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1. Non-classical logic

1.1. Intuitionistic logic

Idea: a statement is true if there is a proof of it. A proof of ¢ = 1 is a “procedure”
that can convert a proof of ¢ to a proof of . A proof of =y is a proof that there is
no proof of .

In particular, =—¢ is not always the same as .

Fact 1.1 The Law of Excluded Middle (LEM) (¢ V —¢) is not (generally)
intuitionistically valid.

Moreover, the Axiom of Choice is incompatible with intuitionistic set theory.
In intuitionistic logic, 9 means an explicit element can be found.

Why bother with intuitionistic logic?

o Intuitionistic mathematics is more general, as we assume less (no LEM or AC).

» Several notions that are conflated in classical mathematics are genuinely different
constructively.

 Intuitionistic proofs have a computable content that may be absent in classical
proofs.

e Intuitionistic logic is the internal logic of an arbitrary topos.

We will inductively define a provability relation by enforcing rules that implement the
BHK-interpretation.

Definition 1.2 A set is inhabited if there is a proof that it is non-empty.

Axiom 1.3 (Choice - Intutionistic Version) Any family of inhabited sets admits a
choice function.

Theorem 1.4 (Diaconescu) The Law of Excluded Middle can be intutionistically
deduced from the Axiom of Choice.

Proof (Hints).
e Proof should use Axioms of Separation, Extensionality and Choice.
« For proposition ¢, consider A = {xz € {0,1}: ¢V (zx=0)} and B = {z € {0,1} :

eV (z=1)}

o Show that we have a proof of f(A) =0V f(A) = 1, similarly for f(B).

o Consider the possibilities that arise from above, show that they lead to either a
proof of ¢ or a proof of —.

Proof.

o Let ¢ be a proposition. By the Axiom of Separation, the following are sets:
A={ze{0,1}: oV (z=0)},
B={ze{0,1}:pV (z=1)}.



Since 0 € A and 1 € B, we have a proof that {A, B} is a family of inhabited sets,

thus admits a choice function f: {A, B} - AU B by the Axiom of Choice.

f satisfies f(A) € A and f(B) € B by definition.

So we have f(A) =0 or ¢ is true, and f(B) =1 or ¢ is true. Also, f(A), f(B) €

{0,1}.

Now f(A) € {0,1} means we have a proof of f(A) =0V f(A) =1 and similarly for

#(B).

There are the following possibilities:

1. We have a proof that f(A) =1, so ¢ V (1 =0) has a proof, so we must have a
proof of .

2. We have a proof that f(B) =0, so ¢ V (0 = 1) has a proof, so we must have a
proof of .

3. We have a proof that f(A) =0 A f(B) =1, in which case we can prove —p:
assume there is a proof of ¢, we can prove that A = B (by the Axiom of
Extensionality), in which case 0 = f(A) = f(B) = 1: contradiction.

So we can always specify a proof of ¢ or a proof of —p.

O

Notation 1.5 We write I' F ¢ to mean that ¢ is a consequence of the formulae in

the set I'. T is called the set of hypotheses or open assumptions.

Notation 1.6 Notation for assumptions and deduction.

Definition 1.7 The rules of the intuitionistic propositional calculus (IPC) are:

conjunction introduction,
conjunction elimination,
disjunction introduction,
disjunction elimination,
implication introduction,
implication elimination,
assumption,

weakening,

construction,

and for any A,

as defined below.

