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1. Basic notions in quantum information theory
The field is motivated by the fact that we want to control quantum systems.
1. Can we construct and manipulate quantum systems?
2. If so, which are the scientific and technological applications?

Entanglement frontier: highly complex quantum systems, which are more complex
and richer than classical systems. However, quantum systems have decoherence, which
classical systems don’t. “Quantum advantage” gives speed up over classical systems.

Quantum vs classical information theory:
• True randomness.
• Uncertainty.
• Entanglement.

Note we always work with finite-dimensional Hilbert spaces, so take ℍ = ℂ𝑁 .

1.1. Qubits and basic operations
Notation 1.1  Vectors are denoted by |𝜓⟩ ∈ ℂ𝑛, dual vectors by ⟨𝜓| ∈ (ℂ𝑛)∗, and inner
products by ⟨𝜓|𝜙⟩ ∈ ℂ. |𝜓⟩⟨𝜓| : ℂ𝑛 → ℂ𝑛 are rank-one projectors.

Definition 1.2  Another important basis of ℂ2 is {|+⟩, |−⟩}, where |+⟩ = 1√
2(|0⟩ +

|1⟩) and |−⟩ = 1√
2(|0⟩ − |1⟩).

Definition 1.3  For an operator 𝑇 : ℍ → ℍ, the operator norm of 𝑇  is

‖𝑇 ‖ = ‖𝑇 ‖ℍ→ℍ ≔ sup
𝑥∈𝐻

‖𝑇 (𝑥)‖ℍ
‖𝑥‖ℍ

Notation 1.4  Let 𝐵(ℍ) denote the space of bounded linear operators, i.e. 𝑇  such that
‖𝑇 ‖ < ∞.

Notation 1.5  Denote the dual of the operator 𝑇  by 𝑇 ∗, i.e. the operator that satisfies
⟨𝑦 |𝑇 (𝑥)⟩ = ⟨𝑇 ∗(𝑦)|𝑥⟩ for all 𝑥, 𝑦 ∈ ℍ.

Definition 1.6  A quantum measurement is a collection of measurement operators
{𝑀𝑛}𝑛 ⊆ 𝐵(ℍ) which satisfies ∑𝑛 𝑀∗

𝑛𝑀𝑛 = 𝕀, the identity operator.

Given |𝜙⟩, the probability that |𝑛⟩ occurs after this operation is 𝑝(𝑛) = ⟨𝜙|𝑀∗
𝑛𝑀𝑛 |𝜙⟩.

After performing this operation, the state of the system is 1
√𝑝(𝑛)

𝑀𝑛|𝜙⟩. This is the
Born rule.

Example 1.7  A measurement in the computational basis is 𝑀0 = |0⟩⟨0|, 𝑀1 = |1⟩⟨1|.
Note 𝑀0 and 𝑀1 are self-adjoint. Let |𝜓⟩ = 𝛼0|0⟩ + 𝛼1|1⟩. Then 𝑝(𝑖) = ⟨𝜙|𝑀𝑖 |𝜙⟩ =
|𝛼𝑖|

2. The state after measurement is 𝛼𝑖
|𝛼𝑖|

|𝑖⟩, which is equivalent to |𝑖⟩.

Note that |𝜓⟩ and 𝑒𝑖𝜃|𝜓⟩ are operationally identical: the phase does not affect the
measurement probabilities.

Definition 1.8  A quantum measurement {𝑀𝑛}𝑛 ⊆ 𝐵(ℍ) is projective measure(
ment if the 𝑀𝑛 are orthogonal projections (i.e. they are self-adjoint (Hermitian) and
𝑀𝑛𝑀𝑚 = 𝛿𝑛𝑚𝑀𝑛).
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Definition 1.9  An observable is a Hermitian operator, which we can express as its
spectral decomposition

𝑀 = ∑
𝑛

𝜆𝑛𝑀𝑛,

where {𝑀𝑛}𝑛 is a projective measurement. The possible outcomes of the measurement
correspond to its eigenvalues 𝜆𝑛 of the observable. Note that the expected value of the
measurement is

∑
𝑛

𝜆𝑛𝑝(𝑛) = ∑
𝑛

𝜆𝑛⟨𝜙|𝑀𝑛 |𝜙⟩ = ⟨𝜙|𝑀 |𝜙⟩.

Definition 1.10  𝑇 : ℍ → ℍ is positive (semi(definite) (written 𝑇 ≥ 0) if
⟨𝜓|𝑇 |𝜓⟩ ≥ 0 for all |𝜓⟩ ∈ 𝐻.

Definition 1.11  A POVM (positive operator valued measurement) is a collec-
tion {𝐸𝑛}𝑛 where each 𝐸𝑛 = 𝑀∗

𝑛𝑀𝑛 for a general measurement {𝑀𝑛}𝑛 (i.e. each 𝐸𝑛 is
positive and Hermitian, and ∑𝑛 𝐸𝑛 = 𝕀).

Note that the probability of obtaining outcome 𝑚 on |𝜓⟩ is 𝑝(𝑚) = ⟨𝜓|𝐸𝑚 |𝜓⟩. We
use POVMs when we care only about the probabilities of the different measurement
outcomes, and not the post-measurement states.

Conversely, given a POVM {𝐸𝑛}𝑛, we can define a general measurement {√𝐸𝑛}𝑛.

Remark 1.12  Any transformation on a normalised quantum state must map it to a
normalised quantum state, and so the operation must be unitary.

Definition 1.13  The Pauli matrice are

𝜎0 = 𝕀 = [1
0

0
1], 𝜎𝑋 = 𝑋 = [0

1
1
0],

𝜎𝑌 = 𝑌 = [0
𝑖

−𝑖
0 ], 𝜎𝑍 = 𝑍 = [1

0
0

−1].

