Contents

1. Non-classical logic	2
1.1. Intuitionistic logic	2
1.2. The simply typed λ -calculus	6
1.3. The Curry-Howard correspondence 1	0
1.4. Semantics for IPC 1	4

1. Non-classical logic

1.1. Intuitionistic logic

Idea: a statement is true if there is a proof of it. A proof of $\varphi \Rightarrow \psi$ is a "procedure" that can convert a proof of φ to a proof of ψ . A proof of $\neg \varphi$ is a proof that there is no proof of φ .

In particular, $\neg \neg \varphi$ is not always the same as φ .

Fact 1.1 The Law of Excluded Middle (LEM) $(\varphi \lor \neg \varphi)$ is not (generally) intuitionistically valid.

Moreover, the Axiom of Choice is incompatible with intuitionistic set theory.

In intuitionistic logic, \exists means an explicit element can be found.

Why bother with intuitionistic logic?

- Intuitionistic mathematics is more general, as we assume less (no LEM or AC).
- Several notions that are conflated in classical mathematics are genuinely different constructively.
- Intuitionistic proofs have a computable content that may be absent in classical proofs.
- Intuitionistic logic is the internal logic of an arbitrary topos.

We will inductively define a provability relation by enforcing rules that implement the BHK-interpretation.

Definition 1.2 A set is **inhabited** if there is a proof that it is non-empty.

Axiom 1.3 (Choice - Intutionistic Version) Any family of inhabited sets admits a choice function.

Theorem 1.4 (Diaconescu) The Law of Excluded Middle can be intutionistically deduced from the Axiom of Choice.

Proof (Hints).

- Proof should use Axioms of Separation, Extensionality and Choice.
- For proposition φ , consider $A = \{x \in \{0,1\} : \varphi \lor (x = 0)\}$ and $B = \{x \in \{0,1\} : \varphi \lor (x = 1)\}.$
- Show that we have a proof of $f(A) = 0 \lor f(A) = 1$, similarly for f(B).
- Consider the possibilities that arise from above, show that they lead to either a proof of φ or a proof of $\neg \varphi$.

Proof.

• Let φ be a proposition. By the Axiom of Separation, the following are sets:

$$\begin{split} &A = \{x \in \{0,1\}: \varphi \lor (x=0)\}, \\ &B = \{x \in \{0,1\}: \varphi \lor (x=1)\}. \end{split}$$

- Since $0 \in A$ and $1 \in B$, we have a proof that $\{A, B\}$ is a family of inhabited sets, thus admits a choice function $f : \{A, B\} \to A \cup B$ by the Axiom of Choice.
- f satisfies $f(A) \in A$ and $f(B) \in B$ by definition.
- So we have f(A) = 0 or φ is true, and f(B) = 1 or φ is true. Also, $f(A), f(B) \in \{0, 1\}$.
- Now $f(A) \in \{0,1\}$ means we have a proof of $f(A) = 0 \lor f(A) = 1$ and similarly for f(B).
- There are the following possibilities:
 - 1. We have a proof that f(A) = 1, so $\varphi \lor (1 = 0)$ has a proof, so we must have a proof of φ .
 - 2. We have a proof that f(B) = 0, so $\varphi \lor (0 = 1)$ has a proof, so we must have a proof of φ .
 - 3. We have a proof that $f(A) = 0 \land f(B) = 1$, in which case we can prove $\neg \varphi$: assume there is a proof of φ , we can prove that A = B (by the Axiom of Extensionality), in which case 0 = f(A) = f(B) = 1: contradiction.
- So we can always specify a proof of φ or a proof of $\neg \varphi$.

Notation 1.5 We write $\Gamma \vdash \varphi$ to mean that φ is a consequence of the formulae in the set Γ . Γ is called the **set of hypotheses or open assumptions**.

Notation 1.6 Notation for assumptions and deduction.

Definition 1.7 The rules of the intuitionistic propositional calculus (IPC) are:

- conjunction introduction,
- conjunction elimination,
- disjunction introduction,
- disjunction elimination,
- implication introduction,
- implication elimination,
- assumption,
- weakening,
- construction,
- and for any A,

$$\frac{\Gamma\vdash\bot}{\Gamma\vdash A}$$

as defined below.

Definition 1.8 The conjunction introduction $(\land$ -I) rule:

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B}$$

Definition 1.9 The conjunction elimination $(\land -E)$ rule:

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}, \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}.$$

Definition 1.10 The disjunction introduction $(\lor-I)$ rule:

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}, \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}.$$

Definition 1.11 The disjunction elimination (proof by cases) $(\vee -E)$ rule:

$$\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C \quad \Gamma \vdash A \lor B}{\Gamma \vdash C}.$$

Definition 1.12 The implication/arrow introduction $(\rightarrow -I)$ rule (note the similarity to the deduction theorem):

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}.$$

Definition 1.13 The implication/arrow elimination $(\rightarrow -E)$ rule (note the similarity to modus ponens):

$$\frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B}.$$

Definition 1.14 The assumption (Ax) rule: for any A,

 $\overline{\Gamma, A \vdash A}$

Definition 1.15 The weakening rule:

$$\frac{\Gamma \vdash B}{\Gamma, A \vdash B}.$$

Definition 1.16 The construction rule:

$$\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B}.$$

Remark 1.17 We obtain classical propositional logic (CPC) from IPC by adding either:

• $\Gamma \vdash A \lor \neg A$:

$$\overline{\Gamma \vdash A \lor \neg A},$$

or

• If $\Gamma, \neg A \vdash \perp$, then $\Gamma \vdash A$:

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A}.$$

Notation 1.18 see scan

Definition 1.19 We obtain **intuitionistic first-order logic (IQC)** by adding the following rules to IPC for quantification:

- existental inclusion,
- existential elimination,
- universal inclusion,
- universal elimination

as defined below.

