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1. Probability basics
TODO: weak and strong laws of large numbers, Markov chains, Cesaro lemma, Markov’s
inequality, … probably others.

2. Entropy
2.1. Introduction
Notation 2.1  Write 𝑥𝑛

1 ≔ (𝑥1, …, 𝑥𝑛) ∈ {0, 1}𝑛 for an length 𝑛 bit string.

Notation 2.2  We use 𝑃  to denote a probability mass function. Write 𝑃𝑛
1  for the joint

proability mass function of a sequence of 𝑛 random variables 𝑋𝑛
1 = (𝑋1, …, 𝑋𝑛).

Definition 2.3  A random variable 𝑋 has a Bernoulli distribution, 𝑋 ∼ Bern(𝑝), if
for some fixed 𝑝 ∈ (0, 1),

𝑋 = {1 with probability 𝑝
0 with probability 1 − 𝑝,

i.e. the probability mass function (PMF) of 𝑋 is 𝑃 : {0, 1} → ℝ, 𝑃(0) = 1 − 𝑝, 𝑃(1) = 𝑝.

Notation 2.4  Throughout, we take log to be the base-2 logarithm, log2.

Definition 2.5  The binary entropy function ℎ : (0, 1) → [0, 1] is defined as

ℎ(𝑝) ≔ −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝)

Example 2.6  Let 𝑥𝑛
1 ∈ {0, 1}𝑛 be an 𝑛 bit string which is the realisation of binary

random variables (RVs) 𝑋𝑛
1 = (𝑋1, …, 𝑋𝑛), where the 𝑋𝑖 are independent and identi-

cally distributed (IID), with common distribution 𝑋𝑖 ∼ Bern(𝑝). Let 𝑘 = |{𝑖 ∈ [𝑛] : 𝑥𝑖 =
1}| be the number of ones in 𝑥𝑛

1 . We have

ℙ(𝑋𝑛
1 = 𝑥𝑛

1 ) ≔ 𝑃𝑛(𝑥𝑛
1 ) = ∏

𝑛

𝑖=1
𝑃(𝑥𝑖) = 𝑝𝑘(1 − 𝑝)𝑛−𝑘.

Now by the law of large numbers, the probability of ones in a random 𝑥𝑛
1  is 𝑘/𝑛 ≈ 𝑝

with high probability for large 𝑛. Hence,

𝑃𝑛(𝑥𝑛
1 ) ≈ 𝑝𝑛𝑝(1 − 𝑝)𝑛(1−𝑝) = 2−𝑛ℎ(𝑝).

Note that this reveals an amazing fact: this approximation is independent of 𝑥𝑛
1 , so

any message we are likely to encounter has roughly the same probability ≈ 2−𝑛ℎ(𝑝) of
occurring.

Remark 2.7  By the above example, we can split the set of all possible 𝑛-bit messages,
{0, 1}𝑛, into two parts: the set 𝐵𝑛 of typical messages which are approximately uni-
formly distributed with probability ≈ 2−𝑛ℎ(𝑝) each, and the non-typical messages that
occur with negligible probability. Since all but a very small amount of the probability
is concentrated in 𝐵𝑛, we have |𝐵𝑛| ≈ 2𝑛ℎ(𝑝).

Remark 2.8  Suppose an encoder and decoder both already know 𝐵𝑛 and agree on
an ordering of its elements: 𝐵𝑛 = {𝑥𝑛

1 (1), …, 𝑥𝑛
1 (𝑏)}, where 𝑏 = |𝐵𝑛|. Then instead of
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transmitting the actual message, the encoder can transmit its index 𝑗 ∈ [𝑏], which can
be described with

⌈log 𝑏⌉ = ⌈log|𝐵𝑛|⌉ ≈ 𝑛ℎ(𝑝)

bits.

Remark 2.9
• The closer 𝑝 is to 1

2  (intuitively, the more random the messages are), the larger the
entropy ℎ(𝑝), and the larger the number of typical strings |𝐵𝑛|.

• Assuing we ignore non-typical strings, which have vanishingly small probability for
large 𝑛, the “compression rate” of the above method is ℎ(𝑝), since we encode 𝑛 bit
strings using 𝑛ℎ(𝑝) strings. ℎ(𝑝) < 1 unless the message is uniformly distributed over
all of {0, 1}𝑛.

• So the closer 𝑝 is to 0 or 1 (intuitively, the less random the messages are), the smaller
the entropy ℎ(𝑝), so the greater the compression rate we can achieve.

2.2. Asymptotic equipartition property
Notation 2.10  We denote a finite alphabet by 𝐴 = {𝑎1, …, 𝑎𝑚}.

Notation 2.11  If 𝑋1, …, 𝑋𝑛 are IID RVs with values in 𝐴, with common distribution
described by a PMF 𝑃 : 𝐴 → [0, 1] (i.e. 𝑃(𝑥) = ℙ(𝑋𝑖 = 𝑥) for all 𝑥 ∈ 𝐴), then write
𝑋 ∼ 𝑃 , and we say “𝑋 has distribution 𝑃  on 𝐴”.

Notation 2.12  For 𝑖 ≤ 𝑗, write 𝑋𝑗
𝑖  for the block of random variables (𝑋𝑖, …, 𝑋𝑗), and

similarly write 𝑥𝑗
𝑖  for the length 𝑗 − 𝑖 + 1 string (𝑥𝑖, …, 𝑥𝑗) ∈ 𝐴𝑖−𝑗+1.

Notation 2.13  For IID RVs 𝑋1, …, 𝑋𝑛 with each 𝑋𝑖 ∼ 𝑃 , denote their joint PMF by
𝑃𝑛 : 𝐴𝑛 → [0, 1]:

𝑃𝑛(𝑥𝑛
1 ) = ℙ(𝑋𝑛

1 = 𝑥𝑛
1 ) = ∏

𝑛

𝑖=1
ℙ(𝑋𝑖 = 𝑥𝑖) = ∏

𝑛

𝑖=1
𝑃(𝑥𝑖),

and we say that “the RVs 𝑋𝑛
1  have the product distribution 𝑃𝑛”.

Definition 2.14  A sequence of RVs (𝑌𝑛)𝑛∈ℕ converges in probability to an RV 𝑌
if ∀𝜀 > 0,

ℙ(|𝑌𝑛 − 𝑌 | > 𝜀) → 0 as 𝑛 → ∞.

Definition 2.15  Let 𝑋 ∼ 𝑃  be a discrete RV on a countable alphabet 𝐴. The entropy
of 𝑋 is

𝐻(𝑋) = 𝐻(𝑃) ≔ − ∑
𝑥∈𝐴

𝑃(𝑥) log 𝑃(𝑥) = 𝔼[− log 𝑃(𝑋)].

Remark 2.16
• We use the convention 0 log 0 = 0 (this is natural due to continuity: 𝑥 log 𝑥 → 0 as

𝑥 ↓ 0, and also can be derived measure-theoretically).
• Entropy is technically a functional the probability distribution 𝑃  and not of 𝑋, but

we use the notation 𝐻(𝑋) as well as 𝐻(𝑃).
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• 𝐻(𝑋) only depends on the probabilities 𝑃(𝑥), not on the values 𝑥 ∈ 𝐴. Hence for
any bijective 𝑓 : 𝐴 → 𝐴, we have 𝐻(𝑓(𝑋)) = 𝐻(𝑋).

• All summands of 𝐻(𝑋) are non-negative, so the sum always exists and is in [0, ∞],
even if 𝐴 is countable infinite.

• 𝐻(𝑋) = 0 iff all summands are 0, i.e. if 𝑃(𝑥) ∈ {0, 1} for all 𝑥 ∈ 𝐴, i.e. 𝑋 is deter-
ministic (constant, so equal to a fixed 𝑥0 ∈ 𝐴 with probability 1).

Theorem 2.17  Let 𝑋 = {𝑋𝑛 : 𝑛 ∈ ℕ} be IID RVs with common distribution 𝑃  on a
finite alphabet 𝐴. Then

−1
𝑛

log 𝑃𝑛(𝑋𝑛
1 ) ⟶ 𝐻(𝑋1) in probability as 𝑛 → ∞

Proof (Hints) .  Straightforward. □

Proof .  We have

𝑃𝑛(𝑋𝑛
1 ) = ∏

𝑛

𝑖=1
𝑃(𝑋𝑖)

⟹ 1
𝑛

log 𝑃𝑛(𝑋𝑛
1 ) = 1

𝑛
∑

𝑛

𝑖=1
log 𝑃 (𝑋𝑖) → 𝔼[− log 𝑃(𝑋1)] in probability

by the weak law of large numbers (WLLN) for the IID RVs 𝑌𝑖 = − log 𝑃(𝑋𝑖). □

Corollary 2.18 (Asymptotic Equipartition Property (AEP))  Let {𝑋𝑛 : 𝑛 ∈ ℕ} be IID
RVs on a finite alphabet 𝐴 with common distribution 𝑃  and common entropy 𝐻 =
𝐻(𝑋𝑖). Then
• (⟹): for all 𝜀 > 0, the set of typical strings 𝐵∗

𝑛(𝜀) ⊆ 𝐴𝑛 defined by

𝐵∗
𝑛(𝜀) ≔ {𝑥𝑛

1 ∈ 𝐴𝑛 : 2−𝑛(𝐻+𝜀) ≤ 𝑃𝑛(𝑥𝑛
1 ) ≤ 2−𝑛(𝐻−𝜀)}

satisfies

|𝐵∗
𝑛(𝜀)| ≤ 2𝑛(𝐻+𝜀) ∀𝑛 ∈ ℕ, and

𝑃𝑛(𝐵∗
𝑛(𝜀)) = ℙ(𝑋𝑛

1 ∈ 𝐵∗
𝑛(𝜀)) ⟶ 1 as 𝑛 → ∞

• (⟸): for any sequence (𝐵𝑛)𝑛∈ℕ of subsets of 𝐴𝑛, if 𝑃(𝑋𝑛
1 ∈ 𝐵𝑛) → 1 as 𝑛 → ∞,

then ∀𝜀 > 0,

|𝐵𝑛| ≥ (1 − 𝜀)2𝑛(𝐻−𝜀) eventually

i.e. ∃𝑁 ∈ ℕ : ∀𝑛 ≥ 𝑁, |𝐵𝑛| ≥ (1 − 𝜀)2𝑛(𝐻−𝜀).

Proof (Hints) .
• (⟹): straightforward.
• (⟸): show that 𝑃𝑛(𝐵𝑛 ∩ 𝐵∗

𝑛(𝜀)) → 1 as 𝑛 → ∞.

□

Proof .
• (⟹):
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‣ Let 𝜀 > 0. By Theorem 2.17, we have

ℙ(𝑋𝑛
1 ∉ 𝐵∗

𝑛(𝜀)) = ℙ(|−1
𝑛

log 𝑃𝑛(𝑋𝑛
1 ) − 𝐻| > 𝜀) → 0 as 𝑛 → ∞.

‣ By definition of 𝐵∗
𝑛(𝜀),

1 ≥ 𝑃𝑛(𝐵∗
𝑛(𝜀)) = ∑

𝑥𝑛
1 ∈𝐵∗

𝑛(𝜀)
𝑃𝑛(𝑥𝑛

1 ) ≥ |𝐵∗
𝑛(𝜀)|2−𝑛(𝐻+𝜀).

• (⟸):
‣ We have 𝑃𝑛(𝐵𝑛 ∩ 𝐵∗

𝑛(𝜀)) = 𝑃𝑛(𝐵𝑛) + 𝑃𝑛(𝐵∗
𝑛(𝜀)) − 𝑃𝑛(𝐵𝑛 ∪ 𝐵∗

𝑛(𝜀)) ≥ 𝑃𝑛(𝐵𝑛) +
𝑃𝑛(𝐵∗

𝑛(𝜀)) − 1, so 𝑃𝑛(𝐵𝑛 ∩ 𝐵∗
𝑛(𝜀)) → 1.

‣ So 𝑃𝑛(𝐵𝑛 ∩ 𝐵∗
𝑛(𝜀)) ≥ 1 − 𝜀 eventually, and so

1 − 𝜀 ≤ 𝑃𝑛(𝐵𝑛 ∩ 𝐵∗
𝑛(𝜀)) = ∑

𝑥𝑛
1 ∈𝐵𝑛∩𝐵∗

𝑛(𝜀)
𝑃𝑛(𝑥𝑛

1 )

≤ |𝐵𝑛 ∩ 𝐵∗
𝑛(𝜀)|2−𝑛(𝐻−𝜀) ≤ |𝐵𝑛|2−𝑛(𝐻−𝜀).

□

Remark 2.19
• The ⟹ part of AEP states that a specific object (in this case, the 𝐵∗

𝑛(𝜀)) can achieve
a certain performance, while the ⟸ part states that no other object of this type can
significantly perform better. This is common type of result in information theory.

• Theorem 2.17 gives a mathematical interpretation of entropy: the probability of a
random string 𝑋𝑛

1  generally decays exponentially with 𝑛 (𝑃𝑛(𝑋𝑛
1 ) ≈ 2−𝑛𝐻 with high

probability for large 𝑛). The AEP gives a more “operational interpretation”: the
smallest set of strings that can carry almost all the probability of 𝑃𝑛 has size ≈ 2𝑛𝐻 .

• The AEP tells us that higher entropy means more typical strings, and so the possible
values of 𝑋𝑛

1  are more unpredictable. So we consider “high entropy” RVs to be “more
random” and “less predictable”.

2.3. Fixed-rate lossless data compression
Definition 2.20  A memoryless source 𝑋 = {𝑋𝑛 : 𝑛 ∈ ℕ} is a sequence of IID RVs
with a common PMF 𝑃  on the same alphabet 𝐴.

Definition 2.21  A fixed-rate lossless compression code for a source 𝑋 consists of
a sequence of codebooks {𝐵𝑛 : 𝑛 ∈ ℕ}, where each 𝐵𝑛 ⊆ 𝐴𝑛 is a set of source strings
of length 𝑛.

Assume the encoder and decoder share the codebooks, each of which is sorted. To send
𝑥𝑛

1 , an encoder checks with 𝑥𝑛
1 ∈ 𝐵𝑛; if so, they send the index of 𝑥𝑛

1  in 𝐵𝑛, along
with a flag bit 1, which requires 1 + ⌈log|𝐵𝑛|⌉ bits. Otherwise, they send 𝑥𝑛

1  uncom-
pressed, along with a flag bit 0 to indicate an “error”, which requires 1 + ⌈log|𝐴|⌉ =
1 + ⌈𝑛 log|𝐴|⌉ bits.

Definition 2.22  For each 𝑛 ∈ ℕ, the rate of a fixed-rate code {𝐵𝑛 : 𝑛 ∈ ℕ} for a
source 𝑋 is
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𝑅𝑛 ≔ 1
𝑛

(1 + ⌈log|𝐵𝑛|⌉) ≈ 1
𝑛

log|𝐵𝑛| bits/symbol.

Definition 2.23  For each 𝑛 ∈ ℕ, the error probability of a fixed-rate code {𝐵𝑛 :
𝑛 ∈ ℕ} for a source 𝑋 is

𝑃 (𝑛)
𝑒 ≔ ℙ(𝑋𝑛

1 ∉ 𝐵𝑛).

Theorem 2.24 (Fixed-rate Coding Theorem)  Let 𝑋 = {𝑋𝑛 : 𝑛 ∈ ℕ} be a memoryless
source with distribution 𝑃  and entropy 𝐻 = 𝐻(𝑋𝑖).
• (⟹): ∀𝜀 > 0, there is a fixed-rate code {𝐵∗

𝑛(𝜀) : 𝑛 ∈ ℕ} with vanishing error proba-
bility (𝑃 (𝑛)

𝑒 → 0 as 𝑛 → ∞) and with rate

𝑅𝑛 ≤ 𝐻 + 𝜀 + 2
𝑛

∀𝑛 ∈ ℕ.

• (⟸): let {𝐵𝑛 : 𝑛 ∈ ℕ} be a fixed-rate with vanishing error probability. Then ∀𝜀 >
0, its rate 𝑅𝑛 satisfies

𝑅𝑛 > 𝐻 − 𝜀 eventually.

Proof (Hints) .  (⟹): straightforward. (⟸): straightforward. □

Proof .
• (⟹):

‣ Let 𝐵∗
𝑛(𝜀) be the sets of typical strings defined in AEP (Asymptotic Equipartition

Property (AEP)). Then 𝑃 (𝑛)
𝑒 = 1 − ℙ(𝑋𝑛

1 ∈ 𝐵∗
𝑛) → 0 as 𝑛 → ∞ by AEP.

‣ Also by AEP, 𝑅𝑛 = 1
𝑛(1 + ⌈log|𝐵∗

𝑛|⌉) ≤ 1
𝑛 log|𝐵∗

𝑛| + 2
𝑛 ≤ 𝐻 + 𝜀 + 2

𝑛 .
• (⟸):

‣ WLOG let 0 < 𝜀 < 1/2. By AEP,

𝑅𝑛 ≥ 1
𝑛

log|𝐵∗
𝑛| + 1

𝑛
≥ 1

𝑛
log(1 − 𝜀) + 𝐻 − 𝜀 + 1

𝑛
= 𝐻 − 𝜀 + 1

𝑛
log(2(1 − 𝜀)) > 𝐻 − 𝜀

eventually.

□

3. Relative entropy
Definition 3.1  Suppose 𝑥𝑛

1 ∈ 𝐴𝑛 are observations generated by IID RVs 𝑋𝑛
1  and we

want to decide whether 𝑋𝑛
1 ∼ 𝑃𝑛 or 𝑄𝑛, for two distinct candidate PMFs 𝑃 , 𝑄 on 𝐴.

A hypothesis test is described by a decision region 𝐵𝑛 ⊆ 𝐴𝑛 such that
• If 𝑥𝑛

1 ∈ 𝐵𝑛, then we declare that 𝑋𝑛
1 ∼ 𝑃𝑛.

• Otherwise, if 𝑥𝑛
1 ∉ 𝐵𝑛, then we declare that 𝑋𝑛

1 ∼ 𝑄𝑛.

Definition 3.2  The associated error probabilities for a hypothesis test are

𝑒(𝑛)
1 = 𝑒(𝑛)

1 (𝐵𝑛) ≔ ℙ(declare 𝑃 | data ∼ 𝑄) = 𝑄𝑛(𝐵𝑛)

𝑒(𝑛)
2 = 𝑒(𝑛)

2 (𝐵𝑛) ≔ ℙ(declare 𝑄 | data ∼ 𝑃) = 𝑃𝑛(𝐵𝑐
𝑛).
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Definition 3.3  The relative entropy between PMFs 𝑃  and 𝑄 on the same countable
alphabet 𝐴 is

𝐷(𝑃 ‖ 𝑄) ≔ ∑
𝑥∈𝐴

𝑃(𝑥) log 𝑃(𝑥)
𝑄(𝑥)

= 𝔼[log 𝑃(𝑋)
𝑄(𝑋)

], where 𝑋 ∼ 𝑃.

Remark 3.4
• We use the convention that 0 log 0

0 = 0 (this can be avoided by defining relative
entropy measure-theoretically).

• 𝐷(𝑃 ‖ 𝑄) always exists and 𝐷(𝑃 ‖ 𝑄) ≥ 0 with equality iff 𝑃 = 𝑄.
• Relative entropy is not symmetric: 𝐷(𝑃 ‖ 𝑄) ≠ 𝐷(𝑄 ‖ 𝑃) in general, and does not

satisfy the triangle inequality.
• Despite this, it is reasonable and natural to think of 𝐷(𝑃 ‖ 𝑄) as a statistical

“distance” between 𝑃  and 𝑄.

Remark 3.5  Let 𝑋 ∼ 𝑃 . We have, by WLLN,

1
𝑛

log(𝑃𝑛(𝑋𝑛
1 )

𝑄𝑛(𝑋𝑛
1 )

) = 1
𝑛

log ∏
𝑛

𝑖=1

𝑃(𝑋𝑖)
𝑄(𝑋𝑖)

= 1
𝑛

∑
𝑛

𝑖=1
log 𝑃 (𝑋𝑖)

𝑄(𝑋𝑖)

⟶ 𝐷(𝑃 ‖ 𝑄) in probability as 𝑛 → ∞.

So for large 𝑛, 𝑃𝑛(𝑋𝑛
1 )

𝑄𝑛(𝑋𝑛
1 ) ≈ 2𝑛𝐷(𝑃 ‖ 𝑄) with high probability. Hence, the random string 𝑋𝑛

1
is exponentially more likely under its true distribution 𝑃  than under 𝑄.

3.1. Asymptotically optimal hypothesis testing
Theorem 3.6 (Stein's Lemma)  Let 𝑃 , 𝑄 be PMFs on a finite alphabet 𝐴, with 𝐷 =
𝐷(𝑃 ‖ 𝑄) ∈ (0, ∞). Let 𝑋 = {𝑋𝑛 : 𝑛 ∈ ℕ} be a memoryless source on 𝐴, with either
each 𝑋𝑖 ∼ 𝑃  or each 𝑋𝑖 ∼ 𝑄.
• (⟹): for all 𝜀 > 0, there is a hypothesis test with decision regions {𝐵∗

𝑛(𝜀) : 𝑛 ∈ ℕ}
such that

∀𝑛 ∈ ℕ, 𝑒(𝑛)
1 (𝐵∗

𝑛(𝜀)) ≤ 2−𝑛(𝐷−𝜀)

and 𝑒(𝑛)
2 → 0 as 𝑛 → ∞.

• (⟸): for any hypothesis test with decision regions {𝐵𝑛 : 𝑛 ∈ ℕ} such that
𝑒(𝑛)

2 (𝐵𝑛) → 0 as 𝑛 → ∞, we have ∀𝜀 > 0,

𝑒(𝑛)
1 (𝐵𝑛) ≥ 2−𝑛(𝐷+𝜀+ 1

𝑛) eventually.

Proof (Hints) .
• (⟹):

‣ Let 𝐵∗
𝑛(𝜀) = {𝑥𝑛

1 ∈ 𝐴𝑛 : 2𝑛(𝐷−𝜀) ≤ 𝑃𝑛(𝑥𝑛
1 )

𝑄𝑛(𝑥𝑛
1 ) ≤ 2𝑛(𝐷+𝜀)}. The rest is straightforward

(use above remark).
• (⟸):

‣ Show that 𝑃𝑛(𝐵∗
𝑛(𝜀) ∩ 𝐵𝑛) → 1 as 𝑛 → ∞, use that 1

2 = 2−𝑛(1/𝑛).
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□

Proof .
• (⟹):

‣ Let 𝐵∗
𝑛(𝜀) = {𝑥𝑛

1 ∈ 𝐴𝑛 : 2𝑛(𝐷−𝜀) ≤ 𝑃𝑛(𝑥𝑛
1 )

𝑄𝑛(𝑥𝑛
1 ) ≤ 2𝑛(𝐷+𝜀)}.

‣ Then the convergence in probability of 1
𝑛 ∑𝑛

𝑖=1 log 𝑃(𝑋𝑖)
𝑄(𝑋𝑖)

 is equivalent to ℙ(𝑋𝑛
1 ∉

𝐵∗
𝑛) = 𝑃𝑛(𝐵∗

𝑛(𝜀)) = 𝑒(𝑛)
2 → 0 as 𝑛 → ∞, when 𝑋𝑛

1 ∼ 𝑃𝑛.
‣ Also, 1 ≥ 𝑃𝑛(𝐵∗

𝑛) = ∑𝑥𝑛
1 ∈𝐵∗

𝑛(𝜀) 𝑄𝑛(𝑥𝑛
1 )𝑃𝑛(𝑥𝑛

1 )
𝑄𝑛(𝑥𝑛

1 ) ≥ 2𝑛(𝐷−𝜀) ∑𝑥𝑛
1 ∈𝐵∗

𝑛(𝜀) 𝑄𝑛(𝑥𝑛
1 ) =

2𝑛(𝐷−𝜀)𝑄𝑛(𝐵∗
𝑛(𝜀)).