The Pauli matrices are unitaries, and we can think of them as quantum logical gates.

Definition 1.14  The trace of 𝑇 : ℍ → ℍ is

tr 𝑇 = tr 𝑀 = ∑
𝑖

𝑀𝑖𝑖 ∈ ℂ,

where 𝑀  is a matrix representation of 𝑇  in any basis (this is well-defined since the trace
is cyclic and linear).

Proposition 1.15  For any state |𝜙⟩ and any operator 𝐴,

tr(𝐴|𝜙⟩⟨𝜙|) = ⟨𝜙|𝐴|𝜙⟩.

Proof (Hints) .  Straightforward. □
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Proof .  tr(𝐴|𝜙⟩⟨𝜙|) = ∑𝑖⟨𝑖|𝐴|𝜙⟩⟨𝜙|𝑖⟩ for an orthonormal basis {|𝑖⟩}. Any basis where
|𝜙⟩ = |𝑗⟩ for some 𝑗 instantly yields the result. Alternatively, we have

tr(𝐴|𝜙⟩⟨𝜙|) = ∑
𝑖

⟨𝑖|𝐴|𝜙⟩⟨𝜙|𝑖⟩ = ∑
𝑖

⟨𝜙|𝑖⟩⟨𝑖|𝐴|𝜙⟩ = ⟨𝜙|𝐼 |𝐴|𝜙⟩ = ⟨𝜙|𝐴|𝜙⟩.

□

Suppose we don’t fully know the state of the system, but know that it is |𝜙𝑖⟩ with
probability 𝑝𝑖. We want to be able to consider the ∑𝑖 𝑝𝑖|𝜙𝑖⟩ as a state, but this isn’t
normalised (except when some 𝑝𝑖 = 1). To solve this issue, we assume each |𝜙𝑖⟩ to the
rank-one projector |𝜙𝑖⟩⟨𝜙𝑖|, and we describe the unknown state by 𝜌 = ∑𝑖 𝑝𝑖|𝜙𝑖⟩⟨𝜙𝑖|.
This gives rise to the following definition:

Definition 1.16  A density matrix/operator is a linear operator 𝜌 ∈ 𝐵(ℍ) which is:
• Hermitian,
• Positive semi-definite, and
• Satisfies tr 𝜌 = 1.

1.2. Postulates of quantum mechanics (Heisenberg picture)
Postulate 1.17  Given an isolated physical system, there exists a complex (separable)
Hilbert space ℍ associated with it, called state space. The physical system is described
by a state vector, which is a normalised vector in ℍ.

Postulate 1.18  Given an isolated physical system, its evolution is described by a
unitary. If the state of the system at time 𝑡1 is |𝜙1⟩ and at time 𝑡2 is |𝜙2⟩, then there
exists a unitary 𝑈𝑡1,𝑡2

 such that |𝜙2⟩ = 𝑈𝑡1,𝑡2
|𝜙1⟩.

This can be generalised with the Schrodinger equation: the time evolution of a closed
quantum system is given by 𝑖ℏ d

d𝑡 |𝜙(𝑡)⟩ = 𝐻|𝜙(𝑡)⟩. The Hermitian operator 𝐻 is called
the Hamiltonian and is generally time-dependent.

Definition 1.19  Let the spectral decomposition of 𝐻 be

𝐻 = ∑
𝑖

𝐸𝑖|𝐸𝑖⟩⟨𝐸𝑖|,

where the 𝐸𝑖 are the energy eigenvalues and the |𝐸𝑖⟩ are the energy eigenstates
(or stationary states).

The minimum energy is called the ground state energy and its associated eigenstate
is called the ground state. The (spectral) gap of 𝐻 is the (absolute) difference
between the ground state energy and the next largest energy eigenvalue. When the gap
is strictly positive, we say the system is gapped. The states |𝐸𝑖⟩ are called stationary,
since they evolve as |𝐸𝑖⟩ → exp(−𝑖𝐸𝑖𝑡/ℏ)|𝐸𝑖⟩.

We have |𝜙(𝑡2)⟩ = 𝑈(𝑡1, 𝑡2)|𝜙(𝑡1)⟩ where 𝑈(𝑡1, 𝑡2) = exp(−𝑖𝐻(𝑡2 − 𝑡1)/ℏ) which is a
unitary. In fact, any unitary 𝑈  can be written in the form 𝑈 = exp(𝑖𝐾) for some
Hermitian 𝐾.
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Postulate 1.20  Given a physical system with associated Hilbert space ℍ, quantum
measurements in the system are described by a collection of measurements {𝑀𝑛}𝑛 ⊆
𝐵(ℍ) such that ∑𝑛 𝑀∗

𝑛𝑀𝑛 = 𝕀, as in Definition 1.6. The index 𝑛 refers to the
measurement outcomes that may occur in the experiment, and given a state |𝜙⟩ before
measurement, the probability that 𝑛 occurs is

𝑝(𝑛) = ⟨𝜙|𝑀∗
𝑛𝑀𝑛 |𝜙⟩.

The state of the system after measurement is 1
√𝑝(𝑛)

𝑀𝑛|𝜙⟩

Postulate 1.21  Given a composite physical system, its state space ℍ is also composite
and corresponds to the tensor product of the individual state spaces ℍ𝑖 of each
component: ℍ = ℍ1 ⊗ ⋅ ⋅ ⋅ ⊗ ℍ𝑁 . If the state in each system 𝑖 is |𝜙𝑖⟩, then the state in
the composite system is |𝜙1⟩ ⊗ ⋅ ⋅ ⋅ ⊗ |𝜙𝑁 ⟩.

