
Contents
1. Non-classical logic ... 2
1.1. Intuitionistic logic .. 2
1.2. The simply typed 𝜆-calculus .. 6
1.3. The Curry-Howard correspondence .. 10
1.4. Semantics for IPC .. 14

1

1. Non-classical logic
1.1. Intuitionistic logic
Idea: a statement is true if there is a proof of it. A proof of 𝜑 ⇒ 𝜓 is a “procedure”
that can convert a proof of 𝜑 to a proof of 𝜓. A proof of ¬𝜑 is a proof that there is
no proof of 𝜑.

In particular, ¬¬𝜑 is not always the same as 𝜑.

Fact 1.1 The Law of Excluded Middle (LEM) (𝜑 ∨ ¬𝜑) is not (generally)
intuitionistically valid.

Moreover, the Axiom of Choice is incompatible with intuitionistic set theory.

In intuitionistic logic, ∃ means an explicit element can be found.

Why bother with intuitionistic logic?
• Intuitionistic mathematics is more general, as we assume less (no LEM or AC).
• Several notions that are conflated in classical mathematics are genuinely different

constructively.
• Intuitionistic proofs have a computable content that may be absent in classical

proofs.
• Intuitionistic logic is the internal logic of an arbitrary topos.

We will inductively define a provability relation by enforcing rules that implement the
BHK-interpretation.

Definition 1.2 A set is inhabited if there is a proof that it is non-empty.

Axiom 1.3 (Choice - Intutionistic Version) Any family of inhabited sets admits a
choice function.

Theorem 1.4 (Diaconescu) The Law of Excluded Middle can be intutionistically
deduced from the Axiom of Choice.

Proof (Hints) .
• Proof should use Axioms of Separation, Extensionality and Choice.
• For proposition 𝜑, consider 𝐴 = {𝑥 ∈ {0, 1} : 𝜑 ∨ (𝑥 = 0)} and 𝐵 = {𝑥 ∈ {0, 1} :

𝜑 ∨ (𝑥 = 1)}.
• Show that we have a proof of 𝑓(𝐴) = 0 ∨ 𝑓(𝐴) = 1, similarly for 𝑓(𝐵).
• Consider the possibilities that arise from above, show that they lead to either a

proof of 𝜑 or a proof of ¬𝜑.

□

Proof .
• Let 𝜑 be a proposition. By the Axiom of Separation, the following are sets:

𝐴 = {𝑥 ∈ {0, 1} : 𝜑 ∨ (𝑥 = 0)},
𝐵 = {𝑥 ∈ {0, 1} : 𝜑 ∨ (𝑥 = 1)}.

2

• Since 0 ∈ 𝐴 and 1 ∈ 𝐵, we have a proof that {𝐴, 𝐵} is a family of inhabited sets,
thus admits a choice function 𝑓 : {𝐴, 𝐵} → 𝐴 ∪ 𝐵 by the Axiom of Choice.

• 𝑓 satisfies 𝑓(𝐴) ∈ 𝐴 and 𝑓(𝐵) ∈ 𝐵 by definition.
• So we have 𝑓(𝐴) = 0 or 𝜑 is true, and 𝑓(𝐵) = 1 or 𝜑 is true. Also, 𝑓(𝐴), 𝑓(𝐵) ∈

{0, 1}.
• Now 𝑓(𝐴) ∈ {0, 1} means we have a proof of 𝑓(𝐴) = 0 ∨ 𝑓(𝐴) = 1 and similarly for

𝑓(𝐵).
• There are the following possibilities:

1. We have a proof that 𝑓(𝐴) = 1, so 𝜑 ∨ (1 = 0) has a proof, so we must have a
proof of 𝜑.

2. We have a proof that 𝑓(𝐵) = 0, so 𝜑 ∨ (0 = 1) has a proof, so we must have a
proof of 𝜑.

3. We have a proof that 𝑓(𝐴) = 0 ∧ 𝑓(𝐵) = 1, in which case we can prove ¬𝜑:
assume there is a proof of 𝜑, we can prove that 𝐴 = 𝐵 (by the Axiom of
Extensionality), in which case 0 = 𝑓(𝐴) = 𝑓(𝐵) = 1: contradiction.

• So we can always specify a proof of 𝜑 or a proof of ¬𝜑.

□

Notation 1.5 We write Γ ⊢ 𝜑 to mean that 𝜑 is a consequence of the formulae in
the set Γ. Γ is called the set of hypotheses or open assumptions.

Notation 1.6 Notation for assumptions and deduction.

Definition 1.7 The rules of the intuitionistic propositional calculus (IPC) are:
• conjunction introduction,
• conjunction elimination,
• disjunction introduction,
• disjunction elimination,
• implication introduction,
• implication elimination,
• assumption,
• weakening,
• construction,
• and for any 𝐴,

Γ ⊢⟂
Γ ⊢ 𝐴

.

as defined below.

Definition 1.8 The conjunction introduction (∧-I) rule:

Γ ⊢ 𝐴 Γ ⊢ 𝐵
Γ ⊢ 𝐴 ∧ 𝐵

.

Definition 1.9 The conjunction elimination (∧-E) rule:

3

Γ ⊢ 𝐴
Γ ⊢ 𝐴 ∨ 𝐵

, Γ ⊢ 𝐵
Γ ⊢ 𝐴 ∨ 𝐵

.

Definition 1.10 The disjunction introduction (∨-I) rule:

Γ ⊢ 𝐴
Γ ⊢ 𝐴 ∨ 𝐵

, Γ ⊢ 𝐵
Γ ⊢ 𝐴 ∨ 𝐵

.

Definition 1.11 The disjunction elimination (proof by cases) (∨-E) rule:

Γ, 𝐴 ⊢ 𝐶 Γ, 𝐵 ⊢ 𝐶 Γ ⊢ 𝐴 ∨ 𝐵
Γ ⊢ 𝐶

.

Definition 1.12 The implication/arrow introduction (→-I) rule (note the
similarity to the deduction theorem):

Γ, 𝐴 ⊢ 𝐵
Γ ⊢ 𝐴 → 𝐵

.

Definition 1.13 The implication/arrow elimination (→-E) rule (note the
similarity to modus ponens):

Γ ⊢ 𝐴 → 𝐵 Γ ⊢ 𝐴
Γ ⊢ 𝐵

.

Definition 1.14 The assumption (𝐴𝑥) rule: for any 𝐴,

Γ, 𝐴 ⊢ 𝐴

Definition 1.15 The weakening rule:

Γ ⊢ 𝐵
Γ, 𝐴 ⊢ 𝐵

.

Definition 1.16 The construction rule:

Γ, 𝐴, 𝐴 ⊢ 𝐵
Γ, 𝐴 ⊢ 𝐵

.