Definition 1.8 The conjunction introduction (A-I) rule:

'rA T'kFB
'AAB

Definition 1.9 The conjunction elimination (A-E) rule:



A I'=B
'AvB TRHAVB

Definition 1.10 The disjunction introduction (V-I) rule:

A '+B
'AVB THAVB

Definition 1.11 The disjunction elimination (proof by cases) (V-E) rule:

IAFC T,B-FC TFAVB
TFC '

Definition 1.12 The implication/arrow introduction (—-I) rule (note the
similarity to the deduction theorem):

T, Al B
TFA- B

Definition 1.13 The implication/arrow elimination (—-E) rule (note the
similarity to modus ponens):

'HrA—-B T'HA
I'—B

Definition 1.14 The assumption (Ax) rule: for any A,

INAFA
Definition 1.15 The weakening rule:

T'B
I'AF B
Definition 1.16 The construction rule:

T A AF B
T,AFB

Remark 1.17 We obtain classical propositional logic (CPC) from IPC by adding
either:

e 'FAV-A:
IF'-Av-A
or
o If',-AFLl, then '+ A:
r,-ArL
A

Notation 1.18 see scan



Definition 1.19 We obtain intuitionistic first-order logic (IQC) by adding the
following rules to IPC for quantification:

e existental inclusion,

e existential elimination,

e universal inclusion,

e universal elimination

as defined below.

Definition 1.20 The existential inclusion (3-I) rule: for any term ¢,
I'F olt/z]
'k 3z.p(r)

Definition 1.21 The existential elimination (3-I) rule:

'Fdz.p IokFY
'Ey ’

where x is not free in I" or 9.

Definition 1.22 The universal inclusion (V-I) rule:
Lhy
['-Vz.p’

where x is not free in I'.

Definition 1.23 The universal exclusion (V-E) rule:

' Vz.p(x)
I'Eolt/x]

where t is a term.

Definition 1.24 We define the notion of discharging/closing open assumptions,
which informally means that we remove them as open assumptions, and append them
to the consequence by adding implications. We enclose discharged assumptions in
square brackets [] to indicate this, and add discharged assumptions in parentheses to
the right of the proof. For example, —-1 is written as

I, [4]

B
— (A
'HA— B (4)
Example 1.25 A natural deduction proof that AA B — B A A is given below:

[AAB]  [AAB]
A B
BAA
amsgralA N B)



Example 1.26 A natural deduction proof of ¢ — (¢ — ¢) is given below (note
clearly we must use —-I):

[e] [
Y=

o — (P — )

Example 1.27 A natural deduction proof of (¢ — (¢ = x)) = (¢ = ¢¥) = (¢ —
X)) (note clearly we must use —-I):

o= W —=x)] (=Y [¢]
Y—=x Y

X

=X

(p =) = (= x)

(o= W —=x)) = (g =) = (= X))

Notation 1.28 If I' is a set of propositions, ¢ is a proposition and L €
{IPC,1QC, CPC, CQC}, write I’ IZ @ if there is a proof of ¢ from I' in the logic L.

Lemma 1.29 If T’ IlPTC @, then I', ¢ I}P_C p for any proposition 1. If p is a primitive
proposition (doesn’t contain any logical connectives or quantifiers) and 1 is any
proposition, then I'[¢)/p] III;C wlv/p).

Proof. Induction on number of lines of proof (exercise). d

1.2. The simply typed A-calculus

Definition 1.30 The set II of simple types is generated by the grammar
n:=U | I-1I

where U is a countable set of type variables (primitive types) together with an
infinite set of V' of variables. So II consists of U and is closed under —: for any
a,bell,a—bell

Definition 1.31 The set A of simply typed A-terms is defined by the grammar
In the term Az : 7.M, x is a variable, 7 is type and M is a A-term. Forming terms of

this form is called A-abstraction. Forming terms of the form AjAy is called A-
application.

Example 1.32 The M-term Az : Z.z2 should represent the function z — 22 on Z.



Definition 1.33 A context is a set of pairs I' = {x; : 7y, ...,x,, : 7,,} where the z;
are distinct variables and each 7; is a type. So a context is an assignment of a type to
each variable in a given set. Write C' for the set of all possible contexts. Given a
context I' € C, write I', z : 7 for the context I' U {x : 7} (if = does not appear in T').

The domain of T is the set of variables {zy, ..., z, } that occur in it, and its range,
IT'|, is the set of types {7y, ...,7,,} that it manifests.

