑋\𝑖 = 𝑢)

= 1 − ∑
𝑢∈𝜕𝑖𝐴

ℙ(𝑋\𝑖 = 𝑢)
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= 1 − |𝜕𝑖𝐴|
|𝐴|

.

So

𝐻(𝑋) ≥ ∑
𝑛

𝑖=1
(1 − |𝜕𝑖𝐴|

|𝐴|
)

= 𝑛 − |𝜕𝐴|
|𝐴|

.

Also, 𝐻(𝑋) = log|𝐴|. So we are done. □

Definition 4.15  Let 𝒜 be a family of sets of size 𝑑. The lower shadow of 𝒜 is

𝜕𝒜 = {𝐵 : |𝐵| = 𝑑 − 1, ∃𝐴 ∈ 𝒜 s.t. 𝐵 ⊆ 𝐴}.

Theorem 4.16 (Kruskal-Katona)  If |𝒜| = ( 𝑡
𝑑) = 𝑡(𝑡−1)⋅⋅⋅(𝑡−𝑑+1)

𝑑!  for some real number
𝑡, then

|𝜕𝑖𝒜| ≥ ( 𝑡
𝑑 − 1

).

Proof (Hints) .
• Let 𝑋 = (𝑋1, …, 𝑋𝑑) be a random ordering of the elements of a uniformly random

𝐴 ∈ 𝒜. Give an expression for 𝐻(𝑋).
• Explain why it is enough to show 𝐻(𝑋1, …, 𝑋𝑑−1) ≥ log((𝑑 − 1)!( 𝑡

𝑑−1)).
• Let 𝑇 ∼ Bern(𝑝) be independent of 𝑋1, …, 𝑋𝑘−1, and given 𝑋1, …, 𝑋𝑘−1, let

𝑋∗ = {𝑋𝑘+1 if 𝑇 = 0
𝑋𝑘 if 𝑇 = 1.

• Show that 𝐻(𝑋𝑘 | 𝑋<𝑘) ≥ 𝐻(𝑋∗, 𝑇 | 𝑋≤𝑘) = ℎ(𝑝) + 𝑝𝐻(𝑋𝑘+1 | 𝑋≤𝑘), and so that
𝐻(𝑋𝑘 | 𝑋<𝑘) ≥ log(2𝐻(𝑋𝑘+1 | 𝑋≤𝑘) + 1).

• Using the chain rule, show that 𝑟 + 𝑑 − 1 ≤ 𝑡, and use this to conclude the desired
bound on 𝐻(𝑋<𝑑).

□

Proof .  Let 𝑋 = (𝑋1, …, 𝑋𝑑) be a random ordering of the elements of a uniformly
random 𝐴 ∈ 𝒜. Then 𝐻(𝑋) = log(𝑑!|𝐴|) = log(𝑑!( 𝑡

𝑑)). Note that (𝑋1, …, 𝑋𝑑−1) is an
ordering of the elements of some 𝐵 ∈ 𝜕𝑖𝐴, so

𝐻(𝑋1, …, 𝑋𝑑−1) ≤ log((𝑑 − 1)!|𝜕𝑖𝐴|)

So it’s enough to show 𝐻(𝑋1, …, 𝑋𝑑−1) ≥ log((𝑑 − 1)!( 𝑡
𝑑−1)). Also, 𝐻(𝑋) =

𝐻(𝑋1, …, 𝑋𝑑−1) + 𝐻(𝑋𝑑 | 𝑋1, …, 𝑋𝑑−1) and 𝐻(𝑋) = 𝐻(𝑋1) + 𝐻(𝑋2 | 𝑋1) + ⋯ +
𝐻(𝑋𝑑 | 𝑋1, …, 𝑋𝑑−1). We would like an upper bound for 𝐻(𝑋𝑑 | 𝑋<𝑑). Our strategy
will be to obtain a lower bound for 𝐻(𝑋𝑘 | 𝑋<𝑘) in terms of 𝐻(𝑋𝑘+1 | 𝑋<𝑘+1). We
shall prove that 2𝐻(𝑋𝑘 | 𝑋<𝑘) ≥ 2𝐻(𝑋𝑘+1 | 𝑋<𝑘+1) + 1 for all 𝑘.
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Let 𝑇  be chosen independently of 𝑋. Let 𝑇 ∼ Bern(1 − 𝑝) (𝑇 = 0 with probability 𝑝, 𝑝
is to be chosen later). Given 𝑋1, …, 𝑋𝑘−1, let

𝑋∗ = {𝑋𝑘+1 if 𝑇 = 0
𝑋𝑘 if 𝑇 = 1

Note that 𝑋𝑘 and 𝑋𝑘+1 have the same distribution (given 𝑋1, …, 𝑋𝑘−1), so 𝑋∗ does as
well. Then

𝐻(𝑋𝑘 | 𝑋<𝑘) = 𝐻(𝑋∗ | 𝑋<𝑘) since 𝑋𝑘 ∼ 𝑋∗

≥ 𝐻(𝑋∗ | 𝑋≤𝑘) by Submodularity

= 𝐻(𝑋∗, 𝑇 | 𝑋≤𝑘) since 𝑋≤𝑘 and 𝑋∗ determine 𝑇 (since 𝑋𝑘+1 ≠ 𝑋𝑘)

= 𝐻(𝑇 | 𝑋≤𝑘) + 𝐻(𝑋∗ | 𝑇 , 𝑋≤𝑘) by Additivity

= 𝐻(𝑇 ) + 𝑝𝐻(𝑋∗ | 𝑋≤𝑘, 𝑇 = 0) + (1 − 𝑝)𝐻(𝑋∗ | 𝑋≤𝑘, 𝑇 = 1)

= 𝐻(𝑇 ) + 𝑝𝐻(𝑋𝑘+1 | 𝑋≤𝑘) + (1 − 𝑝)𝐻(𝑋𝑘 | 𝑋≤𝑘)

= ℎ(𝑝) + 𝑝𝑠.

where 𝑠 = 𝐻(𝑋𝑘+1 | 𝑋≤𝑘) and ℎ(𝑝) = 𝑝 log 1
𝑝 + (1 − 𝑝) log 1

1−𝑝 . This is maximised when
𝑝 = 2𝑠

2𝑠+1 . Then we get

2𝑠

2𝑠 + 1
(log(2𝑠 + 1) − log(2𝑠)) + 1

2𝑠 + 1
(log(2𝑠 + 1)) + 𝑠2𝑠

2𝑠 + 1
= log(2𝑠 + 1).

This proves the claim.

Let 𝑟 = 2𝐻(𝑋𝑑 | 𝑋<𝑑). Then by the claim,

𝐻(𝑋) = 𝐻(𝑋1) + ⋯ + 𝐻(𝑋𝑑 | 𝑋<𝑑)
≥ log(𝑟 + 𝑑 − 1) + ⋯ + log(𝑟)

= log((𝑟 + 𝑑 − 1)!
(𝑟 − 1)!

) = log(𝑑!(𝑟 + 𝑑 − 1
𝑑

)).

Since 𝐻(𝑋) = log(𝑑!( 𝑡
𝑑)) is an increasing function (for 𝑡 ≥ 𝑑), it follows that 𝑟 + 𝑑 −

1 ≤ 𝑡, i.e. 𝑟 ≤ 𝑡 + 1 − 𝑑. It follows that

𝐻(𝑋<𝑑) = log(𝑑!( 𝑡
𝑑
)) − log 𝑟

≥ log(𝑑! 𝑡!
𝑑!(𝑡 − 𝑑)!(𝑡 + 1 − 𝑑)

)

= log((𝑑 − 1)!( 𝑡
𝑑 − 1

)).

□

5. The union-closed conjecture
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Definition 5.1  Let 𝒜 be a finite family of sets. 𝒜 is union-closed if 𝐴 ∪ 𝐵 ∈ 𝒜 for
all 𝐴, 𝐵 ∈ 𝒜.

Conjecture 5.2 (Union-closed Conjecture)  If 𝒜 is a non-empty union-closed family,
then there exists 𝑥 that belongs to at least 1

2 |𝒜| sets in 𝒜.

Theorem 5.3 (Gilmer)  There exists a constant 𝑐 > 0 such that if 𝒜 is any union-
closed family, then there exists 𝑥 that belongs to at least 𝑐|𝒜| of the sets in 𝒜.