Remark 1.17 We obtain classical propositional logic (CPC) from IPC by adding
either:
• Γ ⊢ 𝐴 ∨ ¬𝐴:

Γ ⊢ 𝐴 ∨ ¬𝐴
,

or
• If Γ, ¬𝐴 ⊢⟂, then Γ ⊢ 𝐴:

Γ, ¬𝐴 ⊢⟂
Γ ⊢ 𝐴

.

Notation 1.18 see scan

4

Definition 1.19 We obtain intuitionistic first-order logic (IQC) by adding the
following rules to IPC for quantification:
• existental inclusion,
• existential elimination,
• universal inclusion,
• universal elimination

as defined below.

Definition 1.20 The existential inclusion (∃-I) rule: for any term 𝑡,

Γ ⊢ 𝜑[𝑡/𝑥]
Γ ⊢ ∃𝑥.𝜑(𝑥)

.

Definition 1.21 The existential elimination (∃-I) rule:

Γ ⊢ ∃𝑥.𝜑 Γ, 𝜑 ⊢ 𝜓
Γ ⊢ 𝜓

,

where 𝑥 is not free in Γ or 𝜓.

Definition 1.22 The universal inclusion (∀-I) rule:

Γ ⊢ 𝜑
Γ ⊢ ∀𝑥.𝜑

,

where 𝑥 is not free in Γ.

Definition 1.23 The universal exclusion (∀-E) rule:

Γ ⊢ ∀𝑥.𝜑(𝑥)
Γ ⊢ 𝜑[𝑡/𝑥]

,

where 𝑡 is a term.

Definition 1.24 We define the notion of discharging/closing open assumptions,
which informally means that we remove them as open assumptions, and append them
to the consequence by adding implications. We enclose discharged assumptions in
square brackets [] to indicate this, and add discharged assumptions in parentheses to
the right of the proof. For example, →-I is written as

Γ, [𝐴]
⋮
𝐵

Γ ⊢ 𝐴 → 𝐵
(𝐴)

Example 1.25 A natural deduction proof that 𝐴 ∧ 𝐵 → 𝐵 ∧ 𝐴 is given below:

[𝐴∧𝐵]
𝐴

[𝐴∧𝐵]
𝐵

𝐵∧𝐴
𝐴∧𝐵→𝐵∧𝐴(𝐴 ∧ 𝐵)

5

Example 1.26 A natural deduction proof of 𝜑 → (𝜓 → 𝜑) is given below (note
clearly we must use →-I):

[𝜑] [𝜓]

𝜓 → 𝜑

𝜑 → (𝜓 → 𝜑)

Example 1.27 A natural deduction proof of (𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 →
𝜒)) (note clearly we must use →-I):

[𝜑 → (𝜓 → 𝜒)] [𝜑 → 𝜓] [𝜑]

𝜓 → 𝜒 𝜓

𝜒

𝜑 → 𝜒

(𝜑 → 𝜓) → (𝜑 → 𝜒)

(𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))

Notation 1.28 If Γ is a set of propositions, 𝜑 is a proposition and 𝐿 ∈
{IPC, IQC, CPC, CQC}, write Γ ⊢

𝐿
𝜑 if there is a proof of 𝜑 from Γ in the logic 𝐿.

Lemma 1.29 If Γ ⊢
IPC

𝜑, then Γ, 𝜓 ⊢
IPC

𝜑 for any proposition 𝜓. If 𝑝 is a primitive
proposition (doesn’t contain any logical connectives or quantifiers) and 𝜓 is any
proposition, then Γ[𝜓/𝑝] ⊢

IPC
𝜑[𝜓/𝑝].

Proof . Induction on number of lines of proof (exercise). □

1.2. The simply typed 𝜆-calculus
Definition 1.30 The set Π of simple types is generated by the grammar

Π ≔ 𝑈 | Π → Π

where 𝑈 is a countable set of type variables (primitive types) together with an
infinite set of 𝑉 of variables. So Π consists of 𝑈 and is closed under →: for any
𝑎, 𝑏 ∈ Π, 𝑎 → 𝑏 ∈ Π.

Definition 1.31 The set ΛΠ of simply typed 𝜆-terms is defined by the grammar

ΛΠ ≔ 𝑉 | 𝜆𝑉 : Π . ΛΠ | ΛΠ ΛΠ

In the term 𝜆𝑥 : 𝜏.𝑀 , 𝑥 is a variable, 𝜏 is type and 𝑀 is a 𝜆-term. Forming terms of
this form is called 𝜆-abstraction. Forming terms of the form ΛΠΛΠ is called 𝜆-
application.

Example 1.32 The 𝜆-term 𝜆𝑥 : ℤ.𝑥2 should represent the function 𝑥 ↦ 𝑥2 on ℤ.

6

Definition 1.33 A context is a set of pairs Γ = {𝑥1 : 𝜏1, …, 𝑥𝑛 : 𝜏𝑛} where the 𝑥𝑖
are distinct variables and each 𝜏𝑖 is a type. So a context is an assignment of a type to
each variable in a given set. Write 𝐶 for the set of all possible contexts. Given a
context Γ ∈ 𝐶, write Γ, 𝑥 : 𝜏 for the context Γ ∪ {𝑥 : 𝜏} (if 𝑥 does not appear in Γ).

The domain of Γ is the set of variables {𝑥1, …, 𝑥𝑛} that occur in it, and its range,
|Γ|, is the set of types {𝜏1, …, 𝜏𝑛} that it manifests.

Definition 1.34 Recursively define the typability relation ⊩⊆ 𝐶 × ΛΠ × Π via:
1. For every context Γ, variable 𝑥 not occurring in Γ and type 𝜏 , we have Γ, 𝑥 : 𝜏 ⊩

𝑥 : 𝜏 .
2. For every context Γ, variable 𝑥 not occurring in Γ, types 𝜎, 𝜏 ∈ Π, and 𝜆-term 𝑀 ,

if Γ, 𝑥 : 𝜎 ⊩ 𝑀 : 𝜏 , then Γ ⊩ (𝜆𝑥 : 𝜎.𝑀) : (𝜎 → 𝑡).
3. For all contexts Γ, types 𝜎, 𝜏 ∈ Π, and terms 𝑀, 𝑁 ∈ ΛΠ, if Γ ⊩ 𝑀 : (𝜎 → 𝑡) and

Γ ⊩ 𝑁 : 𝜎, then Γ ⊩ (𝑀𝑁) : 𝜏 .

Definition 1.35 For Γ ∈ 𝐶, we say a 𝜆-term 𝑀 ∈ ΛΠ is typable if for some type
𝜏 ∈ Π, Γ ⊩ 𝑀 : 𝜏 .

Notation 1.36 We will refer to the 𝜆-calculus of ΛΠ with this typability relation as
𝜆(→).