• (⟸):
‣ We havee 𝑒(𝑛)

2 (𝐵∗
𝑛(𝜀)) = 𝑃𝑛(𝐵∗

𝑛(𝜀)) → 0 as 𝑛 → ∞. Suppose 𝑒(𝑛)
2 (𝐵𝑛) =

𝑃𝑛(𝐵𝑐
𝑛) → 0. Then 𝑃𝑛(𝐵𝑛 ∩ 𝐵∗

𝑛(𝜀)) → 1. So eventually,

1
2

≤ 𝑃𝑛(𝐵𝑛 ∩ 𝐵∗
𝑛(𝜀)) = ∑

𝑥𝑛
1 ∈𝐵𝑛∩𝐵∗

𝑛(𝜀)
𝑃𝑛(𝑥𝑛

1 )𝑄
𝑛(𝑥𝑛

1 )
𝑄𝑛(𝑥𝑛

1 )

≤ 2𝑛(𝐷+𝜀) ∑
𝑥𝑛

1 ∈𝐵𝑛

𝑄𝑛(𝑥𝑛
1 )

= 2𝑛(𝐷+𝜀)𝑄𝑛(𝐵𝑛) = 2𝑛(𝐷+𝜀)𝑒(𝑛)
1 (𝐵𝑛)

□

Remark 3.7
• The decision regions 𝐵∗

𝑛 are asymptotically optimal in that, among all tests that have
𝑒(𝑛)

2 → 0, they achieve the asymptotically smallest possible 𝑒(𝑛)
1 ≈ 2−𝑛𝐷. However,

they are not the most optimal decision regions for finite 𝑛. For finite regions, the
optimal regions are given by the Neyman-Pearson Lemma.

• Assuming 𝐷 ≠ 0 is a trivial assumption, as otherwise 𝑃 = 𝑄 on 𝐴, so any test would
give the correct answer.

• Assuming 𝐷 < ∞ is a reasonable assumption, as otherwise there is some 𝑎 ∈ 𝐴 such
that 𝑃(𝑎) > 0 but 𝑄(𝑎) = 0. In that case, we check whether any such 𝑎 appear in
𝑥𝑛

1  or not.
• In Stein’s Lemma, we assume one error vanishes at possibly an arbitrarily slow

rate, while the other decays exponentially. This is a natural asymmetry in many
applications, e.g. in diagnosing disease.

• Stein’s Lemma shows why the relative entropy is a natural measure of “distance”
between two distributions, as large 𝐷 means a smaller error probability (one vanishes
exponentially at rate 𝐷), so easier to tell apart the distributions from the data.

3.2. Relative entropy and optimal hypothesis testing
Theorem 3.8 (Neyman-Pearson Lemma)  For a hypothesis test between 𝑃  and 𝑄
based on 𝑛 data samples, the likelihood ratio decision regions

𝐵NP = {𝑥𝑛
1 ∈ 𝐴𝑛 : 𝑃𝑛(𝑥𝑛

1 )
𝑄𝑛(𝑥𝑛

1 )
≥ 𝑇}, for some threshold 𝑇 > 0,
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are optimal in that, for any decision region 𝐵𝑛 ⊆ 𝐴𝑛, if 𝑒(𝑛)
1 (𝐵𝑛) ≤ 𝑒(𝑛)

1 (𝐵NP), then
𝑒(𝑛)

2 (𝐵𝑛) ≥ 𝑒(𝑛)
2 (𝐵NP), and vice versa.

Proof (Hints) .  Consider the inequality

(𝑃𝑛(𝑥𝑛
1 ) − 𝑇𝑄𝑛(𝑥𝑛

1 ))(𝟙𝐵NP
(𝑥𝑛

1 ) − 𝟙𝐵𝑛
(𝑥𝑛

1 )) ≥ 0

(justify why this holds). □

Proof .
• Consider the obvious inequality

(𝑃𝑛(𝑥𝑛
1 ) − 𝑇𝑄𝑛(𝑥𝑛

1 ))(𝟙𝐵NP
(𝑥𝑛

1 ) − 𝟙𝐵𝑛
(𝑥𝑛

1 )) ≥ 0

• Then, summing over all 𝑥𝑛
1 ,

0 ≤ 𝑃𝑛(𝐵NP) − 𝑃𝑛(𝐵𝑛) − 𝑇𝑄𝑛(𝐵NP) + 𝑇𝑄𝑛(𝐵𝑛)

= 1 − 𝑒(𝑛)
2 (𝐵NP) − (1 − 𝑒(𝑛)

2 (𝐵𝑛)) − 𝑇(𝑒(𝑛)
1 (𝐵NP) − 𝑒(𝑛)

1 (𝐵𝑛))

⟹ 𝑒(𝑛)
2 (𝐵𝑛) − 𝑒(𝑛)

2 (𝐵NP) ≥ 𝑇(𝑒(𝑛)
1 (𝐵NP) − 𝑒(𝑛)

1 (𝐵𝑛))

□

Remark 3.9  Neyman-Pearson says that if any decision region has an error as small
as that of 𝐵NP, then its other error must be larger than that of 𝐵NP.

Notation 3.10  Let ̂𝑃𝑛 denote the empirical distribution (or type) induced by 𝑥𝑛
1  on

𝐴𝑛 (the frequency with which 𝑎 ∈ 𝐴 occurs in 𝑥𝑛
1 ):

∀𝑎 ∈ 𝐴, ̂𝑃𝑛(𝑎) ≔ 1
𝑛

∑
𝑛

𝑖=1
𝟙{𝑥𝑖=𝑎}

Proposition 3.11  The Neyman-Pearson decision region 𝐵NP can be expressed in
information-theoretic form as

𝐵NP = {𝑥𝑛
1 ∈ 𝐴𝑛 : 𝐷( ̂𝑃𝑛 ‖ 𝑄) ≥ 𝐷( ̂𝑃𝑛 ‖ 𝑃) + 𝑇 ′}

where 𝑇 ′ = 1
𝑛 log 𝑇 .

Proof (Hints) .  Rewrite the expression 1
𝑛 log 𝑃𝑛(𝑥𝑛

1 )
𝑄𝑛(𝑥𝑛

1 ) . □

Proof .  We have

1
𝑛

log 𝑃𝑛(𝑥𝑛
1 )

𝑄𝑛(𝑥𝑛
1 )

= 1
𝑛

log(∏
𝑛

𝑖=1

𝑃(𝑥𝑖)
𝑄(𝑥𝑖)

)

= 1
𝑛

∑
𝑛

𝑖=1
log 𝑃 (𝑥𝑖)

𝑄(𝑥𝑖)

= 1
𝑛

∑
𝑛

𝑖=1
∑
𝑎∈𝐴

𝟙{𝑥𝑖=𝑎} log 𝑃 (𝑎)
𝑄(𝑎)
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= ∑
𝑎∈𝐴

(1
𝑛

∑
𝑛

𝑖=1
𝟙{𝑥𝑖=𝑎}) log 𝑃(𝑎)

𝑄(𝑎)

= ∑
𝑎∈𝐴

̂𝑃𝑛(𝑎) log(𝑃(𝑎)
𝑄(𝑎)

⋅
̂𝑃𝑛(𝑎)
̂𝑃𝑛(𝑎)

)

= 𝐷( ̂𝑃𝑛 ‖ 𝑄) − 𝐷( ̂𝑃𝑛 ‖ 𝑃).

□

Theorem 3.12 (Jensen's Inequality)  Let 𝐼 be an interval, 𝑓 : 𝐼 → ℝ be convex and 𝑋
be an RV with values in 𝐼 . Then

𝔼[𝑓(𝑋)] ≥ 𝑓(𝔼[𝑋]).

Moreover, if 𝑓 is strictly convex, then equality holds iff 𝑋 is almost surely constant.

Proof .  Omitted. □

Theorem 3.13 (Log-sum Inequality)  Let 𝑎1, …, 𝑎𝑛, 𝑏1, …, 𝑏𝑛 be non-negative con-
stants. Then

∑
𝑛

𝑖=1
𝑎𝑖 log 𝑎𝑖

𝑏𝑖
≥ (∑

𝑛

𝑖=1
𝑎𝑖) log

∑𝑛
𝑖=1 𝑎𝑖

∑𝑛
𝑖=1 𝑏𝑖

with equality iff 𝑎𝑖
𝑏𝑖

= 𝑐 for all 𝑖, for some constant 𝑐. We use the convention that 0 log 0 =
0 log 0

0 = 0.

Remark 3.14  This also holds for countably many 𝑎𝑖 and 𝑏𝑖.

Proof (Hints) .  Use Jensen’s inequality with 𝑋 the RV such that ℙ(𝑋 = 𝑎𝑖
𝑏𝑖

) = 𝑏𝑖
∑𝑛

𝑗=1 𝑏𝑗

for all 𝑖 ∈ [𝑛], and a suitable 𝑓 . □

Proof .
• Define

𝑓(𝑥) = {𝑥 log 𝑥 if 𝑥 > 0
0 otherwise.

𝑓 is strictly convex.
• Let 𝐴 = ∑𝑖 𝑎𝑖, 𝐵 = ∑𝑖 𝑏𝑖. Let 𝑋 be the RV with ℙ(𝑋 = 𝑎𝑖

𝑏𝑖
) = 𝑏𝑖

𝐵  for all 𝑖 ∈ [𝑛].
• Then 𝔼[𝑓(𝑋)] = ∑𝑖

𝑏𝑖
𝐵

𝑎𝑖
𝑏𝑖

log 𝑎𝑖
𝑏𝑖

= 1
𝐵 ∑𝑖 𝑎𝑖 log 𝑎𝑖

𝑏𝑖
.

• 𝑓(𝔼[𝑋]) = 𝔼[𝑋] log 𝔼[𝑋] = ∑𝑖
𝑎𝑖
𝑏𝑖

𝑏𝑖
𝐵 log ∑𝑖

𝑎𝑖
𝑏𝑖

𝑏𝑖
𝐵 = 𝐴

𝐵 log 𝐴
𝐵 .

• So by Jensen’s inequality, 𝐴
𝐵 log 𝐴

𝐵 ≤ 1
𝐵 ∑𝑖 𝑎𝑖 log 𝑎𝑖

𝑏𝑖
.

□

Proposition 3.15
1. If 𝑃  and 𝑄 are PMFs on the same finite alphabet 𝐴, then

𝐷(𝑃 ‖ 𝑄) ≥ 0
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with equality iff 𝑃 = 𝑄.
2. If 𝑋 ∼ 𝑃  on a finite alphabet 𝐴, then

0 ≤ 𝐻(𝑋) ≤ log|𝐴|

with equality to 0 iff 𝑋 is a constant, and equality to log|𝐴| iff 𝑋 is uniformly
distributed on 𝐴.

Remark 3.16  This also holds for countably infinite 𝐴.

Proof (Hints) .
1. Straightforward.
2. For ≤ log|𝐴|, consider 𝐷(𝑃 ‖ 𝑄) where 𝑄 is the uniform distribution on 𝐴. ≥ 0 is

straightforward.

□

Proof .
• ‣ By the log-sum inequality,

𝐷(𝑃 ‖ 𝑄) = ∑
𝑥∈𝐴

𝑃(𝑥) log 𝑃(𝑥)
𝑄(𝑥)

≥ (∑
𝑥∈𝐴

𝑃(𝑥)) log
∑𝑥∈𝐴 𝑃(𝑥)
∑𝑥∈𝐴 𝑄(𝑥)

= 0

with equality if 𝑃(𝑥)
𝑄(𝑥)  is the same constant for all 𝑥 ∈ 𝐴, i.e. 𝑃 = 𝑄.

• ‣ Let 𝑄 be the uniform distribution on 𝐴, so 𝐻(𝑄) = ∑𝑥∈𝐴
1

|𝐴| log 1
1/|𝐴| = log|𝐴|.

‣ Now 0 ≤ 𝐷(𝑃 ‖ 𝑄) = ∑𝑥∈𝐴 𝑃(𝑥) log 𝑃(𝑥)
1/|𝐴| = log|𝐴| − 𝐻(𝑋) with equality iff 𝑃 =

𝑄, i.e. 𝑃  is uniform.
‣ Each term in −𝐻(𝑋) is ≤ 0, with equality iff each 𝑃(𝑥) log 𝑃(𝑥) is 0, i.e. 𝑃(𝑥) =

0 or 1.

□

Remark 3.17  If 𝑋 = {𝑋𝑛 : 𝑛 ∈ ℕ} is a memoryless source with PMF 𝑃  on 𝐴, then
we have shown that it can be at best compressed to ≈ 𝐻(𝑃) bits/symbol. This means
that we can always achieve non-trivial compression, i.e. a description using ≈ 𝐻(𝑃) <
log|𝐴| bits/symbol, unless the source 𝑋 is completely random (i.e. IID and uniformly
distribute), in which case we cannot do better than simply describing each 𝑥𝑛

1  uncom-
pressed using ⌈log|𝐴𝑛|⌉

𝑛 ≈ log|𝐴| bits/symbol.

4. Properties of entropy and relative entropy
4.1. Joint entropy and conditional entropy
Definition 4.1  Let 𝑋𝑛

1  be an arbitrary finite collection of discrete RVs on correspond-
ing alphabets 𝐴1, …, 𝐴𝑛. Note we can think of 𝑋𝑛

1  itself a discrete RV on alphabet 𝐴1 ×
⋯ × 𝐴𝑛. Let 𝑋𝑛

1  have PMF 𝑃𝑛, then the joint entropy of 𝑋𝑛
1  is

𝐻(𝑋𝑛
1 ) = 𝐻(𝑃𝑛) = 𝐻(𝑋1, …, 𝑋𝑛) ≔ 𝔼[− log 𝑃𝑛(𝑋𝑛

1 )] = − ∑
𝑥𝑛

1 ∈𝐴𝑛

𝑃𝑛(𝑥𝑛
1 ) log 𝑃𝑛(𝑥𝑛

1 ).
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Example 4.2  Note that if 𝑋 and 𝑌  are independent, then 𝑃𝑋,𝑌 (𝑥, 𝑦) = 𝑃𝑋(𝑥)𝑃𝑌 (𝑦),
so

𝐻(𝑋, 𝑌 ) = 𝔼[− log 𝑃𝑋,𝑌 (𝑋, 𝑌 )] = 𝔼[− log 𝑃𝑋(𝑋) − log 𝑃𝑌 (𝑌 )] = 𝐻(𝑋) + 𝐻(𝑌 ).

Example 4.3  Let 𝑋 and 𝑌  have joint PMF given by

𝑋
𝑌

1 2 3

0 1/10 1/5 1/4 11/20
1 1/5 1/20 1/5 9/20

3/10 1/4 9/20

Note that 𝑋 and 𝑌  are not independent. We have

𝐻(𝑋) = − 3
10

log 3
10

− 1
4

log 1
4

− 9
20

log 9
20

≈ 1.539,

𝐻(𝑌 ) = −11
20

log 11
20

− 9
20

log 9
20

≈ 0.993,

𝐻(𝑋, 𝑌 ) = − 1
10

log 1
10

− ⋯ − 1
5

log 1
5

≈ 2.441 < 𝐻(𝑋) + 𝐻(𝑌 ).

In general, if 𝑋 and 𝑌  are not independent, then 𝑃𝑋𝑌 (𝑥, 𝑦) = 𝑃𝑋(𝑥)𝑃𝑌 | 𝑋(𝑦 | 𝑥), so

𝐻(𝑋, 𝑌 ) = 𝔼[− log 𝑃𝑋𝑌 (𝑥, 𝑦)] = 𝔼[− log 𝑃𝑋(𝑥)] + 𝔼[− log 𝑃𝑌 | 𝑋(𝑦 | 𝑥)].

Definition 4.4  Let 𝑋 and 𝑌  be discrete random variables with joint PMF 𝑃𝑋,𝑌 , then
the conditional entropy of 𝑌  given 𝑋 is

𝐻(𝑌 | 𝑋) = 𝔼[− log 𝑃𝑌 | 𝑋(𝑌 | 𝑋)] = − ∑
𝑥,𝑦

𝑃𝑋,𝑌 (𝑥, 𝑦) log 𝑃𝑌 | 𝑋(𝑦 | 𝑥)

Note 4.5  𝑃𝑌 | 𝑋 is a function of (𝑥, 𝑦) ∈ 𝑋, and so for the expected value we multiply
the log by the probability that 𝑋 = 𝑥 and 𝑌 = 𝑦.

Proposition 4.6  For discrete RVs 𝑋 and 𝑌 , we have

𝐻(𝑌 | 𝑋) = 𝐻(𝑋, 𝑌 ) − 𝐻(𝑋).

Proof (Hints) .  Straightforward. □

Proof .  Note that 𝑃𝑌 | 𝑋(𝑦 | 𝑥) = ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = ℙ(𝑌 =𝑦,𝑋=𝑥)
ℙ(𝑋=𝑥) = 𝑃𝑋,𝑌 (𝑥, 𝑦)𝑃𝑋(𝑥).

Hence

𝐻(𝑋, 𝑌 ) = 𝔼[− log 𝑃𝑋,𝑌 (𝑋, 𝑌 )]

= 𝔼[− log 𝑃𝑋(𝑋) − log 𝑃𝑌 | 𝑋(𝑌 | 𝑋)]

= 𝔼[− log 𝑃𝑋(𝑋)] + 𝔼[− log 𝑃𝑌 | 𝑋(𝑌 | 𝑋)].

□
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4.2. Properties of entropy, joint entropy and conditional entropy
Proposition 4.7 (Chain Rule for Entropy)  Let 𝑋𝑛

1  be a collection of discrete RVs. Then

𝐻(𝑋𝑛
1 ) = ∑

𝑛

𝑖=1
𝐻(𝑋𝑖 | 𝑋𝑖−1

1 ).

In particular, if the 𝑋𝑛
1  are independent, then

𝐻(𝑋𝑛
1 ) = ∑

𝑛

𝑖=1
𝐻(𝑋𝑖).

Proof (Hints) .  By induction. □

Proof .  We can write

𝑃𝑋𝑛
1
(𝑥𝑛

1 ) = 𝑃𝑋1
(𝑥1)𝑃𝑋2|𝑋1

(𝑥2 | 𝑥1)⋯𝑃𝑋𝑛 | 𝑋1,…,𝑥𝑛−1
(𝑥𝑛 | 𝑥1, …, 𝑥𝑛−1)

= ∏
𝑛

𝑖=1
𝑃𝑋𝑖 | 𝑋𝑖−1

1
(𝑥𝑖 | 𝑥𝑖−1

1 ).

Then the result follows by inductively using the above proposition. □

Proposition 4.8 (Conditioning Reduces Entropy)  For discrete RVs 𝑋 and 𝑌 ,

𝐻(𝑌 | 𝑋) ≤ 𝐻(𝑌 )

with equality iff 𝑋 and 𝑌  are independent.

Proof (Hints) .  Express 𝐻(𝑌 ) − 𝐻(𝑌 | 𝑋) as a relative entropy. □

Proof .  We have

𝐻(𝑌 ) − 𝐻(𝑌 | 𝑋) = 𝔼[− log 𝑃𝑌 (𝑌 )] − 𝔼[− log 𝑃𝑌 | 𝑋(𝑌 | 𝑋)]

= 𝔼[log
𝑃𝑌 | 𝑋(𝑌 | 𝑋)

𝑃𝑌 (𝑌 )
]

= 𝔼[log
𝑃𝑌 | 𝑋(𝑌 | 𝑋)𝑃𝑋(𝑋)

𝑃𝑌 (𝑌 )𝑃𝑋(𝑋)
]

= 𝔼[log
𝑃𝑋,𝑌 (𝑋, 𝑌 )

𝑃𝑋(𝑋)𝑃𝑌 (𝑌 )
]

= 𝐷(𝑃𝑋,𝑌 ‖ 𝑃𝑋𝑃𝑌 ).

This is non-negative iff 𝑃𝑋,𝑌 = 𝑃𝑋𝑃𝑌 , i.e. 𝑋 and 𝑌  are independent. □

Definition 4.9  Discrete RVs 𝑋 and 𝑍 are conditionally independent given 𝑌  if:
• 𝑃𝑋,𝑍 | 𝑌 (𝑥, 𝑧 | 𝑦) = 𝑃𝑋 | 𝑌 (𝑥 | 𝑦)𝑃𝑍 | 𝑌 (𝑧 | 𝑦),
• or equivalently, 𝑃𝑋 | 𝑍,𝑌 (𝑥 | 𝑧, 𝑦) = 𝑃𝑋 | 𝑌 (𝑥 | 𝑦),
• or equivalently, 𝑃𝑍 | 𝑋,𝑌 (𝑧 | 𝑥, 𝑦) = 𝑃𝑍 | 𝑌 (𝑧 | 𝑦).
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We denote this by writing 𝑋 − 𝑌 − 𝑍 and we say that 𝑋, 𝑌 , 𝑍 form a Markov chain.
Note that 𝑋 − 𝑌 − 𝑍 is equivalent to 𝑍 − 𝑌 − 𝑋, but not to 𝑋 − 𝑍 − 𝑌 .

Note 4.10  For any function 𝑔 on 𝑌 , we have 𝑋 − 𝑌 − 𝑔(𝑌 ).

Corollary 4.11  𝐻(𝑋𝑛
1 ) ≤ ∑𝑛

𝑖=1 𝐻(𝑋𝑖) with equality iff all 𝑋𝑛
1  are independent.

Proof .  Straightforward. □

Proof .  𝐻(𝑋𝑛
1 ) = ∑𝑛

𝑖=1 𝐻(𝑋𝑖 | 𝑋𝑖−1
1 ) ≤ ∑𝑛

𝑖=1 𝐻(𝑋𝑖) by the chain rule and conditioning
reducing entropy. □

Remark 4.12  We can write

𝐻(𝑌 | 𝑋) = − ∑
𝑥,𝑦

(𝑃𝑋,𝑌 (𝑥, 𝑦)) log 𝑃𝑌 | 𝑋(𝑦 | 𝑥)

= ∑
𝑥

𝑃𝑋(𝑥)(− ∑
𝑦

𝑃𝑌 | 𝑋(𝑦 | 𝑥) log 𝑃𝑌 | 𝑋(𝑦 | 𝑥))

≕ ∑
𝑥

𝑃𝑋(𝑥)𝐻(𝑌 | 𝑋 = 𝑥)

Note 𝐻(𝑌 | 𝑋 = 𝑥) is not a conditional entropy, and in particular, we do not
always have 𝐻(𝑌 | 𝑋 = 𝑥) ≤ 𝐻(𝑌 ). Since 0 ≤ 𝐻(𝑌 | 𝑋 = 𝑥) ≤ log|𝐴𝑌 |, we have 0 ≤
𝐻(𝑌 | 𝑋) ≤ log|𝐴𝑌 | with equality to 0 iff 𝑌  is a function of 𝑋 (i.e. 𝐻(𝑌 | 𝑋 = 𝑥) = 0
for all 𝑥).

Proposition 4.13 (Data Processing Inequality for Entropy)  Let 𝑋 be discrete RV on
alphabet 𝐴 and 𝑓 be function on 𝐴. Then
1. 𝐻(𝑓(𝑋)|𝑋) = 0.
2. 𝐻(𝑓(𝑋)) ≤ 𝐻(𝑋) with equality iff 𝑓 is injective.