Definition 1.22  Given |𝜙⟩ ∈ 𝐻1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝐻𝑁 , |𝜙⟩ is entangled if it cannot be written
as a tensor product of the form |𝜙1⟩ ⊗ ⋅ ⋅ ⋅ ⊗ |𝜙𝑛⟩. Otherwise, it is separable or a
product state.

Example 1.23  The EPR pair (Bell state) |𝜙+⟩ = 1√
2(|00⟩ + |11⟩) is entangled.

1.3. Postulates of quantum mechanics (Schrodinger picture)
Postulate 1.24  Given an isolated physical system, the state of the system is completely
described by its density operator, which is Hermitian, positive semi-definite and has
trace one.

If we know the system is in state 𝜌𝑖 with probability 𝑝𝑖, then the state of the system is
∑𝑖 𝑝𝑖𝜌𝑖.

Pure states are of the form 𝜌 = |𝜙⟩⟨𝜙|, mixed states are of the form 𝜌 =
∑𝑖 𝑝𝑖|𝜙𝑖⟩⟨𝜙𝑖|.

Postulate 1.25  Given an isolated physical system, its evolution is described by a
unitary. If the state of the system is 𝜌1 at time 𝑡1 and is 𝜌2 at time 𝑡2, then there is a
unitary 𝑈  depending only on 𝑡1, 𝑡2 such that 𝜌2 = 𝑈𝜌1𝑈∗.

Postulate 1.26  The same as Postulate 1.20, except we specify that after measure-
ment {𝑀𝑛}𝑛, the probability of observing 𝑛 is 𝑝(𝑛) = tr(𝑀∗

𝑛𝑀𝑛𝜌) and the state after
measurement is 1

𝑝(𝑛)𝑀𝑛𝜌𝑀∗
𝑛.

Postulate 1.27  The same as Postulate 1.21, except that the state of the composite
system is 𝜌 = 𝜌1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜌𝑛, where 𝜌𝑖 is the state of 𝑖th individual system.

Remark 1.28  The Heisenberg and Schrodinger postulates are mathematically equiv-
alent.

1.4. States, entanglement and measurements
Theorem 1.29 (Schmidt Decomposition)  Let |𝜓⟩ be a pure state in a bipartite system
ℍ𝐴𝐵 = ℍ𝐴 ⊗ ℍ𝐵, where ℍ𝐴 has dimension 𝑁𝐴 and ℍ𝐵 has dimension 𝑁𝐵 ≥ 𝑁𝐴. Then
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there exist orthonormal states {|𝑒𝑖⟩ : 𝑖 ∈ [𝑁𝐴]} ⊆ ℍ𝐴 and {|𝑓𝑖⟩ : 𝑖 ∈ [𝑁𝐴]} ⊆ ℍ𝐵 such
that

|𝜓⟩ = ∑
𝑁𝐴

𝑖=1
𝜆𝑖|𝑒𝑖⟩ ⊗ |𝑓𝑖⟩,

where 𝜆𝑖 ≥ 0 and ∑𝑖 𝜆2
𝑖 = 1.

The 𝜆𝑖 are unique up to re-ordering. The 𝜆𝑖 are called the Schmidt coefficients and
the number of 𝜆𝑖 > 0 is the Schmidt rank of the state.

Proof .  Let |𝜓⟩ = ∑𝑁𝐴
𝑘=1 ∑𝑁𝐵

ℓ=1 𝛽𝑘ℓ|𝜙𝑘⟩ ⊗ |𝜙ℓ⟩ for orthonormal bases {|𝜙𝑘⟩ : 𝑘 ∈ [𝑁𝐴]} ⊆
ℍ𝐴, {|𝜒ℓ⟩ : ℓ ∈ [𝑁𝐵]} ⊆ ℍ𝐵. Let (𝛽𝑘ℓ) have singular value decomposition

𝑈[Σ 0]𝑉 ,

where 𝑈  is an 𝑁𝐵 × 𝑁𝐵 unitary, Σ is an 𝑁𝐴 × 𝑁𝐴 diagonal matrix with non-negative
entries, and 𝑉  is an 𝑁𝐴 × 𝑁𝐴 unitary. So

𝛽𝑘ℓ = ∑
𝑁𝐴

𝑖=1
∑
𝑁𝐵

𝑗=1
𝑈𝑘𝑖Σ𝑖𝑗𝑉𝑗ℓ = ∑

𝑁𝐴

𝑖=1
Σ𝑖𝑖𝑈𝑘𝑖𝑉𝑖ℓ.

Hence,

|𝜓⟩ = ∑
𝑘,ℓ

∑
𝑖

Σ𝑖𝑖𝑈𝑘𝑖|𝜙𝑘⟩ ⊗ 𝑉𝑖ℓ|𝜒ℓ⟩ = ∑
𝑖

Σ𝑖𝑖(∑
𝑘

𝑈𝑘𝑖|𝜙𝑘⟩)
⏟⏟⏟⏟⏟⏟⏟

|𝑒𝑖⟩

⊗ (∑
ℓ

𝑉𝑗ℓ|𝜒ℓ⟩)
⏟⏟⏟⏟⏟⏟⏟

|𝑗𝐵⟩

.

□

Proposition 1.30  |𝜓⟩ is entangled iff its Schmidt rank is > 1. Otherwise, it is separable
(i.e. a product state).

Definition 1.31  Let |𝜓⟩ be a pure state in a bipartite system ℍ𝐴𝐵 = ℍ𝐴 ⊗ ℍ𝐵, where
ℍ𝐴 has dimension 𝑁𝐴 and ℍ𝐵 has dimension 𝑁𝐵 ≥ 𝑁𝐴. |𝜓⟩ is maximally entangled
if all its Schmidt coefficients are equal (to 1/√𝑁𝐴).