Definition 1.34 Recursively define the typability relation FC C x Ay x II via:

1. For every context I', variable & not occurring in I' and type 7, we have I';z : 7 |-
x:T.

2. For every context I', variable x not occurring in I', types o, 7 € II, and A-term M,
ifz:olkM:7,then T'IF (Ax : 0. M) : (0 — t).

3. For all contexts I, types o, 7 € I, and terms M, N € Ay, if T'lF M : (0 — t) and
'FN:o,thenT'IF (MN): 7.

Definition 1.35 For I' € C, we say a A-term M € Ay is typable if for some type
Tel,T'IFM:T.

Notation 1.36 We will refer to the A-calculus of Ay with this typability relation as
A(=).
Definition 1.37 A variable z occurring in a A-abstraction Az : 0.M is bound and is

free otherwise. A term with no free variables is called closed.

Definition 1.38 Terms M and N are a-equivalent if they differ only in the names
of their bound variables.

Definition 1.39 If M and N are A-terms and x is a variable, then we define the
substitution of N for x in M by the following rules:

o z[z:=N]=N.

o y[z:=N]=yfory+#x.

e (PQ)[x:= N]= Pz := N|Q[z := N] for M\-terms P, Q.

e (A\y:0.P)[x:=N]=Ay:o0.(Plz:=N]) for x # y and y not free in N.

Definition 1.40 The S-reduction relation is the smallest relation ? on Ap closed

under the following rules:
e (Ax:0.P)Q 7 P[z := Q]. The term being reduced is called a B-redex, and the

result is called its B-contraction.
e If P ? P’, then for all variables z and types o € II, we have Az : o.P 7 AT

o.P.
o If P ? P’ and Z is a MA-term, then PZ ? P’'Z and ZP ? ZP'.

Definition 1.41 We define B-equivalence, %, as the smallest equivalence relation

containing 7

Example 1.42 We have (Az : Z.(A\y : 7.2))2 7) (Ay : 7.2).



Lemma 1.43 (Free Variables Lemma) Let I' IF M : 0. Then

e fI'CIV,thenIVIF M : 0.

e The free variables of M occur in T'.

e There is a context I'* C I" whose variables are exactly the free variables in M, with
I'*IFM:o.

Proof. By induction on the grammar (exercise). O

Lemma 1.44 (Generation Lemma)
1. For every variable x € V, context I and type o € Il: if T'IF x : o, then z : 0 € T
2. IfTIF (MN) : o, then there is a type 7 € Il such that 'lF M : 7 - o and I' IF N :

T.
3. f 'l (Az.M) : o, then there are types 7,p € Il such that 'z : 7I- M : p and 0 =

(T = p).
Proof. By induction on the grammar (exercise). O

Lemma 1.45 (Substitution Lemma)
1. T IF M :0and a € U is a type variable, then I'la := 7] IF M : o[ := 7].
2. UfT,z:7FM:0and T'lF N : 7, then T' - M[z := N]: 0.

Proof. By induction on the grammar (exercise). O

Proposition 1.46 (Subject Reduction) If I'IF M : ¢ and M 7 N,thenT'IF N : 0.

Proof.
e By induction on the derivation of M ? N, using Generation and Substitution

Lemmas (exercise).

Definition 1.47 A A-term M € Ay is an B-normal form (8-NF) if there is no
term N # M such that M ? N.

Notation 1.48 Write M TB» N if M reduces to N after (potentially) multiple §-

reductions.

Theorem 1.49 (Church-Rosser for A(—)) Suppose that I'IF M : . If M —ﬁ» N; and
M _ﬁ» N,, then there is a A-term L such that N; _ﬁ» L and N, —5» LyandT'IFL:o.

Remark 1.50 In Church-Rosser, the fact that M —ﬁ» N, and M _ﬁ» N, implies that

N, N, 73» L is called confluence, and can be represented diagramatically as



Corollary 1.51 (Uniqueness of normal form) If a simply-typed A-term admits a (-
NF, then this form is unique.