Example 5.4  Let 𝒜 = [𝑛](𝑝𝑛) ∪ [𝑛]((≥(2𝑝−𝑝2−𝑜(1))𝑛). Then with high probability, if 𝐴, 𝐵
are random elements of [𝑛](𝑝𝑛), then |𝐴 ∪ 𝐵| ≥ (2𝑝 − 𝑝2 − 𝑜(1))𝑛 (since the intersect is
likely of size at most 𝑝2𝑛). If 1 − (2𝑝 − 𝑝2 − 𝑜(1)) = 𝑝, then almost all of 𝒜 is contained
in [𝑛](𝑝𝑛). The solutions of 𝑝 occur roughly when 1 − 3𝑝 + 𝑝2 = 0, which has solutions
𝑝 = 1

2(3 ±
√

5).

If we want to prove Gilmer, it is natural to let 𝐴, 𝐵 be independent uniformly random
elements of 𝒜 and to consider 𝐻(𝐴 ∪ 𝐵). Since 𝒜 is union-closed, 𝐴 ∪ 𝐵 ∈ 𝒜, so 𝐻(𝐴 ∪
𝐵) ≤ log|𝒜|. Now we would like to get a lower bound for 𝐻(𝐴 ∪ 𝐵) assuming that no
𝑥 belongs to more than 𝑝|𝒜| sets in 𝒜.

Lemma 5.5  Suppose 𝑐 > 0 is such that ℎ(𝑥𝑦) ≥ 𝑐(𝑥ℎ(𝑦) + 𝑦ℎ(𝑥)) for every 𝑥, 𝑦 ∈
[0, 1]. Let 𝒜 be a family of sets such that every element of ∪ 𝒜 belongs to fewer than
𝑝|𝒜| members of 𝒜. Let 𝐴, 𝐵 be independent uniformly members of 𝒜. Then

𝐻(𝐴 ∪ 𝐵) > 𝑐(1 − 𝑝)(𝐻(𝐴) + 𝐻(𝐵)).

Proof (Hints) .
• Think of 𝐴, 𝐵 as characteristic functions. Write 𝐴<𝑘 for (𝐴1, …, 𝐴𝑘−1).
• Explain why it is enough to prove that 𝐻((𝐴 ∪ 𝐵)𝑘 | 𝐴<𝑘, 𝐵<𝑘) > 𝑐(1 −

𝑝)(𝐻(𝐴𝑘 | 𝐴<𝑘) + 𝐻(𝐵𝑘 | 𝐻𝐵<𝑘
)) for all 𝑘.

• For each 𝑢, 𝑣 ∈ {0, 1}𝑘−1, write 𝑝(𝑢) = ℙ(𝐴𝑘 = 0 | 𝐴<𝑘 = 𝑢) and 𝑞(𝑣) = ℙ(𝐵𝑘 =
0 | 𝐵<𝑘 = 𝑣). Find a (simple) expression for 𝐻((𝐴 ∪ 𝐵)𝑘 | 𝐴<𝑘 = 𝑢, 𝐵<𝑘 = 𝑣).

• Expand 𝐻((𝐴 ∪ 𝐵)𝑘 | 𝐴<𝑘, 𝐵<𝑘), give an upper bound, then simplify it (hint: law of
total probability).

□

Proof .  Think of 𝐴, 𝐵 as characteristic functions. Write 𝐴<𝑘 for (𝐴1, …, 𝐴𝑘−1). By the
Chain Rule, it is enough to prove for every 𝑘 that

𝐻((𝐴 ∪ 𝐵)𝑘 | (𝐴 ∪ 𝐵)<𝑘) > 𝑐(1 − 𝑝)(𝐻(𝐴𝑘 | 𝐴<𝑘) + 𝐻(𝐵𝑘 | 𝐻𝐵<𝑘
)).

By Lemma 1.25,

𝐻((𝐴 ∪ 𝐵)𝑘 | (𝐴 ∪ 𝐵)<𝑘) ≥ 𝐻((𝐴 ∪ 𝐵)𝑘 | 𝐴<𝑘, 𝐵<𝑘)

For each 𝑢, 𝑣 ∈ {0, 1}𝑘−1, write 𝑝(𝑢) = ℙ(𝐴𝑘 = 0 | 𝐴<𝑘 = 𝑢) and 𝑞(𝑣) = ℙ(𝐵𝑘 =
0 | 𝐵<𝑘 = 𝑣). Then, since 𝐴 and 𝐵 are independent,

𝐻((𝐴 ∪ 𝐵)𝑘 | 𝐴<𝑘 = 𝑢, 𝐵<𝑘 = 𝑣)
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= − ∑
1

𝑖=0
ℙ((𝐴 ∪ 𝐵)𝑘 = 𝑖 | 𝐴<𝑘 = 𝑢, 𝐵<𝑘 = 𝑣) log ℙ((𝐴 ∪ 𝐵)𝑘 = 𝑖 | 𝐴<𝑘 = 𝑢, 𝐵<𝑘 = 𝑣)

= ℎ(𝑝(𝑢)𝑞(𝑣)).

which by hypothesis is at least 𝑐(𝑝(𝑢)ℎ(𝑞(𝑣)) + 𝑞(𝑣)ℎ(𝑝(𝑢))). So

𝐻((𝐴 ∪ 𝐵)𝑘 | (𝐴 ∪ 𝐵)<𝑘) ≥ 𝑐 ∑
𝑢,𝑣

ℙ(𝐴<𝑘 = 𝑢)ℙ(𝐵<𝑘 = 𝑣)(𝑝(𝑢)ℎ(𝑞(𝑣)) + 𝑞(𝑣)ℎ(𝑝(𝑢)))

= 𝑐 ⋅ ∑
𝑢

ℙ(𝐴<𝑘 = 𝑢)𝑝(𝑢) ⋅ ∑
𝑣

ℙ(𝐵<𝑘 = 𝑣)ℎ(𝑞(𝑣))

+𝑐 ⋅ ∑
𝑢

ℙ𝐴<𝑘=𝑢ℎ(𝑝(𝑢)) ⋅ ∑
𝑣

ℙ(𝐵<𝑘 = 𝑣)𝑞(𝑣)

But by law of total probability,

∑
𝑢

ℙ(𝐴<𝑘 = 𝑢)ℙ(𝐴𝑘 = 0 | 𝐴<𝑘 = 𝑢) = ℙ(𝐴𝑘 = 0),

and

∑
𝑣

ℙ(𝐵<𝑘 = 𝑣)ℎ(𝑞(𝑣)) = ∑
𝑣

ℙ(𝐵<𝑘 = 𝑣)𝐻(𝐵𝑘 | 𝐵<𝑘 = 𝑣) = 𝐻(𝐵𝑘 | 𝐵<𝑘)

Similarly for the other term, so the RHS of the inequality equals

𝑐(ℙ(𝐴𝑘 = 0)𝐻(𝐵𝑘 | 𝐵<𝑘) + ℙ(𝐵𝑘 = 0)𝐻(𝐴𝑘 | 𝐴<𝑘)),

which by hypothesis (since ℙ(𝐴𝑘 = 0) = ℙ(𝐵𝑘 = 0) > 1 − 𝑝) is greater than

𝑐(1 − 𝑝)(𝐻(𝐴𝑘 | 𝐴<𝑘) + 𝐻(𝐵𝑘 | 𝐵<𝑘))

as required. □

Corollary 5.6  Let 𝒜, 𝑝 and 𝑐 be as in Lemma 5.5. If 𝒜 is union-closed, then we must
have 𝑝 ≥ 1 − 1/2𝑐.

Proof (Hints) .  Straightforward. □

Proof .  Let 𝐴 and 𝐵 be independent uniformly random elements of 𝒜. Since 𝒜 is
union-closed, 𝐴 ∪ 𝐵 ∈ 𝒜, so 𝐻(𝐴 ∪ 𝐵) ≤ log|𝒜|. Also, 𝐻(𝐴) = 𝐻(𝐵) = log|𝒜|. Hence,
by Lemma 5.5, 2𝑐(1 − 𝑝) ≤ 1. □

Corollary 5.6 gives a non-trivial bound as long as 𝑐 > 1/2. We shall obtain 1/(
√

5 − 1).

We start by proving the diagonal case, i.e. where 𝑥 = 𝑦.

Lemma 5.7 (Boppana)  For every 𝑥 ∈ [0, 1],

ℎ(𝑥2) ≥ 𝜑 ⋅ 𝑥 ⋅ ℎ(𝑥),

where 𝜑 = 1
2(

√
5 + 1).

Proof (Hints) .
• Let 𝜓 = 1/𝜑. Show that equality holds when 𝑥 = 𝜓, 0, 1.
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• Let 𝑓(𝑥) = ℎ(𝑥2) − 𝜑 ⋅ 𝑥 ⋅ ℎ(𝑥). Show that 𝑓‴(𝑥) = 0 iff −𝜑𝑥3 − 4𝑥2 + 3𝜑𝑥 − 4 +
2𝜑 = 0. (Advice: use natural logs and find expressions for ℎ′(𝑥), ℎ″(𝑥) and ℎ‴(𝑥)
first).