Definition 1.37 A variable 𝑥 occurring in a 𝜆-abstraction 𝜆𝑥 : 𝜎.𝑀 is bound and is
free otherwise. A term with no free variables is called closed.

Definition 1.38 Terms 𝑀 and 𝑁 are 𝛼-equivalent if they differ only in the names
of their bound variables.

Definition 1.39 If 𝑀 and 𝑁 are 𝜆-terms and 𝑥 is a variable, then we define the
substitution of 𝑁 for 𝑥 in 𝑀 by the following rules:
• 𝑥[𝑥 ≔ 𝑁] = 𝑁 .
• 𝑦[𝑥 ≔ 𝑁] = 𝑦 for 𝑦 ≠ 𝑥.
• (𝑃𝑄)[𝑥 ≔ 𝑁] = 𝑃 [𝑥 ≔ 𝑁]𝑄[𝑥 ≔ 𝑁] for 𝜆-terms 𝑃 , 𝑄.
• (𝜆𝑦 : 𝜎.𝑃)[𝑥 ≔ 𝑁] = 𝜆𝑦 : 𝜎.(𝑃 [𝑥 ≔ 𝑁]) for 𝑥 ≠ 𝑦 and 𝑦 not free in 𝑁 .

Definition 1.40 The 𝛽-reduction relation is the smallest relation ⟶
𝛽

 on ΛΠ closed
under the following rules:
• (𝜆𝑥 : 𝜎.𝑃)𝑄 ⟶

𝛽
𝑃 [𝑥 ≔ 𝑄]. The term being reduced is called a 𝛽-redex, and the

result is called its 𝛽-contraction.
• If 𝑃 ⟶

𝛽
𝑃 ′, then for all variables 𝑥 and types 𝜎 ∈ Π, we have 𝜆𝑥 : 𝜎.𝑃 ⟶

𝛽
𝜆𝑥 :

𝜎.𝑃 ′.
• If 𝑃 ⟶

𝛽
𝑃 ′ and 𝑍 is a 𝜆-term, then 𝑃𝑍 ⟶

𝛽
𝑃 ′𝑍 and 𝑍𝑃 ⟶

𝛽
𝑍𝑃 ′.

Definition 1.41 We define 𝛽-equivalence, ≡
𝛽
, as the smallest equivalence relation

containing ⟶
𝛽

.

Example 1.42 We have (𝜆𝑥 : ℤ.(𝜆𝑦 : 𝜏.𝑥))2 ⟶
𝛽

(𝜆𝑦 : 𝜏.2).

7

Lemma 1.43 (Free Variables Lemma) Let Γ ⊩ 𝑀 : 𝜎. Then
• If Γ ⊆ Γ′, then Γ′ ⊩ 𝑀 : 𝜎.
• The free variables of 𝑀 occur in Γ.
• There is a context Γ∗ ⊆ Γ whose variables are exactly the free variables in 𝑀 , with

Γ∗ ⊩ 𝑀 : 𝜎.

Proof . By induction on the grammar (exercise). □

Lemma 1.44 (Generation Lemma)
1. For every variable 𝑥 ∈ 𝑉 , context Γ and type 𝜎 ∈ Π: if Γ ⊩ 𝑥 : 𝜎, then 𝑥 : 𝜎 ∈ Γ.
2. If Γ ⊩ (𝑀𝑁) : 𝜎, then there is a type 𝜏 ∈ Π such that Γ ⊩ 𝑀 : 𝜏 → 𝜎 and Γ ⊩ 𝑁 :

𝜏 .
3. If Γ ⊩ (𝜆𝑥.𝑀) : 𝜎, then there are types 𝜏, 𝜌 ∈ Π such that Γ, 𝑥 : 𝜏 ⊩ 𝑀 : 𝜌 and 𝜎 =

(𝜏 → 𝜌).

Proof . By induction on the grammar (exercise). □

Lemma 1.45 (Substitution Lemma)
1. If Γ ⊩ 𝑀 : 𝜎 and 𝛼 ∈ 𝑈 is a type variable, then Γ[𝛼 ≔ 𝜏] ⊩ 𝑀 : 𝜎[𝛼 ≔ 𝜏].
2. If Γ, 𝑥 : 𝜏 ⊩ 𝑀 : 𝜎 and Γ ⊩ 𝑁 : 𝜏 , then Γ ⊩ 𝑀[𝑥 ≔ 𝑁] : 𝜎.

Proof . By induction on the grammar (exercise). □

Proposition 1.46 (Subject Reduction) If Γ ⊩ 𝑀 : 𝜎 and 𝑀 ⟶
𝛽

𝑁 , then Γ ⊩ 𝑁 : 𝜎.

Proof .
• By induction on the derivation of 𝑀 ⟶

𝛽
𝑁 , using Generation and Substitution

Lemmas (exercise).

□

Definition 1.47 A 𝜆-term 𝑀 ∈ ΛΠ is an 𝛽-normal form (𝛽-NF) if there is no
term 𝑁 ≠ 𝑀 such that 𝑀 ⟶

𝛽
𝑁 .

Notation 1.48 Write 𝑀 ↠
𝛽

𝑁 if 𝑀 reduces to 𝑁 after (potentially) multiple 𝛽-
reductions.

Theorem 1.49 (Church-Rosser for 𝜆(→)) Suppose that Γ ⊩ 𝑀 : 𝜎. If 𝑀 ↠
𝛽

𝑁1 and
𝑀 ↠

𝛽
𝑁2, then there is a 𝜆-term 𝐿 such that 𝑁1 ↠

𝛽
𝐿 and 𝑁2 ↠

𝛽
𝐿, and Γ ⊩ 𝐿 : 𝜎.

Remark 1.50 In Church-Rosser, the fact that 𝑀 ↠
𝛽

𝑁1 and 𝑀 ↠
𝛽

𝑁2 implies that
𝑁1, 𝑁2 ↠

𝛽
𝐿 is called confluence, and can be represented diagramatically as

8

𝑀

𝑁1 𝑁2

𝐿

Corollary 1.51 (Uniqueness of normal form) If a simply-typed 𝜆-term admits a 𝛽-
NF, then this form is unique.

Proposition 1.52 (Uniqueness of types)
1. If Γ ⊩ 𝑀 : 𝜎 and Γ ⊩ 𝑀 : 𝜏 , then 𝜎 = 𝜏 .
2. If Γ ⊩ 𝑀 : 𝜎, Γ ⊩ 𝑁 : 𝜏 , and 𝑀 ≡

𝛽
𝑁 , then 𝜎 = 𝜏 .

Proof .
1. Induction (exercise).
2. By Church-Rosser, there is a 𝜆-term 𝐿 which both 𝑀 and 𝑁 reduce to (since 𝛽-

equivalence means there is a finite sequence of alternating up and down ↠
𝛽

relations). By Subject Reduction, we have Γ ⊩ 𝐿 : 𝜎 and Γ ⊩ 𝐿 : 𝜏 , so 𝜎 = 𝜏 by 1.