Proof (Hints) .  Use that 𝑥 ↦ (𝑥, 𝑓(𝑥)) is injective and the chain rule. □

Proof .  We have already shown the “if” direction of 2. We have 𝐻(𝑋) =
𝐻(𝑋, 𝑓(𝑋)) = 𝐻(𝑓(𝑋)|𝑋) + 𝐻(𝑋), since 𝑥 ↦ (𝑥, 𝑓(𝑥)) is injective. Also, 𝐻(𝑋) =
𝐻(𝑋, 𝑓(𝑋)) = 𝐻(𝑋 | 𝑓(𝑋)) + 𝐻(𝑓(𝑋)) ≥ 𝐻(𝑓(𝑋)). So 𝐻(𝑋) ≥ 𝐻(𝑓(𝑋)) with equal-
ity iff 𝐻(𝑋 | 𝑓(𝑋)) = 0, i.e. 𝑋 is a deterministic function of 𝑓(𝑋), i.e. 𝑓 is invertible.
□

Proposition 4.14 (Properties of Conditional Entropy)  For discrete RVs 𝑋, 𝑌 , 𝑍:
• Chain rule: 𝐻(𝑋, 𝑍 | 𝑌 ) = 𝐻(𝑋 | 𝑌 ) + 𝐻(𝑍 | 𝑋, 𝑌 ).
• Subadditivity: 𝐻(𝑋, 𝑍 | 𝑌 ) ≤ 𝐻(𝑋 | 𝑌 ) + 𝐻(𝑍 | 𝑌 ) with equality iff 𝑋 and 𝑍 are

conditionally independent given 𝑌 .
• Conditioning reduces entropy: 𝐻(𝑋 | 𝑌 , 𝑍) ≤ 𝐻(𝑋 | 𝑌 ) with equality iff 𝑋 and 𝑍

are conditionally independent given 𝑌 .

Proof .  Exercise. □

Theorem 4.15 (Fano's Inequality)  Let 𝑋 and 𝑌  be RVs on respective alphabets 𝐴
and 𝐵. Suppose we are interested in the RV 𝑋 but only are allowed to observe the
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possibly correlated RV 𝑌 . Consider the estimate 𝑋 = 𝑓(𝑌 ), with probability of error
𝑃𝑒 ≔ ℙ(𝑋 ≠ 𝑋). Then

𝐻(𝑋 | 𝑌 ) ≤ ℎ(𝑃𝑒) + 𝑃𝑒 log(|𝐴| − 1),

where ℎ is the binary entropy function.

Proof (Hints) .  Consider an “error” Bernoulli RV 𝐸 which depends on 𝑋 and 𝑌 . Use
the chain rule in two directions on 𝐻(𝑋, 𝐸 | 𝑌 ). Merge these and split up into the cases
when 𝐸 = 0 and 𝐸 = 1 (using ) □

Proof .  Let 𝐸 be the binary RV taking value 1 when there is an error (i.e. 𝑋 ≠ 𝑋), and
taking value 0 otherwise. So 𝐸 ∼ Bern(𝑃𝑒) and 𝐻(𝐸) = ℎ(𝑃𝑒). Then

𝐻(𝑋, 𝐸 | 𝑌 ) = 𝐻(𝑋 | 𝑌 ) + 𝐻(𝐸 | 𝑋, 𝑌 ) = 𝐻(𝑋 | 𝑌 )

since 𝐸 is function of (𝑋, 𝑌 ). Using the chain rule in the other direction,

𝐻(𝑋, 𝐸 | 𝑌 ) = 𝐻(𝐸 | 𝑌 ) + 𝐻(𝑋 | 𝐸, 𝑌 ) ≤ 𝐻(𝐸) + 𝐸(𝑋 | 𝐸, 𝑌 ).

Now

𝐻(𝑋 | 𝑌 ) − ℎ(𝑃𝑒) ≤ 𝐻(𝑋 | 𝐸, 𝑌 )
= 𝑃𝑒𝐻(𝑋 | 𝐸 = 1, 𝑌 ) + (1 − 𝑃𝑒)𝐻(𝑋 | 𝐸 = 0, 𝑌 )

When 𝐸 = 0, given 𝑌 , we can determine 𝑋 = 𝑓(𝑌 ) as a function of 𝑌 , so 𝐻(𝑋 | 𝐸 =
0, 𝑌 ) = 0. When 𝐸 = 1, given 𝑌 , we know 𝑋 doesn’t take value 𝑓(𝑌 ), so there are |𝐴| −
1 possible values that it takes, so 𝐻(𝑋 | 𝐸 = 1, 𝑌 ) ≤ log(|𝐴| − 1). □

4.3. Properties of relative entropy
Theorem 4.16 (Data Processing Inequality for Relative Entropy)  Let 𝑋 ∼ 𝑃𝑋 and
𝑋′ ∼ 𝑄𝑋 be RVs on the same alphabet 𝐴, and 𝑓 : 𝐴 → 𝐵 be an arbitrary function. Let
𝑃𝑓(𝑋) and 𝑄𝑓(𝑋) be the PMFs of 𝑓(𝑋) and 𝑓(𝑋′) respectively. Then

𝐷(𝑃𝑓(𝑋) ‖ 𝑄𝑓(𝑋)) ≤ 𝐷(𝑃𝑋 ‖ 𝑄𝑋).

Proof (Hints) .  Use that 𝑃𝑓(𝑋)(𝑦) = ∑𝑥∈𝑓−1({𝑦}) 𝑃𝑋(𝑥). □

Proof .  For each 𝑦 ∈ 𝐵, let 𝐴𝑦 = {𝑥 ∈ 𝐴 : 𝑓(𝑥) = 𝑦} = 𝑓−1({𝑦}). Then

𝐷(𝑃𝑓(𝑋) ‖ 𝑄𝑓(𝑋)) = ∑
𝑦∈𝐵

𝑃𝑓(𝑋)(𝑦) log
𝑃𝑓(𝑋)(𝑦)
𝑄𝑓(𝑋)(𝑦)

= ∑
𝑦∈𝐵(

(( ∑
𝑥∈𝐴𝑦

𝑃𝑋(𝑥)
)
)) log

∑𝑥∈𝐴𝑦
𝑃𝑋(𝑥)

∑𝑥∈𝐴𝑦
𝑄𝑋(𝑥)

≤ ∑
𝑦∈𝐵

∑
𝑥∈𝐴𝑦

𝑃𝑋(𝑥) log 𝑃𝑋(𝑥)
𝑄𝑋(𝑥)

by log-sum inequality

= ∑
𝑥∈𝐴

𝑃𝑋(𝑥) log 𝑃𝑋(𝑥)
𝑄𝑋(𝑥)

= 𝐷(𝑃𝑋 ‖ 𝑄𝑋).
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□

Remark 4.17  The data processing inequality for relative entropy shows that we
cannot make two distributions more “distinguishable” by first “processing” the data
(by applying 𝑓).

Definition 4.18  The total variation distance between PMFs 𝑃  and 𝑄 on the same
alphabet 𝐴 is

‖𝑃 − 𝑄‖TV = ∑
𝑥∈𝐴

|𝑃 (𝑥) − 𝑄(𝑥)|.

Remark 4.19  Let 𝐵 = {𝑥 ∈ 𝐴 : 𝑃(𝑥) > 𝑄(𝑥)}, then

‖𝑃 − 𝑄‖TV = ∑
𝑥∈𝐴

|𝑃 (𝑥) − 𝑄(𝑥)|

= ∑
𝑥∈𝐵

(𝑃 (𝑥) − 𝑄(𝑥)) + ∑
𝑥∈𝐵𝑐

(𝑄(𝑥) − 𝑃(𝑥))

= 𝑃(𝐵) − 𝑄(𝐵) + 𝑄(𝐵𝑐) − 𝑃(𝐵𝑐)
= 𝑃(𝐵) − 𝑄(𝐵) + (1 − 𝑄(𝐵)) + (1 − 𝑃(𝐵))
= 2(𝑃(𝐵) − 𝑄(𝐵)).

Notation 4.20  Write

𝐷𝑒(𝑃 ‖ 𝑄) = (ln 2)𝑃 (𝐷 ‖ 𝑄) = ∑
𝑥∈𝐴

𝑃(𝑥) log𝑒
𝑃(𝑥)
𝑄(𝑥)

and more generally, write

𝐷𝑐(𝑃 ‖ 𝑄) = (log𝑐 2)𝑃 (𝐷 ‖ 𝑄) = ∑
𝑥∈𝐴

𝑃(𝑥) log𝑐
𝑃(𝑥)
𝑄(𝑥)

.

Theorem 4.21 (Pinsker's Inequality)  Let 𝑃  and 𝑄 be PMFs on the same alphabet
𝐴. Then

‖𝑃 − 𝑄‖2
TV ≤ (2 ln 2)𝐷(𝑃 ‖ 𝑄) = 2𝐷𝑒(𝑃 ‖ 𝑄).

Proof (Hints) .
• First prove for case that 𝑃  and 𝑄 are PMFs of Bern(𝑝) and Bern(𝑞) (explain why we

can assume 𝑞 ≤ 𝑝 WLOG), by definining Δ(𝑝, 𝑞) = 2𝐷𝑒(𝑃 ‖ 𝑄) − ‖𝑃 − 𝑄‖2
TV, and

showing that 𝜕Δ(𝑝,𝑞)
𝜕𝑞 ≤ 0.

• Then show for general PMFs by using data processing, where 𝑓 = 𝟙𝐵 for 𝐵 = {𝑥 ∈
𝐴 : 𝑃(𝑥) > 𝑄(𝑥)}.

□

Proof .  First, assume that 𝑃  and 𝑄 are the PMFs of the distributions Bern(𝑝) and
Bern(𝑞) for some 0 ≤ 𝑞 ≤ 𝑝 ≤ 1 (𝑞 ≤ 𝑝 WLOG since we can simultaneously interchange
both 𝑃  with 1 − 𝑃  and 𝑄 with 1 − 𝑄 if necessary). Let
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Δ(𝑝, 𝑞) = (2 ln 2)𝐷(𝑃 ‖ 𝑄) − ‖𝑃 − 𝑄‖2
TV = 2𝑝 ln 𝑝

𝑞
+ 2(1 − 𝑝) ln 1 − 𝑝

1 − 𝑞
− (2(𝑝 − 𝑞))2.

Since Δ(𝑝, 𝑝) = 0 for all 𝑝, it suffices to show that 𝜕Δ(𝑝,𝑞)
𝜕𝑞 ≤ 0. Indeed,

𝜕Δ(𝑝, 𝑞)
𝜕𝑞

= −2𝑝
𝑞

+ 21 − 𝑝
1 − 𝑞

+ 8(𝑝 − 𝑞) = 2(𝑞 − 𝑝)( 1
𝑞(1 − 𝑞)

− 4) ≤ 0

since 𝑞(1 − 𝑞) ≤ 1
4  for all 𝑞 ∈ [0, 1].

Now, assume 𝑃  and 𝑄 are general PMFs and let 𝐵 = {𝑥 ∈ 𝐴 : 𝑃(𝑥) > 𝑄(𝑥)} and 𝑓 =
𝟙𝐵. Define the RVs 𝑋 ∼ 𝑃  and 𝑋′ ∼ 𝑄, and let 𝑃𝑓  and 𝑄𝑓  be the respective PMFs of
the RVs 𝑓(𝑋) and 𝑓(𝑋′). Note that 𝑓(𝑋) ∼ Bern(𝑝), 𝑓(𝑋′) ∼ Bern(𝑞) where 𝑝 = 𝑃(𝐵)
and 𝑞 = 𝑄(𝐵). Then

2𝐷𝑒(𝑃 ‖ 𝑄) ≥ 2𝐷𝑒(𝑃𝑓 ‖ 𝑄𝑓) by data-processing

≥ ‖𝑃𝑓 − 𝑄𝑓‖2
TV

by above

= (2(𝑝 − 𝑞))2

= (2(𝑃(𝐵) − 𝑄(𝐵)))2

= ‖𝑃 − 𝑄‖2
TV.

□

Theorem 4.22 (Convexity of Relative Entropy)  The relative entropy 𝐷(𝑃 ‖ 𝑄) is
jointly convex in 𝑃 , 𝑄: for all PMFs 𝑃 , 𝑃 ′, 𝑄, 𝑄′ on the same alphabet and for all 0 <
𝜆 < 1,

𝐷(𝜆𝑃 + (1 − 𝜆)𝑃 ′ ‖ 𝜆𝑄 + (1 − 𝜆)𝑄′) ≤ 𝜆𝐷(𝑃 ‖ 𝑄) + (1 − 𝜆)𝐷(𝑃 ′ ‖ 𝑄′).

Proof .  Exercise. □

Corollary 4.23 (Concavity of Entropy)  The entropy of 𝐻(𝑃) is a concave function
on all PMFs 𝑃  on a finite alphabet.

Proof (Hints) .  Use convexity of relative entropy of 𝑃  and a suitable distribution. □

Proof .  Let 𝑃  be a PMF on finite alphabet 𝐴 and 𝑈  be the uniform PMF on 𝐴. Then by
convexity of relative entropy, 𝐷(𝑃 ‖ 𝑈) = ∑𝑥∈𝐴 𝑝(𝑥) log 𝑃(𝑥)

1/|𝐴| = log 𝑚 − 𝐻(𝑃) is convex
in 𝑃 , so 𝐻(𝑃) is concave in 𝑃 . □

5. Poisson approximation
5.1. Poisson approximation via entropy
Theorem 5.1  Let 𝑋1, …, 𝑋𝑛 be IID RVs with each 𝑋𝑖 ∼ Bern(𝜆/𝑛), let 𝑆𝑛 = 𝑋1 +
⋯ + 𝑋𝑛. Then 𝑃𝑆𝑛

→ Pois(𝜆) in distribution as 𝑛 → ∞, i.e. ∀𝑘 ∈ ℕ,

ℙ(𝑆𝑛 = 𝑘) → 𝑒−𝜆 𝜆𝑘

𝑘!
as 𝑛 → ∞
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Remark 5.2  Using information theory, we can derive stronger and more general
statements than the one above.

Theorem 5.3  Let 𝑋1, …, 𝑋𝑛 be (not necessarily independent) RVs with each 𝑋𝑖 ∼
Bern(𝑝𝑖). Let 𝑆𝑛 = ∑𝑛

𝑖=1 𝑋𝑖 and 𝜆 = ∑𝑛
𝑖=1 𝑝𝑖 = 𝔼[𝑆𝑛]. Then

𝐷𝑒(𝑃𝑆𝑛
‖ Pois(𝜆)) ≤ ∑

𝑛

𝑖=1
𝑝2

𝑖 + (∑
𝑛

𝑖=1
𝐻𝑒(𝑋𝑖) − 𝐻𝑒(𝑋𝑛

1 )).

Proof (Hints) .
• Let 𝑍𝑖 = Pois(𝑝𝑖) for each 𝑖 ∈ [𝑛] be independent Poisson RVs so that 𝑇𝑛 =

∑𝑛
𝑖=1 𝑍𝑖 ∼ Pois(𝜆).

• Use data processing inequality for relative entropy, and prove the fact that
𝐷𝑒(Bern(𝑝) ‖ Pois(𝑝)) ≤ 𝑝2 for all 𝑝 ∈ [0, 1] (use that 1 − 𝑝 ≤ 𝑒−𝑝).

□

Proof .  Let 𝑍𝑖 = Pois(𝑝𝑖) for each 𝑖 ∈ [𝑛] be independent Poisson RVs so that 𝑇𝑛 =
∑𝑛

𝑖=1 𝑍𝑖 ∼ Pois(𝜆). Then

𝐷𝑒(𝑃𝑆𝑛
‖ Pois(𝜆)) = 𝐷𝑒(𝑃𝑆𝑛

‖ 𝑃𝑇𝑛
)

≤ 𝐷𝑒(𝑃𝑋𝑛
1

‖ 𝑃𝑍𝑛
1
) by data-processing with 𝑓(𝑥𝑛

1 ) = 𝑥1 + ⋯ + 𝑥𝑛

= 𝔼[ln
𝑃𝑋𝑛

1
(𝑋𝑛

1 )
𝑃𝑍𝑛

1
(𝑋𝑛

1 )
]

= 𝔼[ln(
𝑃𝑋𝑛

1
(𝑥𝑛

1 )
∏𝑛

𝑖=1 𝑃𝑍𝑛
1
(𝑋𝑖)

⋅
∏𝑛

𝑖=1 𝑃𝑋𝑖
(𝑋𝑖)

∏𝑛
𝑖=1 𝑃𝑋𝑖

(𝑋𝑖)
)]

= 𝔼[ln(∏
𝑛

𝑖=1

𝑃𝑋𝑖
(𝑥𝑖)

𝑃𝑍𝑖
(𝑥𝑖)

)] + ∑
𝑥𝑛

1 ∈𝐴𝑛

𝑃𝑋𝑛
1
(𝑥𝑛

1 ) ln 1
∏𝑛

𝑖=1 𝑃𝑋𝑖
(𝑥𝑖)

− 𝐻𝑒(𝑋𝑛
1 )

= ∑
𝑛

𝑖=1
𝐷𝑒(𝑃𝑋𝑖

‖ 𝑃𝑍𝑖
) + ∑

𝑛

𝑖=1
𝐻𝑒(𝑋𝑖) − 𝐻𝑒(𝑋𝑛

1 )

since for given 𝑥1 ∈ 𝐴, ∑𝑥𝑛
2 ∈𝐴𝑛 𝑃𝑋𝑛

1
(𝑥𝑛

1 ) = 𝑃𝑋1
(𝑥1) (and similarly for each 𝑥𝑗, 𝑗 =

2, …, 𝑛). Now note that 𝐷𝑒(𝑃𝑋𝑖
‖ 𝑃𝑍𝑖

) = 𝐷𝑒(Bern(𝑝𝑖) ‖ Pois(𝑝𝑖)), and for all 𝑝 ∈ (0, 1),

𝐷𝑒(Bern(𝑝) ‖ Pois(𝑝)) = (1 − 𝑝) ln 1 − 𝑝
𝑒−𝑝 + 𝑝 ln 𝑝

𝑝𝑒−𝑝

= (1 − 𝑝) ln(1 − 𝑝) + (1 − 𝑝)𝑝 + 𝑝2

≤ (1 − 𝑝) ln(𝑒−𝑝) + 𝑝

= 𝑝2

since 1 − 𝑝 ≤ 𝑒−𝑝 for all 𝑝 ∈ [0, 1]. Similarly, if 𝑝 = 0 or 1, then 𝐷𝑒(Bern(𝑝) ‖ Pois(𝑝)) =
0 ≤ 𝑝2. □

Corollary 5.4  Let 𝑋1, …, 𝑋𝑛 be independent, with each 𝑋𝑖 ∼ Bern(𝑝𝑖). Then

18



𝐷𝑒(𝑃𝑆𝑛
‖ Pois(𝜆)) ≤ ∑

𝑛

𝑖=1
𝑝2

𝑖

Corollary 5.5  Theorem 5.1 follows directly from Theorem 5.3.

Proof .  Let 𝑃𝜆 be the PMF of the Pois(𝜆) distribution. Then by Pinsker’s inequality,

‖𝑃𝑆𝑛
− 𝑃𝜆‖

2

TV
≤ 2𝐷𝑒(𝑃𝑆𝑛

‖ Pois(𝜆)) ≤ 2 ∑
𝑛

𝑖=1

𝜆2

𝑛2 = 2𝜆2

𝑛
.

So for each 𝑘 ∈ ℕ, |𝑃𝑆𝑛
(𝑘) − 𝑃𝜆(𝑘)| ≤ ‖𝑃𝑆𝑛

− 𝑃𝜆‖
TV

≤ √ 2
𝑛𝜆 → 0 as 𝑛 → ∞. □

Remark 5.6  Theorem 5.3 is stronger than Theorem 5.1 in that it holds for all 𝑛 rather
than being asymptotic. It also provides an easily computable bound on the difference
between 𝑃𝑆𝑛

 and Pois(𝜆), and does not assume the 𝑝𝑖 are equal, or that the RVs
𝑋1, …, 𝑋𝑛 are independent.

Remark 5.7  It is known that for independent 𝑋1, …, 𝑋𝑛, 𝑃𝑆𝑛
→ Pois(𝜆) iff ∑𝑛

𝑖=1 𝑝2
𝑖 →

0. So the bound in Theorem 5.3 is the best possible.

5.2. What is the Poisson distribution?
Lemma 5.8 (Binomial Maximum Entropy)  Let 𝐵𝑛(𝜆) be set of distributions on ℕ0
that arise from sums ∑𝑛

𝑖=1 𝑋𝑖 where 𝑋𝑖 ∼ Bern(𝑝𝑖) are independent and ∑𝑛
𝑖=1 𝑝𝑖 = 𝜆.

For all 𝑛 ≥ 𝜆,

𝐻𝑒(Bin(𝑛, 𝜆/𝑛)) = sup{𝐻𝑒(𝑃 ) : 𝑃 ∈ 𝐵𝑛(𝜆)}

Proof .  Exercise. □

Theorem 5.9 (Poisson Maximum Entropy)  We have

𝐻𝑒(Pois(𝜆))

= sup{𝐻𝑒(𝑆𝑛) : 𝑆𝑛 = ∑
𝑛

𝑖=1
𝑋𝑖, 𝑋𝑖 ∼ Bern(𝑝𝑖) independent ∧ ∑

𝑛

𝑖=1
𝑝𝑖 = 𝜆, 𝑛 ≥ 1}

= sup
𝑛∈ℕ

sup{𝐻𝑒(𝑃) : 𝑃 ∈ 𝐵𝑛(𝜆)}.

Proof .  Let 𝐻∗ = sup𝑛∈ℕ sup{𝐻𝑒(𝑃 ) : 𝑃 ∈ 𝐵𝑛(𝜆)}. Note that 𝐵𝑛(𝜆) ⊆ 𝐵𝑛+1(𝜆), hence
𝐻∗ = lim𝑛→∞ sup{𝐻𝑒(𝑃) : 𝑃 ∈ 𝐵𝑛(𝜆)} = lim𝑛→∞ 𝐻𝑒(Bin(𝑛, 𝜆/𝑛)).

Let 𝑃𝑛 and 𝑄 be respective PMFs of Bin(𝑛, 𝜆/𝑛) and Pois(𝜆). Using that 𝑘! ≤ 𝑘𝑘 ≤
𝑒𝑘2 , we have

𝐻𝑒(𝑄) = ∑
∞

𝑘=0
𝑄(𝑘) ln 𝑘!

𝑒−𝜆𝜆𝑘

≤ ∑
∞

𝑘=0
𝑄(𝑘)(𝜆 − 𝑘 ln 𝜆 + 𝑘2)

= 𝜆2 + 2𝜆 − 𝜆 ln 𝜆 < ∞
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since 𝔼[𝑋] = 𝜆 and 𝔼[𝑋2] = 𝜆 + 𝜆2 for 𝑋 ∼ Pois(𝜆). So 𝐻𝑒(𝑄) is finite. The conver-
gence is left as an exercise. □

6. Mutual information
Definition 6.1  The mutual information between discrete RVs 𝑋 and 𝑌  is

𝐼(𝑋; 𝑌 ) = 𝐻(𝑋) − 𝐻(𝑋|𝑌 ).

The conditional mutual information between 𝑋 and 𝑌  given a discrete RV 𝑍 is

𝐼(𝑋; 𝑌 | 𝑍) = 𝐻(𝑋 | 𝑍) − 𝐻(𝑋 | 𝑌 , 𝑍)
= 𝐻(𝑋 | 𝑍) + 𝐻(𝑌 | 𝑍) − 𝐻(𝑋, 𝑌 | 𝑍)
= 𝐻(𝑌 | 𝑍) − 𝐻(𝑌 | 𝑋, 𝑍).