Definition 1.20 The existential inclusion $(\exists$ -I) rule: for any term t,

$$\frac{\Gamma \vdash \varphi[t/x]}{\Gamma \vdash \exists x.\varphi(x)}.$$

Definition 1.21 The existential elimination $(\exists$ -I) rule:

$$\frac{\Gamma \vdash \exists x. \varphi \quad \Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi},$$

where x is not free in Γ or ψ .

Definition 1.22 The universal inclusion $(\forall$ -I) rule:

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \forall x.\varphi},$$

where x is not free in Γ .

Definition 1.23 The universal exclusion $(\forall -E)$ rule:

$$\frac{\Gamma \vdash \forall x.\varphi(x)}{\Gamma \vdash \varphi[t/x]},$$

where t is a term.

Definition 1.24 We define the notion of **discharging/closing** open assumptions, which informally means that we remove them as open assumptions, and append them to the consequence by adding implications. We enclose discharged assumptions in square brackets [] to indicate this, and add discharged assumptions in parentheses to the right of the proof. For example, \rightarrow -I is written as

$$\Gamma, [A]$$

$$\vdots$$

$$\frac{B}{\Gamma \vdash A \to B}(A)$$

Example 1.25 A natural deduction proof that $A \wedge B \to B \wedge A$ is given below:

$$\frac{\frac{[A \wedge B]}{A} \quad \frac{[A \wedge B]}{B}}{\frac{B \wedge A}{A \wedge B \rightarrow B \wedge A} (A \wedge B)}$$

Example 1.26 A natural deduction proof of $\varphi \to (\psi \to \varphi)$ is given below (note clearly we must use \to -I):

$$\begin{array}{c} [\varphi] \quad [\psi] \\ \\ \psi \rightarrow \varphi \\ \\ \varphi \rightarrow (\psi \rightarrow \varphi) \end{array}$$

Example 1.27 A natural deduction proof of $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$ (note clearly we must use \to -I):

$[\varphi \to (\psi \to \chi)] [\varphi \to \psi] [\varphi]$		
$\psi ightarrow \chi \psi$		
χ		
$\varphi \to \chi$		
$(\varphi \to \psi) \to (\varphi \to \chi)$		
$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$		

Notation 1.28 If Γ is a set of propositions, φ is a proposition and $L \in \{\operatorname{IPC}, \operatorname{IQC}, \operatorname{CPC}, \operatorname{CQC}\}$, write $\Gamma \vdash_{L} \varphi$ if there is a proof of φ from Γ in the logic L.

Lemma 1.29 If $\Gamma \vdash_{\text{IPC}} \varphi$, then $\Gamma, \psi \vdash_{\text{IPC}} \varphi$ for any proposition ψ . If p is a primitive proposition (doesn't contain any logical connectives or quantifiers) and ψ is any proposition, then $\Gamma[\psi/p] \vdash_{\text{IPC}} \varphi[\psi/p]$.

Proof. Induction on number of lines of proof (exercise).

1.2. The simply typed λ -calculus

Definition 1.30 The set Π of **simple types** is generated by the grammar

$$\Pi \coloneqq U \mid \Pi \to \Pi$$

where U is a countable set of type variables (primitive types) together with an infinite set of V of variables. So Π consists of U and is closed under \rightarrow : for any $a, b \in \Pi, a \rightarrow b \in \Pi$.

Definition 1.31 The set Λ_{Π} of simply typed λ -terms is defined by the grammar

$$\Lambda_{\Pi} \coloneqq V \mid \lambda V : \Pi . \Lambda_{\Pi} \mid \Lambda_{\Pi} \Lambda_{\Pi}$$

In the term $\lambda x : \tau . M$, x is a variable, τ is type and M is a λ -term. Forming terms of this form is called λ -abstraction. Forming terms of the form $\Lambda_{\Pi} \Lambda_{\Pi}$ is called λ -application.

Example 1.32 The λ -term $\lambda x : \mathbb{Z} \cdot x^2$ should represent the function $x \mapsto x^2$ on \mathbb{Z} .

Definition 1.33 A context is a set of pairs $\Gamma = \{x_1 : \tau_1, ..., x_n : \tau_n\}$ where the x_i are distinct variables and each τ_i is a type. So a context is an assignment of a type to each variable in a given set. Write C for the set of all possible contexts. Given a context $\Gamma \in C$, write $\Gamma, x : \tau$ for the context $\Gamma \cup \{x : \tau\}$ (if x does not appear in Γ).

The **domain** of Γ is the set of variables $\{x_1, ..., x_n\}$ that occur in it, and its **range**, $|\Gamma|$, is the set of types $\{\tau_1, ..., \tau_n\}$ that it manifests.

Definition 1.34 Recursively define the **typability relation** $\Vdash \subseteq C \times \Lambda_{\Pi} \times \Pi$ via:

- 1. For every context Γ , variable x not occurring in Γ and type τ , we have $\Gamma, x : \tau \Vdash x : \tau$.
- 2. For every context Γ , variable x not occurring in Γ , types $\sigma, \tau \in \Pi$, and λ -term M, if $\Gamma, x : \sigma \Vdash M : \tau$, then $\Gamma \Vdash (\lambda x : \sigma M) : (\sigma \to t)$.
- 3. For all contexts Γ , types $\sigma, \tau \in \Pi$, and terms $M, N \in \Lambda_{\Pi}$, if $\Gamma \Vdash M : (\sigma \to t)$ and $\Gamma \Vdash N : \sigma$, then $\Gamma \Vdash (MN) : \tau$.

Definition 1.35 For $\Gamma \in C$, we say a λ -term $M \in \Lambda_{\Pi}$ is **typable** if for some type $\tau \in \Pi$, $\Gamma \Vdash M : \tau$.

Notation 1.36 We will refer to the λ -calculus of Λ_{Π} with this typability relation as $\lambda(\rightarrow)$.

Definition 1.37 A variable x occurring in a λ -abstraction $\lambda x : \sigma M$ is **bound** and is **free** otherwise. A term with no free variables is called **closed**.