□

Example 1.53 There is no way to assign a type to 𝜆𝑥.𝑥𝑥: let 𝑥 be of type 𝜏 , then
by the Generation Lemma, in order to apply 𝑥 to 𝑥, 𝑥 must be of type 𝜏 → 𝜎 for
some type 𝜎. But 𝜏 ≠ 𝜏 → 𝜎, which contradicts Uniqueness of Types.

Definition 1.54 The height function is the recursively defined map ℎ : Π → ℕ
that maps all type variables 𝑢 ∈ 𝑈 to 0, and a function type 𝜎 → 𝜏 to 1 +
max{ℎ(𝜎), ℎ(𝜏)}:

ℎ : Π → ℕ,
ℎ(𝛼) = 0 ∀𝛼 ∈ 𝑈,

ℎ(𝜎 → 𝜏) = 1 + max{ℎ(𝜎), ℎ(𝜏)} ∀𝜎, 𝜏 ∈ Π.

The height of a redex is defined as the height of the type of its 𝜆-abstraction:

ℎ((𝜆𝑥 : 𝜎.𝑃 𝜏)𝜎→𝜏𝑄) = ℎ(𝜎 → 𝜏).

Notation 1.55 (𝜆𝑥 : 𝜎.𝑃 𝜏)𝜎→𝜏 denotes that 𝑃 has type 𝜏 and the 𝜆-abstraction has
type 𝜎 → 𝜏 .

Theorem 1.56 (Weak normalisation for 𝜆(→)) Let Γ ⊩ 𝑀 : 𝜎. Then there is a finite
reduction path 𝑀 ≔ 𝑀0 ⟶

𝛽
𝑀1 ⟶

𝛽
… ⟶

𝛽
𝑀𝑛, where 𝑀𝑛 is in 𝛽-normal form.

Proof "Taming the Hydra" .
• Idea is to apply induction on the complexity of 𝑀 .
• Define a function 𝑚 : ΛΠ → ℕ × ℕ by

9

𝑚(𝑀) ≔ {(0, 0) if 𝑀 is in 𝛽-NF
(ℎ(𝑀), redex(𝑀)) otherwise

where ℎ(𝑀) is the maximal height of a redex in 𝑀 , and redex(𝑀) is the number
of redexes in 𝑀 of that height.

• We use induction over 𝜔 × 𝜔 to show that if 𝑀 is typable, then it admits a
reduction to 𝛽-NF.

• The problem is that reductions can copy redexes or create new ones, so our
strategy is to always reduce the right-most redex of maximal height.

• We will argue that, by following this strategy, any new redexes that we generate
have a strictly lower height than the height of the redex we chose to reduce.

• If Γ ⊩ 𝑀 : 𝜎 and 𝑀 is already in 𝛽-NF, then we are done.
• So assume 𝑀 is not in 𝛽-NF. Let Δ be the rightmost redex of maximal height ℎ.
• By reducing Δ, we may introduce copies of existing redexes or create new ones.
• Creation of new redexes by 𝛽-reduction of Δ in one of the following ways:

1. If Δ is of the form (𝜆𝑥 : (𝜌 → 𝜇)…𝑥𝑃 𝜌…)(𝜆𝑦 : 𝜌.𝑄𝜇)𝜌→𝜇, then it reduces to
…(𝜆𝑦 : 𝜌.𝑄𝜇)𝜌→𝜇𝑃 𝜌…, in which case there is a new redex of height ℎ(𝜌 → 𝜇) <
ℎ.

2. We have Δ = (𝜆𝑥 : 𝜏.(𝜆𝑦 : 𝜌.𝑅𝜇))𝑃 𝜏 occurring in 𝑀 in the scenario Δ𝜌→𝜇𝑄𝜌.
Say Δ reduces to 𝜆𝑦 : 𝜌.𝑅𝜇

1 . Then we create a new redex (𝜆𝑦 : 𝜌.𝑅𝜇
1)𝑄𝜌 of

height ℎ(𝜌 → 𝜇) < ℎ(𝜏 → (𝜌 → 𝜇)) = ℎ.
3. Δ = (𝜆𝑥 : (𝜌 → 𝜇).𝑥)(𝜆𝑦 : 𝜌.𝑃𝜇), which occurs in 𝑀 as Δ𝜌→𝜇𝑄𝜌. Reduction

then gives the redex (𝜆𝑦 : 𝜌.𝑃𝜇)𝑄𝜌 of height ℎ(𝜌 → 𝜇) < ℎ.
• Now Δ itself no longer appears in 𝑀 , (lowering the count of redexes of maximal

height by 1), and any newly created redexes have height < ℎ.
• If we have Δ = (𝜆𝑥 : 𝜏.𝑃 𝜌)𝑄𝜏 and 𝑃 contains multiple free occurrences of 𝑥, then

all the redexes in 𝑄 are multiplied when performing 𝛽-reduction.
• However, our choice of Δ ensures that the height of any such redex in 𝑄 has

height < ℎ (since these redexes are to the right of Δ in 𝑀).
• Thus, it is always the case that for the new term 𝑀 ′, 𝑚(𝑀 ′) < 𝑚(𝑀) in the

lexicographic order. So by the induction hypothesis, since 𝑀 ′ can be reduced to 𝛽-
NF, so can 𝑀 .

□

Theorem 1.57 (Strong Normalisation for 𝜆(→)) Let Γ ⊩ 𝑀 : 𝜎. Then there is no
infinite reduction sequence 𝑀 ⟶

𝛽
𝑀1 ⟶ 𝛽….

Proof . Exercise (sheet 1). □

1.3. The Curry-Howard correspondence
Remark 1.58 We can think of a proposition 𝜑 as the “type of its proofs”. The
properties of simply-typed 𝜆(→) match the rules of IPC rather precisely. We first
show a correspondence between 𝜆(→) and the implicational fragment IPC(→) of IPC
that includes only the → connective, the axiom scheme, and the (→-I) and (→-E)
rules. We later extend this to all of IPC by introducing more complex types to 𝜆(→).

10

Start with IPC(→) and build a simply-typed 𝜆-calculus out of it whose set of type
variables 𝑈 is precisely the set of primitive propositions of the logic. Clearly, the set
of types Π then matches the set of propositions in the logic.

Proposition 1.59 (Curry-Howard correspondence for IPC(→)) Let Γ be a context
for 𝜆(→) and 𝜑 be a proposition. Then:
1. If Γ ⊩ 𝑀 : 𝜑, then |Γ| = {𝜏 ∈ Π : (𝑥 : 𝜏) ∈ Γ for some 𝑥} ⊢

IPC(→)
𝜑.