Notation 1.32  Write 𝑆(ℍ) = {𝜌 ∈ 𝐵(ℍ) : 𝜌 = 𝜌†, 𝜌 ≥ 0, tr 𝑝 = 1} for the set of den-
sity matrices on ℍ.

Definition 1.33  The partial trace over 𝐵, tr𝐵, on the bipartite system ℍ𝐴𝐵 = ℍ𝐴 ⊗
ℍ𝐵 is the operator defined linearly by

tr𝐵 : 𝑆(ℍ𝐴𝐵) → 𝑆(ℍ𝐴),
|𝑎1⟩⟨𝑎2| ⊗ |𝑏1⟩⟨𝑏2| ↦ tr(|𝑏1⟩⟨𝑏2|) ⋅ |𝑎1⟩⟨𝑎2|.

Note that if 𝜌𝐴𝐵 = 𝜌𝐴 ⊗ 𝜌𝐵, then tr𝐵 𝜌𝐴𝐵 = tr(𝜌𝐵) ⋅ 𝜌𝐴 = 𝜌𝐴.

Definition 1.34  Let 𝜌𝐴𝐵 be a density matrix in 𝑆(ℍ𝐴𝐵). 𝜌𝐴 = tr𝐵(𝜌𝐴𝐵) is called the
reduced density matrix or marginal of 𝜌𝐴𝐵 in 𝐴
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Proposition 1.35  Let 𝑀𝐴 ∈ 𝐵(ℍ𝐴). We have

tr(𝑀𝐴𝜌𝐴) = tr((𝑀𝐴 ⊗ 𝕀𝐵)𝜌𝐴𝐵).

for all 𝜌𝐴𝐵 ∈ 𝑆(ℍ𝐴𝐵), 𝜌𝐴 = tr𝐵(𝜌𝐴𝐵). In fact, this can be taken to be an equivalent
definition of partial trace.

Remark 1.36  Let 𝜌𝐴𝐵 = |𝜓⟩⟨𝜓| ∈ 𝑆(ℍ𝐴𝐵) be a pure state and let 𝑟𝜓 be its Schmidt
rank. Then

𝜌𝐴 = tr𝐵(|𝜓⟩⟨𝜓|) = ∑
𝑟𝜓

𝑘=1
𝑝𝑘|𝑢𝑘⟩⟨𝑢𝑘|.

So 𝜌𝐴 is pure iff 𝑟𝜓 = 1, i.e. iff |𝜓⟩ is separable.

Proposition 1.37  Let 𝜌𝐴𝐵 ∈ 𝐵(ℍ𝐴𝐵) and 𝜌𝐴 = tr𝐵(𝜌𝐴𝐵). Then:
1. tr 𝜌𝐴 = tr 𝜌𝐴𝐵.
2. If 𝜌𝐴𝐵 ≥ 0, then 𝜌𝐴 ≥ 0.
3. If 𝜌𝐴𝐵 is a density matrix then 𝜌𝐴 is a density matrix.
4. We have

⟨𝜙𝑖 |𝜌𝐴 |𝜙𝑖 ⟩ = ∑
𝑘

⟨𝜙𝑖 ⊗ 𝜓𝑘 |𝜌𝐴𝐵 |𝜙𝑖 ⊗ 𝜓𝑘 ⟩,

for an orthonormal bases {|𝜙𝑖⟩} and {|𝜓𝑘⟩}.
5. If 𝜌𝐴𝐵 = 𝜎𝐴 ⊗ 𝜎𝐵 and tr(𝜎𝐵) = 1, then 𝜎𝐴 = 𝜌𝐴.

Proof .
1. This follows from linearity of trace and the fact that tr(𝜌 ⊗ 𝜎) = tr(𝜌) ⋅ tr(𝜎).
2. By 1, ⟨𝜓|𝜌𝐴 |𝜓⟩ = tr(𝜌𝐴|𝜓⟩⟨𝜓|) = tr(𝜌𝐴𝐵(|𝜓⟩⟨𝜓| ⊗ 𝕀)) ≥ 0.
3. From 1 and 2, by definition.

□

Definition 1.38  Let 𝜌𝐴 ∈ 𝕊(𝐻𝐴) be a (pure or mixed) state. We may introduce an
auxiliary space ℍ𝑅 of dimension rank(𝜌𝐴) and construct a pure state |𝜓𝐴𝑅⟩ ∈ ℍ𝐴 ⊗
ℍ𝑅 such that 𝜌𝐴 = tr𝑅(|𝜓𝐴𝑅⟩⟨𝜓𝐴𝑅 |). This is called purification.

Remark 1.39  Let {𝑀𝐴
𝑛 }

𝑛
 be a POVM in ℍ𝐴. Then {𝑀𝐴

𝑛 ⊗ 𝕀𝐵}
𝑛
 is a POVM in ℍ𝐴𝐵.

Theorem 1.40 (Naimark)  For every POVM {𝐸𝑛}𝑚
𝑛=1 ⊆ 𝐵(ℍ), there is a state |𝜓⟩ ∈

ℂ𝑚 and a projective measurement {𝑃𝑛}𝑚
𝑛=1 ⊆ 𝐵(ℍ ⊗ ℂ𝑚) such that

tr(𝜌𝐸𝑛) = tr((𝜌 ⊗ |𝜓⟩⟨𝜓|)𝑃𝑛) ∀𝑛 ∈ [𝑚], ∀𝜌 ∈ 𝑆(ℍ).