Proposition 1.52 (Uniqueness of types)
1. fTFM:ocand 'l M : 7, then o = 7.
2. fT’'FM:0,TIFN :T, andM%N,thena:T.

Proof.

1. Induction (exercise).

2. By Church-Rosser, there is a A-term L which both M and N reduce to (since (-
equivalence means there is a finite sequence of alternating up and down 78»

relations). By Subject Reduction, we have T'lF L: o and T'IF L : 7, so o = 7 by 1.

O

Example 1.53 There is no way to assign a type to Az.xx: let z be of type 7, then
by the Generation Lemma, in order to apply x to x, x must be of type 7 — o for
some type o. But 7 # 7 — o, which contradicts Uniqueness of Types.

Definition 1.54 The height function is the recursively defined map h: II -+ N
that maps all type variables u € U to 0, and a function type o — 7 to 1 +
max{h(o), h(7)}:
h:1I — N,
h(a) =0 VaeU,
h(oc = 7) =1+ max{h(o),h(T)} Vo, €Il

The height of a redex is defined as the height of the type of its A-abstraction:
h((Az:0.PT)77"Q) = h(oc — 7).

Notation 1.55 (Az:0.P7)° " denotes that P has type 7 and the A-abstraction has
type o — T.

Theorem 1.56 (Weak normalisation for A\(—)) Let I' IF M : o. Then there is a finite

reduction path M := M, ? M, ? ? M, , where M, is in S-normal form.

Proof "Taming the Hydra".
e Idea is to apply induction on the complexity of M.
e Define a function m : Ay =& N x N by



_ J(0,0) if M is in B-NF
m(M) = {(h(M),redeX(M)) otherwise

where h(M) is the maximal height of a redex in M, and redex(M) is the number

of redexes in M of that height.

e We use induction over w X w to show that if M is typable, then it admits a
reduction to -NF.

e The problem is that reductions can copy redexes or create new ones, so our
strategy is to always reduce the right-most redex of maximal height.

o We will argue that, by following this strategy, any new redexes that we generate
have a strictly lower height than the height of the redex we chose to reduce.

e If'lF M : 0 and M is already in S-NF, then we are done.

e So assume M is not in B-NF. Let A be the rightmost redex of maximal height h.

e By reducing A, we may introduce copies of existing redexes or create new ones.

e Creation of new redexes by f-reduction of A in one of the following ways:

1. If A is of the form (Az : (p — p)...xPP...)(Ay : p.Q*)" ", then it reduces to
Ay p.Q")P7H PP, in which case there is a new redex of height h(p — p) <
h.

2. We have A = (Az : 7.(Ay : p.R*))P" occurring in M in the scenario AP7HQP.
Say A reduces to Ay : p.RY. Then we create a new redex (Ay : p.R})QP of
height h(p — p) < h(T — (p — 1)) = h.

3. A=(Az:(p— p)x)( Ay : p.P*), which occurs in M as AP7*QP. Reduction
then gives the redex (Ay : p.P*)Q” of height h(p — p) < h.

o Now A itself no longer appears in M, (lowering the count of redexes of maximal

height by 1), and any newly created redexes have height < h.

o If we have A = (Az : 7.P?)Q7 and P contains multiple free occurrences of x, then
all the redexes in ) are multiplied when performing S-reduction.
e However, our choice of A ensures that the height of any such redex in @ has

height < h (since these redexes are to the right of A in M).

o Thus, it is always the case that for the new term M’, m(M’) < m(M) in the
lexicographic order. So by the induction hypothesis, since M’ can be reduced to (-

NF, so can M.