2. If Γ ⊢
IPC(→)

𝜑, then there is a simply-typed 𝜆-term 𝑀 ∈ 𝜆(→) such that {(𝑥𝜑 : 𝜑) :

𝜑 ∈ Γ} ⊩ 𝑀 : 𝜑.

Proof .
1. • Use induction on the derivation of Γ ⊩ 𝑀 : 𝜑.

• Let 𝑥 be a variable not occurring in Γ′ and the derivation is of the form Γ′, 𝑥 :
𝜑 ⊩ 𝑥 : 𝜑, then we have that |Γ′, 𝑥 : 𝜑| ⊢

IPC(→)
𝜑 since 𝜑 ⊢

IPC(→)
𝜑 (as |Γ′, 𝑥 : 𝜑| =

|Γ′| ∪ {𝜑}).
• If the derivation has 𝑀 of the form 𝜆𝑥 : 𝜎.𝑁 and 𝜑 = (𝜎 → 𝜏), then we must

have Γ, 𝑥 : 𝜎 ⊩ 𝑁 : 𝜏 . By the induction hypothesis, we have that |Γ, 𝑥 : 𝜎| ⊢ 𝜏 ,
i.e. |Γ|, 𝜎 ⊢ 𝜏 . But then |Γ| ⊢ 𝜎 → 𝜏 by (→-I).

• If the derivation is of the form Γ ⊩ (𝑃𝑄) : 𝜑, then we must have Γ ⊩ 𝑃 : (𝜎 →
𝜑) and Γ ⊩ 𝑄 : 𝜎. By the induction hypothesis, we have |Γ| ⊢ (𝜎 → 𝜑) and |Γ| ⊢
𝜎, so |Γ| ⊢ 𝜑 by (→-E).

2. • Use induction on the derivation of Γ ⊢ 𝜑.
• Write Δ = {(𝑥𝜓 : 𝜓) : 𝜓 ∈ Γ}. Then we only have a few ways to construct a

proof at a given stage. Say the derivation is of the form Γ, 𝜑 ⊢ 𝜑. If 𝜑 ∈ Γ, then
clearly Δ ⊩ 𝑥𝜑 : 𝜑. If 𝜑 ∉ Γ, then Δ, 𝑥𝜑 : 𝜑 ⊩ 𝑥𝜑 : 𝜑.

• Suppose the derivation is at a stage of the form

Γ ⊢ 𝜑 → 𝜓, Γ ⊢ 𝜑
Γ ⊢ 𝜓

• Then by the induction hypothesis there are 𝜆-terms 𝑀 and 𝑁 such that Δ ⊩
𝑀 : (𝜑 → 𝜓) and Δ ⊩ 𝑁 : 𝜑, from which Δ ⊩ (𝑀𝑁) : 𝜓.

• If the stage is given by

Γ, 𝜑 ⊢ 𝜓
Γ ⊢ 𝜑 → 𝜓

,

then there are two subcases:
‣ If 𝜑 ∈ Γ, then the induction hypothesis gives Δ ⊩ 𝑀 : 𝜓 for some term 𝑀 . By

the weakening rule, we have Δ, 𝑥 : 𝜑 ⊩ 𝑀 : 𝑀 : 𝜓, where 𝑥 is a variable not
occurring in Δ. But then Δ ⊩ (𝜆𝑥 : 𝜑.𝑀) : (𝜑 → 𝜓).

‣ If 𝜑 ∉ Γ, then the induction hypothesis gives Δ, 𝑥𝜑 : 𝜑 ⊩ 𝑀 : 𝜓 for some 𝜆-
term 𝑀 , thus Δ ⊩ (𝜆𝑥𝜑 : 𝜑.𝑀) : (𝜑 → 𝜓).

□

Example 1.60 Let 𝜑, 𝜓 be primitive propositions. The 𝜆-term

11

𝜆𝑓 : (𝜑 → 𝜓) → 𝜑.𝜆𝑔 : 𝜑 → 𝜓.𝑔(𝑓𝑔)

has type ((𝜑 → 𝜓) → 𝜑) → ((𝜑 → 𝜓) → 𝜓), and therefore encodes a proof of that
proposition in IPC(→).

𝑔 : [𝜑 → 𝜓] 𝑓 : (𝜑 → 𝜓) → 𝜑

𝑓𝑔 : 𝜑 𝑔 : [𝜑 → 𝜓] (→ -E)

𝑔(𝑓𝑔) : 𝜓 (→ -E)

𝜆𝑔.𝑔(𝑓𝑔) : (𝜑 → 𝜓) → 𝜓 (→ -I, 𝜑 → 𝜓)

𝜆𝑓.𝜆𝑔.𝑔(𝑓𝑔) : ((𝜑 → 𝜓) → 𝜑) → ((𝜑 → 𝜓) → 𝜓) (→ -I, (𝜑 → 𝜓) → 𝜑)

Definition 1.61 The full simply-typed 𝜆-calculus consists of:
• A set of types Π generated by the grammar

Π ≔ 𝑈 | Π → Π | Π × Π | Π + Π | 0 | 1

Types of the form Π × Π are product types, those of the form Π + Π are
coproduct types, 0 is the initial type, and 1 is the terminal type. Again, 𝑈 is
a set of type variables.

• A set of terms ΛΠ generated by the grammar

ΛΠ ≔ 𝑉 | 𝜆𝑉 : Π.ΛΠ | ΛΠΛΠ | 𝜋1(ΛΠ) | 𝜋2(ΛΠ) | 𝑖1(ΛΠ) | 𝑖2(ΛΠ)
| case(ΛΠ; 𝑉 .ΛΠ; 𝑉 .ΛΠ) | ∗ | !ΠΛΠ

where 𝑉 is a set of variables and ∗ is a constant.

We have the new typing rules:

Γ ⊩ 𝑀 : 𝜓 × 𝜑

Γ ⊩ 𝜋1(𝑀) : 𝜓

Γ ⊩ 𝑀 : 𝜓 × 𝜑

Γ ⊩ 𝜋2(𝑀) : 𝜑

Γ ⊩ 𝑀 : 𝜓 Γ ⊩ 𝑁 : 𝜑

Γ ⊩ ⟨𝑀, 𝑁⟩ : 𝜓 × 𝜑

Γ ⊩ 𝑀 : 𝜓

Γ ⊩ 𝜄1(𝑀) : 𝜓 + 𝜑

12

Γ ⊩ 𝑁 : 𝜑

Γ ⊩ 𝜄2(𝑁) : 𝜓 + 𝜑

Γ ⊩ 𝐿 : 𝜓 + 𝜑 Γ, 𝑥 : 𝜓 ⊩ 𝑀 : 𝜌 Γ, 𝑦 : 𝜑 ⊩ 𝑁 : 𝜌

Γ ⊩ case(𝐿; 𝑥𝜓.𝑀; 𝑦𝜑.𝑁) : 𝜌

Γ ⊩ ∗ : 1

Γ ⊩ 𝑀 : 0

Γ ⊩ !𝜑𝑀 : 𝜑

We also have the new reduction rules:
• Projections: 𝜋1⟨𝑀, 𝑁⟩ ⟶

𝛽
𝑀 and 𝜋2⟨𝑀, 𝑁⟩ ⟶

𝛽
𝑁 .