2. Quantum channels and open systems
2.1. Quantum channels
Definition 2.1  A quantum channel is a linear map 𝑇 : 𝑆(ℍin) → 𝑆(ℍout) which
satisfies:
• Preserves trace: tr(𝑇 (𝜌)) = tr(𝜌) for all 𝜌 ∈ 𝑆(ℍin).
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• Positive: if 𝜌 ≥ 0, then 𝑇 (𝜌) ≥ 0.
• Completely positive: for all 𝜌, 𝜎 if 𝜌 ⊗ 𝜎 ≥ 0, then (𝑇 ⊗ 𝕀𝑛)(𝜌 ⊗ 𝜎) = 𝑇(𝜌) ⊗ 𝜎 ≥

0 (note that this implies the second condition, but the converse is false).

So quantum channels are completely positive trace-preserving (CPTP) maps. We may
depict a quantum channel 𝑇  as follows:

𝜌 𝜌′ = 𝑇(𝜌)𝑇

Example 2.2  Examples of quantum channels:
• Unitary evolution: 𝜌 ↦ 𝑈𝜌𝑈∗.
• Adding an ancilla: 𝜌 ↦ 𝜌 ⊗ 𝜌𝐸 (the 𝐸 denotes “environment”).
• Partial trace: 𝜌 ↦ tr𝐵(𝜌) or 𝜌 ↦ tr𝐴(𝜌).

We will see that in fact, any quantum channel is a combination of these three.

Definition 2.3  We define the maximally entangled state in (ℂ𝑑)⊗2 as

|𝜙⟩ = 1√
𝑑

∑
𝑑

𝑘=1
|𝑘𝑘⟩.

Definition 2.4  Recall the transposition map is defined as

Θ : 𝐴 → 𝐴𝑇 , ⟨𝑖|𝐴𝑇 |𝑗⟩ = ⟨𝑗|𝐴|𝑖⟩.

We define the partial transpose by its action on the maximally entangled state |𝜙⟩ =
1
𝑑 ∑𝑑

𝑖=1|𝑖𝑖⟩:

(|𝜙⟩⟨𝜙|)𝑇𝐴 = (|𝜙⟩⟨𝜙|)𝑇1 = (Θ ⊗ id)(|𝜙⟩⟨𝜙|) = 1
𝑑
𝐹 ,

where 𝐹 = ∑𝑛
𝑖,𝑗=1|𝑖𝑗⟩⟨𝑗𝑖| is the flip operator. Note the partial transpose is positive but

not CP. Alternatively, we can define it by its action on an orthonormal basis:

⟨𝑖𝑗|𝑋𝑇𝐴 |𝑘ℓ⟩ = ⟨𝑘𝑗|𝑋 |𝑖ℓ⟩.

Remark 2.5  Note that the partial transpose is useful for detecting entanglement but
is not physically implementable (as not CP).

Definition 2.6  Let 𝑇 : 𝐵(ℂ𝑑×𝑑) → 𝐵(ℂ𝑑′×𝑑′) be a linear map. The Choi(Jami(
olkowski matrix 𝐶 ∈ 𝐵(ℂ𝑑′ ⊗ ℂ𝑑) of 𝑇  is defined as

𝐶 ≔ (𝑇 ⊗ id𝑑)|𝜙⟩⟨𝜙|.

Note that in fact, 𝐶 ∈ 𝑆(ℂ𝑑′ ⊗ ℂ𝑑) is a density matrix if 𝑇  is a quantum channel.

Remark 2.7  Note that the Choi-Jamiolkowski matrix completely determines 𝑇 : since
|𝜙⟩⟨𝜙| = 1

𝑑 ∑𝑑
𝑛,𝑚=1|𝑛𝑛⟩⟨𝑚𝑚|, we have
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⟨𝑖𝑗|𝐶 |𝑘ℓ⟩ = 1
𝑑

∑
𝑑

𝑚,𝑛=1
⟨𝑖𝑗|(𝑇 (|𝑛⟩⟨𝑚|) ⊗ |𝑛⟩⟨𝑚|)|𝑘ℓ⟩

= 1
𝑑

∑
𝑑

𝑚,𝑛=1
⟨𝑗|𝑛⟩ ⋅ ⟨𝑚|ℓ⟩ ⋅ ⟨𝑖|𝑇 (|𝑛⟩⟨𝑚|)|𝑘⟩ = 1

𝑑
⟨𝑖|𝑇 (|𝑗⟩⟨ℓ|)|𝑘⟩,

and so we can determine any entry of any 𝑇 (𝜌) by linearity. This state-channel duality
is called the Choi(Jamiolkowski isomorphism, and can be expressed as

tr(𝐴𝑇 (𝐵)) = 𝑑 tr(𝐶𝐴 ⊗ 𝐵𝑇 ) ∀𝐴 ∈ 𝐵(ℂ𝑑′), 𝐵 ∈ 𝐵(ℂ𝑑).

Indeed, let 𝔽|𝑖𝑗⟩ = |𝑗𝑖⟩ be the flip operator: note that 𝔽𝑇2 = 𝑑|𝜙⟩⟨𝜙|, then if 𝑑 = 𝑑′,

𝑑 tr(𝐶(𝐴 ⊗ 𝐵𝑇 )) = 𝑑 tr((𝑇 ⊗ id𝑑)(|𝜙⟩⟨𝜙|)(𝐴 ⊗ 𝐵𝑇 ))

= tr(𝔽𝑇2(𝑇 ∗(𝐴) ⊗ 𝐵𝑇 )) = tr(𝑇 ∗(𝐴) ⊗ 𝐵) = tr(𝐴𝑇 (𝐵)).

Definition 2.8  The Hilbert(Schmidt inner product of 𝐴, 𝐵 ∈ 𝐵(ℂ𝑑) is

⟨𝐴|𝐵⟩HS ≔ tr(𝐴∗𝐵).