U
Theorem 1.57 (Strong Normalisation for A(—)) Let I' IF M : ¢. Then there is no
infinite reduction sequence M ? M, — B....
Proof. Exercise (sheet 1). O

1.3. The Curry-Howard correspondence

Remark 1.58 We can think of a proposition ¢ as the “type of its proofs”. The
properties of simply-typed A(—) match the rules of IPC rather precisely. We first
show a correspondence between A(—) and the implicational fragment IPC(—) of IPC
that includes only the — connective, the axiom scheme, and the (—-I) and (—-E)
rules. We later extend this to all of IPC by introducing more complex types to A(—).

10



Start with IPC(—) and build a simply-typed A-calculus out of it whose set of type
variables U is precisely the set of primitive propositions of the logic. Clearly, the set
of types II then matches the set of propositions in the logic.

Proposition 1.59 (Curry-Howard correspondence for IPC(—)) Let I' be a context
for A(—) and ¢ be a proposition. Then:

1. IfT'IF M : o, then I'|={r€Il: (z:7) €I for some x} F .
IPC(—)

2. fT' k¢, then there is a simply-typed A-term M € A\(—) such that {(x¢ : go) :
IPC(—)

pel}IFM: .
Proof.
1. o Use induction on the derivation of I" IF M : ¢.
e Let x be a variable not occurring in IV and the derivation is of the form I,z :

i + I,z :¢| =
psince p b @ (as I,z 2 |

¢ IF x : ¢, then we have that [T,z : ¢ IPC|:_H =

T U{e}).
o If the derivation has M of the form Az : 0.N and ¢ = (¢ — 7), then we must

)

have I'; z : o IF N : 7. By the induction hypothesis, we have that |I',z : o| F 7,
i.e. |T'|,o F 7. But then |T'|F o — 7 by (—-I).

o If the derivation is of the form I' IF (PQ) : ¢, then we must have I' I+ P : (0 —
@) and ' IF @ : 0. By the induction hypothesis, we have |I'| F (6 — ¢) and |T'| -
o, so || F ¢ by (—-E).

2. o Use induction on the derivation of I" - (.

e Write A = {(ww : ¢) NS F}. Then we only have a few ways to construct a
proof at a given stage. Say the derivation is of the form I', o F . If ¢ € T', then
clearly Ak z, : . If o € ', then Az, 1oz, .

e Suppose the derivation is at a stage of the form

'Fp—=1Y, T'kFop
|

e Then by the induction hypothesis there are A-terms M and N such that A IF

M : (¢ — 1) and AlF N : ¢, from which A IF (MN) : 9.
o If the stage is given by

Ik
Fl—go—mp’

then there are two subcases:

» If ¢ € T', then the induction hypothesis gives A IF M : 1 for some term M. By
the weakening rule, we have A,z : ¢ I M : M : 1, where z is a variable not
occurring in A. But then A IF (Az: . M) : (p — ).

» If o ¢ T, then the induction hypothesis gives A,z : ¢ |- M : ¢ for some A-
term M, thus A I- ()\JI(P : cp.M) t(p = ).

Example 1.60 Let ¢, be primitive propositions. The A-term

11



A (=) = 0Ag: o —1.9(fg)

has type ((¢ = ¥) — ¢) = ((¢ = ) — ¢), and therefore encodes a proof of that
proposition in IPC(—).

g:lp—=Y f:lp—=v)—e

fa:¢ g:lp—9y] (—-E)
9(fg) ¢ (—-E)
Ag-9(fg): (¢ = ¥) = (=-Lo—=19)
AfAg-g(fg): (g =) =) = (¢ =9) = 9) (=-Le—=v) =)

Definition 1.61 The full simply-typed A-calculus consists of:
e A set of types II generated by the grammar

O:=U |I—I|OxO|I+I[0]|1

Types of the form IT x II are product types, those of the form II + IT are
coproduct types, 0 is the initial type, and 1 is the terminal type. Again, U is
a set of type variables.

o A set of terms A generated by the grammar

Ap=V | AV ILAg | ApAg | 7 (Amp) | 7o (Amm) | iy (Agp) | ig(Agp)
| case(Ar; VAL VAR | *]| 'gAn

where V is a set of variables and * is a constant.