• Pairs: ⟨𝜋1𝑀, 𝜋2𝑀⟩ ⟶
𝜂

𝑀 .
• Definition by cases: case(𝜄1(𝑀); 𝑥.𝑀; 𝑦.𝐿) ⟶

𝛽
𝐾[𝑥 ≔ 𝑀] and

case(𝜄2(𝑀); 𝑥.𝐾; 𝑦.𝐿) ⟶
𝛽

𝐿[𝑦 ≔ 𝑀]
• Unit: if Γ ⊩ 𝑀 : 1, then 𝑀 ⟶

𝜂
∗.

Remark 1.62 We can extend the Curry-Howard correspondence with these new
types, letting
• 0 ⟷⟂.
• × ⟷ ∧.
• + ⟷ ∨.
• → ⟷ →.

Example 1.63 Consider the following proof of (𝜑 ∧ 𝜒) → (𝜓 → 𝜑):

[𝜑 ∧ 𝜒] : 𝑝 [𝜓] : 𝑏

𝜑 : 𝜋1(𝑝)

(𝜓 → 𝜑) : 𝜆𝑏 : 𝜓.𝜋1(𝑝)

((𝜑 ∧ 𝜒) → (𝜓 → 𝜑)) : 𝜆𝑝 : 𝜑 × 𝜒.𝜆𝑏 : 𝜓.𝜋1(𝑝)

We decorate this proof by turning the assumptions into variables.

Remark 1.64 We have the following correspondence:

13

Simply-typed 𝜆-calculus IPC
(Primitive) types (Primitive) propositions

Variable Hypothesis
Simply-typed 𝜆-term Proof
Type construction Logical connective
Term inhabitation Provability
Term reduction Proof normalisation

1.4. Semantics for IPC
Definition 1.65 A lattice is a set 𝐿 equipped with binary operations ∧ and ∨
which are commutative and associative and satisfy the absorption laws: for all
𝑎, 𝑏 ∈ 𝐿,
• 𝑎 ∨ (𝑎 ∧ 𝑏) = 𝑎,
• 𝑎 ∧ (𝑎 ∨ 𝑏) = 𝑎.

Definition 1.66 A lattice 𝐿 is distributive if for all 𝑎, 𝑏, 𝑐 ∈ 𝐿, 𝑎 ∨ (𝑏 ∧ 𝑐) = (∧ 𝑏) ∨
(𝑎 ∧ 𝑐).

Definition 1.67 A lattice 𝐿 is bounded if there are elements ⟂, ⊤ ∈ 𝐿 such that
𝑎 ∨ ⟂= 𝑎 and 𝑎 ∧ ⊤ = 𝑎 for all 𝑎 ∈ 𝐿.

Definition 1.68 A lattice 𝐿 is complemented if it is bounded and for every 𝑎 ∈ 𝐿,
there is 𝑎∗ ∈ 𝐿 such that 𝑎 ∧ 𝑎∗ =⟂ and 𝑎 ∨ 𝑎∗ = ⊤.

Definition 1.69 A Boolean algebra is a complemented distributive lattice.

Remark 1.70 In any lattice, ∧ and ∨ are idempotent. Moreover, we can define an
ordering by setting 𝑎 ≤ 𝑏 if 𝑎 ∧ 𝑏 = 𝑎.

Example 1.71
• For every set 𝐼 , the powerset ℙ(𝐼) of 𝐼 with ∧ = ∩ and ∨ = ∪ is the prototypical

Boolean algebra.
• More generally, the clopen subsets of a topological space form a Boolean algebra

with ∧ = ∩ and ∨ = ∪.
• In particular, the set of finite and cofinite subsets of ℤ is a Boolean algebra.

Proposition 1.72 Let 𝐿 be a bounded lattice and ≤ be the order induced by the
operations in 𝐿 (𝑎 ≤ 𝑏 ⟺ 𝑎 ∧ 𝑏 = 𝑎). Then ≤ is a partial order with least element ⊥
and greatest element ⊤, and for all 𝑎, 𝑏 ∈ 𝐿, 𝑎 ∧ 𝑏 = inf{𝑎, 𝑏} and 𝑎 ∨ 𝑏 = sup{𝑎, 𝑏}.
Conversely, every partial order with all finite inf’s and sup’s is a bounded lattice.

Proof . Exercise. □

Classically, we say that Γ ⊨ 𝑡 if for every valuation 𝑣 : 𝐿 → {0, 1} such that 𝑣(𝑝) = 1
for all 𝑝 ∈ Γ, we have 𝑣(𝑡) = 1. We might want to replace {0, 1} with some other
Boolean algebra to get semantics for IPC, with an accompanying completeness
theorem. But Boolean algebras believe in the LEM!

14

Definition 1.73 A Heyting algebra 𝐻 is a bounded lattice equipped with a
binary operation ⇒ such that for all 𝑎, 𝑏, 𝑐 ∈ 𝐻,

𝑎 ∧ 𝑏 ≤ 𝑐 iff 𝑎 ≤ (𝑏 ⇒ 𝑐).

This can be thought of as an algebraic version of the deduction theorem. A Heyting
homomorphism (morphism of Heyting algebras) is a function that preserves all
finite meets (∧), finite joins (∨), and ⇒.

Example 1.74
1. Every Boolean algebra is a Heyting algebra: define 𝑎 ⇒ 𝑏 ≔ 𝑎∗ ∨ 𝑏 (𝑎∗ should be

thought of as ¬𝑎). Note that we must have 𝑎∗ = (𝑎 ⇒⊥).
2. Every topology on a set 𝑋 is a Heyting algebra, where (𝑈 ⇒ 𝑉) ≔ int((𝑋 − 𝑈) ∪

𝑉).
3. A finite distributive lattice is a Heyting algebra.

Definition 1.75 Let 𝐻 be a Heyting algebra and 𝐿 be a propositional language
with a set of primitive propositions 𝑃 . An 𝐻-valuation is a function 𝑣 : 𝑃 → 𝐻,
extended recursively to 𝐿, by setting:
• 𝑣(⊥) =⊥.
• 𝑣(𝐴 ∧ 𝐵) = 𝑣(𝐴) ∧ 𝑣(𝐵).
• 𝑣(𝐴 ∨ 𝐵) = 𝑣(𝐴) ∨ 𝑣(𝐵).
• 𝑣(𝑃 → 𝑄) = 𝑣(𝐴) ⇒ 𝑣(𝐵).