• Explain why 𝑓‴ has at most two roots in (0, 1) and so 𝑓 has at most five roots in
[0, 1].

• Show that 𝑓 has a double root at 0 and at 𝜓.
• Explain why 𝑓 must have constant sign on [0, 1], and by considering small 𝑥, show

that there is 𝑥 with 𝑓(𝑥) > 0.

□

Proof .  Write 𝜓 = 1/𝜑 = 1
2(

√
5 − 1). Then 𝜓2 = 1 − 𝜓. So ℎ(𝜓2) = ℎ(1 − 𝜓) = ℎ(𝜓)

and 𝜑𝜓 = 1, so ℎ(𝜓2) = 𝜑 ⋅ 𝜓 ⋅ ℎ(𝜓). So equality holds when 𝑥 = 𝜓, and also when
𝑥 = 0, 1.

Toolkit: ln(2) ⋅ ℎ(𝑥) = −𝑥 ln 𝑥 − (1 − 𝑥) ln(1 − 𝑥). Then

ln(2) ⋅ ℎ′(𝑥) = − ln 𝑥 − 1 + ln(1 − 𝑥) + 1 = ln(1 − 𝑥) − ln(𝑥)

and

ln(2) ⋅ ℎ″(𝑥) = −1
𝑥

− 1
1 − 𝑥

= − 1
𝑥(1 − 𝑥)

and

ln(2) ⋅ ℎ‴(𝑥) = 1
𝑥2 − 1

(1 − 𝑥)2 = 1 − 2𝑥
𝑥2(1 − 𝑥)2 .

Let 𝑓(𝑥) = ℎ(𝑥2) − 𝜑 ⋅ 𝑥 ⋅ ℎ(𝑥). Then

𝑓 ′(𝑥) = 2𝑥ℎ′(𝑥2) − 𝜑ℎ(𝑥) − 𝜑𝑥ℎ′(𝑥)

𝑓″(𝑥) = 2ℎ′(𝑥2) + 4𝑥2ℎ″(𝑥2) − 2𝜑ℎ′(𝑥) − 𝜑𝑥ℎ″(𝑥)

𝑓‴(𝑥) = 4𝑥ℎ″(𝑥2) + 8𝑥ℎ″(𝑥2) + 8𝑥3ℎ‴(𝑥2) − 3𝜑ℎ″(𝑥) − 𝜑𝑥ℎ‴(𝑥)

= 12𝑥ℎ″(𝑥2) + 8𝑥3ℎ‴(𝑥2) − 3𝜑ℎ″(𝑥) − 𝜑𝑥ℎ‴(𝑥)

So

ln(2)𝑓‴(𝑥) = −12𝑥
𝑥2(1 − 𝑥2)

+
8𝑥3(1 − 2𝑥2)
𝑥4(1 − 𝑥2)2 + 3𝜑

𝑥(1 − 𝑥)
− 𝜑𝑥(1 − 2𝑥)

𝑥2(1 − 𝑥)2

= −12
𝑥(1 − 𝑥2)

+
8(1 − 2𝑥2)
𝑥(1 − 𝑥2)2 + 3𝜑

𝑥(1 − 𝑥)
− 𝜑(1 − 2𝑥)

𝑥(1 − 𝑥)2

=
−12(1 − 𝑥2) + 8(1 − 2𝑥2) + 3𝜑(1 − 𝑥)(1 + 𝑥)2 − 𝜑(1 − 2𝑥)(1 + 𝑥)2

𝑥(1 − 𝑥)2(1 + 𝑥)2

which is zero iff

−12 + 12𝑥 + 8 − 16𝑥2 + 3𝜑(1 + 𝑥 − 𝑥2 − 𝑥3) − 𝜑(1 − 3𝑥2 − 2𝑥3)
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= −𝜑𝑥3 − 4𝑥2 + 3𝜑𝑥 − 4 + 2𝜑 = 0.

So the numerator of 𝑓‴(𝑥) is a cubic with negative leading coefficient and constant
term, so it has a negative root, so it has at most two roots in (0, 1). It follows (by Rolle’s
theorem) that 𝑓 has at most five roots in [0, 1], up to multiplicity. But

𝑓 ′(𝑥) = 2𝑥(log(1 − 𝑥2) − log(𝑥2)) + 𝜑(𝑥 log 𝑥 + (1 − 𝑥) log(1 − 𝑥)) − 𝜑𝑥(log(1 − 𝑥) − log 𝑥)

So 𝑓 ′(0) = 0, so 𝑓 has a double root at 0. Now

𝑓 ′(𝜓) = 2𝜓(log 𝜓 − 2 log 𝜓) + 𝜑(𝜓 log 𝜓 + 2(1 − 𝜓) log 𝜓) − (2 log 𝜓 − log 𝜓)
= −2𝜓 log 𝜓 + log 𝜓 + 2𝜑 log 𝜓 − 2 log 𝜓
= 2 log 𝜓(−𝜓 + 𝜑 − 1)

= 2𝜑 log 𝜓(−𝜓2 − 1 − 𝜓) = 0

So there is a double root at 𝜓. Also, 𝑓(1) = 0. So 𝑓 is either non-negative on all of [0, 1]
or non-positive on all of [0, 1]. If 𝑥 is small,

𝑓(𝑥) = 𝑥2 log 1
𝑥2 + (1 − 𝑥2) log 1

1 − 𝑥2 − 𝜑𝑥(𝑥 log 1
𝑥

+ (1 − 𝑥) log 1
1 − 𝑥

)

= 2𝑥2 log 1
𝑥

− 𝜑𝑥2 log 1
𝑥

+ 𝑂(𝑥2).

So, because 2 > 𝜑, there exists 𝑥 such that 𝑓(𝑥) > 0. □

Lemma 5.8  The function 𝑓(𝑥, 𝑦) = ℎ(𝑥𝑦)
𝑥ℎ(𝑦)+𝑦ℎ(𝑥)  is minimised on (0, 1)2 at a point where

𝑥 = 𝑦.

Proof (Hints) .
• Show that we can extend 𝑓 continuously to the boundary by setting 𝑓(𝑥, 𝑦) = 1

whenever 𝑥 or 𝑦 is 0 or 1 (for the case when 𝑥 or 𝑦 tend to 0 separately, consider an
expansion for 𝑥𝑦 small, and for the case when 𝑥 and 𝑦 tend to 1, consider when one
of 𝑥 or 𝑦 is 1).

• Pick any point in (0, 1)2 to show that 𝑓 is minimised somewhere in that region.
• Let (𝑥∗, 𝑦∗) be a minimum with 𝑓(𝑥∗, 𝑦∗) = 𝛼. Let 𝑔(𝑥) = ℎ(𝑥)/𝑥.
• By considering the expression 𝑔(𝑥𝑦) − 𝛼(𝑔(𝑥) + 𝑔(𝑦)) and partial derivatives, show

that 𝑥∗𝑔′(𝑥∗) = 𝑦∗𝑔′(𝑦∗).
• Show that 𝑥𝑔′(𝑥) is an injection by considering its derivative.

□

Proof .  We can extend 𝑓 continuously to the boundary by setting 𝑓(𝑥, 𝑦) = 1 whenever
𝑥 or 𝑦 is 0 or 1. To see this, note first that it is easy if neither 𝑥 nor 𝑦 is 0. If either 𝑥
or 𝑦 is small then ℎ(𝑥𝑦) = −𝑥𝑦(log 𝑥 + log 𝑦) + 𝑂(𝑥𝑦), and

𝑥ℎ(𝑦) + 𝑦ℎ(𝑥) = −𝑥(𝑦 log 𝑦 + 𝑂(𝑦)) − 𝑦(𝑥 log 𝑥 + 𝑂(𝑥))
= ℎ(𝑥𝑦) up to 𝑂(𝑥𝑦)

So it tends to 1 again.
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We can check that 𝑓(1/2, 1/2) < 1, so 𝑓 is minimised somewhere in (0, 1)2. Let (𝑥∗, 𝑦∗)
be a minimum with 𝑓(𝑥∗, 𝑦∗) = 𝛼. For convenience, let 𝑔(𝑥) = ℎ(𝑥)/𝑥 and note that
𝑓(𝑥, 𝑦) = 𝑔(𝑥𝑦)

𝑔(𝑥)+𝑔(𝑦) . Also, 𝑔(𝑥𝑦) − 𝛼(𝑔(𝑥) + 𝑔(𝑦)) ≥ 0 with equality at (𝑥∗, 𝑦∗). So the
partial derivatives of the LHS are both 0 at (𝑥∗, 𝑦∗):

𝑦∗𝑔′(𝑥∗𝑦∗) − 𝛼𝑔′(𝑥∗) = 0
𝑥∗𝑔′(𝑥∗𝑦∗) − 𝛼𝑔′(𝑦∗) = 0.