Theorem 2.9 (Characterisation of Quantum Channels)  Let 𝑇 : 𝐵(ℂ𝑑) → 𝐵(ℂ𝑑′) be
a linear map. TFAE:
1. 𝑇  is a quantum channel.
2. Let 𝐶 = (𝑇 ⊗ 𝕀𝑑)(|𝜙⟩⟨𝜙|) be the Choi-Jamiolkowski matrix of 𝑇 , then 𝐶 ≥ 0 and

tr1(𝐶) = 1
𝑑𝕀𝑑.

3. Kraus decomposition: There exists {𝐴𝑘}𝑑𝑑′

𝑘=1 ⊆ ℂ𝑑′×𝑑 with ∑𝑑𝑑′

𝑘=1 𝐴∗
𝑘𝐴𝑘 = 𝕀𝑑 such

that

𝑇 (𝜌) = ∑
𝑑𝑑′

𝑘=1
𝐴𝑘𝜌𝐴∗

𝑘 ∀𝜌 ∈ 𝑆(ℂ𝑑).

We call the number of non-trivial 𝐴𝑘 in the Kraus decomposition the Kraus rank
of 𝑇 .

4. Stinespring dilation: there exists a unitary 𝑈  on ℂ𝑑 ⊗ ℂ𝑑𝑑′ and a state |𝜓⟩ ∈ ℂ𝑑𝑑′

such that 𝑇 (𝜌) = tr2(𝑈(𝜌 ⊗ |𝜓⟩⟨𝜓|)𝑈∗) for all 𝜌 ∈ 𝑆(ℂ𝑑).

Proof (Hints) .
• 1 ⇒ 2: straightforward.
• 4 ⇒ 1: use that compositions of quantum channels are quantum channels.

□

Proof .
• 1 ⇒ 2: 𝐶 ≥ 0 follows from the completely positive property of 𝑇  and linearity. Also,

tr1(𝐶) = 1
𝑑

∑
𝑑

𝑛,𝑚=1
tr(𝑇 |𝑛⟩⟨𝑚|) ⋅ |𝑛⟩⟨𝑚|
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= 1
𝑑

∑
𝑑

𝑛,𝑚=1
tr(|𝑛⟩⟨𝑚|) ⋅ |𝑛⟩⟨𝑚| since 𝑇 preserves trace

= 1
𝑑

∑
𝑛,𝑚

𝛿𝑚𝑛|𝑛⟩⟨𝑚| = 1
𝑑

∑
𝑑

𝑛=1
|𝑛⟩⟨𝑛| = 1

𝑑
𝕀𝑑.

• 2 ⇒ 3: we use that (verify this) (𝐴 ⊗ 𝕀)|𝜙⟩ = (𝕀 ⊗ 𝐴𝑇 )|𝜙⟩ for all 𝐴 ∈ 𝐵(ℂ𝑑), where
|𝜙⟩ is the maximally entangled state, and that ∀|𝜓⟩ ∈ ℂ𝑑2 , there exists 𝐴 such
that |𝜓⟩ = (𝐴 ⊗ 𝕀)|𝜙⟩. Since 𝐶 ≥ 0, we can write 𝐶 = ∑𝑑𝑑′

𝑘=1|𝜓𝑘⟩⟨𝜓𝑘| (|𝜓𝑘⟩ are not
necessarily normalised). So

𝐶 = ∑
𝑑𝑑′

𝑘=1
(𝐴𝑘 ⊗ 𝕀)|𝜙⟩⟨𝜙|(𝐴∗

𝑘 ⊗ 𝕀)

= (𝑇 ⊗ 𝕀)|𝜙⟩⟨𝜙|.

Also,

1
𝑑
𝕀 = tr1(𝐶) = ∑

𝑑

𝑛=1
⟨𝑛1 |𝐶12 |𝑛1 ⟩

= 1
𝑑

∑
𝑑

𝑛=1
∑
𝑑𝑑′

𝑚=1
(𝕀 ⊗ 𝐴𝑇

𝑚)(|𝜙⟩⟨𝜙|)(𝕀 ⊗ 𝐴𝑘)|𝑛⟩

= ∑
𝑑

𝑛=1
⟨𝑛|∑

𝑑𝑑′

𝑘=1
(𝕀 ⊗ 𝐴𝑇

𝑚)1
𝑑
( ∑

𝑑

𝑘,ℓ=1
|𝑘𝑘⟩⟨ℓℓ|)(𝕀 ⊗ 𝐴𝑘)|𝑛⟩

= 1
𝑑

∑
𝑑

𝑛=1
∑
𝑑𝑑′

𝑚=1
∑

𝑑

𝑘,ℓ=1
⟨𝑛|𝑘⟩⟨ℓ|𝑛⟩𝐴𝑇

𝑚|𝑘⟩⟨ℓ|𝐴𝑘

= 1
𝑑

∑
𝑑

𝑛=1
∑
𝑑𝑑′

𝑚=1
𝐴𝑇

𝑚|𝑛⟩⟨𝑛|𝐴𝑚

= 1
𝑑

∑
𝑑𝑑′

𝑚=1
𝐴𝑇

𝑚𝐴𝑚

So we set ̃𝐴𝑚 ≔ 𝐴𝑚.
• 3 ⇒ 4: let 𝑉 = ∑𝑑𝑑′

𝑘=1 𝐴𝑘 ⊗ |𝑘⟩, where {|𝑘⟩}𝑑𝑑′

𝑘=1 is an orthonormal basis of ℂ𝑑𝑑′ . 𝑉
is an isometry, i.e. 𝑉 ∗𝑉 = ∑𝑑𝑑′

𝑘=1 𝐴∗
𝑘𝐴𝑘 = 𝕀𝑑. Then for all 𝜌 ∈ 𝑆(ℂ𝑑𝑑′), since (𝐴𝑘 ⊗

|𝑘⟩)𝜌 = (𝐴𝑘𝜌) ⊗ |𝑘⟩,

tr2(𝑉 𝜌𝑉 ∗) = tr2( ∑
𝑑𝑑′

𝑘,ℓ=1
(𝐴𝑘𝜌𝐴∗

ℓ) ⊗ |𝑘⟩⟨ℓ|)