Definition 1.76 A proposition 𝐴 ∈ 𝐿 is 𝐻-valid if 𝑣(𝐴) = ⊤ for all 𝐻-valuations 𝑣,
and is an 𝐻-consequence of a (finite) set of propositions Γ if 𝑣(⋀ Γ) ≤ 𝑣(𝐴) (we
write Γ ⊨

𝐻
𝑃).

Lemma 1.77 (Soundness of Heyting Semantics) Let 𝐻 be a Heyting algebra and 𝑣 :
𝐿 → 𝐻 be an 𝐻-valuation. If Γ ⊢

IPC
𝐴, then Γ ⊨

𝐻
𝐴.

Proof . By induction on the structure of the proof Γ ⊢ 𝐴.
• (𝐴𝑥): 𝑣(⋀ Γ ∧ 𝐴) = 𝑣(⋀ Γ) ∧ 𝑣(𝐴) ≤ 𝑣(𝐴).
• (∧-I): 𝐴 = 𝐵 ∧ 𝐶 and we have derivations Γ1 ⊢ 𝐵 and Γ2 ⊢ 𝐶, with Γ1, Γ2 ⊆ Γ. By

the indutive hypothesis, we have 𝑣(⋀ Γ) ≤ 𝑣(⋀ Γ1) ∧ 𝑣(⋀ Γ2) ≤ 𝑣(𝐵) ∧ 𝑣(𝐶) =
𝑣(𝐵 ∧ 𝐶), i.e. Γ ⊨

𝐻
𝐴.

• (→-I): 𝐴 = 𝐵 → 𝐶, so we must have Γ ∪ {𝐵} ⊢ 𝐶. By the inductive hypothesis, we
have 𝑣(⋀ Γ) ∧ 𝑣(𝐵) = 𝑣(⋀ Γ ∧ 𝐵) ≤ 𝑣(𝐶). By the definition of ⇒, this implies
𝑣(⋀ Γ) ≤ (𝑣(𝐵) ⇒ 𝑣(𝐶)) = 𝑣(𝐵 → 𝐶) = 𝑣(𝐴), i.e. Γ ⊨

𝐻
𝐴.

• (∨-I): 𝐴 = 𝐵 ∨ 𝐶 and WLOG we have a derivation Γ ⊢ 𝐵. By the inductive
hypothesis, we have 𝑣(⋀ Γ) ≤ 𝑣(𝐵), but 𝑣(𝐵 ∨ 𝐶) = 𝑣(𝐵) ∨ 𝑣(𝐶) =
sup{𝑣(𝐵), 𝑣(𝐶)}, and so 𝑣(𝐵) ≤ 𝑣(𝐵 ∨ 𝐶).

• (∧-E): by the induction hypothesis, we have 𝑣(⋀ Γ) ≤ 𝑣(𝐵 ∧ 𝐶) = 𝑣(𝐵) ∧ 𝑣(𝐶) ≤
𝑣(𝐵), 𝑣(𝐶).

• (→-E): we know that 𝑣(𝐴 → 𝐵) = (𝑣(𝐴) ⇒ 𝑣(𝐵)). From 𝑣(𝐴 → 𝐵) ≤ (𝑣(𝐴) ⇒
𝑣(𝐵)), we derive 𝑣(𝐴) ∧ 𝑣(𝐴 → 𝐵) ≤ 𝑣(𝐵) by definition of ⇒. So if 𝑣(⋀ Γ) ≤
𝑣(𝐴 → 𝐵) and 𝑣(⋀ Γ) ≤ 𝑣(𝐴), then 𝑣(⋀ Γ) ≤ 𝑣(𝐵) as required.

15

• (∨-E): by the inductive hypothesis, 𝑣(𝐴 ∧ ⋀ Γ) ≤ 𝑣(𝐶), 𝑣(𝐵 ∧ ⋀ Γ) ≤ 𝑣(𝐶) and
𝑣(⋀ Γ) ≤ 𝑣(𝐴 ∨ 𝐵) = 𝑣(𝐴) ∨ 𝑣(𝐵). This last fact means that 𝑣(⋀ Γ) ∧ (𝑣(𝐴) ∨
𝑣(𝐵)) = 𝑣(⋀ Γ). Since Heyting algebras are distributive lattices, this is the same as
(𝑣(⋀ Γ) ∧ 𝑣(𝐴)) ∨ (𝑣(⋀ Γ) ∧ 𝑣(𝐵)), and this is ≤ 𝑣(𝐶).

• (⊥-E): if 𝑣(⋀ Γ) ≤ 𝑣(⊥) =⊥, then 𝑣(⋀ Γ) =⊥, in which case 𝑣(⋀ Γ) ≤ 𝑣(𝐴) for any
𝐴 by minimality of ⊥ in 𝐻.

□

Example 1.78 The LEM is not intuitionistically valid: let 𝑝 be a primitive
proposition and consider the Heyting algebra given by the topology {∅, {1}, {1, 2}} on
𝑋 = {1, 2}. Define a valuation 𝑣 with 𝑣(𝑝) = {1}, in which case 𝑣(¬𝑝) = ¬{1} =
int(𝑋 \ {1}) = ∅. So 𝑣(𝑝 ∨ ¬𝑝) = {1} ∨ ∅ = {1} ≠ ⊤. So by Soundness, ⊬

IPC
𝑝 ∨ ¬𝑝.

Example 1.79 Pierce’s law ((𝑝 → 𝑞) → 𝑝) → 𝑝 is not intuitionistically valid: take
the valuation on the standard topology on ℝ2 that maps 𝑝 to ℝ2 \ {(0, 0)} and 𝑞 to ∅.

Classical completeness states that Γ ⊢
CPC

𝐴 iff Γ ⊨
2

𝐴. For intuitionistic completeness,
there is no single finite replacement for 2.

Definition 1.80 Let 𝑄 be a logical doctrine (e.g. CPC, IPC, etc.), 𝐿 be a
propositional language, and 𝑇 be an 𝐿-theory. The Lindenbaum-Tarski algebra
𝐹𝑄(𝑇) is built in the following way:
• The underlying set of 𝐹𝑄(𝑇) is the set of equivalence classes [𝜑] of propositions 𝜑,

where 𝜑 ∼ 𝜓 when 𝑇 , 𝜑 ⊢
𝑄

𝜓 and 𝑇 , 𝜓 ⊢
𝑄

𝜑.
• If ⋆ is a logical connective in the fragment 𝑄, we set [𝜑] ⋆ [𝜓] ≔ [𝜑 ⋆ 𝜓].

We are interested in the cases 𝑄 = CPC, 𝑄 = IPC and 𝑄 = IPC \ {→}.