Definition 1.38 Terms M and N are α -equivalent if they differ only in the names of their bound variables.

Definition 1.39 If M and N are λ -terms and x is a variable, then we define the substitution of N for x in M by the following rules:

- $x[x \coloneqq N] = N.$
- y[x := N] = y for $y \neq x$.
- (PQ)[x := N] = P[x := N]Q[x := N] for λ -terms P, Q.
- $(\lambda y : \sigma P)[x \coloneqq N] = \lambda y : \sigma (P[x \coloneqq N])$ for $x \neq y$ and y not free in N.

Definition 1.40 The β -reduction relation is the smallest relation $\xrightarrow{\beta}$ on Λ_{Π} closed under the following rules:

- $(\lambda x: \sigma.P)Q \xrightarrow{\beta} P[x \coloneqq Q]$. The term being reduced is called a β -redex, and the result is called its β -contraction.
- If $P \xrightarrow{\beta} P'$, then for all variables x and types $\sigma \in \Pi$, we have $\lambda x : \sigma . P \xrightarrow{\beta} \lambda x : \sigma . P'$.
- If $P \xrightarrow{\beta} P'$ and Z is a λ -term, then $PZ \xrightarrow{\beta} P'Z$ and $ZP \xrightarrow{\beta} ZP'$.

Definition 1.41 We define β -equivalence, \equiv_{β} , as the smallest equivalence relation containing $\xrightarrow{\beta}_{\beta}$.

Example 1.42 We have $(\lambda x : \mathbb{Z}.(\lambda y : \tau.x)) 2 \xrightarrow{\beta} (\lambda y : \tau.2).$

Lemma 1.43 (Free Variables Lemma) Let $\Gamma \Vdash M : \sigma$. Then

- If $\Gamma \subseteq \Gamma'$, then $\Gamma' \Vdash M : \sigma$.
- The free variables of M occur in Γ .
- There is a context $\Gamma^* \subseteq \Gamma$ whose variables are exactly the free variables in M, with $\Gamma^* \Vdash M : \sigma$.

Proof. By induction on the grammar (exercise).

Lemma 1.44 (Generation Lemma)

- 1. For every variable $x \in V$, context Γ and type $\sigma \in \Pi$: if $\Gamma \Vdash x : \sigma$, then $x : \sigma \in \Gamma$.
- 2. If $\Gamma \Vdash (MN) : \sigma$, then there is a type $\tau \in \Pi$ such that $\Gamma \Vdash M : \tau \to \sigma$ and $\Gamma \Vdash N : \tau$.
- 3. If $\Gamma \Vdash (\lambda x.M) : \sigma$, then there are types $\tau, \rho \in \Pi$ such that $\Gamma, x : \tau \Vdash M : \rho$ and $\sigma = (\tau \to \rho)$.

Proof. By induction on the grammar (exercise).

Lemma 1.45 (Substitution Lemma)

- 1. If $\Gamma \Vdash M : \sigma$ and $\alpha \in U$ is a type variable, then $\Gamma[\alpha := \tau] \Vdash M : \sigma[\alpha := \tau]$.
- 2. If $\Gamma, x : \tau \Vdash M : \sigma$ and $\Gamma \Vdash N : \tau$, then $\Gamma \Vdash M[x := N] : \sigma$.

Proof. By induction on the grammar (exercise).

Proposition 1.46 (Subject Reduction) If $\Gamma \Vdash M : \sigma$ and $M \xrightarrow{\beta} N$, then $\Gamma \Vdash N : \sigma$.

Proof.

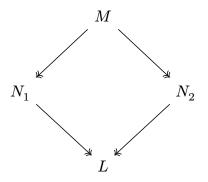
• By induction on the derivation of $M \xrightarrow{\beta} N$, using Generation and Substitution Lemmas (exercise).

Definition 1.47 A λ -term $M \in \Lambda_{\Pi}$ is an β -normal form (β -NF) if there is no term $N \neq M$ such that $M \xrightarrow{\beta} N$.

Notation 1.48 Write $M \xrightarrow{\cong}_{\beta} N$ if M reduces to N after (potentially) multiple β -reductions.

Theorem 1.49 (Church-Rosser for $\lambda(\rightarrow)$) Suppose that $\Gamma \Vdash M : \sigma$. If $M \xrightarrow{\sim}_{\beta} N_1$ and $M \xrightarrow{\sim}_{\beta} N_2$, then there is a λ -term L such that $N_1 \xrightarrow{\sim}_{\beta} L$ and $N_2 \xrightarrow{\sim}_{\beta} L$, and $\Gamma \Vdash L : \sigma$.

Remark 1.50 In Church-Rosser, the fact that $M \xrightarrow{\gg} N_1$ and $M \xrightarrow{\cong} N_2$ implies that $N_1, N_2 \xrightarrow{\cong} L$ is called **confluence**, and can be represented diagramatically as



Corollary 1.51 (Uniqueness of normal form) If a simply-typed λ -term admits a β -NF, then this form is unique.

Proposition 1.52 (Uniqueness of types)

1. If $\Gamma \Vdash M : \sigma$ and $\Gamma \Vdash M : \tau$, then $\sigma = \tau$.

2. If $\Gamma \Vdash M : \sigma$, $\Gamma \Vdash N : \tau$, and $M \equiv_{\beta} N$, then $\sigma = \tau$.

Proof.

- 1. Induction (exercise).
- 2. By Church-Rosser, there is a λ -term L which both M and N reduce to (since β equivalence means there is a finite sequence of alternating up and down $\xrightarrow{\beta}_{\beta}$ relations). By Subject Reduction, we have $\Gamma \Vdash L : \sigma$ and $\Gamma \Vdash L : \tau$, so $\sigma = \tau$ by 1.

Example 1.53 There is no way to assign a type to $\lambda x.xx$: let x be of type τ , then by the Generation Lemma, in order to apply x to x, x must be of type $\tau \to \sigma$ for some type σ . But $\tau \neq \tau \to \sigma$, which contradicts Uniqueness of Types.