Proposition 6.2  Let 𝑋 and 𝑌  be discrete RVs with marginal PMFs 𝑃𝑋 and 𝑃𝑌
respectively, and joint PMF 𝑃𝑋,𝑌 , then the mutual information can be expressed as:

𝐼(𝑋; 𝑌 ) = 𝐻(𝑋) + 𝐻(𝑌 ) − 𝐻(𝑋, 𝑌 )
= 𝐻(𝑌 ) − 𝐻(𝑌 | 𝑋)

= 𝐷(𝑃𝑋,𝑌 ‖ 𝑃𝑋𝑃𝑌 ).

Proof (Hints) .  Straightforward. □

Proof .  The first two lines are by the chain rule. For the third, we have

𝐻(𝑋) + 𝐻(𝑌 ) − 𝐻(𝑋, 𝑌 ) = 𝔼[− log 𝑃𝑋(𝑋)] + 𝔼[− log 𝑃𝑌 (𝑌 )] − 𝔼[− log 𝑃𝑋,𝑌 (𝑋, 𝑌 )]

= 𝔼[log(
𝑃𝑋,𝑌 (𝑋, 𝑌 )

𝑃𝑋(𝑋)𝑃𝑌 (𝑌 )
)]

= 𝐷(𝑃𝑋,𝑌 ‖ 𝑃𝑋𝑃𝑌 ).

□

Remark 6.3
• 𝐼(𝑋; 𝑌 ) is symmetric in 𝑋 and 𝑌 .
• The sum of the information contain in 𝑋 and 𝑌  separately minus the information

contained in the pair indeed is the amount of mutual information shared by both.
• Considering Stein's Lemma, we can consider 𝐼(𝑋; 𝑌 ) as a measure of how well data

generated from 𝑃𝑋,𝑌  can be distinguished from independent pairs (𝑋′, 𝑌 ′) generated
by the product distribution 𝑃𝑋𝑃𝑌 , so is a measure of how far 𝑋 and 𝑌  are from
being independent.

Proposition 6.4
• 0 ≤ 𝐼(𝑋; 𝑌 ) ≤ 𝐻(𝑋) with equality to 0 iff 𝑋 and 𝑌  are independent.
• Similarly, 𝐼(𝑋; 𝑍 | 𝑌 ) ≥ 0 with equality iff 𝑋 − 𝑌 − 𝑍, i.e. 𝑋 and 𝑍 are conditionally

independent given 𝑌 .
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Proof .  First is by Proposition 6.2 and non-negativity of conditional entropy, second is
an exercise. □

Proposition 6.5 (Chain Rule for Mutual Information)  For all discrete RVs
𝑋1, …, 𝑋𝑛, 𝑌 ,

𝐼(𝑋𝑛
1 ; 𝑌 ) = ∑

𝑛

𝑖=1
𝐼(𝑋𝑖; 𝑌 | 𝑋𝑖−1

1 ).

Proof (Hints) .  Straighforward. □

Proof .  By the chain rule for entropy,

𝐼(𝑋𝑛
1 ; 𝑌 ) = 𝐻(𝑋𝑛

1 ) − 𝐻(𝑋𝑛
1 | 𝑌 )

= ∑
𝑛

𝑖=1
𝐻(𝑋𝑖 | 𝑋𝑖−1

1 ) − ∑
𝑛

𝑖=1
𝐻(𝑋𝑖 | 𝑋𝑖−1

1 , 𝑌 )

= ∑
𝑛

𝑖=1
(𝐻(𝑋𝑖 | 𝑋𝑖−1

1 ) − 𝐻(𝑋𝑖 | 𝑋𝑖−1
1 , 𝑌 ))

= ∑
𝑛

𝑖=1
𝐼(𝑋𝑖; 𝑌 | 𝑋𝑖−1

1 ).

□

Theorem 6.6 (Data Processing Inequalities for Mutual Information)  If 𝑋 − 𝑌 − 𝑍
(so 𝑋 and 𝑍 are conditionally independent given 𝑌 ), then

𝐼(𝑋; 𝑍), 𝐼(𝑋; 𝑌 | 𝑍) ≤ 𝐼(𝑋; 𝑌 ).

Proof (Hints) .  Use chain rule for mutual information twice on the same expression. □

Proof .  By the chain rule, we have

𝐼(𝑋; 𝑌 , 𝑍) = 𝐼(𝑋; 𝑌 ) + 𝐼(𝑋; 𝑍 | 𝑌 )
= 𝐼(𝑋; 𝑍) + 𝐼(𝑋; 𝑌 | 𝑍).

Now 𝐼(𝑋; 𝑍 | 𝑌 ) = 0 by conditional independence, so 𝐼(𝑋; 𝑌 ) = 𝐼(𝑋; 𝑍) +
𝐼(𝑋; 𝑌 | 𝑍). □

Example 6.7  We always have 𝑋 − 𝑌 − 𝑓(𝑌 ), hence 𝐼(𝑋; 𝑓(𝑌 )) ≤ 𝐼(𝑋; 𝑌 ), so apply-
ing a function to 𝑌  cannot make 𝑋 and 𝑌  “less independent”.

6.1. Synergy and redundancy
Note 6.8  𝐼(𝑋; 𝑌1, 𝑌2) can greater than, equal to, or less than 𝐼(𝑋; 𝑌1) + (𝑋; 𝑌2).

Definition 6.9  The synergy of 𝑌1, 𝑌2 about 𝑋 is

𝑆(𝑋; 𝑌1, 𝑌2) = 𝐼(𝑋; 𝑌1, 𝑌2) − (𝐼(𝑋; 𝑌1) + 𝐼(𝑋; 𝑌2))
= 𝐼(𝑋; 𝑌2 | 𝑌1) − 𝐼(𝑋, 𝑌2).

So the synergy can be < 0, > 0 or = 0.
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Definition 6.10  If 𝑆(𝑋; 𝑌1, 𝑌2) is:
• negative, then 𝑌1 and 𝑌2 contain redundant information about 𝑋;
• zero, then 𝑌1 and 𝑌2 are orthogonal;
• positive, then 𝑌1 and 𝑌2 are synergistic. Intuitively, knowing 𝑌1 already makes the

information in 𝑌2 more valuable (in that it gives more information about 𝑋).

Theorem 6.11  Let RVs 𝑌1, 𝑌2 be conditionally independent given 𝑋, each with
distribution 𝑃𝑌 | 𝑋, and RVs 𝑍1, 𝑍2 be distributed according to 𝑄𝑍 | 𝑌 (⋅ | 𝑌1), 𝑄𝑍 | 𝑌 (⋅
| 𝑌2) respectively. Let RV 𝑌  have distribution 𝑃𝑌 | 𝑋, and 𝑊1, 𝑊2 be conditionally
independent given 𝑌 , distributed according to 𝑄𝑍 | 𝑌 (⋅ | 𝑌 ).

If 𝑆(𝑋; 𝑊1, 𝑊2) > 0, then 𝐼(𝑋; 𝑊1, 𝑊2) > 𝐼(𝑋; 𝑍1, 𝑍2), for independent 𝑍1 and 𝑍2,
i.e. correlated observations are better than independent ones.

Proof (Hints) .  Use data processing for mutual information. □

Proof .  As in Definition 6.9, we have 𝐼(𝑋; 𝑊2 | 𝑊1) > 𝐼(𝑋; 𝑊2). 𝐼(𝑋; 𝑊2) = 𝐼(𝑋; 𝑍2)
since (𝑋, 𝑊2) has the same joint distribution as (𝑋, 𝑍2). By the data processing
inequality, we have 𝐼(𝑋; 𝑍2 | 𝑍1) = 𝐼(𝑍2; 𝑋 | 𝑍1) ≤ 𝐼(𝑍2; 𝑋) = 𝐼(𝑋; 𝑍2), since 𝑍1 and
𝑍2 are conditionally independent given 𝑋. Hence 𝐼(𝑋; 𝑊2 | 𝑊1) > 𝐼(𝑋; 𝑍2 | 𝑍1), so
𝐼(𝑋; 𝑊2 | 𝑊1) + 𝐼(𝑋; 𝑊1) > 𝐼(𝑋; 𝑍2 | 𝑍1) + 𝐼(𝑋; 𝑍1), and the result follows by the
chain rule. □

Example 6.12  Given two equally noisy channels of a signal 𝑋, we want to decide
whether it is better (gives more information about 𝑋) for the channels to be independent
(this corresponds with choosing the 𝑌1, 𝑌2, 𝑍1, 𝑍2) or correlated (this corresponds with
choosing the 𝑌 , 𝑊1, 𝑊2).

The natural assumption that the conditionally independent observations 𝑍1, 𝑍2 would
be “better” than 𝑊1, 𝑊2 (i.e. 𝐼(𝑋; 𝑍1, 𝑍2) ≥ 𝐼(𝑋; 𝑊1, 𝑊2)) is false. We can show
diagramatically as

P(𝑦 | 𝑥)

𝑋

𝑃(𝑦 | 𝑥)

𝑌1 𝑌2

𝑄(𝑧 | 𝑦1) 𝑄(𝑧 | 𝑦2)

𝑍1 𝑍2

P(𝑦 | 𝑥)

𝑋

𝑌

𝑄(𝑧 | 𝑦) 𝑄(𝑧 | 𝑦)

𝑊1 𝑊2
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Example 6.13  For example, let 𝑃𝑌 | 𝑋 be the 𝑍-channel: if 𝑋 = 0, then 𝑌 = 0 with
probability 1, and if 𝑋 = 1, then 𝑌 ∼ Bern(1 − 𝛿) for some 𝛿 ∈ (0, 1). Let 𝑄𝑍 | 𝑌  be a
binary symmetric channel: given 𝑌  taking values in 0, 1, 𝑍 = 𝑌  with probability 1 − 𝜀,
and 𝑍 = 1 − 𝑌  with probability 𝜀 for some 𝜀 ∈ (0, 1). We can represent this as

1

𝛿

1 − 𝛿

0 0

1 1

1 − 𝜀

𝜀𝜀

1 − 𝜀

0 0

1 1

If 𝑋 ∼ Bern(1/2), 𝛿 = 0.85 and 𝜀 = 0.1, then 𝐼(𝑋; 𝑊1, 𝑊2) ≈ 0.047 > 𝐼(𝑋; 𝑍1, 𝑍2) ≈
0.039. So the correlated observations 𝑊1, 𝑊2 are better than the independent observa-
tions 𝑍1, 𝑍2.

7. Entropy and additive combinatorics
7.1. Simple sumset entropy bounds
Definition 7.1  For 𝐴, 𝐵 ⊆ ℤ the sumset of 𝐴 and 𝐵 is

𝐴 + 𝐵 ≔ {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

Definition 7.2  For 𝐴, 𝐵 ⊆ ℤ the difference set of 𝐴 and 𝐵 is

𝐴 − 𝐵 ≔ {𝑎 − 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

Proposition 7.3  Let 𝐴, 𝐵 ⊆ ℤ be finite. Then

max{|𝐴|, |𝐵|} ≤ |𝐴 + 𝐵| ≤ |𝐴||𝐵|.

Proof (Hints) .  Trivial. □

Proof .  Trivial. □

Proposition 7.4 (Ruzsa Triangle Inequality)  Let 𝐴, 𝐵, 𝐶 ⊆ ℤ be finite. Then

|𝐴 − 𝐶| ⋅ |𝐵| ≤ (|𝐴 − 𝐵||𝐵 − 𝐶|).

Proof (Hints) .  Show that an appropriate function is injective. □

Proof .  Fix a presentation 𝑦 = 𝑎𝑦 − 𝑐𝑦 (where 𝑎𝑦 ∈ 𝐴, 𝑐𝑦 ∈ 𝐶) for each 𝑦 ∈ 𝐴 − 𝐶. Let

𝑓 : 𝐵 × (𝐴 − 𝐶) → (𝐴 − 𝐵) × (𝐵 − 𝐶)

(𝑏, 𝑦) ↦ (𝑎𝑦 − 𝑏, 𝑏 − 𝑐𝑦).

If 𝑓(𝑏, 𝑦) = 𝑓(𝑏′, 𝑦′), then 𝑎𝑦′ − 𝑏′ = 𝑎𝑦 − 𝑏 and 𝑏′ − 𝑐𝑦′ = 𝑏 − 𝑐𝑦. So 𝑎𝑦 − 𝑎𝑦′ = 𝑏 − 𝑏′ =
𝑐𝑦 − 𝑐𝑦′ . So 𝑦 = 𝑎𝑦 − 𝑐𝑦 = 𝑎𝑦′ − 𝑐𝑦′ = 𝑦′. Hence 𝑎𝑦 = 𝑎𝑦′ , and so 𝑏 = 𝑏′. So 𝑓 is injective,
so |𝐵 × (𝐴 − 𝐶)| ≤ |(𝐴 − 𝐵) × (𝐵 − 𝐶)|. □
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Remark 7.5  If 𝑋𝑛
1  is a large collection of IID RVs with common PMF 𝑃  on alphabet

𝐴, then the AEP tells us that we can concentrate on the 2𝑛𝐻 typical strings. 2𝑛𝐻 =
(2𝐻)𝑛 is typically much smaller than all |𝐴|𝑛 = (2log|𝐴|)𝑛 strings. We can think of (2𝐻)𝑛

as the effective support size of 𝑃𝑛, and can of 2𝐻 as the effective support size of a single
RV with entropy 𝐻.

Remark 7.6  We can use the above interpretation to obtain useful conjectures about
bounds for the entropy of discrete RVs, from corresponding results on bounds on
sumsets. We start with a sumset bound, then replace subsets of ℤ by independent RVs
on ℤ, and replace log|𝐴| of each set 𝐴 by the entropy of the corresponding RV.

Proposition 7.7  Let 𝑋 and 𝑌  are independent RVs on alphabet ℤ, then

max{𝐻(𝑋), 𝐻(𝑌 )} ≤ 𝐻(𝑋 + 𝑌 ) ≤ 𝐻(𝑋) + 𝐻(𝑌 ).

Proof (Hints) .
• For lower bound, show that 𝐻(𝑋) ≤ 𝐻(𝑋 + 𝑌 ) using data processing and similarly

for 𝐻(𝑌 ). The upper bound should follow directly from this calculation.

□

Proof .  For the lower bound,

𝐻(𝑋) + 𝐻(𝑌 ) = 𝐻(𝑋, 𝑌 ) by Chain Rule for Entropy
= 𝐻(𝑌 , 𝑋 + 𝑌 ) by Data Processing
= 𝐻(𝑋 + 𝑌 ) + 𝐻(𝑌 | 𝑋 + 𝑌 ) by Chain Rule for Entropy
≤ 𝐻(𝑋 + 𝑌 ) + 𝐻(𝑌 ) by Conditioning Reduces Entropy.

Note we have equality for data processing, since (𝑥, 𝑦) ↦ (𝑥, 𝑥 + 𝑦) is injective. Hence
𝐻(𝑋 + 𝑌 ) ≥ 𝐻(𝑋), and the same argument shows that 𝐻(𝑋 + 𝑌 ) ≥ 𝐻(𝑌 ).

For the upper bound, we have 𝐻(𝑋) + 𝐻(𝑌 ) = 𝐻(𝑋 + 𝑌 ) + 𝐻(𝑌 | 𝑋 + 𝑌 ) ≥ 𝐻(𝑋 +
𝑌 ) by non-negativity of conditional entropy. □

Lemma 7.8  Let 𝑋, 𝑌 , 𝑍 be independent RVs on alphabet ℤ. Then

𝐻(𝑋 − 𝑍) + 𝐻(𝑌 ) ≤ 𝐻(𝑋 − 𝑌 , 𝑌 − 𝑍).

Proof (Hints) .
• Show that 𝐼(𝑋; 𝑋 − 𝑍) ≤ 𝐼(𝑋; (𝑋 − 𝑌 , 𝑌 − 𝑍)).
• Rewrite both sides of the above inequality in terms of entropies, using Data

Processing.

□

Proof .  Since 𝑋 − 𝑍 = (𝑋 − 𝑌 ) + (𝑌 − 𝑍), 𝑋 and 𝑋 − 𝑍 are conditionally independent
given (𝑋 − 𝑌 , 𝑌 − 𝑍) by Note 4.10. Thus by Data Processing for mutual information,
we have 𝐼(𝑋; (𝑋 − 𝑌 , 𝑌 − 𝑍)) ≥ 𝐼(𝑋; 𝑋 − 𝑍). Now

𝐼(𝑋; 𝑋 − 𝑍) = 𝐻(𝑋 − 𝑍) − 𝐻(𝑋 − 𝑍 | 𝑋)
= 𝐻(𝑋 − 𝑍) − 𝐻(𝑍 | 𝑋) = 𝐻(𝑋 − 𝑍) − 𝐻(𝑍)
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by Data Processing (since, given 𝑋 = 𝑥, 𝑥 − 𝑧 ↦ 𝑧 is injective), and independence of
𝑋 and 𝑍. Also,

𝐼(𝑋; (𝑋 − 𝑌 , 𝑌 − 𝑍)) = 𝐻(𝑋 − 𝑌 , 𝑌 − 𝑍) + 𝐻(𝑋) − 𝐻(𝑋, 𝑋 − 𝑌 , 𝑌 − 𝑍)
= 𝐻(𝑋 − 𝑌 , 𝑌 − 𝑍) + 𝐻(𝑋) − 𝐻(𝑋, 𝑌 , 𝑍)
= 𝐻(𝑋 − 𝑌 , 𝑌 − 𝑍) − 𝐻(𝑌 ) − 𝐻(𝑍)

by Data Processing (since (𝑥, 𝑥 − 𝑦, 𝑦 − 𝑧) ↦ (𝑥, 𝑦, 𝑧) is injective), and independence of
𝑋, 𝑌  and 𝑍. □

Theorem 7.9 (Ruzsa Triangle Inequality for Entropy)  Let 𝑋, 𝑌 , 𝑍 be independent
RVs on alphabet ℤ. Then

𝐻(𝑋 − 𝑍) + 𝐻(𝑌 ) ≤ 𝐻(𝑋 − 𝑌 ) + 𝐻(𝑌 − 𝑍).

Proof (Hints) .  By above lemma. □

Proof .  By the above lemma, we have

𝐻(𝑋 − 𝑍) + 𝐻(𝑌 ) ≤ 𝐻(𝑋 − 𝑌 , 𝑌 − 𝑍)
= 𝐻(𝑋 − 𝑌 ) + 𝐻(𝑌 − 𝑍 | 𝑋 − 𝑌 ) by Chain Rule for Entropy
≤ 𝐻(𝑋 − 𝑌 ) + 𝐻(𝑌 − 𝑍).

by Conditioning Reduces Entropy. □

7.2. The doubling-difference inequality for entropy
Definition 7.10  For IID RVs 𝑋1, 𝑋2 on alphabet ℤ, the entropy-increase due to
addition (Δ+) or subtraction (Δ−) is

Δ+ ≔ 𝐻(𝑋1 + 𝑋2) − 𝐻(𝑋1),
Δ− ≔ 𝐻(𝑋1 − 𝑋2) − 𝐻(𝑋1).

Proposition 7.11  For IID 𝑋1, 𝑋2 on ℤ, we have

Δ+ = 𝐼(𝑋1 + 𝑋2; 𝑋2),
Δ− = 𝐼(𝑋1 − 𝑋2; 𝑋2).

Proof (Hints) .  Straightforward. □

Proof .  We have

𝐼(𝑋1 + 𝑋2; 𝑋2) = 𝐻(𝑋1 + 𝑋2) + 𝐻(𝑋2) − 𝐻(𝑋1 + 𝑋2, 𝑋2)
= 𝐻(𝑋1 + 𝑋2) + 𝐻(𝑋2) − 𝐻(𝑋1, 𝑋2)
= 𝐻(𝑋1 + 𝑋2) + 𝐻(𝑋2) − 𝐻(𝑋1) − 𝐻(𝑋2)

by Data Processing (since (𝑥1 + 𝑥2, 𝑥2) ↦ (𝑥1, 𝑥2) is injective) and Chain Rule for
Entropy. The proof is identical for Δ−. □

Lemma 7.12  Let 𝑋, 𝑌 , 𝑍 be independent RVs on alphabet ℤ. Then
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𝐻(𝑋 + 𝑌 + 𝑍) + 𝐻(𝑌 ) ≤ 𝐻(𝑋 + 𝑌 ) + 𝐻(𝑌 + 𝑍).

Proof (Hints) .
• Show that 𝐼(𝑋; 𝑋 + 𝑌 + 𝑍) ≤ 𝐼(𝑋 + 𝑌 ; 𝑋).
• Rewrite both sides in terms of entropies.

□

Proof .  Since 𝑋 − (𝑋 + 𝑌 , 𝑍) − (𝑋 + 𝑌 + 𝑍) form a Markov chain by Note 4.10, we
have, by Data Processing and Chain Rule for mutual information,

𝐼(𝑋; 𝑋 + 𝑌 + 𝑍) ≤ 𝐼(𝑋 + 𝑌 , 𝑍; 𝑋) = 𝐼(𝑋 + 𝑌 ; 𝑋) + 𝐼(𝑍; 𝑋 | 𝑋 + 𝑌 ).
= 𝐼(𝑋 + 𝑌 ; 𝑋)

since 𝑍 is (conditionally) independent of 𝑋 given 𝑋 + 𝑌 . Now

𝐼(𝑋 + 𝑌 ; 𝑋) = 𝐻(𝑋 + 𝑌 ) + 𝐻(𝑋) − 𝐻(𝑋 + 𝑌 , 𝑋)
= 𝐻(𝑋 + 𝑌 ) + 𝐻(𝑋) − 𝐻(𝑌 , 𝑋)
= 𝐻(𝑋 + 𝑌 ) + 𝐻(𝑋) − 𝐻(𝑌 ) − 𝐻(𝑋)
= 𝐻(𝑋 + 𝑌 ) − 𝐻(𝑌 )

since (𝑦, 𝑥) ↦ (𝑥 + 𝑦, 𝑥) is injective and 𝑋 and 𝑌  are independent. Also,

𝐼(𝑋 + 𝑌 + 𝑍; 𝑋) = 𝐻(𝑋 + 𝑌 + 𝑍) + 𝐻(𝑋 + 𝑌 + 𝑍 | 𝑋)
= 𝐻(𝑋 + 𝑌 + 𝑍) − 𝐻(𝑌 + 𝑍 | 𝑋)
= 𝐻(𝑋 + 𝑌 + 𝑍) − 𝐻(𝑌 + 𝑍)

since, given 𝑋 = 𝑥, 𝑥 + 𝑦 + 𝑧 ↦ 𝑦 + 𝑧 is injective, and 𝑋 and 𝑌 + 𝑍 are independent.
□

Theorem 7.13 (Doubling-difference Inequality)  Let 𝑋1 and 𝑋2 be IID RVs on ℤ. Then

1
2

≤ Δ+

Δ− ≤ 2.

Proof (Hints) .
• For lower bound, use Ruzsa Triangle Inequality for appropriate RVs.
• For upper bound,

□

Proof .  For the lower bound, let 𝑋, −𝑌 , 𝑍 be IID with the same distribution as 𝑋1.
Then by the Ruzsa Triangle Inequality,

𝐻(𝑋1 − 𝑋2) + 𝐻(𝑋1) ≤ 𝐻(𝑋1 + 𝑋2) + 𝐻(𝑋1 + 𝑋2).

So 2(𝐻(𝑋1 + 𝑋2) − 𝐻(𝑋1)) ≥ 𝐻(𝑋1 − 𝑋2) − 𝐻(𝑋1).