So 𝑥∗𝑔′(𝑥∗) = 𝑦∗𝑔′(𝑦∗). So it is enough to prove that 𝑥𝑔′(𝑥) is an injection. We have

𝑔′(𝑥) = ℎ′(𝑥)
𝑥

− ℎ(𝑥)
𝑥2

so

𝑥𝑔′(𝑥) = ℎ′(𝑥) − ℎ(𝑥)
𝑥

= log(1 − 𝑥) − log 𝑥 + 𝑥 log 𝑥 + (1 − 𝑥) log(1 − 𝑥)
𝑥

= log(1 − 𝑥)
𝑥

.

Differentiating gives

− 1
𝑥(1 − 𝑥)

− log(1 − 𝑥)
𝑥2 = −𝑥 − (1 − 𝑥) log(1 − 𝑥)

𝑥2(1 − 𝑥)

The numerator differentiates to −1 + 1 + log(1 − 𝑥) which is negative. Also, it equals
0 at 0, so it has a constant sign. Thus, 𝑥𝑔′(𝑥) is indeed an injection. □

Combining this with Boppana we get that

ℎ(𝑥𝑦) ≥ 𝜑
2

(𝑥ℎ(𝑦) + 𝑦ℎ(𝑥))

This allows us to take 𝑝 = 1 − 1
𝜑 = 3−

√
5

2 .

6. Entropy in additive combinatorics
We shall need two “simple” results from additive combinatorics due to Imre Ruzsa.

Definition 6.1  Let 𝐺 be an abelian group and let 𝐴, 𝐵 ⊆ 𝐺. The sumset 𝐴 + 𝐵 of
𝐴 and 𝐵 is the set

{𝑥 + 𝑦 : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}

and the difference set 𝐴 − 𝐵 is the set

{𝑥 − 𝑦 : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}.

Write 2𝐴 for 𝐴 + 𝐴, 3𝐴 for 𝐴 + 𝐴 + 𝐴, etc.

Definition 6.2  The Ruzsa distance 𝑑(𝐴, 𝐵) is
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|𝐴 − 𝐵|
|𝐴|1/2 ⋅ |𝐵|1/2 .

Lemma 6.3 (Ruzsa Triangle Inequality)  𝑑(𝐴, 𝐶) ≤ 𝑑(𝐴, 𝐵) ⋅ 𝑑(𝐵, 𝐶).

Proof (Hints) .  Expand the stated inequality and consider an appropriate injection. □

Proof .  This is equivalent to the statement

|𝐴 − 𝐶| ⋅ |𝐵| ≤ |𝐴 − 𝐵| ⋅ |𝐵 − 𝐶|.

For each 𝑥 ∈ 𝐴 − 𝐶, pick 𝑎(𝑥) ∈ 𝐴, 𝑐(𝑥) ∈ 𝐶 such that 𝑥 = 𝑎(𝑥) − 𝑐(𝑥). Define the map

𝜑 : (𝐴 − 𝐶) × 𝐵 → (𝐴 − 𝐵) × (𝐵 − 𝐶),
(𝑥, 𝑏) ↦ (𝑎(𝑥) − 𝑏, 𝑏 − 𝑐(𝑥)).

Adding the coordinates of 𝜑(𝑥, 𝑏) gives 𝑥, so we can calculate 𝑎(𝑥) and 𝑐(𝑥) from 𝜑(𝑥, 𝑏),
and hence 𝑏. So 𝜑 is an injection. □

Lemma 6.4 (Ruzsa Covering Lemma)  Let 𝐺 be an abelian group and let 𝐴, 𝐵 ⊆ 𝐺
be finite. Then 𝐴 can be covered by at most |𝐴 + 𝐵|/|𝐵| translates of 𝐵 − 𝐵.

Proof (Hints) .  Consider a maximal subset {𝑥1, …, 𝑥𝑘} ⊆ 𝐴 such that the 𝑥𝑖 + 𝐵 are
disjoint. □

Proof .  Let {𝑥1, …, 𝑥𝑘} be a maximal subset of 𝐴 such that the sets 𝑥𝑖 + 𝐵 are disjoint.
Then for all, 𝑎 ∈ 𝐴, there exists 𝑖 such that (𝑎 + 𝐵) ∩ (𝑥𝑖 + 𝐵) ≠ ∅, i.e. 𝑎 ∈ (𝑥𝑖 + (𝐵 −
𝐵)). So 𝐴 can be covered by 𝑘 translates of 𝐵 − 𝐵. But since the 𝑥𝑖 + 𝐵 are disjoint,

|𝐵|𝑘 = |{𝑥1, …, 𝑥𝑘} + 𝐵| ≤ |𝐴 + 𝐵|.

□

Let 𝑋, 𝑌  be discrete random variables taking values in an abelian group. What is 𝑋 + 𝑌
when 𝑋 and 𝑌  are independent? For each 𝑧, ℙ(𝑋 + 𝑌 = 𝑧) = ∑𝑥+𝑦=𝑧 ℙ(𝑋 = 𝑥)ℙ(𝑌 =
𝑦). Writing 𝑝𝑥 and 𝑞𝑦 for ℙ(𝑋 = 𝑥) and ℙ(𝑌 = 𝑦), this gives

∑
𝑥+𝑦=𝑧

𝑝𝑥𝑝𝑦 = (𝑝 ∗ 𝑞)(𝑧)

where 𝑝(𝑥) = 𝑝𝑥, 𝑞(𝑦) = 𝑞𝑦. So sums of independent random variables correspond to
convolutions.

Definition 6.5  Let 𝐺 be an abelian group and let 𝑋, 𝑌  be 𝐺-valued random variables.
The (entropic) Ruzsa distance between 𝑋 and 𝑌  is

𝑑(𝑋; 𝑌 ) = 𝐻(𝑋′ − 𝑌 ′) − 1
2
𝐻(𝑋) − 1

2
𝐻(𝑌 )

= 𝐻(𝑋′ − 𝑌 ′) − 1
2
𝐻(𝑋′) − 1

2
𝐻(𝑌 ′).

where 𝑋′, 𝑌 ′ are independent copies of 𝑋, 𝑌 .
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Lemma 6.6  If 𝐴, 𝐵 are finite subsets of 𝐺 and 𝑋, 𝑌  are uniform on 𝐴, 𝐵 respectively,
then

𝑑(𝑋; 𝑌 ) ≤ log 𝑑(𝐴, 𝐵).

Proof (Hints) .  Straightforward. □

Proof .  WLOG 𝑋, 𝑌  are independent. Then

𝑑(𝑋, 𝑌 ) = 𝐻(𝑋 − 𝑌 ) − 1
2
𝐻(𝑋) − 1

2
𝐻(𝑌 )

≤ log|𝐴 − 𝐵| − 1
2

log|𝐴| − 1
2

log|𝐵| = log 𝑑(𝐴, 𝐵).

□

Lemma 6.7  Let 𝑋, 𝑌  be 𝐺-valued random variables. Then

𝐻(𝑋 − 𝑌 ) ≥ max{𝐻(𝑋), 𝐻(𝑌 )} − 𝐼(𝑋 : 𝑌 ).

Proof (Hints) .  Use that 𝐻(𝑋 − 𝑌 ) ≥ 𝐻(𝑋 − 𝑌 | 𝑌 ) and 𝐻(𝑋 − 𝑌 ) ≥ 𝐻(𝑋 − 𝑌 | 𝑋).
□

Proof .  We have

𝐻(𝑋 − 𝑌 ) ≥ 𝐻(𝑋 − 𝑌 | 𝑌 ) by Subadditivity
= 𝐻(𝑋 − 𝑌 , 𝑌 ) − 𝐻(𝑌 )
= 𝐻(𝑋, 𝑌 ) − 𝐻(𝑌 ) by Invariance
= 𝐻(𝑋) + 𝐻(𝑌 ) − 𝐻(𝑌 ) − 𝐼(𝑋 : 𝑌 )
= 𝐻(𝑋) − 𝐼(𝑋 : 𝑌 ).