We have the new typing rules:

F'FM:yxep

Tk (M):9

TIFM:xep

D'IFmy(M): @

'EM:y TIFEN:p

Tl (M,N): 9 x ¢

TIFM:

ClFy,(M):y+¢

12



I'FN:p

LIk w(N) v+

'FL:Y+¢ Diz:pylFM:p Iiy:@pl-N:p

| case(L;xd’.M;y‘P.N) i p

T'lFx:1

'eM:0

TIFI,M: ¢

We also have the new reduction rules:
o Projections: m; (M, N) 7 M and m, (M, N) ? N.

e Pairs: (myM, 7, M) — M.

o Definition by cases: cnase(Ll(M); x.M;y.L) ? K[z := M] and
case(ty(M); 2. K;y.L) 7) L[y := M|

e Unit: if ' IF M : 1, then MT .

Remark 1.62 We can extend the Curry-Howard correspondence with these new
types, letting

e 0<—1.

e X < A.

o +<— V.

e — <& —.

Example 1.63 Consider the following proof of (¢ A x) — (¥ — ¢):

leAX]:p [¥]:b
¢ :m(p)
(% = @) : Ab: .y (p)
(e AX) = (=) : Ap: o X x.Ab : Y.y (p)

We decorate this proof by turning the assumptions into variables.

Remark 1.64 We have the following correspondence:

13



Simply-typed A-calculus IPC
(Primitive) types (Primitive) propositions
Variable Hypothesis
Simply-typed A-term Proof
Type construction Logical connective
Term inhabitation Provability
Term reduction Proof normalisation

1.4. Semantics for IPC

Definition 1.65 A lattice is a set L equipped with binary operations A and V
which are commutative and associative and satisfy the absorption laws: for all
a,be L,

e aV(aAb)=a,

e aA(aVb)=a.

Definition 1.66 A lattice L is distributive if for all a,b,c € L,aV (bAc) = (Ab)V
(aNc).

Definition 1.67 A lattice L is bounded if there are elements |, T € L such that
aV 1l=aand a AT =a forall a € L.

Definition 1.68 A lattice L is complemented if it is bounded and for every a € L,
there is a* € L such that aAa* =L andaVa*=T.

Definition 1.69 A Boolean algebra is a complemented distributive lattice.

Remark 1.70 In any lattice, A and V are idempotent. Moreover, we can define an
ordering by setting a < b if a A b = a.

Example 1.71

o For every set I, the powerset P(I) of I with A =N and V = U is the prototypical
Boolean algebra.

e More generally, the clopen subsets of a topological space form a Boolean algebra
with A =N and V = U.

e In particular, the set of finite and cofinite subsets of Z is a Boolean algebra.

Proposition 1.72 Let L be a bounded lattice and < be the order induced by the
operations in L (a < b <= aAb=a). Then < is a partial order with least element L
and greatest element T, and for all a,b € L, a A b = inf{a, b} and a V b = sup{a, b}.
Conversely, every partial order with all finite inf’s and sup’s is a bounded lattice.

Proof. Exercise. d

Classically, we say that T' F ¢ if for every valuation v : L — {0, 1} such that v(p) =1
for all p € T', we have v(t) = 1. We might want to replace {0, 1} with some other
Boolean algebra to get semantics for IPC, with an accompanying completeness
theorem. But Boolean algebras believe in the LEM!

14



Definition 1.73 A Heyting algebra H is a bounded lattice equipped with a
binary operation = such that for all a,b,c € H,

aANb<ciffa< (b= c).

This can be thought of as an algebraic version of the deduction theorem. A Heyting
homomorphism (morphism of Heyting algebras) is a function that preserves all
finite meets (A), finite joins (V), and =.

Example 1.74

1. Every Boolean algebra is a Heyting algebra: define a = b := a* V b (a* should be
thought of as —a). Note that we must have a* = (a =1).