Definition 1.54 The height function is the recursively defined map $h : \Pi \to \mathbb{N}$ that maps all type variables $u \in U$ to 0, and a function type $\sigma \to \tau$ to $1 + \max\{h(\sigma), h(\tau)\}$:

$$\begin{split} h: \Pi \to \mathbb{N}, \\ h(\alpha) &= 0 \quad \forall \alpha \in U, \\ h(\sigma \to \tau) &= 1 + \max\{h(\sigma), h(\tau)\} \quad \forall \sigma, \tau \in \Pi \end{split}$$

The **height** of a redex is defined as the height of the type of its λ -abstraction:

$$h\big((\lambda x:\sigma.P^{\tau})^{\sigma\to\tau}Q\big)=h(\sigma\to\tau).$$

Notation 1.55 $(\lambda x : \sigma . P^{\tau})^{\sigma \to \tau}$ denotes that *P* has type τ and the λ -abstraction has type $\sigma \to \tau$.

Theorem 1.56 (Weak normalisation for $\lambda(\rightarrow)$) Let $\Gamma \Vdash M : \sigma$. Then there is a finite reduction path $M := M_0 \xrightarrow{\beta} M_1 \xrightarrow{\beta} \dots \xrightarrow{\beta} M_n$, where M_n is in β -normal form.

Proof "Taming the Hydra".

- Idea is to apply induction on the complexity of M.
- Define a function $m: \Lambda_{\Pi} \to \mathbb{N} \times \mathbb{N}$ by

$$m(M) \coloneqq \begin{cases} (0,0) & \text{if } M \text{ is in } \beta\text{-NF} \\ (h(M), \operatorname{redex}(M)) \text{ otherwise} \end{cases}$$

where h(M) is the maximal height of a redex in M, and redex(M) is the number of redexes in M of that height.

- We use induction over $\omega \times \omega$ to show that if M is typable, then it admits a reduction to β -NF.
- The problem is that reductions can copy redexes or create new ones, so our strategy is to always reduce the right-most redex of maximal height.
- We will argue that, by following this strategy, any new redexes that we generate have a strictly lower height than the height of the redex we chose to reduce.
- If $\Gamma \Vdash M : \sigma$ and M is already in β -NF, then we are done.
- So assume M is not in β -NF. Let Δ be the rightmost redex of maximal height h.
- By reducing Δ , we may introduce copies of existing redexes or create new ones.
- Creation of new redexes by β -reduction of Δ in one of the following ways:
- 1. If Δ is of the form $(\lambda x : (\rho \to \mu) ... x P^{\rho} ...) (\lambda y : \rho . Q^{\mu})^{\rho \to \mu}$, then it reduces to $... (\lambda y : \rho . Q^{\mu})^{\rho \to \mu} P^{\rho} ...$, in which case there is a new redex of height $h(\rho \to \mu) < h$.
 - 2. We have $\Delta = (\lambda x : \tau . (\lambda y : \rho . R^{\mu}))P^{\tau}$ occurring in M in the scenario $\Delta^{\rho \to \mu} Q^{\rho}$. Say Δ reduces to $\lambda y : \rho . R_{1}^{\mu}$. Then we create a new redex $(\lambda y : \rho . R_{1}^{\mu})Q^{\rho}$ of height $h(\rho \to \mu) < h(\tau \to (\rho \to \mu)) = h$.
 - 3. $\Delta = (\lambda x : (\rho \to \mu) . x)(\lambda y : \rho . P^{\mu})$, which occurs in M as $\Delta^{\rho \to \mu} Q^{\rho}$. Reduction then gives the redex $(\lambda y : \rho . P^{\mu})Q^{\rho}$ of height $h(\rho \to \mu) < h$.
- Now Δ itself no longer appears in M, (lowering the count of redexes of maximal height by 1), and any newly created redexes have height < h.
- If we have $\Delta = (\lambda x : \tau . P^{\rho})Q^{\tau}$ and P contains multiple free occurrences of x, then all the redexes in Q are multiplied when performing β -reduction.
- However, our choice of Δ ensures that the height of any such redex in Q has height < h (since these redexes are to the right of Δ in M).
- Thus, it is always the case that for the new term M', m(M') < m(M) in the lexicographic order. So by the induction hypothesis, since M' can be reduced to β -NF, so can M.

Theorem 1.57 (Strong Normalisation for $\lambda(\rightarrow)$) Let $\Gamma \Vdash M : \sigma$. Then there is no infinite reduction sequence $M \xrightarrow{\beta} M_1 \longrightarrow \beta$

Proof. Exercise (sheet 1).

1.3. The Curry-Howard correspondence

Remark 1.58 We can think of a proposition φ as the "type of its proofs". The properties of simply-typed $\lambda(\rightarrow)$ match the rules of IPC rather precisely. We first show a correspondence between $\lambda(\rightarrow)$ and the implicational fragment IPC(\rightarrow) of IPC that includes only the \rightarrow connective, the axiom scheme, and the (\rightarrow -I) and (\rightarrow -E) rules. We later extend this to all of IPC by introducing more complex types to $\lambda(\rightarrow)$.

Start with IPC(\rightarrow) and build a simply-typed λ -calculus out of it whose set of type variables U is precisely the set of primitive propositions of the logic. Clearly, the set of types Π then matches the set of propositions in the logic.

Proposition 1.59 (Curry-Howard correspondence for IPC(\rightarrow)) Let Γ be a context for $\lambda(\rightarrow)$ and φ be a proposition. Then:

1. If $\Gamma \Vdash M : \varphi$, then $|\Gamma| = \{\tau \in \Pi : (x : \tau) \in \Gamma \text{ for some } x\} \underset{\operatorname{IPC}(\to)}{\vdash} \varphi$.