We use Invariance with the bijection (𝑥, 𝑦) ↦ (𝑥 − 𝑦, 𝑦). By symmetry, we also have
𝐻(𝑋 − 𝑌 ) ≥ 𝐻(𝑌 ) − 𝐼(𝑋 : 𝑌 ). □

Corollary 6.8  If 𝑋, 𝑌  are 𝐺-valued RVs, then 𝑑(𝑋; 𝑌 ) ≥ 0.

Proof (Hints) .  Straightforward. □

Proof .  WLOG 𝑋 and 𝑌  are independent. Then 𝐼(𝑋 : 𝑌 ) = 0, so 𝐻(𝑋 − 𝑌 ) ≥
max{𝐻(𝑋), 𝐻(𝑌 )} ≥ 1

2(𝐻(𝑋) + 𝐻(𝑌 )). □

Lemma 6.9  If 𝑋, 𝑌  are 𝐺-valued RVs, then 𝑑(𝑋; 𝑌 ) = 0 iff there is some (finite)
subgroup 𝐻 of 𝐺 such that 𝑋 and 𝑌  are uniform on cosets of 𝐻.

Proof (Hints) .
• ⟸: straightforward.
• ⟹: assume WLOG that 𝑋 and 𝑌  are independent. By considering entropy, explain

why 𝑋 − 𝑌  and 𝑌  are independent.
• Deduce that for 𝑋 supported on 𝐴 and 𝑌  supported on 𝐵, for all 𝑧 ∈ 𝐴 − 𝐵 and

𝑦1, 𝑦2 ∈ 𝐵, ℙ(𝑋 = 𝑦1 + 𝑧) = ℙ(𝑋 = 𝑦2 + 𝑧), and show that this implies that 𝑧 + 𝐵 ⊆
𝐴.
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• Deduce that 𝐴 = 𝐵 + 𝑧 for all 𝑧 ∈ 𝐴 − 𝐵, and so that 𝐴 − 𝑥 is constant over 𝑥 ∈ 𝐴.
• Deduce that 𝐴 − 𝐴 is a subgroup.

□

Proof .  ⟸: If 𝑋, 𝑌  are uniform on 𝑥 + 𝐻, 𝑦 + 𝐻 then 𝑋′ − 𝑌 ′ is uniform on (𝑥 − 𝑦) +
𝐻, so 𝐻(𝑋′ − 𝑌 ′) = 𝐻(𝑋) = 𝐻(𝑌 ).

⟹: WLOG 𝑋 and 𝑌  are independent. We have 𝐻(𝑋 − 𝑌 ) = 1
2(𝐻(𝑋) + 𝐻(𝑌 )). So

equality must hold throughout the proof of Lemma 6.7 and Corollary 6.8, thus 𝐻(𝑋 −
𝑌 | 𝑌 ) = 𝐻(𝑋 − 𝑌 ). Therefore, 𝑋 − 𝑌  and 𝑌  are independent. So for every 𝑧 ∈ 𝐴 − 𝐵
and 𝑦1, 𝑦2 ∈ 𝐵,

ℙ(𝑋 − 𝑌 = 𝑧 | 𝑌 = 𝑦1) = ℙ(𝑋 − 𝑌 = 𝑧 | 𝑌 = 𝑦2),

where 𝐴 = {𝑥 : ℙ(𝑋 = 𝑥) ≠ 0} and 𝐵 = {𝑦 : ℙ(𝑌 = 𝑦) ≠ 0}. We can write this as

ℙ(𝑋 = 𝑦1 + 𝑧) = ℙ(𝑋 = 𝑦2 + 𝑧)

So ℙ(𝑋 = 𝑥) is constant on 𝑧 + 𝐵. In particular, 𝑧 + 𝐵 ⊆ 𝐴 (ℙ(𝑋 = 𝑥) must be non-
zero on 𝑧 + 𝐵, as otherwise (𝑧 + 𝐵) ∩ 𝐴 = ∅, i.e. 𝑧 ∉ 𝐴 − 𝐵). By the same argument,
𝐴 − 𝑧 ⊆ 𝐵. So 𝐴 = 𝐵 + 𝑧 for all 𝑧 ∈ 𝐴 − 𝐵. So for every 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵, 𝐴 = 𝐵 +
𝑥 − 𝑦, so 𝐴 − 𝑥 = 𝐵 − 𝑦. Hence, 𝐴 − 𝑥 is the same for every 𝑥 ∈ 𝐴. Therefore, 𝐴 − 𝑥 =
∪𝑥∈𝐴 (𝐴 − 𝑥) = 𝐴 − 𝐴 for all 𝑥 ∈ 𝐴. It follows that

𝐴 − 𝐴 + 𝐴 − 𝐴 = (𝐴 − 𝐴) − (𝐴 − 𝐴) = 𝐴 − 𝑥 − (𝐴 − 𝑥) = 𝐴 − 𝐴.

So 𝐴 − 𝑥 = 𝐴 − 𝐴 is a subgroup, and so 𝐴 is a coset of 𝐴 − 𝐴. 𝐵 = 𝐴 + 𝑥, so 𝐵 is also
a coset of 𝐴 − 𝐴. Also, as stated above, 𝑋 is uniform on 𝑧 + 𝐵 = 𝐴 and 𝑌  is uniform
on 𝐴 − 𝑧 = 𝐵. □

Lemma 6.10 (Entropic Ruzsa Triangle Inequality)  Let 𝑋, 𝑌 , 𝑍 be 𝐺-valued random
variables. Then 𝑑(𝑋; 𝑍) ≤ 𝑑(𝑋; 𝑌 ) + 𝑑(𝑌 ; 𝑍).

Proof (Hints) .  Simplify the desired inequality and use Lemma 1.26 (where 𝑋 − 𝑍
depends on two different (pairs of) random variables). □

Proof .  We must show (assuming WLOG that 𝑋, 𝑌 , 𝑍 are independent) that

𝐻(𝑋 − 𝑍) − 1
2
𝐻(𝑋) − 1

2
𝐻(𝑍)

≤ 𝐻(𝑋 − 𝑌 ) − 1
2
𝐻(𝑋) − 1

2
𝐻(𝑌 ) + 𝐻(𝑌 − 𝑍) − 1

2
𝐻(𝑌 ) − 1

2
𝐻(𝑍),

i.e. that 𝐻(𝑋 − 𝑍) + 𝐻(𝑌 ) ≤ 𝐻(𝑋 − 𝑌 ) + 𝐻(𝑌 − 𝑍). Since 𝑋 − 𝑍 depends on (𝑋 −
𝑌 , 𝑌 − 𝑍) and on (𝑋, 𝑍), by Lemma 1.26,

𝐻(𝑋 − 𝑌 , 𝑌 − 𝑍, 𝑋, 𝑍) + 𝐻(𝑋 − 𝑍) ≤ 𝐻(𝑋 − 𝑌 , 𝑌 − 𝑍) + 𝐻(𝑋, 𝑍)

i.e. 𝐻(𝑋, 𝑌 , 𝑍) + 𝐻(𝑋 − 𝑍) ≤ 𝐻(𝑋, 𝑍) + 𝐻(𝑋 − 𝑌 , 𝑌 − 𝑍). By independence and
Subadditivity, we get 𝐻(𝑋 − 𝑍) + 𝐻(𝑌 ) ≤ 𝐻(𝑋 − 𝑌 ) + 𝐻(𝑌 − 𝑍). □

Lemma 6.11 (Submodularity for Sums)  If 𝑋, 𝑌 , 𝑍 are independent 𝐺-valued RVs, then
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𝐻(𝑋 + 𝑌 + 𝑍) + 𝐻(𝑍) ≤ 𝐻(𝑋 + 𝑍) + 𝐻(𝑌 + 𝑍).

Proof (Hints) .  Use Lemma 1.26. □

Proof .  𝑋 + 𝑌 + 𝑍 is a function of (𝑋 + 𝑍, 𝑌 ) and of (𝑋, 𝑌 + 𝑍). Therefore, by Lemma
1.26,

𝐻(𝑋 + 𝑍, 𝑌 , 𝑋, 𝑌 + 𝑍) + 𝐻(𝑋 + 𝑌 + 𝑍) ≤ 𝐻(𝑋 + 𝑍, 𝑌 ) + 𝐻(𝑋, 𝑌 + 𝑍),

thus 𝐻(𝑋, 𝑌 , 𝑍) + 𝐻(𝑋 + 𝑌 + 𝑍) ≤ 𝐻(𝑋 + 𝑍) + 𝐻(𝑌 ) + 𝐻(𝑋) + 𝐻(𝑌 + 𝑍). By in-
dependence and cancelling equal terms, we get the desired inequality. □

Lemma 6.12  Let 𝐺 be an abelian group and let 𝑋 be a 𝐺-valued random variable.
Then 𝑑(𝑋; −𝑋) ≤ 2𝑑(𝑋; 𝑋).