For the upper bound, let 𝑋, −𝑌 , 𝑍 be IID with the same distribution as 𝑋1. Then by
the above lemma and Proposition 7.7,
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𝐻(𝑋1 + 𝑋2) + 𝐻(𝑋1) ≤ 𝐻(𝑋1 − 𝑋2) + 𝐻(𝑋1 − 𝑋2)

so 𝐻(𝑋1 + 𝑋2) − 𝐻(𝑋1) ≤ 2(𝐻(𝑋1 − 𝑋2) − 𝐻(𝑋1)). □

8. Entropy rate
Definition 8.1  For an arbitrary source 𝑿 = {𝑋𝑛 : 𝑛 ∈ ℕ}, the entropy rate 𝐻(𝑿)
of 𝑿 is the limit of the average number of bits per symbol:

𝐻(𝑿) = lim
𝑛→∞

1
𝑛

𝐻(𝑋𝑛
1 )

whenever the limit exists.

Example 8.2  If 𝑿 is memoryless (so a sequence of IID RVs) with common entropy
𝐻 = 𝐻(𝑋𝑖), then the entropy rate is

𝐻(𝑿) = lim
𝑛→∞

1
𝑛

𝐻(𝑋𝑛
1 ) = lim

𝑛→∞

1
𝑛

∑
𝑛

𝑖=1
𝐻(𝑋𝑖) = 𝐻.

Example 8.3  Let 𝑿 = {𝑋𝑛 : 𝑛 ∈ ℕ} be an irreducible, aperiodic Markov chain on a
finite alphabet 𝐴 with transition matrix 𝑄, where

𝑄𝑎𝑏 = ℙ(𝑋𝑛+1 = 𝑏 | 𝑋𝑛 = 𝑎), ∀𝑎, 𝑏 ∈ 𝐴

Let 𝑋1 ∼ 𝑃𝑋1
 be the initial distribution and 𝜋 be the unique stationary distribution

(ℙ(𝑋𝑛 = 𝑥) → 𝜋(𝑥) as 𝑛 → ∞). 𝑿 has a unique invariant distribution 𝜋 to which it
converges:

∀𝑥 ∈ 𝐴, ℙ(𝑋𝑛 = 𝑥) → 𝜋(𝑥) as 𝑛 → ∞

and hence also

ℙ(𝑋𝑛−1 = 𝑥, 𝑋𝑛 = 𝑦) = ℙ(𝑋𝑛 = 𝑥)𝑄𝑥𝑦 → 𝜋(𝑥)𝑄𝑥𝑦.

Then by the Chain Rule for Entropy and conditional independence,

𝐻(𝑋𝑛
1 ) = ∑

𝑛

𝑖=1
𝐻(𝑋𝑖 | 𝑋𝑖−1

1 )

= 𝐻(𝑋1) + ∑
𝑛

𝑖=2
𝐻(𝑋𝑖 | 𝑋𝑖−1)

= 𝐻(𝑋1) − 𝐻(𝑋𝑛+1 | 𝑋𝑛) + ∑
𝑛

𝑖=1
𝐻(𝑋𝑖+1 | 𝑋𝑖).

By the convergence theorem for Markov chains, we have 𝑃𝑋𝑛
→ 𝜋 as 𝑛 → ∞. 𝐻(𝑋 | 𝑌 )

is a continuous function of the joint distribution 𝑃𝑋,𝑌 , so 𝐻(𝑋𝑛 | 𝑋𝑛−1) → 𝐻(𝑋1 | 𝑋0)
as 𝑛 → ∞, where 𝑋0 ∼ 𝜋 and ℙ(𝑋1 = 𝑏 | 𝑋1 = 𝑎) = 𝑄𝑎𝑏. We have

1
𝑛

𝐻(𝑋𝑛
1 ) = 1

𝑛
(𝐻(𝑋1) − 𝐻(𝑋𝑛+1 | 𝑋𝑛)) + 1

𝑛
∑

𝑛

𝑖=1
𝐻(𝑋𝑖+1 | 𝑋𝑖)
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The first term tends to 0 since the numerator is bounded, and the summands in the
second term tend to 𝐻(𝑋1 | 𝑋0). So the entropy rate exists and is equal to 𝐻(𝑿) =
𝐻(𝑋1 | 𝑋0).

Definition 8.4  A source 𝑿 is stationary if for any block length 𝑛 ∈ ℕ, the distrib-
ution of 𝑋𝑘+𝑛

𝑘+1  is independent of 𝑘.

Remark 8.5  If 𝑿 = {𝑋𝑛 : 𝑛 ∈ ℕ} is one-sided stationary process, then by
Kolmogorov’s extension theorem, 𝑿 admits a unique two-sided extension to 𝑿 = {𝑋𝑛 :
𝑛 ∈ ℤ}.

Theorem 8.6  If 𝑿 = {𝑋𝑛 : 𝑛 ∈ ℕ} is a stationary process on finite alphabet 𝐴, then
its entropy rate exists and is equal to

𝐻(𝑿) = lim
𝑛→∞

𝐻(𝑋𝑛 | 𝑋𝑛−1
1 ).

Proof (Hints) .  Show that the sequence {𝐻(𝑋𝑛) | 𝑋𝑛−1
1 : 𝑛 ∈ ℕ} is non-increasing and

use the Cèsaro Lemma. □

Proof .  The sequence {𝐻(𝑋𝑛) | 𝑋𝑛−1
1 : 𝑛 ∈ ℕ} is non-negative by non-negativity of

conditional entropy, and is non-increasing, since

𝐻(𝑋𝑛+1 | 𝑋𝑛
1 ) ≤ 𝐻(𝑋𝑛+1 | 𝑋𝑛

2 ) by Conditioning Reduces Entropy

= 𝐻(𝑋𝑛+1
2 ) − 𝐻(𝑋𝑛

2 ) by Chain Rule for Entropy

= 𝐻(𝑋𝑛
1 ) − 𝐻(𝑋𝑛−1

1 ) by stationarity

= 𝐻(𝑋𝑛−1 | 𝑋𝑛−2
1 ) by Chain Rule for Entropy.

Hence the limit lim𝑛→∞ 𝐻(𝑋𝑛 | 𝑋𝑛−1
1 ) exists, and so by the Cèsaro Lemma, the

averages converge to the same limit. But by the Chain Rule for Entropy, the averages are

1
𝑛

∑
𝑛

𝑖=1
𝐻(𝑋𝑖 | 𝑋𝑖−1

1 ) = 1
𝑛

𝐻(𝑋𝑛
1 ).

□

Theorem 8.7  For a stationary process 𝑿 = {𝑋𝑛 : 𝑛 ∈ ℤ} on a finite alphabet 𝐴,

𝐻(𝑿) = 𝐻(𝑋0 | 𝑋−1
−𝑛) = 𝐻(𝑋0 | 𝑋−1

−∞).

Proof (Hints) .  Non-examinable. □

Proof .  By Martingale convergence, we have that

𝑃(𝑥0 | 𝑋−1
−𝑛) → 𝑃(𝑥0 | 𝑋−1

−∞) almost surely as 𝑛 → ∞,

where 𝑃(⋅ | 𝑥−1
−𝑛) is the conditional distribution of 𝑋0 given 𝑋−1

−𝑛 = 𝑥−1
−𝑛, and 𝑃(⋅ | 𝑥−1

−∞)
is the conditional distribution of 𝑋0 given 𝑋−1

−∞ = 𝑥−1
−∞. Now, we can take expectations

to obtain that, by the bounded convergence theorem (since 𝑝 ↦ 𝑝 log 𝑝 is continuous
and bounded for 𝑝 ∈ [0, 1]),
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𝐻(𝑋0 | 𝑋−1
−𝑛) = 𝔼[− ∑

𝑥0∈𝐴
𝑃(𝑥0 | 𝑋−1

−𝑛) log 𝑃(𝑥0 | 𝑋−1
−𝑛)]

→ 𝔼[− ∑
𝑥0∈𝐴

𝑃(𝑥0 | 𝑋−1
−∞) log 𝑃(𝑥0 | 𝑋−1

−∞)]

≕ 𝐻(𝑋0 | 𝑋−1
−∞) almost surely as 𝑛 → ∞.

Finally, 𝐻(𝑋0 | 𝑋−1
−𝑛) = 𝐻(𝑋𝑛+1 | 𝑋𝑛

1 ) by stationarity, so we are done by Theorem 8.6.
□

Definition 8.8  Let 𝑿 = {𝑋𝑛 : 𝑛 ∈ ℤ} be a stationary source on finite alphabet 𝐴,
and define the (left) shift operator 𝑇 : 𝐴ℤ → 𝐴ℤ on sequences 𝐴ℤ by

(𝑇𝑥)𝑛 = 𝑥𝑛+1 ∀𝑛 ∈ ℤ.

𝑿 is ergodic if all shift invariant events are trivial, i.e. for any measurable 𝐵 ⊆ 𝐴ℤ,
we have

𝑇 −1𝐵 = 𝐵 ⟹ ℙ(𝑋∞
−∞ ∈ 𝐵) = 0 or 1.

Intuitively, an ergodic process is one which satisfies the general form of the strong law
of large numbers.

It turns out that ergodicity is equivalent to the validity of the following:

Theorem 8.9 (Birkhoff's Ergodic Theorem)  Let 𝑿 = {𝑋𝑛 : 𝑛 ∈ ℤ} be a stationary
ergodic source on alphabet 𝐴. Then for any measurable function 𝑓 : 𝐴ℤ → ℝ such that

𝔼[|𝑓(𝑋∞
−∞)|] < ∞,

we have

1
𝑛

∑
𝑛

𝑖=1
𝑓(𝑇 𝑖𝑋∞

−∞) → 𝔼[𝑓(𝑋∞
−∞)] almost surely as 𝑛 → ∞

Proof (Hints) .  Beyond the scope of this course. □

Proof .  Omitted. □

Remark 8.10  The strong law of large numbers follows instantly from Birkhoff by
setting 𝑓(𝑥∞

−∞) = 𝑥1.

Example 8.11  Every IID source is ergodic.

Theorem 8.12 (Shannon-McMillan-Breiman)  Let 𝑿 = {𝑋𝑛 : 𝑛 ∈ ℕ} be a stationary
ergodic source on alphahbet 𝐴 with entropy rate 𝐻 = 𝐻(𝑿), then

−1
𝑛

log 𝑃𝑛(𝑋𝑛
1 ) → 𝐻 almost surely as 𝑛 → ∞

where 𝑃𝑛 is the PMF of 𝑋𝑛
1 .

Proof (Hints) .  Non-examinable. □
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Proof .  Idea: by Chain Rule for Entropy, we have

−1
𝑛

log 𝑃𝑛(𝑋𝑛
1 ) = −1

𝑛
log ∏

𝑛

𝑖=1
𝑃(𝑋𝑖 | 𝑋𝑖−1

1 ) = 1
𝑛

∑
𝑛

𝑖=1
[− log 𝑃(𝑋𝑖 | 𝑋𝑖−1

1 )]

but we cannot directly apply the ergodic theorem to this, since − log 𝑃(𝑋𝑖 | 𝑋𝑖−1
1 )

is not of the form 𝑓(𝑇 𝑖𝑥∞
−∞). Instead, note that by Birkhoff's Ergodic Theorem and

Theorem 8.7,

−1
𝑛

log 𝑃(𝑋𝑛
1 | 𝑋0

−∞) = 1
𝑛

∑
𝑛

𝑖=1
[− log 𝑃(𝑋𝑖 | 𝑋𝑖−1

−∞)]

→ 𝔼[− log 𝑃(𝑋0 | 𝑋−1
−∞)]

≕ 𝐻(𝑋0 | 𝑋−1
−∞) = 𝐻 almost surely as 𝑛 → ∞.

Also, by Birkhoff's Ergodic Theorem, for each fixed 𝑘 ≥ 1,

1
𝑛

∑
𝑛

𝑖=1
(− log 𝑃(𝑋𝑖 | 𝑋𝑖−1

𝑖−𝑘)) → 𝔼[− log 𝑃(𝑋0 | 𝑋−1
−𝑘)]

≕ 𝐻(𝑋0 | 𝑋−1
−𝑘) almost surely as 𝑛 → ∞.

We have

ℙ(−1
𝑛

log 𝑃(𝑋𝑛
1 | 𝑋0

−∞) − (−1
𝑛

log 𝑃𝑛(𝑋𝑛
1 )) > 𝜀) = ℙ(1

𝑛
log 𝑃𝑛(𝑋𝑛

1 )
𝑃 (𝑋𝑛

1 | 𝑋0
−∞)

> 𝜀)

= ℙ( 𝑃𝑛(𝑋𝑛
1 )

𝑃 (𝑋𝑛
1 | 𝑋0

−∞)
> 2𝑛𝜀)

≤ 2−𝑛𝜀𝔼[ 𝑃𝑛(𝑋𝑛
1 )

𝑃 (𝑋𝑛
1 | 𝑋0

−∞)
] by markov's inequality

≤ 2−𝑛𝜀𝔼[𝔼[ 𝑃𝑛(𝑋𝑛
1 )

𝑃 (𝑋𝑛
1 | 𝑋0

−∞)
| 𝑋0

−∞]]

= 2−𝑛𝜀𝔼

[
[
[
[

∑
𝑥𝑛

1
𝑃(𝑥𝑛

1 | 𝑋0
−∞)>0

𝑃(𝑥𝑛
1 | 𝑋0

−∞) 𝑃𝑛(𝑥𝑛
1 )

𝑃 (𝑥𝑛
1 | 𝑋0

−∞)
]
]
]
]

≤ 2−𝑛𝜀

which is summable, so by Borel-Cantelli,

lim inf
𝑛→∞

−1
𝑛

log 𝑃(𝑋𝑛
1 | 𝑋0

−∞) ≤ lim inf
𝑛→∞

−1
𝑛

log 𝑃𝑛(𝑋𝑛
1 ) almost surely.

For each fixed 𝑘, consider the sequence of PMFs 𝑄(𝑘)
𝑛 (𝑥𝑛

1 ) = 𝑃𝑘(𝑥𝑘
1) ∏𝑛

𝑖=𝑘+1 𝑃(𝑥𝑖 | 𝑋𝑖−1
𝑖−𝑘)

for 𝑥𝑛
1 ∈ 𝐴𝑛. Then

−1
𝑛

log 𝑄(𝑘)
𝑛 (𝑋𝑛

1 ) − [−1
𝑛

∑
𝑛

𝑖=1
log 𝑃(𝑥𝑖 | 𝑥𝑖−1

𝑖−𝑘)]
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= −1
𝑛

[log 𝑃𝑘(𝑥𝑘
1) − ∑

𝑘

𝑖=1
log 𝑃(𝑋𝑖 | 𝑋𝑖−1

𝑖−𝑘)]

→ 0 almost surely as 𝑛 → ∞

So suffices to show that lim sup𝑛→∞ − 1
𝑛 log 𝑃𝑛(𝑋𝑛

1 ) ≤ lim sup𝑛→∞ − 1
𝑛 log 𝑄(𝑘)

𝑛 (𝑋𝑛
1 ) al-

most surely. So again, let 𝜀 > 0 be arbitrary, then

ℙ(−1
𝑛

log 𝑃𝑛(𝑋𝑛
1 ) − (−1

𝑛
log 𝑄(𝑘)

𝑛 (𝑋𝑛
1 )) > 𝜀)

= ℙ(𝑄(𝑘)
𝑛 (𝑋𝑛

1 )
𝑃𝑛(𝑋𝑛

1 )
> 2𝑛𝜀) ≤ 2−𝑛𝜀𝔼[𝑄(𝑘)

𝑛 (𝑋𝑛
1 )

𝑃𝑛(𝑋𝑛
1 )

] by Markov's inequality

≤ 2−𝑛𝜀 ∑
𝑥𝑛

1 ∈𝐴𝑛

𝑃𝑛(𝑥𝑛
1 )𝑄

(𝑘)
𝑛 (𝑥𝑛

1 )
𝑃𝑛(𝑥𝑛

1 )
= 2−𝑛𝜀

which is summable, so by Borel-Cantelli and the fact that 𝜀 > 0 was arbitrary, we have

lim sup
𝑛→∞

−1
𝑛

log 𝑃𝑛(𝑋𝑛
1 ) ≤ lim sup

𝑛→∞
−1

𝑛
∑

𝑛

𝑖=1
log 𝑃(𝑋𝑖 | 𝑋𝑖−1

𝑖−𝑘).

□

9. Types and large deviations
9.1. The method of types
Definition 9.1  Let 𝐴 be a finite alphabet and 𝑥𝑛

1 ∈ 𝐴𝑛. The type of 𝑥𝑛
1  is its empirical

distribution ̂𝑃𝑛 = ̂𝑃𝑥𝑛
1
:

̂𝑃𝑛(𝑎) = ̂𝑃𝑥𝑛
1
(𝑎) = 1

𝑛
∑

𝑛

𝑖=1
𝟙{𝑥𝑖=𝑎}.

Notation 9.2  For a finite alphabet 𝐴 = {𝑎1, …, 𝑎𝑚}, let 𝒫 denote the set of all PMFs
on 𝐴:

𝒫 = {𝑃 ∈ [0, 1]𝑚 : ∑
𝑎∈𝐴

𝑃(𝑎) = 1}.

Note that 𝒫 is an 𝑚-simplex.

Notation 9.3  We write 𝒫𝑛 for the set of all 𝑛-types:

𝒫𝑛 = {𝑃 ∈ 𝒫 : 𝑛𝑃(𝑎) ∈ ℤ ∀𝑎 ∈ 𝐴}.

Note that 𝒫𝑛 is finite.

Proposition 9.4  We have |𝒫𝑛| ≤ (𝑛 + 1)𝑚.

Proof (Hints) .  Straightforward. □
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Proof .  Each 𝑃 ∈ 𝒫𝑛 is of the form (𝑘1/𝑛, …, 𝑘𝑚/𝑛). There are at most (𝑛 + 1) choices
(0, …, 𝑛) for each 𝑘𝑖. □

Proposition 9.5  Let 𝑥𝑛
1 ∈ 𝐴𝑛 have type ̂𝑃𝑛. Then for any PMF 𝑄,

𝑄𝑛(𝑥𝑛
1 ) = 2−𝑛(𝐻(�̂�𝑛)+𝐷(�̂�𝑛 ‖ 𝑄)).

In particular, if 𝑄 = ̂𝑃𝑛, then 𝑄𝑛(𝑥𝑛
1 ) = 2−𝑛𝐻(𝑄).

Proof (Hints) .  Rewrite log 𝑄𝑛(𝑥𝑛
1 ). □

Proof .  We have

log 𝑄𝑛(𝑥𝑛
1 ) = ∑

𝑛

𝑖=1
log 𝑄(𝑥𝑖)

= ∑
𝑛

𝑖=1
∑
𝑎∈𝐴

𝟙{𝑥𝑖=𝑎} log 𝑄(𝑎)

= 𝑛 ∑
𝑎∈𝐴

1
𝑛

∑
𝑛

𝑖=1
𝟙{𝑥𝑖=𝑎} log 𝑄(𝑎)

= 𝑛 ∑
𝑎∈𝐴

̂𝑃𝑛(𝑎) log 𝑄(𝑎) = − ∑
𝑎∈𝐴

̂𝑃𝑛(𝑎) log(
̂𝑃𝑛(𝑎)

𝑄(𝑎)
1
̂𝑃𝑛(𝑎)

)

= −𝑛(∑
𝑎∈𝐴

̂𝑃𝑛(𝑎) log
̂𝑃𝑛(𝑎)

𝑄(𝑎)
+ ∑

𝑎∈𝐴

̂𝑃𝑛(𝑎) log 1
̂𝑃𝑛(𝑎)

)

= −𝑛(𝐷( ̂𝑃𝑛 ‖ 𝑄) + 𝐻( ̂𝑃𝑛))

□

Definition 9.6  Given a 𝑛-type 𝑃 , its type class is

𝑇 (𝑃) ≔ {𝑥𝑛
1 ∈ 𝐴𝑛 : ̂𝑃𝑥𝑛

1
= 𝑃}.

Note that 𝐴𝑛 = ∐𝑃∈𝒫𝑛
𝑇 (𝑃): since 𝐴𝑛 has size |𝐴|𝑛 exponential in 𝑛, and the union is

over |𝒫𝑛| ≤ (𝑛 + 1)𝑚 (polynomial in 𝑛) elements, at least one type class must contain
exponentially many strings.

𝑇 (𝑃) consists of all possible arrangements of 𝑛𝑃(𝑎1) 𝑎1’s, …, 𝑛𝑃(𝑎𝑚) 𝑎𝑚’s, so

|𝑇 (𝑃 )| = 𝑛!
∏𝑚

𝑗=1(𝑛𝑃(𝑎𝑗))!
.

Lemma 9.7  Let 𝑃 ∈ 𝒫𝑛. Then

𝑃𝑛(𝑇 (𝑃 )) = max{𝑃𝑛(𝑇 (𝑄)) : 𝑄 ∈ 𝒫𝑛}.

i.e. the most likely type class under 𝑃𝑛 is 𝑇 (𝑃).

Proof (Hints) .
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• For 𝑄 ∈ 𝒫𝑛, find an expression for 𝑃𝑛(𝑥𝑛
1 ) which should be independent of 𝑥𝑛

1 , for
each case 𝑥𝑛

1 ∈ 𝑇(𝑃) and 𝑥𝑛
1 ∈ 𝑇(𝑄).

• Show that 𝑃𝑛(𝑇 (𝑃))
𝑃𝑛(𝑇 (𝑄)) ≥ 1, using the fact that 𝑘!/ℓ! ≥ ℓ𝑘−ℓ (why?).

□

Proof .  Let 𝑄 ∈ 𝒫𝑛 be arbitrary. Then

𝑃𝑛(𝑇 (𝑃 ))
𝑃𝑛(𝑇 (𝑄))

=
|𝑇 (𝑃)| ⋅ ∏𝑚

𝑖=1 𝑃(𝑎𝑖)
𝑛𝑃(𝑎𝑖)

|𝑇 (𝑄)| ⋅ ∏𝑚
𝑖=1 𝑃(𝑎𝑖)

𝑛𝑄(𝑎𝑖)

= 𝑛!
∏𝑚

𝑖=1(𝑛𝑃(𝑎𝑖))!
⋅
∏𝑚

𝑖=1(𝑛𝑄(𝑎𝑖))!
𝑛!

⋅ ∏
𝑚

𝑖=1
𝑃(𝑎𝑖)

𝑛(𝑃(𝑎𝑖)−𝑄(𝑎𝑖))

= ∏
𝑚

𝑖=1
𝑃(𝑎𝑖)

𝑛(𝑃(𝑎𝑖)−𝑄(𝑎𝑖)) ⋅ ∏
𝑚

𝑖=1

(𝑛𝑄(𝑎𝑖))!
(𝑛𝑃(𝑎𝑖))!

.

Now since 𝑘!/ℓ! ≥ ℓ𝑘−ℓ (to show this, consider 𝑘 ≥ ℓ and 𝑘 < ℓ cases separately), this is

≥ ∏
𝑚

𝑖=1
𝑃(𝑎𝑖)

𝑛(𝑃(𝑎𝑖)−𝑄(𝑎𝑖)) ⋅ ∏
𝑚

𝑖=1
(𝑛(𝑃 (𝑎𝑖)))

𝑛(𝑄(𝑎𝑖)−𝑃(𝑎𝑖))

= ∏
𝑚

𝑖=1
𝑛𝑛(𝑄(𝑎𝑖)−𝑃(𝑎𝑖))

= 𝑛𝑛 ∑𝑚
𝑖=1(𝑄(𝑎𝑖)−𝑃(𝑎𝑖)) = 1

since probabilities sum to 1. □

Proposition 9.8  Let |𝐴| = 𝑚. For any 𝑛-type 𝑃 ∈ 𝒫𝑛,

(𝑛 + 1)−𝑚2𝑛𝐻(𝑃) ≤ |𝑇 (𝑃)| ≤ 2𝐻(𝑃).