2. If $\Gamma \vdash_{\operatorname{IPC}(\to)} \varphi$, then there is a simply-typed λ -term $M \in \lambda(\to)$ such that $\{(x_{\varphi} : \varphi) : \varphi \in \Gamma\} \Vdash M : \varphi$.

Proof.

- 1. Use induction on the derivation of $\Gamma \Vdash M : \varphi$.
 - Let x be a variable not occurring in Γ' and the derivation is of the form $\Gamma', x : \varphi \Vdash x : \varphi$, then we have that $|\Gamma', x : \varphi| \underset{\operatorname{IPC}(\to)}{\vdash} \varphi$ since $\varphi \underset{\operatorname{IPC}(\to)}{\vdash} \varphi$ (as $|\Gamma', x : \varphi| = |\Gamma'| \cup \{\varphi\}$).
 - If the derivation has M of the form $\lambda x : \sigma . N$ and $\varphi = (\sigma \to \tau)$, then we must have $\Gamma, x : \sigma \Vdash N : \tau$. By the induction hypothesis, we have that $|\Gamma, x : \sigma| \vdash \tau$, i.e. $|\Gamma|, \sigma \vdash \tau$. But then $|\Gamma| \vdash \sigma \to \tau$ by $(\to -I)$.
 - If the derivation is of the form $\Gamma \Vdash (PQ) : \varphi$, then we must have $\Gamma \Vdash P : (\sigma \rightarrow \varphi)$ and $\Gamma \Vdash Q : \sigma$. By the induction hypothesis, we have $|\Gamma| \vdash (\sigma \rightarrow \varphi)$ and $|\Gamma| \vdash \sigma$, so $|\Gamma| \vdash \varphi$ by $(\rightarrow$ -E).
- 2. Use induction on the derivation of $\Gamma \vdash \varphi$.
 - Write $\Delta = \{(x_{\psi}: \psi) : \psi \in \Gamma\}$. Then we only have a few ways to construct a proof at a given stage. Say the derivation is of the form $\Gamma, \varphi \vdash \varphi$. If $\varphi \in \Gamma$, then clearly $\Delta \Vdash x_{\varphi}: \varphi$. If $\varphi \notin \Gamma$, then $\Delta, x_{\varphi}: \varphi \Vdash x_{\varphi}: \varphi$.
 - Suppose the derivation is at a stage of the form

$$\frac{\Gamma \vdash \varphi \to \psi, \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

- Then by the induction hypothesis there are λ -terms M and N such that $\Delta \Vdash M : (\varphi \to \psi)$ and $\Delta \Vdash N : \varphi$, from which $\Delta \Vdash (MN) : \psi$.
- If the stage is given by

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi},$$

then there are two subcases:

- If $\varphi \in \Gamma$, then the induction hypothesis gives $\Delta \Vdash M : \psi$ for some term M. By the weakening rule, we have $\Delta, x : \varphi \Vdash M : M : \psi$, where x is a variable not occurring in Δ . But then $\Delta \Vdash (\lambda x : \varphi . M) : (\varphi \to \psi)$.
- If $\varphi \notin \Gamma$, then the induction hypothesis gives $\Delta, x_{\varphi} : \varphi \Vdash M : \psi$ for some λ -term M, thus $\Delta \Vdash (\lambda x_{\varphi} : \varphi . M) : (\varphi \to \psi)$.

Example 1.60 Let φ, ψ be primitive propositions. The λ -term

$$\lambda f:(\varphi \to \psi) \to \varphi.\lambda g:\varphi \to \psi.g(fg)$$

has type $((\varphi \to \psi) \to \varphi) \to ((\varphi \to \psi) \to \psi)$, and therefore encodes a proof of that proposition in IPC(\to).

$g: [\varphi \to \psi] f: (\varphi \to \psi) \to \varphi$
$fg: arphi \ g: [arphi ightarrow \psi] \ (ightarrow - \mathbf{E})$
$g(fg):\psi(o ext{-E})$
$\hline \lambda g.g(fg): (\varphi \rightarrow \psi) \rightarrow \psi (\rightarrow \text{-I}, \varphi \rightarrow \psi)$
$\lambda f.\lambda g.g(fg): ((\varphi \to \psi) \to \varphi) \to ((\varphi \to \psi) \to \psi) (\to -\mathbf{I}, (\varphi \to \psi) \to \varphi)$

Definition 1.61 The full simply-typed λ -calculus consists of:

- A set of types Π generated by the grammar

$$\Pi := U \mid \Pi \to \Pi \mid \Pi \times \Pi \mid \Pi + \Pi \mid 0 \mid 1$$

Types of the form $\Pi \times \Pi$ are **product types**, those of the form $\Pi + \Pi$ are **coproduct types**, 0 is the **initial type**, and 1 is the **terminal type**. Again, U is a set of type variables.

- A set of terms Λ_Π generated by the grammar

$$\begin{split} \Lambda_{\Pi} \coloneqq V \mid \lambda V : \Pi.\Lambda_{\Pi} \mid \Lambda_{\Pi}\Lambda_{\Pi} \mid \pi_{1}(\Lambda_{\Pi}) \mid \pi_{2}(\Lambda_{\Pi}) \mid i_{1}(\Lambda_{\Pi}) \mid i_{2}(\Lambda_{\Pi}) \\ \mid \text{case}(\Lambda_{\Pi}; V.\Lambda_{\Pi}; V.\Lambda_{\Pi}) \mid * \mid !_{\Pi}\Lambda_{\Pi} \end{split}$$

where V is a set of variables and * is a constant.