Proof (Hints) .  Consider independent copies 𝑋1, 𝑋2, 𝑋3 of 𝑋, use Lemma 6.7. □

Proof .  Let 𝑋1, 𝑋2, 𝑋3 be independent copies of 𝑋. Then by Lemma 6.7,

𝑑(𝑋; −𝑋) = 𝐻(𝑋1 + 𝑋2) − 1
2
𝐻(𝑋1) − 1

2
𝐻(𝑋2)

≤ 𝐻(𝑋1 + 𝑋2 − 𝑋3) − 𝐻(𝑋)
≤ 𝐻(𝑋1 − 𝑋3) + 𝐻(𝑋2 − 𝑋3) − 𝐻(𝑋3) − 𝐻(𝑋)
= 2𝑑(𝑋; 𝑋)

by Submodularity for Sums and since 𝑋1, 𝑋2, 𝑋3 are all copies of 𝑋. □

Corollary 6.13  Let 𝑋 and 𝑌  be 𝐺-valued random variables. Then 𝑑(𝑋; −𝑌 ) ≤
5𝑑(𝑋; 𝑌 ).

Proof (Hints) .  Straightforward. □

Proof .  By the Entropic Ruzsa Triangle Inequality,

𝑑(𝑋; −𝑌 ) ≤ 𝑑(𝑋; 𝑌 ) + 𝑑(𝑌 ; −𝑌 )
≤ 𝑑(𝑋; 𝑌 ) + 2𝑑(𝑌 ; 𝑌 )
≤ 𝑑(𝑋; 𝑌 ) + 2(𝑑(𝑌 ; 𝑋) + 𝑑(𝑋; 𝑌 )) = 5𝑑(𝑋; 𝑌 ).

□

Definition 6.14  Let 𝑋, 𝑌 , 𝑈, 𝑉  be 𝐺-valued random variables. The conditional
distance is

𝑑(𝑋 | 𝑈; 𝑌 | 𝑉 ) = ∑
𝑢,𝑣

ℙ(𝑈 = 𝑢)ℙ(𝑉 = 𝑣)𝑑(𝑋 | 𝑈 = 𝑢; 𝑌 | 𝑉 = 𝑣).

Definition 6.15  Let 𝑋, 𝑌 , 𝑈  be 𝐺-valued random variables. The simultaneous
conditional distance of 𝑋 to 𝑌  given 𝑈  is

𝑑(𝑋; 𝑌 ‖ 𝑈) ≔ ∑
𝑢

ℙ(𝑈 = 𝑢)𝑑(𝑋 | 𝑈 = 𝑢; 𝑌 | 𝑈 = 𝑢).
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Definition 6.16  We say that 𝑋′, 𝑌 ′ are conditionally independent trials of 𝑋, 𝑌
given 𝑈  if 𝑋′ is distributed like 𝑋, 𝑌 ′ like 𝑌 , and for each 𝑢, 𝑋′ | 𝑈 = 𝑢 is distributed
like 𝑋 | 𝑈 = 𝑢, 𝑌 ′ | 𝑈 = 𝑢 is distributed like 𝑌 | 𝑈 = 𝑢, and 𝑋′ | 𝑈 = 𝑢 and 𝑌 ′ | 𝑈 =
𝑢 are independent.

In that case, 𝑑(𝑋; 𝑌 ‖ 𝑈) = 𝐻(𝑋′ − 𝑌 ′ | 𝑈) − 1
2𝐻(𝑋′ | 𝑈) − 1

2𝐻(𝑌 ′ | 𝑈).

Lemma 6.17 (Entropic BSG Theorem)  Let 𝐴, 𝐵 be 𝐺-valued RVs. Then

𝑑(𝐴; 𝐵 ‖ 𝐴 + 𝐵) ≤ 3𝐼(𝐴 : 𝐵) + 2𝐻(𝐴 + 𝐵) − 𝐻(𝐴) − 𝐻(𝐵).

Proof (Hints) .
• Let 𝐴′, 𝐵′ be conditionally independent trials of 𝐴, 𝐵 given 𝐴 + 𝐵.
• Show that 𝐻(𝐴′ | 𝐴 + 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐼(𝐴 : 𝐵) − 𝐻(𝐴 + 𝐵).
• Let (𝐴1, 𝐵1) and (𝐴2, 𝐵2) be conditionally independent trials of (𝐴, 𝐵) given 𝐴 + 𝐵.
• Explain why 𝐻(𝐴1 − 𝐵2) ≤ 𝐻(𝐴1 − 𝐵2, 𝐴1) + 𝐻(𝐴1 − 𝐵2, 𝐵1) − 𝐻(𝐴1 −

𝐵2, 𝐴1, 𝐵1).
• Use that 𝐴1 + 𝐵1 = 𝐴2 + 𝐵2 to bound each of the first two terms on the RHS of the

above, and rewrite the 𝐻(𝐴1 − 𝐵2, 𝐴1, 𝐵1) term, using the conditional independence
of (𝐴1, 𝐵1) and (𝐴2, 𝐵2), to conclude the result.

□

Proof .  We have

𝑑(𝐴, 𝐵 ‖ 𝐴 + 𝐵) = 𝐻(𝐴′ − 𝐵′ | 𝐴 + 𝐵) − 1
2
𝐻(𝐴′ | 𝐴 + 𝐵) − 1

2
𝐻(𝐵′ | 𝐴 + 𝐵),

where 𝐴′, 𝐵′ are conditionally independent trials of 𝐴, 𝐵 given 𝐴 + 𝐵. Now

𝐻(𝐴′ | 𝐴 + 𝐵) = 𝐻(𝐴 | 𝐴 + 𝐵) = 𝐻(𝐴, 𝐴 + 𝐵) − 𝐻(𝐴 + 𝐵)
= 𝐻(𝐴, 𝐵) − 𝐻(𝐴 + 𝐵)
= 𝐻(𝐴) + 𝐻(𝐵) − 𝐼(𝐴 : 𝐵) − 𝐻(𝐴 + 𝐵).

Similarly, 𝐻(𝐵′ | 𝐴 + 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐼(𝐴 : 𝐵) − 𝐻(𝐴 + 𝐵), so

1
2
𝐻(𝐴′ | 𝐴 + 𝐵) + 1

2
𝐻(𝐵′ | 𝐴 + 𝐵)

is also the same. By Subadditivity, 𝐻(𝐴′ − 𝐵′ | 𝐴 + 𝐵) ≤ 𝐻(𝐴′ − 𝐵′). Let (𝐴1, 𝐵1)
and (𝐴2, 𝐵2) be conditionally independent trials of (𝐴, 𝐵) given 𝐴 + 𝐵 (here, 𝐴1 plays
the role of 𝐴′, 𝐵2 plays the role of 𝐵′, and each comes with another RV since we know
the value of 𝐴 + 𝐵). Then 𝐻(𝐴′ − 𝐵′) = 𝐻(𝐴1 − 𝐵2). By Submodularity,

𝐻(𝐴1 − 𝐵2) ≤ 𝐻(𝐴1 − 𝐵2, 𝐴1) + 𝐻(𝐴1 − 𝐵2, 𝐵1) − 𝐻(𝐴1 − 𝐵2, 𝐴1, 𝐵1)

Also,

𝐻(𝐴1 − 𝐵2, 𝐴1) = 𝐻(𝐴1, 𝐵2) ≤ 𝐻(𝐴1) + 𝐻(𝐵2) = 𝐻(𝐴) + 𝐻(𝐵)

and since 𝐴1 + 𝐵1 = 𝐴2 + 𝐵2,

27



𝐻(𝐴1 − 𝐵2, 𝐵1) = 𝐻(𝐴2 − 𝐵1, 𝐵1) = 𝐻(𝐴2, 𝐵1) ≤ 𝐻(𝐴) + 𝐻(𝐵).

Finally, since 𝐴1 + 𝐵1 = 𝐴2 + 𝐵2,

𝐻(𝐴1 − 𝐵2, 𝐴1, 𝐵1) = 𝐻(𝐴1, 𝐵1, 𝐴2, 𝐵2)
= 𝐻(𝐴1, 𝐵1, 𝐴2, 𝐵2 | 𝐴 + 𝐵) + 𝐻(𝐴 + 𝐵)
= 2𝐻(𝐴, 𝐵 | 𝐴 + 𝐵) + 𝐻(𝐴 + 𝐵)
= 2𝐻(𝐴, 𝐵) − 𝐻(𝐴 + 𝐵)
= 2𝐻(𝐴) + 2𝐻(𝐵) − 2𝐼(𝐴 : 𝐵) − 𝐻(𝐴 + 𝐵).

where the third line is by conditional independence of (𝐴1, 𝐵1) and (𝐴2, 𝐵2). Adding
or subtracting as appropriate all these terms gives the required inequality. □

7. A proof of Marton’s conjecture in 𝔽𝑛
2

We shall prove the following theorem.