= ∑
𝑑𝑑′

𝑘,ℓ=1
(𝐴𝑘𝜌𝐴∗

ℓ) tr(|𝑘⟩⟨ℓ|)

= ∑
𝑑𝑑′

𝑘=1
𝐴𝑘𝜌𝐴∗

𝑘 = 𝑇(𝜌).
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Now choose 𝑉 = 𝑈(𝕀 ⊗ |𝜓⟩) for some pure state |𝜓⟩ and unitary 𝑈 .
• 4 ⇒ 1: the maps

𝜌 ↦ 𝜌 ⊗ |𝜓⟩⟨𝜓| ↦ 𝑈(𝜌 ⊗ |𝜓⟩⟨𝜓|)𝑈∗ ↦ tr2(𝑈(𝜌 ⊗ |𝜓⟩⟨𝜓|)𝑈∗)

are all quantum channels, and so their composition is also a quantum channel.

□

Remark 2.10
• The number 𝑘 in the Kraus decomposition is called the Kraus rank of 𝑇 , which is

the same as the Choi rank (rank of the Choi-Jamiolkowski matrix). Note: this is not
the same as the rank of 𝑇  as a map.

• We can always express 𝑇  with 𝑟 = rank(𝐶) Kraus operators which are orthogonal
(w.r.t Hilbert-Schmidt inner product), since 𝑇  is a completely positive linear map.

• Two sets of Kraus operator {𝐾𝑗} and {𝐽ℓ} represent the same map 𝑇  iff there exists
a unitary 𝑈  such that 𝐾𝑗 = ∑ℓ 𝑈𝑗ℓ𝐽ℓ.

2.2. Examples of quantum channels
Definition 2.11  In two dimensions, there are three kinds of errors:
1. Bit flip errors, modelled by the Pauli 𝑋: |0⟩ ↦ |1⟩, |1⟩ ↦ |0⟩.
2. Phase flip error: modelled by Pauli 𝑍: |0⟩ ↦ |0⟩, |1⟩ ↦ −|1⟩.
3. Combination of bit and phase flip errors: modelled by Pauli 𝑌 .

A map describing the depolarising channel is

𝑈𝐴→𝐴𝐸 : |𝜓⟩𝐴 ↦ √1 − 𝑝|𝜓⟩𝐴 ⊗ |0⟩𝐸 + √𝑝
3
(𝑋|𝜓⟩𝐴 ⊗ |1⟩𝐸 + 𝑌 |𝜓⟩𝐴 ⊗ |2⟩𝐸 + 𝑍|𝜓⟩𝐴 ⊗ |3⟩𝐸)

(the environment 𝐻𝐸 has dimension 4). We can express this in the Kraus decompo-
sition: let 𝑀𝑎 ≔ ⟨𝑎|𝐸𝑈𝐴→𝐴𝐸, 𝑎 ∈ {0, 1, 2, 3}, and 𝑀0 =

√
1 − 𝑝𝕀, 𝑀1 = √𝑝/3𝑋, 𝑀2 =

√𝑝/3𝑌 , 𝑀3 = √𝑝/3𝑍. It is straightforward to see that

∑
3

𝑎=0
𝑀†

𝑎𝑀𝑎 = (1 − 𝑝 + 𝑝
3

+ 𝑝
3

+ 𝑝
3
)𝕀 = 𝕀.

The channel is 𝑇 (𝜌) = (1 − 𝑝)𝜌 + 𝑝
3(𝑋𝜌𝑋 + 𝑌 𝜌𝑌 + 𝑍𝜌𝑍). For arbitrary dimensions 𝐷,

the depolarising channel is 𝜌 ↦ (1 − 𝑝)𝜌 + 𝑝𝜎, where 𝜎 ∈ 𝑆(ℂ𝐷), usually 𝜎 = 𝕀/𝑑.

Definition 2.12  The phase damping channel is the map

𝜌 = [𝜌00
𝜌10

𝜌01
𝜌11

] ↦ [ 𝜌00
(1 − 𝑝)𝜌10

(1 − 𝑝)𝜌01
𝜌11

].

Let the environment have orthonormal basis {|0⟩, |1⟩, |2⟩}, then the state representation
is

|0⟩𝐴 ↦ √1 − 𝑝|0⟩𝐴 ⊗ |0⟩𝐸 + √𝑝|0⟩𝐴 ⊗ |1⟩𝐸

|1⟩𝐴 ↦ √1 − 𝑝|1⟩𝐴 ⊗ |0⟩𝐸 + √𝑝|1⟩𝐴 ⊗ |2⟩𝐸
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The Kraus operators are 𝑀0 =
√

1 − 𝑝 ⋅ 𝕀, 𝑀1 = √𝑝|0⟩⟨0|, 𝑀2 = √𝑝|1⟩⟨1|. We have
𝑀2

0 + 𝑀2
1 + 𝑀2

2 = 𝕀. The map is 𝑇 (𝜌) = (1 − 𝑝/2)𝜌 + 1
2𝑝𝑍𝜌𝑍.