We have the new typing rules:

$$\label{eq:generalized_states} \begin{split} \frac{\Gamma \Vdash M: \psi \times \varphi}{\Gamma \Vdash \pi_1(M): \psi} \\ \\ \frac{\Gamma \vDash M: \psi \times \varphi}{\Gamma \vDash \pi_2(M): \varphi} \\ \\ \frac{\Gamma \vDash M: \psi \quad \Gamma \vDash N: \varphi}{\Gamma \vDash \langle M, N \rangle: \psi \times \varphi} \\ \\ \frac{\Gamma \vDash M: \psi}{\Gamma \vDash \iota_1(M): \psi + \varphi} \end{split}$$

	$\Gamma \Vdash N: \varphi$	
	$\Gamma \Vdash \iota_2(N): \psi + \varphi$	0
$\Gamma \Vdash L : \psi + \varphi$	$\Gamma, x: \psi \Vdash M: \rho$	$\Gamma, y: \varphi \Vdash N: \rho$
$\Gamma \Vdash$	$\mathrm{case}\big(L;x^{\psi}.M;y^{\varphi}.$	Nig): ho
	$\Gamma\Vdash *:1$	

$$\frac{\Gamma \Vdash M: 0}{\Gamma \Vdash !_{\varphi}M: \varphi}$$

We also have the new reduction rules:

- Projections: $\pi_1 \langle M, N \rangle \xrightarrow{\beta} M$ and $\pi_2 \langle M, N \rangle \xrightarrow{\beta} N$.
- Pairs: $\langle \pi_1 M, \pi_2 M \rangle \xrightarrow{\eta} M$.
- Definition by cases: $\operatorname{case}(\iota_1(M); x.M; y.L) \xrightarrow{\beta} K[x \coloneqq M]$ and $\operatorname{case}(\iota_2(M); x.K; y.L) \xrightarrow{\beta} L[y \coloneqq M]$
- Unit: if $\Gamma \Vdash M : 1$, then $M \xrightarrow{\eta} *$.

Remark 1.62 We can extend the Curry-Howard correspondence with these new types, letting

- $0 \leftrightarrow \perp$.
- $\times \leftrightarrow \wedge$.
- $+ \leftrightarrow \lor$.
- $\bullet \ \rightarrow \longleftrightarrow \rightarrow .$

Example 1.63 Consider the following proof of $(\varphi \land \chi) \rightarrow (\psi \rightarrow \varphi)$:

$[arphi \wedge \chi]: p [\psi]: b$		
$\varphi:\pi_1(p)$		
$(\psi \to \varphi): \lambda b: \psi.\pi_1(p)$		
$((\varphi \wedge \chi) \to (\psi \to \varphi)): \lambda p: \varphi \times \chi. \lambda b: \psi. \pi_1(p)$		

We decorate this proof by turning the assumptions into variables.

Remark 1.64 We have the following correspondence:

Simply-typed λ -calculus	IPC
(Primitive) types	(Primitive) propositions
Variable	Hypothesis
Simply-typed λ -term	Proof
Type construction	Logical connective
Term inhabitation	Provability
Term reduction	Proof normalisation

1.4. Semantics for IPC

Definition 1.65 A **lattice** is a set *L* equipped with binary operations \land and \lor which are commutative and associative and satisfy the **absorption laws**: for all $a, b \in L$,

- $a \lor (a \land b) = a$,
- $a \wedge (a \vee b) = a$.

Definition 1.66 A lattice *L* is **distributive** if for all $a, b, c \in L$, $a \lor (b \land c) = (\land b) \lor (a \land c)$.

Definition 1.67 A lattice *L* is **bounded** if there are elements $\bot, \top \in L$ such that $a \lor \bot = a$ and $a \land \top = a$ for all $a \in L$.

Definition 1.68 A lattice *L* is **complemented** if it is bounded and for every $a \in L$, there is $a^* \in L$ such that $a \wedge a^* = \bot$ and $a \vee a^* = \top$.

Definition 1.69 A Boolean algebra is a complemented distributive lattice.

Remark 1.70 In any lattice, \wedge and \vee are idempotent. Moreover, we can define an ordering by setting $a \leq b$ if $a \wedge b = a$.

Example 1.71

- For every set I, the powerset $\mathbb{P}(I)$ of I with $\wedge = \cap$ and $\vee = \cup$ is the prototypical Boolean algebra.
- More generally, the clopen subsets of a topological space form a Boolean algebra with $\wedge = \cap$ and $\vee = \cup$.
- In particular, the set of finite and cofinite subsets of \mathbbm{Z} is a Boolean algebra.

Proposition 1.72 Let *L* be a bounded lattice and \leq be the order induced by the operations in *L* ($a \leq b \iff a \land b = a$). Then \leq is a partial order with least element \perp and greatest element \top , and for all $a, b \in L$, $a \land b = \inf\{a, b\}$ and $a \lor b = \sup\{a, b\}$. Conversely, every partial order with all finite inf's and sup's is a bounded lattice.

 \square

Proof. Exercise.

Classically, we say that $\Gamma \vDash t$ if for every valuation $v : L \rightarrow \{0, 1\}$ such that v(p) = 1 for all $p \in \Gamma$, we have v(t) = 1. We might want to replace $\{0, 1\}$ with some other Boolean algebra to get semantics for IPC, with an accompanying completeness theorem. But Boolean algebras believe in the LEM!

Definition 1.73 A Heyting algebra H is a bounded lattice equipped with a binary operation \Rightarrow such that for all $a, b, c \in H$,

$$a \wedge b \leq c$$
 iff $a \leq (b \Rightarrow c)$.

This can be thought of as an algebraic version of the deduction theorem. A **Heyting** homomorphism (morphism of Heyting algebras) is a function that preserves all finite meets (\wedge), finite joins (\vee), and \Rightarrow .

Example 1.74

- 1. Every Boolean algebra is a Heyting algebra: define $a \Rightarrow b := a^* \lor b$ (a^* should be thought of as $\neg a$). Note that we must have $a^* = (a \Rightarrow \bot)$.
- 2. Every topology on a set X is a Heyting algebra, where $(U \Rightarrow V) := int((X U) \cup V)$.
- 3. A finite distributive lattice is a Heyting algebra.