Proof (Hints) .  Straightforward. □

Proof .  By Proposition 9.5, we have 1 ≥ 𝑃𝑛(𝑇 (𝑃 )) = |𝑇 (𝑃)|2−𝑛𝐻(𝑃). For the lower
bound,

1 = ∑
𝑥𝑛

1 ∈𝐴𝑛

𝑃𝑛(𝑥𝑛
1 )

= ∑
𝑄∈𝒫𝑛

𝑃𝑛(𝑇 (𝑄))

≤ |𝒫𝑛|𝑃𝑛(𝑇 (𝑃 )) by Lemma 9.7

≤ (𝑛 + 1)𝑚|𝑇 (𝑃 )|2−𝑛𝐻(𝑃).

□

Corollary 9.9  For any 𝑛-type 𝑃 ∈ 𝒫𝑛 and any PMF 𝑄 on 𝐴,

(𝑛 + 1)−𝑚2−𝑛𝐷(𝑃 ‖ 𝑄) ≤ 𝑄𝑛(𝑇 (𝑃 )) ≤ 2−𝑛𝐷(𝑃 ‖ 𝑄).

Proof (Hints) .  Straightforward. □
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Proof .  Let 𝑥𝑛
1 ∈ 𝑇(𝑃) be arbitrary. Then by Proposition 9.5,

𝑄𝑛(𝑇 (𝑃 )) = |𝑇 (𝑃)|𝑄𝑛(𝑥𝑛
1 ) = |𝑇 (𝑃)|2−𝑛(𝐻(𝑃)+𝐷(𝑃 ‖ 𝑄)).

So we are done by Proposition 9.8. □

9.2. Sanov’s theorem
Theorem 9.10 (Sanov)  Let 𝑋𝑛

1  be IID with common PMF 𝑄 which has full support
on alphabet 𝐴 (i.e. 𝑄(𝑎) > 0 for all 𝑎 ∈ 𝐴) with |𝐴| = 𝑚. Let ̂𝑃𝑛 be the empirical
distribution of 𝑋𝑛

1 . For all 𝐸 ⊆ 𝒫,

ℙ( ̂𝑃𝑛 ∈ 𝐸) ≤ (𝑛 + 1)𝑚2−𝑛𝐷∗ .

where 𝐷∗ = inf{𝐷(𝑃 ‖ 𝑄) : 𝑃 ∈ 𝐸}. Also, if 𝐸 = int(𝐸) is equal to the closure of its
interior, then

lim
𝑛→∞

−1
𝑛

log ℙ( ̂𝑃𝑛 ∈ 𝐸) = 𝐷∗ = 𝐷(𝑃 ∗ ‖ 𝑄),

where 𝑃 ∗ ∈ 𝐸.

Proof (Hints) .
• For the inequality, use that ℙ( ̂𝑃𝑛 ∈ 𝐸) = ℙ( ̂𝑃𝑛 ∈ 𝐸 ∩ 𝒫𝑛) = ∑𝑃∈𝐸∩𝒫𝑛

𝑄𝑛(𝑇 (𝑃 )).
Explain why 𝐷∗ is finite.

• For the equality, use the above inequality, and explain why there is a sequence
{𝑃𝑛 : 𝑛 ∈ ℕ} with each 𝑃𝑛 ∈ 𝒫𝑛 and 𝑃𝑛 → 𝑃 ∗ where 𝐷(𝑃 ∗ ‖ 𝑄) = 𝐷∗ (why does 𝑃 ∗

exist?)

□

Proof .  Since 𝑄 has full support, for any 𝑃 ∈ 𝒫, we have 𝐷(𝑃 ‖ 𝑄) ≤ − ∑𝑎∈𝐴 log 𝑄(𝑎) <
∞, so 𝐷∗ is finite. For the upper bound,

ℙ( ̂𝑃𝑛 ∈ 𝐸) = ℙ( ̂𝑃𝑛 ∈ 𝐸 ∩ 𝒫𝑛)

= ∑
𝑃∈𝐸∩𝒫𝑛

ℙ( ̂𝑃𝑛 = 𝑃)

= ∑
𝑃∈𝐸∩𝒫𝑛

ℙ(𝑋𝑛
1 ∈ 𝑇(𝑃))

= ∑
𝑃∈𝐸∩𝒫𝑛

𝑄𝑛(𝑇 (𝑃 ))

≤ |𝐸 ∩ 𝒫𝑛| max{𝑄𝑛(𝑇 (𝑃 )) : 𝑃 ∈ 𝐸 ∩ 𝒫𝑛}

≤ |𝐸 ∩ 𝒫𝑛| max{2−𝑛𝐷(𝑃 ‖ 𝑄) : 𝑃 ∈ 𝐸 ∩ 𝒫𝑛} by Corollary 9.9

= |𝐸 ∩ 𝒫𝑛| ⋅ 2−𝑛 min{𝐷(𝑃 ‖ 𝑄) : 𝑃∈𝐸∩𝒫𝑛}

≤ (𝑛 + 1)𝑚 ⋅ 2−𝑛𝐷∗ .

So lim inf𝑛→∞ − 1
𝑛 log 𝑄𝑛( ̂𝑃𝑛 ∈ 𝐸) ≥ 𝐷∗.
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For the lower bound, since 𝐸 is compact and 𝐷(𝑃 ‖ 𝑄) is continuous in 𝑃 , the infimum
𝐷∗ is attained by some 𝑃 ∗. (Note that since 𝒫 itself is compact, there is always a
minimising 𝑃 ∗ but this is not necessarily in 𝐸). Also, note that ⋃𝑛∈ℕ 𝒫𝑛 is dense in 𝒫,
so we can find a sequence {𝑃𝑛 : 𝑛 ∈ ℕ} ⊆ 𝐸 such that each 𝑃𝑛 ∈ 𝒫𝑛 and 𝑃𝑛 → 𝑃 ∗ (as
a vector). Now for each 𝑛 ∈ ℕ,

ℙ( ̂𝑃𝑛 ∈ 𝐸) ≥ ℙ( ̂𝑃𝑛 = 𝑃𝑛) = 𝑄𝑛(𝑇 (𝑃𝑛)) ≥ (𝑛 + 1)−𝑚2−𝑛𝐷(𝑃𝑛 ‖ 𝑄)

by Corollary 9.9. We have 𝐷(𝑃𝑛 ‖ 𝑄) → 𝐷(𝑃 ∗ ‖ 𝑄) as 𝑛 → ∞ since 𝐷(𝑃 ‖ 𝑄) is
continuous in 𝑃 . So lim sup𝑛→∞ − 1

𝑛 log ℙ( ̂𝑃𝑛 ∈ 𝐸) ≤ 𝐷(𝑃 ∗ ‖ 𝑄) = 𝐷∗. □

Definition 9.11  For a random variable 𝑌 , the log-moment generating function
of 𝑌  is Λ : ℝ → ℝ defined by

Λ(𝜆) ≔ ln 𝔼[𝑒𝜆𝑌 ].

Notation 9.12  Write Λ∗(𝑥) = sup{𝜆𝑥 − Λ(𝜆) : 𝜆 > 0}.

Proposition 9.13 (Chernoff Bound)  Let 𝑋𝑛
1  be IID RVs and 𝑓 : 𝐴 → ℝ have mean

𝜇 = 𝔼[𝑓(𝑋1)]. Denote the empirical averages by 𝑆𝑛 ≔ 1
𝑛 ∑𝑛

𝑖=1 𝑓(𝑋𝑖). Then for all 𝜀 > 0,

ℙ(𝑆𝑛 ≥ 𝜇 + 𝜀) ≤ 𝑒−𝑛Λ∗(𝜇+𝜀),

where Λ is the log-moment generating function of the 𝑓(𝑋𝑖).

Proof (Hints) .  Use Markov’s inequality. □

Proof .  By Markov’s inequality, for all 𝜆 > 0,

ℙ(𝑆𝑛 ≥ 𝜇 + 𝜀) = ℙ(𝑒𝑛𝜆𝑆𝑛 ≥ 𝑒𝑛𝜆(𝜇+𝜀)) ≤ 𝑒−𝑛𝜆(𝜇+𝜀)𝔼[𝑒𝜆𝑛𝑆𝑛].

Now since the 𝑋𝑖 are independent,

𝔼[𝑒𝜆𝑛𝑆𝑛] = 𝔼[𝑒𝜆 ∑𝑛
𝑖=1 𝑓(𝑋𝑖)] = 𝔼[∏

𝑛

𝑖=1
𝑒𝜆𝑓(𝑋𝑖)] = ∏

𝑛

𝑖=1
𝔼[𝑒𝜆𝑓(𝑋𝑖)] = 𝑒𝑛Λ(𝜆).

Hence,

ℙ(𝑆𝑛 ≥ 𝜇 + 𝜀) ≤ 𝑒−𝑛𝜆(𝜇+𝜀)𝑒𝑛Λ(𝜆) = 𝑒−𝑛(𝜆(𝜇+𝜀)−Λ(𝜆)),

and this holds for all 𝜆 > 0, so taking the supremum over 𝜆 gives the result. □

Example 9.14  Let 𝑋𝑛
1  be IID with common PMF 𝑄 on finite alphabet 𝐴, let 𝑓 : 𝐴 →

ℝ with mean 𝜇 = 𝔼𝑋∼𝑄[𝑓(𝑋)]. Denote the empirical averages by 𝑆𝑛 ≔ 1
𝑛 ∑𝑛

𝑖=1 𝑓(𝑋𝑖).
Let 𝜀 > 0. By WLLN, ℙ(𝑆𝑛 ≥ 𝜇 + 𝜀) → 0 as 𝑛 → ∞. We want to estimate how small
this probability is as a function of 𝑛. Typically, the way we bound ℙ(𝑆𝑛 ≥ 𝜇 + 𝜀) is by
the Chernoff Bound. Alternatively, we have

𝑆𝑛 = 1
𝑛

∑
𝑛

𝑖=1
𝑓(𝑋𝑖) = 1

𝑛
∑

𝑛

𝑖=1
∑
𝑎∈𝐴

𝟙{𝑋𝑖=𝑎}𝑓(𝑎) = ∑
𝑎∈𝐴

̂𝑃𝑛(𝑎)𝑓(𝑎) = 𝔼𝑋∼�̂�𝑛
[𝑓(𝑋)].
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Let 𝐵 be the event 𝐵 = {𝑆𝑛 ≥ 𝜇 + 𝜀}, then we can write 𝐵 as { ̂𝑃𝑛 ∈ 𝐸} where 𝐸 =
{𝑃 ∈ 𝒫 : 𝔼𝑋∼𝑃 [𝑓(𝑋)] ≥ 𝜇 + 𝜀}. But Sanov says that ℙ(𝑆𝑛 ≥ 𝜇 + 𝜀) = ℙ( ̂𝑃𝑛 ∈ 𝐸) ≤
(𝑛 + 1)𝑚𝑒−𝑛𝐷𝑒(𝑃 ∗ ‖ 𝑄) and in fact it tells us that 𝐷𝑒(𝑃 ∗ ‖ 𝑄) = inf{𝐷𝑒(𝑃 ‖ 𝑄) : 𝑃 ∈ 𝐸}
is asymptotically the “correct” exponent.

Proposition 9.15  Let 𝑋𝑛
1  be IID RVs with common PMF 𝑄 on alphabet 𝐴 and 𝑓 :

𝐴 → ℝ have mean 𝜇 = 𝔼[𝑓(𝑋1)]. Let 𝑃 ∗ be the minimiser in Sanov for the event 𝐸 =
{𝑃 ∈ 𝒫 : 𝔼𝑋∼𝑃 [𝑓(𝑋)] ≥ 𝜇 + 𝜀}. Then

∀𝜀 > 0, Λ∗(𝜇 + 𝜀) = 𝐷𝑒(𝑃 ∗ ‖ 𝑄),

where Λ is the log-moment generating function of the 𝑋𝑖.

Proof (Hints) .
• ≤: show that 𝑆𝑛 = 𝔼𝑋∼�̂�𝑛

[𝑓(𝑋)], then use the Chernoff Bound and Sanov.
• ≥: for each 𝜆 ≥ 0, define a PMF on 𝐴 by

𝑃𝜆(𝑎) = 𝑒𝜆𝑓(𝑎)

𝔼[𝑒𝜆𝑓(𝑋1)]
𝑄(𝑎).

• Show that Λ′(𝜆) = 𝔼𝑌 ∼𝑃𝜆
[𝑓(𝑌 )] and Λ″(𝜆) ≥ 0.

• Deduce that there exists 𝜆∗ > 0 such that Λ′(𝜆∗) = 𝜇 + 𝜀, then use the definition of
𝑃 ∗ to conclude the result.

□

Proof .  (≤): Let 𝜀 > 0. We have

𝑆𝑛 = 1
𝑛

∑
𝑛

𝑖=1
𝑓(𝑋𝑖) = 1

𝑛
∑

𝑛

𝑖=1
∑
𝑎∈𝐴

𝟙{𝑋𝑖=𝑎}𝑓(𝑎) = ∑
𝑎∈𝐴

̂𝑃𝑛(𝑎)𝑓(𝑎) = 𝔼𝑋∼�̂�𝑛
[𝑓(𝑋)].

So we have ℙ( ̂𝑃𝑛 ∈ 𝐸) = ℙ(𝑆𝑛 ≥ 𝜇 + 𝜀), hence

Λ∗(𝜇 + 𝜀) ≤ lim inf
𝑛→∞

−1
𝑛

ℙ(𝑆𝑛 ≥ 𝜇 + 𝜀) by the Chernoff Bound

≤ lim
𝑛→∞

−1
𝑛

ln ℙ( ̂𝑃𝑛 ∈ 𝐸)

= 𝐷𝑒(𝑃 ∗ ‖ 𝑄) by Sanov.

(≥): For each 𝜆 ≥ 0, define the PMF 𝑃𝜆 on 𝐴 by

𝑃𝜆(𝑎) = 𝑒𝜆𝑓(𝑎)

𝔼[𝑒𝜆𝑓(𝑋1)]
𝑄(𝑎).

Then

Λ′(𝜆) =
𝔼[𝑓(𝑋1)𝑒𝜆𝑓(𝑋1)]

𝔼[𝑒𝜆𝑓(𝑋1)]
= 1

𝔼[𝑒𝜆𝑓(𝑋1)]
∑
𝑎∈𝐴

𝑄(𝑎)𝑓(𝑎)𝑒𝜆𝑓(𝑎) = 𝔼𝑌 ∼𝑃𝜆
[𝑓(𝑌 )]

and also, a straightforward calculation shows that
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Λ″(𝜆) = Var𝑌 ∼𝑃𝜆
(𝑓(𝑌 )) ≥ 0.

Hence, Λ′(𝜆) is increasing from Λ′(0) = 𝜇 to lim𝜆→∞ Λ′(𝜆) ≕ 𝑓∗, so there exists 𝜆∗ >
0 such that Λ′(𝜆∗) = 𝜇 + 𝜀, hence 𝔼𝑌 ∈𝑃𝜆∗ [𝑓(𝑌 )] = 𝜇 + 𝜀, so 𝑃𝜆∗ ∈ 𝐸. Thus,

𝐷𝑒(𝑃 ∗ ‖ 𝑄) ≤ 𝐷𝑒(𝑃𝜆∗ ‖ 𝑄)

= 𝔼𝑌 ∼𝑃𝜆∗[log 𝑃𝜆∗(𝑌 )
𝑄(𝑌 )

]

= 𝔼𝑌 ∼𝑃𝜆∗[log 𝑒𝜆∗𝑓(𝑌 )

𝔼[𝑒𝜆∗𝑓(𝑋1)]
]

= 𝜆∗𝔼𝑌 ∼𝑃𝜆∗ [𝑓(𝑌 )] − Λ(𝜆∗)

= 𝜆∗(𝜇 + 𝜀) − Λ(𝜆∗) ≤ Λ∗(𝜇 + 𝜀).

□

Corollary 9.16  Let 𝑋𝑛
1  be IID RVs with common PMF 𝑄 on alphabet 𝐴. The

minimiser 𝑃 ∗ in Sanov for the event 𝐸 = {𝑃 ∈ 𝒫 : 𝔼𝑋∼𝑃 [𝑓(𝑋)] ≥ 𝜇 + 𝜀} is unique and
is given by

𝑃 ∗(𝑎) = 𝑃𝜆∗(𝑎) = 𝑒𝜆∗𝑓(𝑎)

𝔼[𝑒𝜆∗𝑓(𝑋1)]
𝑄(𝑎).

where 𝜆∗ > 0 satisfies 𝔼𝑌 ∼𝑃𝜆∗ [𝑓(𝑌 )] = 𝜇 + 𝜀.

Proof (Hints) .  Existence: by above proposition. Uniqueness: use a property of 𝐷(𝑃 ‖ 𝑄)
and the fact that 𝐸 is non-empty, convex and closed. □

Proof .  𝐷(𝑃 ‖ 𝑄) is strictly convex in 𝑃  for fixed 𝑄 and 𝐸 is non-empty, convex and
closed, so the minimising 𝑃 ∗ is unique. The existence is by the proof of the above
proposition. □

Theorem 9.17 (Pythagorean Identity)  Let 𝐸 ⊆ 𝒫 be closed and convex. Let 𝑄 ∉ 𝐸
have full support on 𝐴, and let 𝑃 ∗ achieve the minimum in Sanov’s theorem. Then

∀𝑃 ∈ 𝐸, 𝐷(𝑃 ‖ 𝑄) ≥ 𝐷(𝑃 ‖ 𝑃 ∗) + 𝐷(𝑃 ∗ ‖ 𝑄).

Proof (Hints) .
• For 𝑃 ∈ 𝐸, define 𝑃𝜆 = 𝜆𝑃 + (1 − 𝜆)𝑃 ∗ for 𝜆 ∈ [0, 1]. Show that 𝐷(𝑃𝜆 ‖ 𝑄) ≥

𝐷(𝑃0 ‖ 𝑄) for all 𝜆 ∈ [0, 1].
• Use the derivative of 𝐷𝑒(𝑃𝜆 ‖ 𝑄) at 𝜆 = 0 to obtain the result.

□

Proof .  Let 𝑃 ∈ 𝐸. Define the mixture 𝑃𝜆 = 𝜆𝑃 + (1 − 𝜆)𝑃 ∗ for 0 ≤ 𝜆 ≤ 1. Since 𝐸 is
convex, 𝑃𝜆 ∈ 𝐸 for all 𝜆 ∈ [0, 1], and by definition of 𝑃 ∗, 𝐷(𝑃𝜆 ‖ 𝑄) ≥ 𝐷(𝑃 ∗ ‖ 𝑄) =
𝐷(𝑃0 ‖ 𝑄) for all 𝜆 ∈ [0, 1]. So we have

0 ≤ d
d𝜆

𝐷𝑒(𝑃𝜆 ‖ 𝑄)|
𝜆=0
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= d
d𝜆

∑
𝑎∈𝐴

𝑃𝜆(𝑎) ln 𝑃𝜆(𝑎)
𝑄(𝑎)

|
𝜆=0

= ∑
𝑎∈𝐴

(𝑃 (𝑎) − 𝑃 ∗(𝑎)) ln 𝑃𝜆(𝑎)
𝑄(𝑎)

|
𝜆=0

+ ∑
𝑎∈𝐴

(𝑃 (𝑎) − 𝑃 ∗(𝑎))

= ∑
𝑎∈𝐴

𝑃(𝑎) ln 𝑃 ∗(𝑎)𝑃 (𝑎)
𝑄(𝑎)𝑃(𝑎)

− ∑
𝑎∈𝐴

𝑃 ∗(𝑎) ln 𝑃 ∗(𝑎)
𝑄(𝑎)

= 𝐷𝑒(𝑃 ‖ 𝑄) − 𝐷𝑒(𝑃 ‖ 𝑃 ∗) − 𝐷𝑒(𝑃 ∗ ‖ 𝑄).

□

Remark 9.18
• The Pythagorean Identity is an 𝐿2-style bound: the minimiser 𝑃 ∗ can be viewed as

the “orthogonal projection” of 𝑄 onto 𝐸.
• The Pythagorean Identity provides a quantatitive version of the uniqueness state-

ment in Corollary 9.16: if 𝐷(𝑃 ‖ 𝑄) = 𝐷(𝑃 ∗ ‖ 𝑄), then 𝑃 = 𝑃 ∗; additionally, if
𝐷(𝑃 ‖ 𝑄) ≤ 𝐷(𝑃 ∗ ‖ 𝑄) + 𝛿 (i.e. 𝐷(𝑃 ‖ 𝑄) is close to 𝐷(𝑃 ∗ ‖ 𝑄)), then 𝐷(𝑃 ‖ 𝑃 ∗) ≤
𝛿 (i.e. 𝑃  is close to 𝑃 ∗).

9.3. The Gibbs conditioning principle
Lemma 9.19  Let {𝑍𝑛 : 𝑛 ∈ ℕ} be a bounded sequence of RVs which converges to 𝑧 ∈
ℝ in probability. Then

𝔼[𝑍𝑛] → 𝑐 as 𝑛 → ∞.

Proof (Hints) .  Use Jensen’s inequality, then split the expectation into two terms, one
bounded above by 𝜀, the other → 0, to show that |𝔼[𝑍𝑛] − 𝑐| → 0. □

Proof .  Let 𝜀 > 0. Since the 𝑍𝑛 are bounded, we have |𝑍𝑛| ≤ 𝑀  for all 𝑛 ∈ ℕ, for some
constant 𝑀 . By Jensen's Inequality,

|𝔼[𝑍𝑛] − 𝑧| ≤ 𝔼[|𝑍𝑛 − 𝑧|] = 𝔼[|𝑍𝑛 − 𝑧| ⋅ 𝟙{|𝑍𝑛−𝑧|≤𝜀}] + 𝔼[|𝑍𝑛 − 𝑧| ⋅ 𝟙{|𝑍𝑛−𝑧|>𝜀}].

The first term is bounded above by 𝜀. The second term is bounded above by

(𝑀 + |𝑧|) ⋅ 𝔼[𝟙{|𝑍𝑛−𝑧|>𝜀}] = (𝑀 + |𝑧|) ⋅ ℙ(|𝑍𝑛 − 𝑧| > 𝜀) → 0 as 𝑛 → ∞.

Thus, lim sup𝑛→∞|𝔼[𝑍𝑛] − 𝑐| ≤ 𝜀, and 𝜀 > 0 was arbitrary. □

Theorem 9.20 (Gibbs' Conditioning Principle)  Let 𝑋𝑛
1  be IID with common PMF 𝑄

which has full support on 𝐴. Let ̂𝑃𝑛 be the empirical distribution of 𝑋𝑛
1 . If 𝐸 ⊆ 𝒫 is

closed, convex, has non-empty interior, and 𝑄 ∉ 𝐸, then

∀𝑎 ∈ 𝐴, 𝔼[ ̂𝑃𝑛(𝑎) | ̂𝑃𝑛 ∈ 𝐸] = ℙ(𝑋1 = 𝑎 | ̂𝑃𝑛 ∈ 𝐸) → 𝑃 ∗(𝑎) as 𝑛 → ∞.

Proof (Hints) .
• Showing the equality is straightforward.
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• Define 𝐵(𝑄, 𝛿) ≔ {𝑃 ∈ 𝒫 : 𝐷(𝑃 ‖ 𝑄) ≤ 𝐷(𝑃 ∗ ‖ 𝑄) + 𝛿}, 𝐶 = 𝐵(𝑄, 2𝛿) ∩ 𝐸 and 𝐷 =
𝐸 \ 𝐶.

• Show that ℙ( ̂𝑃𝑛 ∈ 𝐷 | ̂𝑃𝑛 ∈ 𝐸) ≤ (𝑛 + 1)2𝑚2−𝑛𝛿.
• Use the Pythagorean Identity and Pinsker's Inequality to show that ℙ(| ̂𝑃𝑛(𝑎) −

𝑃 ∗(𝑎)| > 𝜀 | ̂𝑃𝑛 ∈ 𝐸) → 0.