Theorem 7.1 (Green, Manners, Tao, Gowers)  There is a polynomial 𝑝 with the
following property: if 𝑛 ∈ ℕ and 𝐴 ⊆ 𝔽𝑛

2  is such that |𝐴 + 𝐴| ≤ 𝐶|𝐴|, then there is a
subspace 𝐻 ⊆ 𝔽𝑛

2  of size at most |𝐴| such that 𝐴 is contained in the union of at most
𝑝(𝐶) translates of 𝐻. Equivalently, there exists 𝐾 ⊆ 𝔽2, |𝐾| ≤ 𝑝(𝐶), such that 𝐴 ⊆
𝐾 + 𝐻.

In fact, we shall prove the following statement:

Theorem 7.2 (EPFR)  Let 𝐺 = 𝔽𝑛
2 . There is an absolute constant 𝛼 with the following

property:

Let 𝑋, 𝑌  be 𝐺-valued random variables. Then there exists a subgroup 𝐻 of 𝐺 such that

𝑑(𝑋; 𝑈𝐻) + 𝑑(𝑈𝐻 ; 𝑌 ) ≤ 𝛼𝑑(𝑋; 𝑌 ),

where 𝑈𝐻 is a random variable distributed uniformly on 𝐻.

Lemma 7.3  Let 𝑋 be a discrete random variable and write 𝑝𝑥 = ℙ(𝑋 = 𝑥). Then
there exists 𝑥 such that 𝑝𝑥 ≥ 2−𝐻(𝑋).

Proof (Hints) .  By contradiction. □

Proof .  If not, then 𝐻(𝑋) = ∑𝑥 𝑝𝑥 log(1/𝑝𝑥) > 𝐻(𝑋) ∑𝑥 𝑝𝑥 = 𝐻(𝑋): contradiction. □

Proposition 7.4  EPFR implies Green, Manners, Tao, Gowers.

Proof (Hints) .
• Let 𝐴 ⊆ 𝔽𝑛

2  and |𝐴 + 𝐴| ≤ 𝐶|𝐴|. Let 𝑈𝐻 be uniformly distributed on 𝐻, let 𝑋 and
𝑌  be independent copies of 𝑈𝐴. Show that 𝑑(𝑋; 𝑈𝐻) ≤ 1

2𝛼 log 𝐶.
• Deduce that there exists 𝑧 such that

ℙ(𝑋 + 𝑈𝐻 = 𝑧) ≥ |𝐴|−1/2|𝐻|−1/2𝐶−𝛼/2

and find an expression for the LHS.
• Let 𝐵 = 𝐴 ∩ (𝑧 + 𝐻). Show that 𝐴 can be covered by at most |𝐴+𝐵|

|𝐵|  translates of 𝐻.
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• Use that 𝐵 ⊆ 𝐴, 𝑧 + 𝐻 to show that

|𝐴 + 𝐵|
|𝐵|

≤ 𝐶𝛼/2+1 |𝐴|1/2

|𝐻|1/2 ≤ 𝐶𝛼+1.

• Consider the cases |𝐻| ≤ |𝐴| and |𝐻| > |𝐴|: if the latter, then consider a subgroup
𝐻′ of 𝐻 of size between |𝐴|/2 and |𝐴| (why does this exist?).

□

Proof .  Let 𝐴 ⊆ 𝔽𝑛
2  and |𝐴 + 𝐴| ≤ 𝐶|𝐴|. Let 𝑋 and 𝑌  be independent copies of 𝑈𝐴.

Then by EPFR, there exists a subgroup 𝐻 such that 𝑑(𝑋; 𝑈𝐻) + 𝑑(𝑈𝐻 ; 𝑋) ≤ 𝛼𝑑(𝑋; 𝑌 ),
so 𝑑(𝑋; 𝑈𝐻) ≤ 𝛼

2 𝑑(𝑋; 𝑌 ). But since we are in 𝔽𝑛
2 ,

𝑑(𝑋; 𝑌 ) = 𝐻(𝑈𝐴 − 𝑈 ′
𝐴) − 1

2
𝐻(𝑈𝐴) − 1

2
𝐻(𝑈 ′

𝐴) = 𝐻(𝑈𝐴 + 𝑈 ′
𝐴) − 𝐻(𝑈𝐴)

≤ log 𝐶|𝐴| − log|𝐴| = log 𝐶,

by Maximality. So 𝑑(𝑋; 𝑈𝐻) ≤ 1
2𝛼 log 𝐶, i.e.

𝐻(𝑋 + 𝑈𝐻) ≤ 1
2
𝐻(𝑋) + 1

2
𝐻(𝑈𝐻) + 1

2
𝛼 log 𝐶

= 1
2

log|𝐴| + 1
2

log|𝐻| + 1
2
𝛼 log 𝐶.

Therefore by Lemma 7.3, there exists 𝑧 such that

ℙ(𝑋 + 𝑈𝐻 = 𝑧) ≥ |𝐴|−1/2|𝐻|−1/2𝐶−𝛼/2.

But ℙ(𝑋 + 𝑈𝐻 = 𝑧) = 𝐴∩(𝑧−𝐻)
|𝐴||𝐻| = 𝐴∩(𝑧+𝐻)

|𝐴||𝐻| . So there exists 𝑧 ∈ 𝐺 such that

|𝐴 ∩ (𝑧 + 𝐻)| ≥ 𝐶−𝛼/2|𝐴|−1/2|𝐻|−1/2.

Let 𝐵 = 𝐴 ∩ (𝑧 + 𝐻). Let 𝐵 = 𝐴 ∩ (𝑧 + 𝐻). By Ruzsa Covering Lemma, we can cover
𝐴 by at most |𝐴+𝐵|

|𝐵|  translates of 𝐵 − 𝐵 = 𝐵 + 𝐵. But 𝐵 ⊆ 𝑧 + 𝐻 so 𝐵 + 𝐵 ⊆ 2𝑧 + 𝐻 +
𝐻 = 𝐻. So 𝐴 can be covered by at most |𝐴+𝐵|

|𝐵|  translates of 𝐻. But since 𝐵 ⊆ 𝐴, |𝐴 +
𝐵| ≤ |𝐴 + 𝐴| ≤ 𝐶|𝐴|. So

|𝐴 + 𝐵|
|𝐵|

≤ 𝐶|𝐴|
𝐶−𝛼/2|𝐴|1/2|𝐻|1/2 = 𝐶𝛼/2+1 |𝐴|1/2

|𝐻|1/2 .

Since 𝐵 is contained in 𝑧 + 𝐻, |𝐻| ≥ 𝐶−𝛼/2|𝐴|1/2|𝐻|1/2, which implies |𝐻| ≥ 𝐶−𝛼|𝐴|. So

𝐶𝛼/2+1 |𝐴|1/2

|𝐻|1/2 ≤ 𝐶𝛼+1.

If |𝐻| ≤ |𝐴|, then we are done (with polynomial 𝑝(𝑥) = 𝑥𝛼+1). Otherwise, since 𝐵 ⊆ 𝐴,
|𝐴| ≥ 𝐶−𝛼/2|𝐴|1/2|𝐻|1/2, which implies |𝐻| ≤ 𝐶𝛼|𝐴|. Pick a subgroup 𝐻′ of 𝐻 of size
between |𝐴|/2 and |𝐴|. Then 𝐻 is a union of |𝐻|/|𝐻′| ≤ 2𝐶𝛼 translates of 𝐻′, so 𝐴 is
a union of at most 2𝐶2𝛼+1 translates of 𝐻′. □

Now we reduce further. We shall prove the following statement.
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Theorem 7.5 (EPFR')  There is an absolute constant 𝜂 > 0 such that if 𝑋 and 𝑌  are
any two 𝔽𝑛

2 -valued RVs, with 𝑑(𝑋; 𝑌 ) > 0, then there exist 𝔽𝑛
2 -valued RVs 𝑈  and 𝑉

such that

𝜏𝑋,𝑌 (𝑈; 𝑉 ) ≔ 𝑑(𝑈; 𝑉 ) + 𝜂(𝑑(𝑈; 𝑋) + 𝑑(𝑉 ; 𝑌 )) < 𝑑(𝑋; 𝑌 ).

Proposition 7.6  EPFR' with constant 𝜂 implies EPFR with constant 1/𝜂.