Definition 1.75 Let H be a Heyting algebra and L be a propositional language with a set of primitive propositions P. An *H***-valuation** is a function $v : P \to H$, extended recursively to L, by setting:

- $v(\perp) = \perp$.
- $v(A \wedge B) = v(A) \wedge v(B).$
- $\bullet \ v(A \vee B) = v(A) \vee v(B).$
- $\bullet \ v(P \to Q) = v(A) \Rightarrow v(B).$

Definition 1.76 A proposition $A \in L$ is *H*-valid if $v(A) = \top$ for all *H*-valuations v, and is an *H*-consequence of a (finite) set of propositions Γ if $v(\bigwedge \Gamma) \leq v(A)$ (we write $\Gamma \models P$).

Lemma 1.77 (Soundness of Heyting Semantics) Let H be a Heyting algebra and $v : L \to H$ be an H-valuation. If $\Gamma \vdash A$, then $\Gamma \models A$.

Proof. By induction on the structure of the proof $\Gamma \vdash A$.

- $(Ax): v(\bigwedge \Gamma \land A) = v(\bigwedge \Gamma) \land v(A) \le v(A).$
- (\wedge -I): $A = B \wedge C$ and we have derivations $\Gamma_1 \vdash B$ and $\Gamma_2 \vdash C$, with $\Gamma_1, \Gamma_2 \subseteq \Gamma$. By the indutive hypothesis, we have $v(\bigwedge \Gamma) \leq v(\bigwedge \Gamma_1) \wedge v(\bigwedge \Gamma_2) \leq v(B) \wedge v(C) = v(B \wedge C)$, i.e. $\Gamma \models_H A$.
- $(\rightarrow -I)$: $A = B \rightarrow C$, so we must have $\Gamma \cup \{B\} \vdash C$. By the inductive hypothesis, we have $v(\bigwedge \Gamma) \land v(B) = v(\bigwedge \Gamma \land B) \le v(C)$. By the definition of \Rightarrow , this implies $v(\bigwedge \Gamma) \le (v(B) \Rightarrow v(C)) = v(B \rightarrow C) = v(A)$, i.e. $\Gamma \models_{H} A$.
- $(\vee -I)$: $A = B \vee C$ and WLOG we have a derivation $\Gamma \vdash B$. By the inductive hypothesis, we have $v(\bigwedge \Gamma) \leq v(B)$, but $v(B \vee C) = v(B) \vee v(C) = \sup\{v(B), v(C)\}$, and so $v(B) \leq v(B \vee C)$.
- (A-E): by the induction hypothesis, we have $v(\bigwedge \Gamma) \le v(B \land C) = v(B) \land v(C) \le v(B), v(C)$.
- $(\rightarrow -E)$: we know that $v(A \rightarrow B) = (v(A) \Rightarrow v(B))$. From $v(A \rightarrow B) \leq (v(A) \Rightarrow v(B))$, we derive $v(A) \wedge v(A \rightarrow B) \leq v(B)$ by definition of \Rightarrow . So if $v(\bigwedge \Gamma) \leq v(A \rightarrow B)$ and $v(\bigwedge \Gamma) \leq v(A)$, then $v(\bigwedge \Gamma) \leq v(B)$ as required.

- $(\vee$ -E): by the inductive hypothesis, $v(A \land \bigwedge \Gamma) \leq v(C)$, $v(B \land \bigwedge \Gamma) \leq v(C)$ and $v(\bigwedge \Gamma) \leq v(A \lor B) = v(A) \lor v(B)$. This last fact means that $v(\bigwedge \Gamma) \land (v(A) \lor v(B)) = v(\bigwedge \Gamma)$. Since Heyting algebras are distributive lattices, this is the same as $(v(\bigwedge \Gamma) \land v(A)) \lor (v(\bigwedge \Gamma) \land v(B))$, and this is $\leq v(C)$.
- $(\bot E)$: if $v(\bigwedge \Gamma) \le v(\bot) = \bot$, then $v(\bigwedge \Gamma) = \bot$, in which case $v(\bigwedge \Gamma) \le v(A)$ for any A by minimality of \bot in H.

Example 1.78 The LEM is not intuitionistically valid: let p be a primitive proposition and consider the Heyting algebra given by the topology $\{\emptyset, \{1\}, \{1,2\}\}$ on $X = \{1,2\}$. Define a valuation v with $v(p) = \{1\}$, in which case $v(\neg p) = \neg\{1\} = int(X \setminus \{1\}) = \emptyset$. So $v(p \lor \neg p) = \{1\} \lor \emptyset = \{1\} \neq \top$. So by Soundness, $\underset{\text{IPC}}{\not P} p \lor \neg p$.

Example 1.79 Pierce's law $((p \to q) \to p) \to p$ is not intuitionistically valid: take the valuation on the standard topology on \mathbb{R}^2 that maps p to $\mathbb{R}^2 \setminus \{(0,0)\}$ and q to \emptyset .

Classical completeness states that $\Gamma \underset{\text{CPC}}{\vdash} A$ iff $\Gamma \underset{2}{\vDash} A$. For intuitionistic completeness, there is no single finite replacement for 2.

Definition 1.80 Let Q be a logical doctrine (e.g. CPC, IPC, etc.), L be a propositional language, and T be an L-theory. The **Lindenbaum-Tarski** algebra $F^Q(T)$ is built in the following way:

- The underlying set of $F^Q(T)$ is the set of equivalence classes $[\varphi]$ of propositions φ , where $\varphi \sim \psi$ when $T, \varphi \vdash_{O} \psi$ and $T, \psi \vdash_{O} \varphi$.
- If \star is a logical connective in the fragment Q, we set $[\varphi] \star [\psi] \coloneqq [\varphi \star \psi]$.

We are interested in the cases Q = CPC, Q = IPC and $Q = IPC \setminus \{ \rightarrow \}$.

Proposition 1.81 The Lindenbaum-Tarski algebra of any theory in IPC $\setminus \{\rightarrow\}$ is a distributive lattice.