□

Proof .  The conditional distribution of each 𝑋𝑖 given ̂𝑃𝑛 ∈ 𝐸 is the same, so

𝔼[ ̂𝑃𝑛(𝑎) | ̂𝑃𝑛 ∈ 𝐸] = 1
𝑛

∑
𝑛

𝑖=1
ℙ(𝑋𝑖 = 𝑎 | ̂𝑃𝑛 ∈ 𝐸) = ℙ(𝑋1 = 𝑎 | ̂𝑃𝑛 ∈ 𝐸).

Define the relative entropy neighbourhoods

𝐵(𝑄, 𝛿) ≔ {𝑃 ∈ 𝒫 : 𝐷(𝑃 ‖ 𝑄) ≤ 𝐷(𝑃 ∗ ‖ 𝑄) + 𝛿},

and write 𝐶 = 𝐵(𝑄, 2𝛿) ∩ 𝐸 and 𝐷 = 𝐸 \ 𝐶.

Then

ℙ( ̂𝑃𝑛 ∈ 𝐷 | ̂𝑃𝑛 ∈ 𝐸) = ℙ( ̂𝑃𝑛 ∈ 𝐷)
ℙ( ̂𝑃𝑛 ∈ 𝐸)

.

By Sanov,

ℙ( ̂𝑃𝑛 ∈ 𝐷) ≤ (𝑛 + 1)𝑚2−𝑛 inf{𝐷(𝑃 ‖ 𝑄):𝑃∈𝐷} ≤ (𝑛 + 1)𝑚2−𝑛(𝐷(𝑃 ∗ ‖ 𝑄)+2𝛿)

and for the denominator, since {𝒫𝑛 : 𝑛 ∈ ℕ} is dense in 𝒫, 𝒫𝑛 eventually intersects
every open set in 𝒫, so eventually 𝐵(𝑄, 𝛿) ∩ 𝐸 ∩ 𝒫𝑛 is non-empty (since 𝐸 has non-
empty interior). So we can eventually find 𝑃𝑛 ∈ 𝒫𝑛 ∩ 𝐸 ∩ 𝐵(𝑄, 𝛿). By Proposition 9.8,

ℙ( ̂𝑃𝑛 ∈ 𝐸) ≥ ℙ( ̂𝑃𝑛 ∈ 𝐵(𝑄, 𝛿) ∩ 𝐸)

≥ ℙ( ̂𝑃𝑛 = 𝑃𝑛) = 𝑄𝑛(𝑇 (𝑃𝑛))

≥ (𝑛 + 1)−𝑚2−𝑛𝐷(𝑃𝑛 ‖ 𝑄)

≥ (𝑛 + 1)−𝑚2−𝑛(𝐷(𝑃 ∗ ‖ 𝑄)+𝛿),

since 𝑃𝑛 ∈ 𝐵(𝑄, 𝛿). Combining these, we obtain

ℙ( ̂𝑃𝑛 ∈ 𝐷 | ̂𝑃𝑛 ∈ 𝐸) ≤ (𝑛 + 1)2𝑚2−𝑛𝛿 → 0 as 𝑛 → ∞.

For 𝑃 ∈ 𝐶, by the Pythagorean Identity,

𝐷(𝑃 ∗ ‖ 𝑄) ≥ 𝐷(𝑃 ‖ 𝑄) ≥ 𝐷(𝑃 ‖ 𝑃 ∗) + 𝐷(𝑃 ∗ ‖ 𝑄),

thus 𝐷(𝑃 ‖ 𝑃 ∗) ≤ 2𝛿. So

ℙ(𝐷( ̂𝑃𝑛 ‖ 𝑃 ∗) ≤ 2𝛿 | ̂𝑃𝑛 ∈ 𝐸) ≥ ℙ( ̂𝑃𝑛 ∈ 𝐶 | ̂𝑃𝑛 ∈ 𝐸) → 1 as 𝑛 → ∞.

Hence by Pinsker's Inequality, since 𝛿 > 0 was arbitrary,
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ℙ(‖ ̂𝑃𝑛 − 𝑃 ∗‖
TV

> 𝜀 | ̂𝑃𝑛 ∈ 𝐸) → 0 as 𝑛 → ∞

for all 𝜀 > 0. Thus also, ℙ(| ̂𝑃𝑛(𝑎) − 𝑃 ∗(𝑎)| > 𝜀 | ̂𝑃𝑛 ∈ 𝐸) → 0. So, conditional on ̂𝑃𝑛 ∈
𝐸, ̂𝑃𝑛 → 𝑃 ∗ in probability as 𝑛 → ∞. Therefore, since ( ̂𝑃𝑛(𝑎)) is a bounded sequence,
we also have 𝔼[ ̂𝑃𝑛(𝑎) | ̂𝑃𝑛 ∈ 𝐸] → 𝑃 ∗(𝑎) as 𝑛 → ∞ by Lemma 9.19. □

Example 9.21  Suppose a fair die is rolled 1000 times, and the observed average of
the rolls is at least 5. What proportion of the rolls was a 6?

Let 𝑋1000
1  be IID RVs with uniform distribution 𝑄 on 𝐴 = {1, 2, 3, 4, 5, 6}. Let 𝑓(𝑥) = 𝑥,

𝜇 = 𝔼[𝑋1000
1 ] = 3.5, let 𝐸 = {𝑃 ∈ 𝒫 : 𝔼𝑋∼𝑃 [𝑋] ≥ 5}. By Corollary 9.16, the minimiser

𝑃 ∗ is unique and is given by

𝑃 ∗(𝑎) = 𝑒𝜆∗𝑎

∑6
𝑘=1 𝑒𝜆∗𝑘

, ∀𝑎 ∈ 𝐴,

where 𝜆∗ > 0 is such that 𝔼𝑌 ∼𝑃𝜆∗ [𝑌 ] = 5. We can directly compute 𝜆∗ ≈ 0.63 and so

𝑃 ∗ ≈ (0.021, 0.039, 0.14, 0.25, 0.48)

So we expect that about 48% of the rolls were 6.

9.4. Error probability in fixed-rate data compression
Theorem 9.22  Let 𝑿 = {𝑋𝑛 : 𝑛 ∈ ℕ} be a memoryless source with entropy 𝐻 =
𝐻(𝑋1) and with PMF 𝑄 which has full support on finite alphabet 𝐴. For any rate 𝑅
with 𝐻 < 𝑅 < log|𝐴|,
• ⟹: There is a fixed-rate code {𝐵∗

𝑛 : 𝑛 ∈ ℕ} with asymptotic rate no more than 𝑅
bits/symbol:

lim sup
𝑛→∞

1
𝑛

(1 + ⌈log|𝐵∗
𝑛|⌉) = lim sup

𝑛→∞

1
𝑛

log|𝐵∗
𝑛| ≤ 𝑅,

and with probability of error 𝑃 (𝑛)
𝑒  that decays to zero exponentially fast:

lim sup
𝑛→∞

1
𝑛

log 𝑃 (𝑛)
𝑒 ≤ −𝐷∗,

where

𝐷∗ = inf{𝐷(𝑃 ‖ 𝑄) : 𝐻(𝑃) ≥ 𝑅}.
• ⟸: for any fixed-rate code {𝐵𝑛 : 𝑛 ∈ ℕ} with asymptotic rate no more than 𝑅 bits/

symbol:

lim sup
𝑛→∞

1
𝑛

(1 + ⌈log|𝐵𝑛|⌉) = lim sup
𝑛→∞

1
𝑛

log|𝐵𝑛| ≤ 𝑅,

then its probability of error 𝑃 (𝑛)
𝑒  cannot decay faster than exponentially with

exponent 𝐷∗:
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lim inf
𝑛→∞

1
𝑛

log 𝑃 (𝑛)
𝑒 ≥ −𝐷∗.

Proof (Hints) .
• ⟹: let 𝐵∗

𝑛 be the codebook which is a union over an appropriate set of type classes.
• ⟸: explain why there is 𝛿 > 0 such that inf{𝐷(𝑃 ‖ 𝑄) : 𝐻(𝑃) ≥ 𝑅 + 𝛿} ≤ 𝐷∗ + 𝜀.
• Explain why, for all 𝑛 large enough, there is 𝑃𝑛 ∈ 𝒫𝑛 such that 𝐻(𝑃𝑛) ≥ 𝑅 + 𝛿/2

and 𝐷(𝑃𝑛 ‖ 𝑄) ≤ 𝐷∗ + 2𝜀.
• Show that |𝐵𝑛|/|𝑇 (𝑃𝑛)| → 0 as 𝑛 → ∞, and hence that 𝑃 (𝑛)

𝑒 ≥ 1
2(𝑛 + 1)−𝑚2−𝑛(𝐷∗+2𝜀)

eventually.

□

Proof .  ⟹: define the codebook

𝐵∗
𝑛 = ⋃

𝑃∈𝒫𝑛
𝐻(𝑃)<𝑅

𝑇 (𝑃).

Then by Proposition 9.4 and Proposition 9.8,

|𝐵∗
𝑛| = ∑

𝑃∈𝒫𝑛
𝐻(𝑃)<𝑅

|𝑇 (𝑃 )| ≤ ∑
𝑃∈𝒫𝑛

𝐻(𝑃)<𝑅

2𝑛𝐻(𝑃) ≤ (𝑛 + 1)𝑚2𝑛𝑅,

and so lim sup𝑛→∞
1
𝑛 log|𝐵∗

𝑛| ≤ 𝑅. For the probability of error,

𝑃 (𝑛)
𝑒 = ℙ(𝑋𝑛

1 ∉ 𝐵∗
𝑛) = 𝑄𝑛

(
((
((
(

⋃
𝑃∈𝒫𝑛

𝐻(𝑃)≥𝑅

𝑇 (𝑃)

)
))
))
)

≤ ∑
𝑃∈𝒫𝑛

𝐻(𝑃)≥𝑅

𝑄𝑛(𝑇 (𝑃 )) ≤ (𝑛 + 1)𝑚2−𝑛𝐷∗ .

⟸: let 𝜀 > 0 be arbitrary. By continuity, there is a 𝛿 > 0 such that

inf{𝐷(𝑃 ‖ 𝑄) : 𝐻(𝑃) ≥ 𝑅 + 𝛿} ≤ 𝐷∗ + 𝜀.

Since the 𝑛-types {𝑃𝑛 : 𝑛 ∈ ℕ} are dense in 𝒫, for all 𝑛 large enough, we can find 𝑃𝑛 ∈
𝒫𝑛 such that 𝐻(𝑃𝑛) ≥ 𝑅 + 𝛿/2 and 𝐷(𝑃𝑛 ‖ 𝑄) ≤ 𝐷∗ + 2𝜀. Also, by assumption, there
is a sequence (𝑟𝑛) such that 1

𝑛 log|𝐵𝑛| ≤ 𝑅 + 𝑟𝑛 and 𝑟𝑛 → 0. Now

|𝐵𝑛|
|𝑇 (𝑃𝑛)|

≤ 2𝑛(𝑅+𝑟𝑛)

(𝑛 + 1)−𝑚2𝑛𝐻(𝑃𝑛) = (𝑛 + 1)𝑚2𝑛(𝑅−𝐻(𝑃𝑛)+𝑟𝑛)

≤ (𝑛 + 1)𝑚2𝑛(𝑟𝑛−𝛿/2) → 0 as 𝑛 → ∞.

So |𝐵𝑛|/|𝑇 (𝑃𝑛)| ≤ 1/2 eventually. Then, for an arbitrary string 𝑥𝑛
1 ∈ 𝑇(𝑃𝑛), we have

𝑃 (𝑛)
𝑒 = ℙ(𝑋𝑛

1 ∈ 𝐵𝑐
𝑛) ≥ ℙ(𝑋𝑛

1 ∈ 𝑇(𝑃𝑛) ∩ 𝐵𝑐
𝑛)

= |𝑇 (𝑃𝑛) ∩ 𝐵𝑐
𝑛|𝑄𝑛(𝑥𝑛

1 ) = |𝑇 (𝑃𝑛) ∩ 𝐵𝑐
𝑛|

|𝑇 (𝑃𝑛)|
𝑄𝑛(𝑇 (𝑃𝑛))
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≥ (1 − |𝑇 (𝑃𝑛) ∩ 𝐵𝑛|
|𝑇 (𝑃𝑛)|

)(𝑛 + 1)−𝑚2−𝑛𝐷(𝑃𝑛 ‖ 𝑄)

≥ (1 − |𝐵𝑛|
|𝑇 (𝑃𝑛)|

)(𝑛 + 1)−𝑚2−𝑛𝐷(𝑃𝑛 ‖ 𝑄)

≥ 1
2
(𝑛 + 1)−𝑚2−𝑛(𝐷∗+2𝜀) eventually

Thus,

lim inf
𝑛→∞

1
𝑛

log 𝑃 (𝑛)
𝑒 ≥ −(𝐷∗ + 2𝜀),

and since 𝜀 > 0 was arbitrary, we are done. □

Remark 9.23
• Theorem 9.22 gives the rate at which the error probabilities 𝑃 (𝑛)

𝑒  of the codes in the
Fixed-rate Coding Theorem decay.

• Note that the code 𝐵∗
𝑛 is universal: it achieves the optimal error probability at rate

𝑅 simultaneously for all memoryless sources with entropy 𝐻 < 𝑅.
• The Fixed-rate Coding Theorem says that 𝑃 (𝑛)

𝑒  cannot tend to zero if 𝑅 < 𝐻. In
fact, it is possible to show a “strong converse” of the Fixed-rate Coding Theorem,
which says that in this case, 𝑃 (𝑛)

𝑒 → 1 exponentially fast.

10. Variable-rate lossless data compression
Notation 10.1  Let {0, 1}∗ denote the set of all binary strings of finite length.

Definition 10.2  A variable-rate lossless compression code of block length 𝑛 on
a finite alphabet 𝐴 is an injective map 𝐶𝑛 : 𝐴𝑛 → {0, 1}∗ which maps source strings to
codewords. 𝐶𝑛 is also known as the encoder.

Each 𝐶𝑛 has an associated length function 𝐿𝑛 : 𝐴𝑛 → ℕ, defined as

𝐿𝑛(𝑥𝑛
1 ) = length of 𝐶𝑛(𝑥𝑛

1 ).

Definition 10.3  A code 𝐶𝑛 is prefix-free if for all 𝑥𝑛
1 ≠ 𝑦𝑛

1 ∈ {0, 1}𝑛, the codeword
𝐶𝑛(𝑥𝑛

1 ) is not a prefix (an initial segment) of 𝐶𝑛(𝑦𝑛
1 ).

Example 10.4

𝑥 𝐶(𝑥)
𝑎 00
𝑏 01
𝑐 10
𝑑 11

𝑥 𝐶(𝑥)
𝑎 0
𝑏 10
𝑐 110
𝑑 111

𝑥 𝐶(𝑥)
𝑎 0
𝑏 00
𝑐 110
𝑑 111

𝑥 𝐶(𝑥)
𝑎 0
𝑏 1
𝑐 00
𝑑 11

The first two codes are prefix-free, the last two are not.

Remark 10.5  An advantage of prefix-free codes is that once a full codeword is received,
it is guaranteed to be that codeword and not the start of another.
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Theorem 10.6 (Kraft's Inequality)
• (⟹): for any length function 𝐿𝑛 : 𝐴𝑛 → ℕ satisfying Kraft’s inequality:

∑
𝑥𝑛

1 ∈𝐴𝑛

2−𝐿𝑛(𝑥𝑛
1 ) ≤ 1,

there is a prefix-free code 𝐶𝑛 on 𝐴𝑛 with length function 𝐿𝑛.
• (⟸): the length function of any prefix-free code satisfies Kraft’s inequality.

Proof (Hints) .  For both directions, consider the complete binary tree of depth
max{𝐿𝑛(𝑥𝑛

1 ) : 𝑥𝑛
1 ∈ 𝐴𝑛}. □

Proof .  ⟸: let 𝐶𝑛 be a prefix-free code with length function 𝐿𝑛. Let 𝐿∗ = max{𝐿𝑛(𝑥𝑛
1 ) :

𝑥𝑛
1 ∈ 𝐴𝑛} and consider the complete binary tree of depth 𝐿∗. If we mark all the

codewords on the tree, then the prefix-free property implies that no codeword is a
descendant of any other codeword. Each codeword 𝐶𝑛(𝑥𝑛

1 ) has 2𝐿∗−𝐿𝑛(𝑥𝑛
1 ) descendants

(possibly including itself) at depth 𝐿∗. The prefix-free property also implies that these
descendants are disjoint for different codewords. Since the total number of leaves at
depth 𝐿∗ is 2𝐿∗ , we have

2𝐿∗ ≥ ∑
𝑥𝑛

1 ∈𝐴𝑛

2𝐿∗−𝐿𝑛(𝑥𝑛
1 ).

⟹: given a length function 𝐿𝑛 satisfying Kraft’s inequality, consider the complete
binary tree of depth 𝐿∗ = max{𝐿𝑛(𝑥𝑛

1 ) : 𝑥𝑛
1 ∈ 𝐴𝑛}. Then, ordering the 𝑥𝑛

1 ∈ 𝐴𝑛 in the
order of increasing 𝐿𝑛(𝑥𝑛

1 ), assign to each 𝑥𝑛
1  (in order) any available node (i.e. any

node that is not a prefix or descandant of any codewords already assigned) at depth
𝐿𝑛(𝑥𝑛

1 ). Kraft’s inequality guarantees that there will always be such a node. □

Remark 10.7  Kraft's Inequality informally says “not all codelengths for prefix-free
codes can be short”.

10.1. The codes-distributions correspondence
Theorem 10.8 (Codes-distributions Correspondence)
• ⟹: for any PMF 𝑄𝑛 on 𝐴𝑛, there is a prefix-free code 𝐶∗

𝑛 with length function 𝐿∗
𝑛

such that

∀𝑥𝑛
1 ∈ 𝐴𝑛, 𝐿∗

𝑛(𝑥𝑛
1 ) < − log 𝑄𝑛(𝑥𝑛

1 ) + 1
• ⟸: for any prefix-free code 𝐶𝑛 with length function 𝐿𝑛, there is a PMF 𝑄𝑛 on 𝐴𝑛

such that

∀𝑥𝑛
1 ∈ 𝐴𝑛, − log 𝑄𝑛(𝑥𝑛

1 ) ≤ 𝐿𝑛(𝑥𝑛
1 ).

Proof (Hints) .
• ⟹: straightforward.
• ⟸: consider Kraft's Inequality to define a suitable 𝑄𝑛.

□
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Proof .  ⟹: Let 𝐿∗
𝑛(𝑥𝑛

1 ) = ⌈− log 𝑄𝑛(𝑥𝑛
1 )⌉ < − log 𝑄𝑛(𝑥𝑛

1 ) + 1. 𝐿∗
𝑛 satisfies Kraft’s in-

equality:

∑
𝑥𝑛

1 ∈𝐴𝑛

2−𝐿𝑛(𝑥𝑛
1 ) = ∑

𝑥𝑛
1 ∈𝐴𝑛

2−⌈− log 𝑄𝑛(𝑥𝑛
1 )⌉ ≤ ∑

𝑥𝑛
1 ∈𝐴𝑛

2log 𝑄𝑛(𝑥𝑛
1 ) = ∑

𝑥𝑛
1 ∈𝐴𝑛

𝑄𝑛(𝑥𝑛
1 ) = 1.

So we are done by the first part of Kraft's Inequality.

⟸: define the PMF 𝑄𝑛 on 𝐴𝑛 by

𝑄𝑛(𝑥𝑛
1 ) = 2−𝐿𝑛(𝑥𝑛

1 )

∑𝑦𝑛
1 ∈𝐴𝑛 2−𝐿𝑛(𝑦𝑛

1 ) .

Then

− log 𝑄𝑛(𝑥𝑛
1 ) = 𝐿𝑛(𝑥𝑛

1 ) + log
(
(( ∑

𝑦𝑛
1 ∈𝐴𝑛

2−𝐿𝑛(𝑦𝑛
1 )

)
)) ≤ 𝐿𝑛(𝑥𝑛

1 ).

since 𝐿𝑛 satisfies Kraft’s inequality (i.e. ∑𝑦𝑛
1 ∈𝐴𝑛 2−𝐿𝑛(𝑦𝑛

1 ) ≤ 1). □

Remark 10.9
• Codes-distributions Correspondence says that the performance of any prefix-free can

be dominated by a code with length function 𝐿𝑛(𝑥𝑛
1 ) ≈ − log 𝑄𝑛(𝑥𝑛

1 ) for some PMF
𝑄𝑛 on 𝐴𝑛, and that for any distribution 𝑄𝑛 such a code exists. So finding a good
code is equivalent to finding a good distribution. This assumes nothing about the
distribution of the source 𝑋𝑛

1  or the block length 𝑛.

Theorem 10.10  Let 𝑋𝑛
1  have PMF 𝑃𝑛 on 𝐴𝑛.

⟹: there is a prefix-free code 𝐶∗
𝑛 with length function 𝐿∗

𝑛 that achieves an expected
description length of

𝔼[𝐿∗
𝑛(𝑋𝑛

1 )] < 𝐻(𝑋𝑛
1 ) + 1.

⟸: for any prefix-free code 𝐶𝑛 with length function 𝐿𝑛 on 𝐴𝑛,

𝔼[𝐿𝑛(𝑋𝑛
1 )] ≥ 𝐻(𝑋𝑛

1 ).

Proof (Hints) .  Straightforward. □

Proof .  ⟹: let 𝐶∗
𝑛 be the code with length function 𝐿∗

𝑛(𝑥𝑛
1 ) = ⌈− log 𝑃𝑛(𝑥𝑛

1 )⌉ as in the
Codes-distributions Correspondence. Then

𝔼[𝐿∗
𝑛(𝑋𝑛

1 )] < 𝔼[− log 𝑃𝑛(𝑋𝑛
1 ) + 1] = 𝐻(𝑋𝑛

1 ) + 1.

⟸: let 𝑄𝑛 be as in the Codes-distributions Correspondence. Then

𝔼[𝐿𝑛(𝑋𝑛
1 )] ≥ 𝔼[− log 𝑄𝑛(𝑋𝑛

1 )]

= 𝔼[log( 1
𝑃𝑛(𝑋𝑛

1 )
⋅ 𝑃𝑛(𝑋𝑛

1 )
𝑄𝑛(𝑋𝑛

1 )
)]
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= 𝔼[− log 𝑃𝑛(𝑋𝑛
1 )] + 𝔼[log 𝑃𝑛(𝑋𝑛

1 )
𝑄𝑛(𝑋𝑛

1 )
]

= 𝐻(𝑋𝑛
1 ) + 𝐷(𝑃𝑛 ‖ 𝑄𝑛) ≥ 𝐻(𝑋𝑛

1 ).

□

Corollary 10.11  Let 𝑿 = {𝑋𝑛 : 𝑛 ∈ ℕ} be a stationary source with entropy rate
𝐻 = 𝐻(𝑿). Then 𝐻 is the best asymptotically achievable compression rate among all
variable-rate prefix-free codes:

lim
𝑛→∞

inf
(𝐶𝑛,𝐿𝑛) prefix-free

1
𝑛

𝔼[𝐿𝑛(𝑋𝑛
1 )] = 𝐻.

Proof (Hints) .  Straightforward. □

Proof .  By Theorem 10.10,

1
𝑛

𝐻(𝑋𝑛
1 ) ≤ inf

(𝐶𝑛,𝐿𝑛) prefix-free

1
𝑛

𝔼[𝐿𝑛(𝑋𝑛
1 )] < 1

𝑛
(𝐻(𝑋𝑛

1 ) + 1).