2. Every topology on a set X is a Heyting algebra, where (U = V) := int((X — U) U
V).

3. A finite distributive lattice is a Heyting algebra.

Definition 1.75 Let H be a Heyting algebra and L be a propositional language
with a set of primitive propositions P. An H-valuation is a function v: P — H,
extended recursively to L, by setting:

o v(l)=L1.

e v(AAB)=uv(A)Av(B).

e v(AV B)=uv(A) Vu(B).

e v(P— Q) =v(A) = v(B).

Definition 1.76 A proposition A € L is H-valid if v(A) = T for all H-valuations v,
and is an H-consequence of a (finite) set of propositions I' if v(AT) < v(A) (we
write I’ 1'3 P).

Lemma 1.77 (Soundness of Heyting Semantics) Let H be a Heyting algebra and v :
L — H be an H-valuation. If T’ IIP—C A, then T’ I; A.

Proof. By induction on the structure of the proof I - A.

o (Az): (AT ANA)=v(AT)Av(A) <v(A).

e (A-I): A= BAC and we have derivations I'; - B and I'y - C, with I';,I'y CT'. By
the indutive hypothesis, we have v(AT) < v(AT;) Av(ATy) <v(B)Av(C) =
v(BAC), ie. T Iij A.

o (=-I):A=B— C’, so we must have I' U { B} I C. By the inductive hypothesis, we
have v /\F /\ v(B) = v(AT A B) < v(C). By the definition of =, this implies

v(AT) < ) = U(C)) =v(B—C)=v(A),ie I;_ A.

o (V-I): A= B vV C and WLOG we have a derivation I' - B. By the inductive
hypothesis, we have v(AT') < v(B), but v(BV C) =v(B) Vo(C) =
sup{v(B),v(C)}, and so v(B) < v(BV ().

o (A-E): by the induction hypothesis, we have v(AT) < v(BAC) =v(B) Av(C) <
v(B),v(C).

o (—-E): we know that v(A — B) = (v(4) = v(B)). From v(A — B) < (v(A) =
v(B)), we derive v(A) ANv(A — B) <v(B) by deﬁmtlon of =. Soif v(AT) <
v(A — B) and v(A\T) <wv(A), then v(AT) < ) as required.
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o (V-E): by the inductive hypothesis, v(AA AT) < v(C), v(BAAT) <v(C) and
v(AT) <v(AV B) =v(A) Vvu(B). This last fact means that v(AT) A (v(A) V
v(B)) = v( /\I‘) Slnce Heyting algebras are distributive lattices, this is the same as

(v(AT) (v(AT) Av(B)), and this is < v(C).
o (L-E): 1f v( /\F <w(Ll) =1, then v(AT) =L, in which case v(AT) < v(A) for any

A by minimality of 1 in H.

O

Example 1.78 The LEM is not intuitionistically valid: let p be a primitive
proposition and consider the Heyting algebra given by the topology {0, {1},{1,2}} on
X = {1,2}. Define a valuation v with v(p) = {1}, in which case v(—p) = —~{1} =
int(X \ {1}) =0. Sov(pV —p) ={1} VO = {1} # T. So by Soundness, H})‘Cp V —p.

Example 1.79 Pierce’s law ((p — q) — p) — p is not intuitionistically valid: take

the valuation on the standard topology on R? that maps p to R?\ {(0,0)} and q to 0.

Classical completeness states that I' CI;C Aiff T I; A. For intuitionistic completeness,

there is no single finite replacement for 2.

Definition 1.80 Let @ be a logical doctrine (e.g. CPC, IPC, etc.), L be a

propositional language, and T' be an L-theory. The Lindenbaum-Tarski algebra

F®(T) is built in the following way:

 The underlying set of F?(T) is the set of equivalence classes [p] of propositions ¢,
where ¢ ~ 1) when T, ¢ Cl—? Y and T,y g P.

o If x is a logical connective in the fragment @, we set [p] % [¢] := [ * 9]

We are interested in the cases @ = CPC, @ = IPC and @Q = IPC\ {—}.