Proof (Hints) .
• By compactness, we can find 𝔽𝑛

2 -valued RVs 𝑈, 𝑉  such that 𝜏𝑋,𝑌 (𝑈; 𝑉 ) is minimised.
• Assuming that 𝑑(𝑈; 𝑉 ) ≠ 0, use the Ruzsa Triangle Inequality to derive a contra-

diction.
• Conclude using Lemma 6.9.

□

Proof .  By compactness, we can find 𝔽𝑛
2 -valued RVs 𝑈, 𝑉  such that 𝜏𝑋,𝑌 (𝑈; 𝑉 ) is

minimised. If 𝑑(𝑈; 𝑉 ) ≠ 0, then by EPFR', there exist 𝔽𝑛
2 -valued RVs 𝑍, 𝑊  such that

𝜏𝑈𝑉 (𝑍; 𝑊) < 𝑑(𝑈; 𝑉 ). But then by the Ruzsa Triangle Inequality,

𝜏𝑋,𝑌 (𝑍; 𝑊) = 𝑑(𝑍; 𝑊) + 𝜂(𝑑(𝑍; 𝑋) + 𝑑(𝑊; 𝑌 ))

≤ 𝑑(𝑍; 𝑊) + 𝜂(𝑑(𝑍; 𝑈) + 𝑑(𝑊; 𝑉 )) + 𝜂(𝑑(𝑈; 𝑋) + 𝑑(𝑉 ; 𝑌 ))
< 𝑑(𝑈; 𝑉 ) + 𝜂(𝑑(𝑈; 𝑋) + 𝑑(𝑉 ; 𝑌 ))
= 𝜏𝑋,𝑌 (𝑈; 𝑉 ),

which is a contradiction. It follows that 𝑑(𝑈; 𝑉 ) = 0. So by Lemma 6.9, there exists 𝐻
such that 𝑈  and 𝑉  are uniform on cosets of 𝐻, so

𝜂(𝑑(𝑈; 𝑋) + 𝑑(𝑉 ; 𝑌 )) = 𝜂(𝑑(𝑈𝐻 ; 𝑋) + 𝑑(𝑈𝐻 ; 𝑌 )) < 𝑑(𝑋; 𝑌 ),

since 𝑑(⋅; ⋅) is invariant under constant shifts of either of its arguments. This gives EPFR
with constant 1/𝜂. □

Notation 7.7  Write 𝜏𝑋,𝑌 (𝑈 | 𝑍; 𝑉 | 𝑊) for ∑𝑧,𝑤 ℙ(𝑍 = 𝑧)ℙ(𝑊 = 𝑤)𝜏𝑋,𝑌 (𝑈 | 𝑍 =
𝑧; 𝑉 | 𝑊 = 𝑤) and 𝜏𝑋,𝑌 (𝑈; 𝑉 ‖ 𝑍) for ∑𝑧 ℙ(𝑍 = 𝑧)𝜏𝑋,𝑌 (𝑈 | 𝑍 = 𝑧; 𝑉 = 𝑍 = 𝑧).

Remark 7.8  If we can prove EPFR' for conditioned random variables, then by
averaging, we get it for some pair of random variables (e.g. of the form 𝑈 | 𝑍 = 𝑧 and
𝑉 | 𝑊 = 𝑤).

Lemma 7.9 (Fibring)  Let 𝐺 and 𝐻 be abelian groups and let 𝜑 : 𝐺 → 𝐻 be a
homomorphism. Let 𝑋, 𝑌  be 𝐺-valued random variables. Then

𝑑(𝑋; 𝑌 ) = 𝑑(𝜑(𝑋); 𝜑(𝑌 )) + 𝑑(𝑋 | 𝜑(𝑋); 𝑌 | 𝜑(𝑌 )) + 𝐼(𝑋 − 𝑌 : (𝜑(𝑋), 𝜑(𝑌 )) | 𝜑(𝑋) − 𝜑(𝑌 )).

Proof (Hints) .
• May assume WLOG that 𝑋 and 𝑌  are independent.
• Use Lemma 1.13 and Additivity.

□
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Proof .  We may assume WLOG that 𝑋 and 𝑌  are independent. We have

𝑑(𝑋; 𝑌 ) = 𝐻(𝑋 − 𝑌 ) − 1
2
𝐻(𝑋) − 1

2
𝐻(𝑌 )

= 𝐻(𝜑(𝑋) − 𝜑(𝑌 )) + 𝐻(𝑋 − 𝑌 | 𝜑(𝑋) − 𝜑(𝑌 ))

−1
2
𝐻(𝜑(𝑋)) − 1

2
𝐻(𝑋 | 𝜑(𝑋)) − 1

2
𝐻(𝜑(𝑌 )) − 1

2
𝐻(𝑌 | 𝜑(𝑌 ))

= 𝑑(𝜑(𝑋); 𝜑(𝑌 )) + 𝑑(𝑋 | 𝜑(𝑋); 𝑌 | 𝜑(𝑌 ))
+𝐻(𝑋 − 𝑌 | 𝜑(𝑋) − 𝜑(𝑌 )) − 𝐻(𝑋 − 𝑌 | 𝜑(𝑋), 𝜑(𝑌 ))

But the last line equals

𝐻(𝑋 − 𝑌 | 𝜑(𝑋) − 𝜑(𝑌 )) − 𝐻(𝑋 − 𝑌 | 𝜑(𝑋), 𝜑(𝑌 ), 𝜑(𝑋) − 𝜑(𝑌 ))
= 𝐼(𝑋 − 𝑌 : (𝜑(𝑋), 𝜑(𝑌 )) | 𝜑(𝑋) − 𝜑(𝑌 )).

□

We shall be interested in the following special case.

Corollary 7.10  Let 𝐺 = 𝔽𝑛
2  and let 𝑋1, 𝑋2, 𝑋3, 𝑋4 be independent 𝐺-valued RVs.

Then

𝑑(𝑋1; 𝑋3) + 𝑑(𝑋2; 𝑋4) = 𝑑((𝑋1, 𝑋2); (𝑋3, 𝑋4))
= 𝑑(𝑋1 + 𝑋2; 𝑋3 + 𝑋4) + 𝑑(𝑋1 | 𝑋1 + 𝑋2; 𝑋3 | 𝑋3 + 𝑋4)
+𝐼(𝑋1 + 𝑋3, 𝑋2 + 𝑋4 : 𝑋1 + 𝑋2, 𝑋3 + 𝑋4 | 𝑋1 + 𝑋2 + 𝑋3 + 𝑋4).

Proof (Hints) .  Straightforward. □

Proof .  The first equality is easy to see. For the second, apply Fibring with 𝑋 =
(𝑋1, 𝑋2), 𝑌 = (𝑋3, 𝑋4) and 𝜑(𝑥, 𝑦) = 𝑥 + 𝑦. □

We shall now set 𝑊 = 𝑋1 + 𝑋2 + 𝑋3 + 𝑋4.

Recall that 𝑑(𝑋; 𝑌 ‖ 𝑋 + 𝑌 ) ≤ 3𝐼(𝑋 : 𝑌 ) + 2𝐻(𝑋 + 𝑌 ) − 𝐻(𝑋) − 𝐻(𝑌 ). Equiva-
lently, 𝐼(𝑋 : 𝑌 ) ≥ 1

3(𝑑(𝑋; 𝑌 ‖ 𝑋 + 𝑌 ) + 𝐻(𝑋) + 𝐻(𝑌 ) − 2𝐻(𝑋 + 𝑌 )). Applying this
to the mutual information term in Corollary 7.10, we get that it is at least

1
3
𝑑(𝑋1 + 𝑋3, 𝑋2 + 𝑋4; 𝑋1 + 𝑋2, 𝑋3 + 𝑋4 ‖ 𝑋2 + 𝑋3, 𝑊) + 1

3
𝐻(𝑋1 + 𝑋3, 𝑋2 + 𝑋4 | 𝑊)

+1
3
𝐻(𝑋1 + 𝑋2, 𝑋3 + 𝑋4 | 𝑊) − 2

3
𝐻(𝑋2 + 𝑋3, 𝑋2 + 𝑋3 | 𝑊).

which simplifies to

1
3
𝑑(𝑋1 + 𝑋3, 𝑋2 + 𝑋4; 𝑋1 + 𝑋2, 𝑋3 + 𝑋4 ‖ 𝑋2 + 𝑋3, 𝑊)

+1
3
𝐻(𝑋1 + 𝑋3 | 𝑊) + 1

3
𝐻(𝑋1 + 𝑋2 | 𝑊) − 2

3
𝐻(𝑋2 + 𝑋3 | 𝑊)
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