□

10.2. Shannon codes and their properties
Definition 10.12  A Shannon code for a distribution 𝑄𝑛 on 𝐴𝑛 is a code with length
function

𝐿𝑛(𝑥𝑛
1 ) ≔ ⌈− log 𝑄𝑛(𝑥𝑛

1 )⌉.

Note this is the code used in the proof of the Codes-distributions Correspondence.

Remark 10.13
• Shannon codes do not always achieve the optimal (minimal) expected description

length 𝔼[𝐿𝑛(𝑋𝑛
1 )], which is achieved instead by the Huffman code. However, the

difference between the expected description lengths of these codes is less than one
bit by Theorem 10.10.

• Shannon codes give shorter descriptions to likely messages and longer descriptions
to unlikely messages.

Definition 10.14  We call the 𝐿𝑛(𝑥𝑛
1 ) = − log 𝑄𝑛(𝑥𝑛

1 ) for 𝑥𝑛
1 ∈ 𝐴𝑛 the ideal Shannon

codelengths.

Theorem 10.15 (Competitive Optimality of Shannon Codes)  Let 𝑃𝑛 be a distribution
on 𝐴𝑛 and 𝑋𝑛

1 ∼ 𝑃𝑛. For any other PMF 𝑄𝑛 on 𝐴𝑛,

ℙ(− log 𝑄𝑛(𝑋𝑛
1 ) ≤ − log 𝑃𝑛(𝑋𝑛

1 ) − 𝐾) ≤ 2−𝐾 .

Proof (Hints) .  Use Markov’s inequality. □

Proof .  By Markov’s inequality, we have

ℙ(− log 𝑄𝑛(𝑋𝑛
1 ) ≤ − log 𝑃𝑛(𝑋𝑛

1 ) − 𝐾) = ℙ(𝑄𝑛(𝑋𝑛
1 )

𝑃𝑛(𝑋𝑛
1 )

≥ 2𝐾)
□
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≤ 2−𝐾𝔼[𝑄𝑛(𝑋𝑛
1 )

𝑃𝑛(𝑋𝑛
1 )

]

= 2−𝐾 ∑
𝑥𝑛

1 ∈𝐴𝑛

𝑃𝑛(𝑥𝑛
1 ) ⋅ 𝑄𝑛(𝑥𝑛

1 )
𝑃𝑛(𝑥𝑛

1 )

= 2−𝐾 .

11. Universal data compression
In this chapter, assume that we want to compress a message 𝑥𝑛

1 ∈ {0, 1}𝑛 where each
𝑥𝑖 is produced by an unknown distribution 𝑃 = 𝑃𝜃∗ which belongs to the parametric
family {𝑃𝜃 ∼ Bern(𝜃) : 𝜃 ∈ (0, 1)}. We also assume codelengths can be non-integral for
simplicity, since the actual codelength differs by at most one bit.

Note that in this case, 𝜃MLE = 𝑘/𝑛 where 𝑘 is the number of 1s in 𝑥𝑛
1 . So the maximum

likelihood distribution for 𝑥𝑛
1  amsong all 𝑃𝜃 is its type ̂𝑃𝑛, and by Proposition 9.5, for

all 𝜃 ∈ Θ,

− log 𝑃𝜃MLE
(𝑥𝑛

1 ) = 𝑛𝐻( ̂𝑃𝑛) ≤ − log 𝑃𝑛
𝜃 (𝑥𝑛

1 ).

Definition 11.1  The MLE code first describes ̂𝜃MLE to the decoder, then describes
𝑥𝑛

1  using the Shannon code for 𝑃 ̂𝜃MLE
.

Proposition 11.2  The description length of the MLE code is

𝑛𝐻( ̂𝑃𝑛) + log(𝑛 + 1).

In particular, the price of universality of the MLE code is log 𝑛 bits.

Proof (Hints) .  Trivial. □

Proof .  𝜃MLE = 𝑘/𝑛 where 𝑘 is the number of 1s in 𝑥𝑛
1 , so 𝑘 ∈ {0, …, 𝑛}. So 𝑘 can be

described using log(𝑛 + 1) bits. 𝑥𝑛
1  is described using − log 𝑃𝑛

𝜃MLE
(𝑥𝑛

1 ) = 𝑛𝐻( ̂𝑃𝑛) bits.□

Proposition 11.3  The expected description length of the MLE code is bounded above
by

𝑛𝐻(𝑃𝑛
𝜃∗) + log(𝑛 + 1).

In particular, the price of universality in expectation of the MLE code is log 𝑛 bits.

Proof (Hints) .  Straightforward. □

Proof .  The expected description length is

log(𝑛 + 1) + 𝔼[− log 𝑃𝑛
𝜃MLE

(𝑋𝑛
1 )] ≤ log(𝑛 + 1) + 𝔼[− log 𝑃𝑛

𝜃∗(𝑋𝑛
1 )]

= log(𝑛 + 1) + 𝑛𝐻(𝑃𝜃∗). □

Definition 11.4  The counting code first describes 𝜃MLE = 𝑘/𝑛 to the decoder, then
describes the index of 𝑥𝑛

1  in the ordered list of (𝑛
𝑘 ) binary strings containing 𝑘 1s.

Proposition 11.5  The description length of the counting code is
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log(𝑛 + 1) + log(𝑛
𝑘

).

Proof (Hints) .  Trivial. □

Proof .  Trivial. □

Definition 11.6  Given a parametric family of distributions {𝑃𝜃 : 𝜃 ∈ Θ}, the uniform
mixture of {𝑃𝑛

𝜃 : 𝜃 ∈ Θ} is the PMF 𝑄𝑛 on 𝐴𝑛 defined by

𝑄𝑛(𝑥𝑛
1 ) = ∫

1

0
𝑃𝑛

𝜃 (𝑥𝑛
1 ) d𝜃.

Definition 11.7  The mixture code is the Shannon code for the uniform mixture 𝑄𝑛
of the 𝑃𝑛

𝜃 .

Lemma 11.8  For all 𝑘, ℓ ∈ ℕ0,

∫
1

0
𝜃𝑘(1 − 𝜃)ℓ d𝜃 = 𝑘!ℓ!

(𝑘 + ℓ + 1)!
.

Proof .  Exercise. □

Proposition 11.9  The description length of the mixture code is

log(𝑛 + 1) + log(𝑛
𝑘

).

Proof (Hints) .  Straightforward. □

Proof .  The uniform mixture is

𝑄𝑛(𝑥𝑛
1 ) = ∫

1

0
𝜃𝑘(1 − 𝜃)𝑛−𝑘 d𝜃,

where 𝑘 is the number of 1s in 𝑥𝑛
1 . By the above lemma with ℓ = 𝑛 − 𝑘, the description

length is

− log 𝑄𝑛(𝑥𝑛
1 ) = − log 𝑘!(𝑛 − 𝑘)!

(𝑛 + 1)!
= log(𝑛 + 1) + log(𝑛

𝑘
).

□

Definition 11.10  The predictive code describes the message 𝑥𝑛
1  in steps instead

of describing it all at once: having already communicated 𝑥𝑖
1, the encoder and decoder

calculate the estimate

̂𝜃𝑖 = 𝑘𝑖 + 1
𝑖 + 2

,

where 𝑘𝑖 is the number of 1s in 𝑥𝑖
1. Since ̂𝜃𝑖 is known to the decoder, the encoder then

describes 𝑥𝑖+1 using − log 𝑃 ̂𝜃𝑖
(𝑥𝑖+1) bits. This is repeated for each 𝑖 = 1, …, 𝑛 − 1.

Proposition 11.11  The description length of the predictive code is
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log(𝑛 + 1) + log(𝑛
𝑘

),

where 𝑘 is the number of 1s in 𝑥𝑛
1 .

Proof (Hints) .  Straightforward. □

Proof .  We have 𝑘0 = 0 so ̂𝜃0 = 1/2. The description length is

∑
𝑛

𝑖=1
− log 𝑃 ̂𝜃𝑖−1

(𝑥𝑖) = ∑
𝑛

𝑖=1
− log( ̂𝜃𝑥𝑖

𝑖−1(1 − ̂𝜃𝑖−1)
1−𝑥𝑖)

= − ∑
𝑛

𝑖=1
(𝑥𝑖 log ̂𝜃𝑖−1 + (1 − 𝑥𝑖) log(1 − ̂𝜃𝑖−1))

= − ∑
𝑛

𝑖=1
(𝑥𝑖 log 𝑘𝑖−1 + 1

𝑖 + 1
+ (1 − 𝑥𝑖) log 𝑖 − 𝑘𝑖−1

𝑖 + 1
)

= − ∑
𝑖:𝑥𝑖=1

log(𝑘𝑖−1) − ∑
𝑖:𝑥𝑖=0

log(𝑖 − 𝑘𝑖−1) + ∑
𝑛

𝑖=1
log(𝑖 + 1)

= − log(𝑘𝑛!) − log((𝑛 − 𝑘𝑛)!) + log((𝑛 + 1)!)

= log(𝑛 + 1) + log(𝑛
𝑘

).

□

Lemma 11.12  Let 𝑛 ∈ ℕ, 0 ≤ 𝑘 ≤ 𝑛 and 𝑝 = 𝑘/𝑛. Then

(𝑛
𝑘

) ≤ 1
√2𝜋𝑛𝑝(1 − 𝑝)

⋅ 2𝑛𝐻(Bern(𝑝)).

Proof .  Exercise. □

Definition 11.13  The Fisher information for a parametric family of PMFS {𝑃𝜃 :
𝜃 ∈ Θ} is defined as

𝐽(𝜃) ≔ 𝔼𝑋∼𝑃𝜃
[

𝜕
𝜕𝜃𝑃𝜃(𝑋)
(𝑃𝜃(𝑋))2 ].

Proposition 11.14  The description length of the counting, mixture and predictive
codes is bounded above by

𝑛𝐻( ̂𝑃𝑛) + 1
2

log(𝑛𝐽(𝜃MLE)
2𝜋

) + 1.

In particular, the price of universality of the counting, mixture and predictive codes is
1
2 log 𝑛 bits.

Proof (Hints) .  Straightforward. □

Proof .  The description length of all three codes is log(𝑛 + 1) + log(𝑛
𝑘 ) by Proposition

11.5, Proposition 11.9 and Proposition 11.5. By Lemma 11.12, we have
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log(𝑛
𝑘

) ≤ 𝑛𝐻( ̂𝑃𝑛) − 1
2

log(2𝜋𝑛𝜃MLE(1 − 𝜃MLE)) = 𝑛𝐻( ̂𝑃𝑛) + 1
2

log(𝐽(𝜃MLE)
2𝜋𝑛

),

where 𝐽(⋅) is the Fisher information of the family of Bernoulli PMFs. This concludes
the result. □

Notation 11.15  Partitioning the interval [0, 1] into 
√

𝑛 intervals of length 1/
√

𝑛, let
𝜃MDL denote the index of the interval that 𝜃MLE belongs to.

Definition 11.16  The MDL code first describes 𝜃MDL to the decoder, then describes
𝑥𝑛

1  using the Shannon code for 𝑃𝜃MDL
.

Remark 11.17  Note that we can write the MLE as

𝜃MLE = 1
𝑛

∑
𝑛

𝑖=1
𝑋𝑖 = 𝜃∗ + 1√

𝑛
( 1√

𝑛
∑

𝑛

𝑖=1
(𝑋𝑖 − 𝜃∗)),

where 𝜃∗ is the true underlying parameter. The term in the brackets has mean 𝜇 = 0
and variance 𝜎2 = 𝜃∗(1 − 𝜃∗). So by the central limit theorem,

𝜃MLE ≈ 𝜃∗ + 1√
𝑛

𝑍, 𝑍 ∼ 𝑁(𝜇, 𝜎2).

Hence, 𝜃MLE has fluctuations of order 𝑂(1/
√

𝑛). This suggests the MLE code strategy
of describing it with 𝑂(1/𝑛) accuracy is too fine-grained, and the MDL code strategy
of describing it with 𝑂(1/

√
𝑛) accuracy is more appropriate.

Proposition 11.18  The description length of the MDL code is

𝑛𝐻( ̂𝑃𝑛) + 1
2

log 𝑛 + 𝑂(1).

In particular, the price of universality of the MDL code is 1
2 log 𝑛 bits.

Proof (Hints) .  Use that 𝐷(𝑃𝜃MLE
‖ 𝑃𝜃MDL

) = 𝑂((𝜃MLE − 𝜃MLE)2) (since 𝐷(𝑃 ‖ 𝑄) is
locally quadratic in (𝑃 − 𝑄)). □

Proof .  By Proposition 9.5, we have

− log 𝑃𝑛
𝜃MDL

(𝑥𝑛
1 ) = 𝑛𝐷(𝑃𝜃MLE

‖ 𝑃𝜃MDL
) + 𝑛𝐻( ̂𝑃𝑛).

Since 𝐷(𝑃 ‖ 𝑄) is locally quadratic in (𝑃 − 𝑄), the Taylor expansion gives

𝐷(𝑃𝜃MLE
‖ 𝑃𝜃MDL

) = 𝑂((𝜃MLE − 𝜃MLE)2).

Now by definition, |𝜃MLE − 𝜃MDL| = 𝑂(1/
√

𝑛). Thus,

𝑛𝐷(𝑃𝜃MLE
‖ 𝑃𝜃MDL

) = 𝑂(1),

which concludes the result. □
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12. Redundancy and the price of universality
12.1. Redundancy
Definition 12.1  Suppose 𝑥𝑛

1 ∈ 𝐴𝑛 is generated by a memoryless source with PMF 𝑃
on a finite alphabet 𝐴, with |𝐴| = 𝑚. The redundancy on 𝑥𝑛

1  of a code with length
function 𝐿𝑛 is the difference between 𝐿𝑛(𝑥𝑛

1 ) and the target compression of − log 𝑃𝑛(𝑥𝑛
1 )

bits (the ideal Shannon codelength with respect to 𝑃𝑛), so is given by

𝐿𝑛(𝑥𝑛
1 ) − (− log 𝑃𝑛(𝑥𝑛

1 )).

If we use the Shannon code with respect to an arbitrary PMF 𝑄𝑛 on 𝐴𝑛, the redundancy
is

𝜌𝑛(𝑥𝑛
1 ; 𝑃 , 𝑄𝑛) = − log 𝑄𝑛(𝑥𝑛

1 ) − (− log 𝑃𝑛(𝑥𝑛
1 )) = log 𝑃𝑛(𝑥𝑛

1 )
𝑄𝑛(𝑥𝑛

1 )
.

Remark 12.2  Note that by the Codes-distributions Correspondence, we can restrict
our attention to (ideal) Shannon codes (assuming that we ignore integer codelength
constraints).

Definition 12.3  The worst-case maximal redundancy of the Shannon code with
respect to 𝑄𝑛 is its largest redundancy over all strings and all source distributions:

sup
𝑃∈𝒫

max
𝑥𝑛

1 ∈𝐴𝑛
log 𝑃𝑛(𝑥𝑛

1 )
𝑄𝑛(𝑥𝑛

1 )
.

Definition 12.4  The minimax maximal redundancy 𝜌∗
𝑛 over the class of all IID

source distributions on 𝐴𝑛 is the shortest possible worst-case maximal redundancy:

𝜌∗
𝑛 = inf

𝑄𝑛
sup
𝑃∈𝒫

max
𝑥𝑛

1 ∈𝐴𝑛
log 𝑃𝑛(𝑥𝑛

1 )
𝑄𝑛(𝑥𝑛

1 )
.

Definition 12.5  The worst-case average redundancy of the Shannon code with
respect to 𝑄𝑛 is its largest average redundancy over all source distributions:

sup
𝑃∈𝒫

𝔼𝑋𝑛
1 ∼𝑃𝑛[log 𝑃𝑛(𝑋𝑛

1 )
𝑄𝑛(𝑋𝑛

1 )
] = sup

𝑃∈𝒫
𝐷(𝑃𝑛 ‖ 𝑄𝑛).

Definition 12.6  The minimax average redundancy over the class of all IID source
distributions on 𝐴𝑛 is the shortest possible worst-case average redundancy

𝜌𝑛 = inf
𝑄𝑛

sup
𝑃∈𝒫

𝐷(𝑃𝑛 ‖ 𝑄𝑛).

12.2. Shtarkov’s upper bound
Theorem 12.7 (Normalised Maximum Likelihood Code)  Let {𝑃𝜃 : 𝜃 ∈ Θ} be a para-
metric family of distributions on a finite alphabet 𝐵. Denote the minimax maximal
redundancy over {𝑃𝜃 : 𝜃 ∈ Θ} by
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𝜌∗(Θ) ≔ inf
𝑄

sup
𝜃∈Θ

max
𝑥∈𝐵

log 𝑃𝜃(𝑥)
𝑄(𝑥)

.

Then 𝜌∗(Θ) = log 𝑍, where

𝑍 = ∑
𝑥∈𝐵

sup
𝜃∈Θ

𝑃𝜃(𝑥).

Proof (Hints) .
• For ≤, consider a suitable distribution 𝑄∗ which is defined using 𝑍.
• For ≥, use that for every 𝑄, 𝑄(𝑥) ≤ 𝑄∗(𝑥) for at least one 𝑥.

□

Proof .  Define the distribution 𝑄∗ on 𝐵 by 𝑄∗(𝑥) = 1
𝑍 sup𝜃∈Θ 𝑃𝜃(𝑥). We have

𝜌∗(Θ) ≤ sup
𝜃∈Θ

max
𝑥∈𝐵

log 𝑃𝜃(𝑥)
𝑄∗(𝑥)

= max
𝑥∈𝐵

sup
𝜃∈Θ

log 𝑃𝜃(𝑥)
𝑄∗(𝑥)

= max
𝑥∈𝐵

log sup𝜃∈Θ 𝑃𝜃(𝑥)
𝑄∗(𝑥)

= max
𝑥∈𝐵

log 𝑍 = log 𝑍.

For the lower bound, note that for every 𝑄, 𝑄(𝑥) ≤ 𝑄∗(𝑥) for at least one 𝑥, say 𝑥∗.
Therefore,

sup
𝜃∈Θ

max
𝑥∈𝐵

log 𝑃𝜃(𝑥)
𝑄(𝑥)

≥ sup
𝜃∈Θ

log 𝑃𝜃(𝑥∗)
𝑄(𝑥∗)

≥ sup
𝜃∈Θ

log 𝑃𝜃(𝑥∗)
𝑄∗(𝑥∗)

= log sup𝜃∈Θ 𝑃𝜃(𝑥∗)
𝑄∗(𝑥∗)

= log 𝑍.

Taking the minimum over all 𝑄 gives that 𝜌∗(Θ) ≥ log 𝑍 which concludes the result.□

Definition 12.8  The Gamma function is defined as

Γ(𝑧) ≔ ∫
∞

0
𝑥𝑧−1𝑒−𝑥 d𝑥.

Note that for all 𝑛 ∈ ℕ, Γ(𝑛 + 1) = 𝑛!.

Theorem 12.9 (Shtarkov)  The minimax maximal redundancy over the class of all
memoryless sources on 𝐴 satisfies, for all 𝑛 ∈ ℕ,

𝜌∗
𝑛 ≤ 𝑚 − 1

2
log(𝑛

2
) + log Γ(1/2)

Γ(𝑚/2)
+ 𝐶′

√
𝑛

for a constant 𝐶 depending only on 𝑚.

Proof Sketch .  By Normalised Maximum Likelihood Code applied to the parametric
family of all IID distributions 𝑃𝑛 on 𝐴𝑛, we have

𝜌∗
𝑛 = log

(
(( ∑

𝑥𝑛
1 ∈𝐴𝑛

sup
𝑃

𝑃𝑛(𝑥𝑛
1 )

)
)).
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By Proposition 9.5, the MLE in this family is the empirical distribution ̂𝑃𝑛 = ̂𝑃𝑥𝑛
1
, so

𝜌∗
𝑛 = log

(
(( ∑

𝑥𝑛
1 ∈𝐴𝑛

̂𝑃𝑛
𝑥𝑛

1
(𝑥𝑛

1 )
)
)).

Evaluating this (after some length calculations) gives the result. □

12.3. Rissanen’s lower bound
Definition 12.10  Let {𝑊(𝑦 | 𝑥) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} be a family of conditional PMFs 𝑊(⋅
| 𝑥), describing the distribution of the output 𝑦 of a discrete channel with input 𝑥.
The capacity of the channel is

𝐶 = sup 𝐼(𝑋; 𝑌 ),

where the supremum is over all jointly distribution RVs (𝑋, 𝑌 ), where 𝑋 has an arbitrary
distribution and the distribution of 𝑌  given 𝑋 is ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = 𝑊(𝑦 | 𝑥).

Theorem 12.11 (Redundancy-capacity Theorem)  Let 𝒫 = {𝑃𝜃 : 𝜃 ∈ Θ} be a “nice”
parametric family of distributions on a finite alphabet 𝐵. Denote the minimax average
redundancy over {𝑃𝜃 : 𝜃 ∈ Θ} by

𝜌(Θ) ≔ min
𝑄

max
𝜃∈Θ

𝐷(𝑃𝜃 ‖ 𝑄).

Then 𝜌(Θ) is equal to the capacity of the channel with input 𝜃 and output 𝑋 ∼ 𝑃𝜃:

𝜌(Θ) = max
𝜋

𝐼(𝑇 ; 𝑋),

where the maximum is over all probability distributions 𝜋 on Θ, 𝑇 ∼ 𝜋 and 𝑋 | 𝑇 =
𝜃 ∼ 𝑃𝜃 (so the pair of RVs (𝑇 , 𝑋) has joint distribution 𝜋(𝜃)𝑃𝜃(𝑥)).

Proof .  Omitted (non-examinable). □

Definition 12.12  The standard parameterisation of the set of PMFS on 𝐴 =
{𝑎1, …, 𝑎𝑚} is {𝑃𝜃 : 𝜃 ∈ Θ}, where Θ = {𝜃 ∈ [0, 1]𝑚−1 : ∑𝑚−1

𝑖=1 𝜃𝑖 ≤ 1} and

𝑃𝜃(𝑎𝑖) = {
𝜃𝑖 if 𝑖 ≠ 𝑚
1 − ∑𝑚−1

𝑗=1 𝜃𝑗 if 𝑖 = 𝑚.

Theorem 12.13 (Rissanen)  Let {𝑄𝑛 : 𝑛 ∈ ℕ} be an arbitrary sequence of distributions
on 𝐴𝑛, where |𝐴| = 𝑚. Then for all 𝜀 > 0, there exists a constant 𝐶 and a subset Θ0 ⊆
Θ of volume less than 𝜀 such that for all 𝜃 ∉ Θ0,

𝐷(𝑃𝑛
𝜃 ‖ 𝑄𝑛) ≥ 𝑚 − 1

2
log 𝑛 − 𝐶 eventually.

In particular, 𝜌𝑛 ≥ 𝑚−1
2 log 𝑛 − 𝐶′ eventually for some constant 𝐶′.

Proof .  Non-examinable. □

Corollary 12.14  We have (eventually)

52



𝑚 − 1
2

log 𝑛 − 𝐶′ ≤ 𝜌𝑛 ≤ 𝜌∗
𝑛 ≤ 𝑚 − 1

2
log 𝑛 + 𝐶

for some constants 𝐶, 𝐶′.

Remark 12.15  The above bound has a probabilistic interpretation: there exists a
sequence of distributions {𝑄𝑛 : 𝑛 ∈ ℕ} which are “uniformly close” to all product
distributions:

− log 𝑄𝑛(𝑥𝑛
1 ) ≈ − log 𝑃𝑛(𝑥𝑛

1 ) + 𝑚 − 1
2

log 𝑛,

for all 𝑃 ∈ 𝒫 and 𝑥𝑛
1 ∈ 𝐴𝑛. Moreover, the error term 𝑚−1

2 log 𝑛 is the best possible (up
to addition of constants).
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