Proposition 1.81 The Lindenbaum-Tarski algebra of any theory in IPC\ {—} is a
distributive lattice.

Proof. Clearly, A and V inherit associativity and commutativity, so in order for
FPCM=H(T) to be a lattice, we only need to check the absorption laws: [p] V [¢ A

Y] = [g], and [p] A [ V ¥] = [p]. The first is true, since T', ¢ IPCI;{ } wV (pA) by
%

(V-I), and also T', o V (p A ) b \{ } ¢ by (V-E). The second is true by a similar

argument.

For distributivity, T, A (¥ V x) F (¢ A) V (¢ A x) by (A-E) followed by (V-E):
APV x)

¢ YvVx (by (A-E))
(eAY)V(pAx) (by (V-E))

Similarly, T, (e AY) V(e A x) F @ A (¥ V x) by (V-E) followed by (A-I). O

Lemma 1.82 The Lindenbaum-Tarski algebra of any theory relative to IPC is a
Heyting algebra.
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Proof. We already know that F'WC(T) is a distributive lattice, so it is enough to show
that [¢] = [1] == [¢ — ] gives a Heyting implication, and that F'PC(T) is bounded.
Suppose that [¢] A [¢] < [x], i.e. T, A IIP—C x- We want to show that [¢] < [¢p — x],

ie. T, ok (¥ — x). But this is clear:

v [V

oA
x (by hypothesis)
Yo x (—=-Ly)

Conversely, if T', p F (¢ — x), then we can prove T, o A ¢ F x:

NP
¢ P
¥ — x (by hypothesis)
Yo x
x (—-E)

So defining [¢] = [¢] := [¢ — 9] provides a Heyting =. The bottom element of
F™C(T) is just [L]: if [¢] is any element, then T, L ¢ by (L-E). The top element is
T :=[L—1]: if ¢ is any proposition, then [¢] < [L—_1] via

O

Theorem 1.83 (Completeness of Heyting Semantics) A proposition is provable in
IPC iff it is H-valid for every Heyting algebra H.

Proof. One direction is easy: if Ilfjc p, then there is a derivation in IPC, thus T <

v(p) for any Heyting algebra H and valuation v by soundness. But then v(p) = T
and ¢ is H-valid.

For the other direction, consider the Lindenbaum-Tarski algebra F'(L) of the empty
theory relative to IPC, which is a Heyting algebra by the above lemma. We can
define a valuation v by extending P — F(L), p  [p], to all propositions. Since v is a
valuation, it follows by induction (and the construction of F'(L)) that v(y) = [¢] for
all propositions ¢. Now ¢ is valid in every Heyting algebra, and so in F(L) in
particular. So v(¢) = T = [¢], hence IIP—C ®. O
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Definition 1.84 Given a poset S, the set a 1:= {s € S : a < s} is a principal up-
set. U C S is a terminal segment if a 1C U for each a € U.

Proposition 1.85 For any poset S, the set T'(S) ={U C S':
U is a terminal segment of S} can be made into a Heyting algebra, and the way this
is done is unique.

Proof. Order the terminal segments by C. Meets and joins are N and U, so we just
need to define =. For U,V € T(S), define (U =V):={se S:(st)NU CV}. To
show this is a valid definition, let U, V, W € T'(S). We have

WCU=V)iff(wt)NUCV foralweW

which happens if for every w € W and u € U, we have if w < u, then v € V. But W
is a terminal segment, so this is the same as saying that WNU C V. O

Definition 1.86 Let P be a set of primitive propositions. A Kripke model is a
teriple (S, <,IF) where (5, <) is a poset (whose elements are called “worlds” or
“states” and whose ordering is called the “accessibility relation”), and IFC S x P is a
binary relation called “forcing” satisfying the persistence property: if p € P is such
that s Ik p and s < s’, then s I p.

Every valuation v on T'(S) induces a Kripke model by setting s IF p if s € v(p).
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