Proof. Clearly, \wedge and \vee inherit associativity and commutativity, so in order for $F^{\text{IPC} \setminus \{\rightarrow\}}(T)$ to be a lattice, we only need to check the absorption laws: $[\varphi] \vee [\varphi \wedge \psi] = [\varphi]$, and $[\varphi] \wedge [\varphi \vee \psi] = [\varphi]$. The first is true, since $T, \varphi \vdash_{\text{IPC} \setminus \{\rightarrow\}} \varphi \vee (\varphi \wedge \psi)$ by $(\vee \text{-I})$, and also $T, \varphi \vee (\varphi \wedge \psi) \vdash_{\text{IPC} \setminus \{\rightarrow\}} \varphi$ by $(\vee \text{-E})$. The second is true by a similar argument.

For distributivity, $T, \varphi \land (\psi \lor \chi) \vdash (\varphi \land \psi) \lor (\varphi \land \chi)$ by (\land -E) followed by (\lor -E):

$$\begin{array}{c} \varphi \wedge (\psi \lor \chi) \\ \\ \varphi \quad \psi \lor \chi \quad (\mathrm{by} \ (\wedge \operatorname{-E})) \\ \\ (\varphi \wedge \psi) \lor (\varphi \wedge \chi) \quad (\mathrm{by} \ (\lor \operatorname{-E})) \end{array}$$

Similarly, $T, (\varphi \land \psi) \lor (\varphi \land \chi) \vdash \varphi \land (\psi \lor \chi)$ by (\lor -E) followed by (\land -I).

Lemma 1.82 The Lindenbaum-Tarski algebra of any theory relative to IPC is a Heyting algebra.

Proof. We already know that $F^{\text{IPC}}(T)$ is a distributive lattice, so it is enough to show that $[\varphi] \Rightarrow [\psi] \coloneqq [\varphi \rightarrow \psi]$ gives a Heyting implication, and that $F^{\text{IPC}}(T)$ is bounded. Suppose that $[\varphi] \land [\psi] \le [\chi]$, i.e. $T, \varphi \land \psi \stackrel{\vdash}{}_{\text{IPC}} \chi$. We want to show that $[\varphi] \le [\psi \rightarrow \chi]$, i.e. $T, \varphi \vdash (\psi \rightarrow \chi)$. But this is clear:

$arphi ~~ [\psi]$
$arphi\wedge\psi$
χ (by hypothesis)
$\psi ightarrow \chi (ightarrow - \mathrm{I}, \psi)$

Conversely, if $T, \varphi \vdash (\psi \rightarrow \chi)$, then we can prove $T, \varphi \land \psi \vdash \chi$:

$arphi\wedge\psi$
$arphi$ ψ
$\psi \to \chi$ (by hypothesis)
$\psi ightarrow \chi ~~\psi$
$\chi (ightarrow - E)$

So defining $[\varphi] \Rightarrow [\psi] \coloneqq [\varphi \rightarrow \psi]$ provides a Heyting \Rightarrow . The bottom element of $F^{\text{IPC}}(T)$ is just $[\bot]$: if $[\varphi]$ is any element, then $T, \bot \vdash \varphi$ by $(\bot - E)$. The top element is $\top \coloneqq [\bot \rightarrow \bot]$: if φ is any proposition, then $[\varphi] \leq [\bot \rightarrow \bot]$ via

$$\begin{array}{c} \varphi \quad [\bot] \\ \bot \quad (\bot - E) \\ \downarrow \rightarrow \bot \end{array}$$

Theorem 1.83 (Completeness of Heyting Semantics) A proposition is provable in IPC iff it is H-valid for every Heyting algebra H.

Proof. One direction is easy: if $\vdash_{\text{IPC}} \varphi$, then there is a derivation in IPC, thus $\top \leq v(\varphi)$ for any Heyting algebra H and valuation v by soundness. But then $v(\varphi) = \top$ and φ is H-valid.

For the other direction, consider the Lindenbaum-Tarski algebra F(L) of the empty theory relative to IPC, which is a Heyting algebra by the above lemma. We can define a valuation v by extending $P \to F(L)$, $p \mapsto [p]$, to all propositions. Since v is a valuation, it follows by induction (and the construction of F(L)) that $v(\varphi) = [\varphi]$ for all propositions φ . Now φ is valid in every Heyting algebra, and so in F(L) in particular. So $v(\varphi) = \top = [\varphi]$, hence $\vdash_{\text{IPC}} \varphi$. **Definition 1.84** Given a poset S, the set $a \uparrow := \{s \in S : a \leq s\}$ is a **principal upset**. $U \subseteq S$ is a **terminal segment** if $a \uparrow \subseteq U$ for each $a \in U$.

Proposition 1.85 For any poset S, the set $T(S) = \{U \subseteq S : U \text{ is a terminal segment of } S\}$ can be made into a Heyting algebra, and the way this is done is unique.

Proof. Order the terminal segments by \subseteq . Meets and joins are \cap and \cup , so we just need to define \Rightarrow . For $U, V \in T(S)$, define $(U \Rightarrow V) := \{s \in S : (s \uparrow) \cap U \subseteq V\}$. To show this is a valid definition, let $U, V, W \in T(S)$. We have

$$W \subseteq (U \Rightarrow V)$$
 iff $(w \uparrow) \cap U \subseteq V$ for all $w \in W$

which happens if for every $w \in W$ and $u \in U$, we have if $w \leq u$, then $u \in V$. But W is a terminal segment, so this is the same as saying that $W \cap U \subseteq V$.

Definition 1.86 Let P be a set of primitive propositions. A **Kripke model** is a teriple (S, \leq, \Vdash) where (S, \leq) is a poset (whose elements are called "worlds" or "states" and whose ordering is called the "accessibility relation"), and $\Vdash \subseteq S \times P$ is a binary relation called "forcing" satisfying the **persistence property**: if $p \in P$ is such that $s \Vdash p$ and $s \leq s'$, then $s' \Vdash p$.

Every valuation v on T(S) induces a Kripke model by setting $s \Vdash p$ if $s \in v(p)$.