Proposition 1.81 The Lindenbaum-Tarski algebra of any theory in IPC \ {→} is a
distributive lattice.

Proof . Clearly, ∧ and ∨ inherit associativity and commutativity, so in order for
𝐹 IPC \{→}(𝑇) to be a lattice, we only need to check the absorption laws: [𝜑] ∨ [𝜑 ∧
𝜓] = [𝜑], and [𝜑] ∧ [𝜑 ∨ 𝜓] = [𝜑]. The first is true, since 𝑇 , 𝜑 ⊢

IPC \{→}
𝜑 ∨ (𝜑 ∧ 𝜓) by

(∨-I), and also 𝑇 , 𝜑 ∨ (𝜑 ∧ 𝜓) ⊢
IPC \{→}

𝜑 by (∨-E). The second is true by a similar

argument.

For distributivity, 𝑇 , 𝜑 ∧ (𝜓 ∨ 𝜒) ⊢ (𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒) by (∧-E) followed by (∨-E):

𝜑 ∧ (𝜓 ∨ 𝜒)

𝜑 𝜓 ∨ 𝜒 (by (∧ -E))

(𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒) (by (∨ -E))

Similarly, 𝑇 , (𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒) ⊢ 𝜑 ∧ (𝜓 ∨ 𝜒) by (∨-E) followed by (∧-I). □

Lemma 1.82 The Lindenbaum-Tarski algebra of any theory relative to IPC is a
Heyting algebra.

16

Proof . We already know that 𝐹 IPC(𝑇) is a distributive lattice, so it is enough to show
that [𝜑] ⇒ [𝜓] ≔ [𝜑 → 𝜓] gives a Heyting implication, and that 𝐹 IPC(𝑇) is bounded.
Suppose that [𝜑] ∧ [𝜓] ≤ [𝜒], i.e. 𝑇 , 𝜑 ∧ 𝜓 ⊢

IPC
𝜒. We want to show that [𝜑] ≤ [𝜓 → 𝜒],

i.e. 𝑇 , 𝜑 ⊢ (𝜓 → 𝜒). But this is clear:

𝜑 [𝜓]

𝜑 ∧ 𝜓

𝜒 (by hypothesis)

𝜓 → 𝜒 (→ -I, 𝜓)

Conversely, if 𝑇 , 𝜑 ⊢ (𝜓 → 𝜒), then we can prove 𝑇 , 𝜑 ∧ 𝜓 ⊢ 𝜒:

𝜑 ∧ 𝜓

𝜑 𝜓

𝜓 → 𝜒 (by hypothesis)

𝜓 → 𝜒 𝜓

𝜒 (→ -E)

So defining [𝜑] ⇒ [𝜓] ≔ [𝜑 → 𝜓] provides a Heyting ⇒. The bottom element of
𝐹 IPC(𝑇) is just [⊥]: if [𝜑] is any element, then 𝑇 , ⊥⊢ 𝜑 by (⊥-E). The top element is
⊤ ≔ [⊥→⊥]: if 𝜑 is any proposition, then [𝜑] ≤ [⊥→⊥] via

𝜑 [⊥]

⊥ (⊥ -E)

⊥→⊥

□

Theorem 1.83 (Completeness of Heyting Semantics) A proposition is provable in
IPC iff it is 𝐻-valid for every Heyting algebra 𝐻.

Proof . One direction is easy: if ⊢
IPC

𝜑, then there is a derivation in IPC, thus ⊤ ≤
𝑣(𝜑) for any Heyting algebra 𝐻 and valuation 𝑣 by soundness. But then 𝑣(𝜑) = ⊤
and 𝜑 is 𝐻-valid.

For the other direction, consider the Lindenbaum-Tarski algebra 𝐹(𝐿) of the empty
theory relative to IPC, which is a Heyting algebra by the above lemma. We can
define a valuation 𝑣 by extending 𝑃 → 𝐹(𝐿), 𝑝 ↦ [𝑝], to all propositions. Since 𝑣 is a
valuation, it follows by induction (and the construction of 𝐹(𝐿)) that 𝑣(𝜑) = [𝜑] for
all propositions 𝜑. Now 𝜑 is valid in every Heyting algebra, and so in 𝐹(𝐿) in
particular. So 𝑣(𝜑) = ⊤ = [𝜑], hence ⊢

IPC
𝜑. □

17

Definition 1.84 Given a poset 𝑆, the set 𝑎 ↑≔ {𝑠 ∈ 𝑆 : 𝑎 ≤ 𝑠} is a principal up-
set. 𝑈 ⊆ 𝑆 is a terminal segment if 𝑎 ↑⊆ 𝑈 for each 𝑎 ∈ 𝑈 .

Proposition 1.85 For any poset 𝑆, the set 𝑇 (𝑆) = {𝑈 ⊆ 𝑆 :
𝑈 is a terminal segment of 𝑆} can be made into a Heyting algebra, and the way this
is done is unique.

Proof . Order the terminal segments by ⊆. Meets and joins are ∩ and ∪, so we just
need to define ⇒. For 𝑈, 𝑉 ∈ 𝑇 (𝑆), define (𝑈 ⇒ 𝑉) ≔ {𝑠 ∈ 𝑆 : (𝑠 ↑) ∩ 𝑈 ⊆ 𝑉 }. To
show this is a valid definition, let 𝑈, 𝑉 , 𝑊 ∈ 𝑇(𝑆). We have

𝑊 ⊆ (𝑈 ⇒ 𝑉) iff (𝑤 ↑) ∩ 𝑈 ⊆ 𝑉 for all 𝑤 ∈ 𝑊

which happens if for every 𝑤 ∈ 𝑊 and 𝑢 ∈ 𝑈 , we have if 𝑤 ≤ 𝑢, then 𝑢 ∈ 𝑉 . But 𝑊
is a terminal segment, so this is the same as saying that 𝑊 ∩ 𝑈 ⊆ 𝑉 . □

Definition 1.86 Let 𝑃 be a set of primitive propositions. A Kripke model is a
teriple (𝑆, ≤, ⊩) where (𝑆, ≤) is a poset (whose elements are called “worlds” or
“states” and whose ordering is called the “accessibility relation”), and ⊩⊆ 𝑆 × 𝑃 is a
binary relation called “forcing” satisfying the persistence property: if 𝑝 ∈ 𝑃 is such
that 𝑠 ⊩ 𝑝 and 𝑠 ≤ 𝑠′, then 𝑠′ ⊩ 𝑝.

Every valuation 𝑣 on 𝑇 (𝑆) induces a Kripke model by setting 𝑠 ⊩ 𝑝 if 𝑠 ∈ 𝑣(𝑝).

18

	Non-classical logic
	Intuitionistic logic
	The simply typed λ-calculus
	The Curry-Howard correspondence
	Semantics for IPC