Definition 2.13  A density matrix 𝜌 ∈ 𝑆(ℍ𝐴 ⊗ ℍ𝐵) is separable if it can be expressed
as a convex combination

𝜌 = ∑
𝑖

𝑝𝑖𝜌𝐴
𝑖 ⊗ 𝜎𝐵

𝑖 ,

where 𝑝𝑖 ≥ 0, ∑𝑖 𝑝𝑖 = 1, and 𝜌𝐴
𝑖 ∈ 𝑆(ℍ𝐴) and 𝜎𝐵

𝑖 ∈ 𝑆(ℍ𝐵).

Definition 2.14  A quantum channel 𝑇  is entanglement breaking if its Choi-
Jamiolkowski matrix is separable. This is equivalent to the existence of a POVM {𝑀𝑘}
and a set of density matrices {𝜌𝑘} such that 𝑇 (𝜌) = ∑𝑘 tr(𝑀𝑘𝜌)𝜌𝑘.

2.3. Properties of channels
Remark 2.15  Let |𝜓⟩ ∈ ℍ𝐴 ⊗ ℍ𝐵, 𝑑 = min{dim 𝐻𝐴, dim 𝐻𝐵}, not necessarily nor-
malised. The Schmidt decomposition is

|𝜓⟩ = ∑
𝑑

𝑗=1
𝜆𝑗|𝑒𝑗⟩ ⊗ |𝑓𝑗⟩,

𝜆𝑗 ≥ 0, ∑𝑗 𝜆2
𝑗 = ⟨𝜓|𝜓⟩, {𝑒𝑗}, {𝑓𝑗} orthonormal bases.

The reduced density operators of |𝜓⟩ are diagonal in the bases {|𝑒𝑗⟩}, {|𝑓𝑗⟩}, with eigen-
values 𝜆2

𝑗 . Conversely, if 𝜌𝐴 ∈ 𝑆(ℍ𝐴) has spectral decomposition 𝜌𝐴 = ∑𝑗 𝜆𝑗|𝑒𝑗⟩⟨𝑒𝑗|,
then |𝜓⟩ provides a purification for 𝜌𝐴 = tr𝐵(|𝜓⟩⟨𝜓|); the minimal dilation space we can
choose, ℍmin has dimension rank(𝜌𝐴). If |𝜓⟩ ∈ ℍ𝐴 ⊗ ℍmin, then all other purifications
of 𝜌𝐴 are of the form |𝜓′⟩ = (𝕀𝐴 ⊗ 𝑉 )|𝜓⟩, with 𝑉 ∈ 𝐵(ℍmin, ℍ𝐵) an isometry. Hence,
all purifications are related by 𝕀𝐴 ⊗ 𝑈  with 𝑈  an isometry.

Proposition 2.16 (Equivalence of Ensembles)  Let {|𝜓𝑗⟩ : 𝑗 ∈ [𝑀]} and {|𝜙ℓ⟩ : ℓ ∈
[𝑁]} be (not necessarily normalised) ensembles. Then

∑
𝑀

𝑗=1
|𝜓𝑗⟩⟨𝜓𝑗| = ∑

𝑁

ℓ=1
|𝜙ℓ⟩⟨𝜙ℓ|

iff there is an isometry 𝑈 ∈ ℂ𝑀×𝑁  such that |𝜓𝑗⟩ = ∑𝑁
ℓ=1 𝑈𝑗ℓ|𝜙ℓ⟩.

Proof (Hints) .
• ⟸: straightforward.
• ⟹: explain why we can assume that 𝜌 = ∑𝑗|𝜓𝑗⟩⟨𝜓𝑗| and 𝜎 = ∑ℓ|𝜙ℓ⟩⟨𝜙ℓ| are density

matrices. Consider purifications of 𝜌 and 𝜎 which use the same orthonormal basis in
the dilation space.

□

Proof .
• ⟸: this is straightforward to show.
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• ⟹: WLOG (by rescaling 𝜌), we can assume 𝜌 ≔ ∑𝑗|𝜓𝑗⟩⟨𝜓𝑗| is a density matrix. We
have 𝜌 = tr𝐵(|𝜓⟩⟨𝜓|) (through purification), where |𝜓⟩ = ∑𝑗|𝜓𝑗⟩ ⊗ |𝑗⟩. Similarly, let
|𝜙⟩ = ∑ℓ|𝜙ℓ⟩ ⊗ |ℓ⟩ (so we use the same orthonormal basis {|ℓ⟩} = {|𝑗⟩}). So |𝜓⟩ and
|𝜙⟩ differ by a unitary (or an isometry if the dimensions are not equal), hence |𝜓⟩ =
(1 ⊗ 𝑈)|𝜙⟩. Taking the scalar product with ⟨𝑗|, we obtain |𝜓𝑗⟩ = ∑ℓ 𝑈𝑗ℓ|𝜙ℓ⟩.

□

Notation 2.17  Let 𝑇1, 𝑇2 be linear maps. Write 𝑇2 ≥ 𝑇1 to mean 𝑇2 − 𝑇1 is completely
positive. By the Choi-Jamiolkowski isomorphism, this is equivalent to 𝐶2 ≥ 𝐶1 where
𝐶𝑖 is the Choi matrix of 𝑇𝑖 (i.e. 𝐶2 − 𝐶1 is positive semi-definite).

Theorem 2.18  Let 𝑇1, 𝑇2 : ℂ𝑑′×𝑑′ → ℂ𝑑×𝑑 be completely positive maps, with 𝑇2 ≥
𝑇1. Let 𝑉𝑖 : ℂ𝑑 → ℂ𝑑′ ⊗ ℂ𝑟𝑖 be Stinespring representations for 𝑇𝑖 (i.e. 𝑇𝑖(𝐴) = 𝑉 ∗

𝑖 (𝐴 ⊗
𝕀𝑟𝑖

)𝑉𝑖), then there is a contraction (i.e. 𝑊 ∗𝑊 ≤ 𝕀) 𝑊 : ℂ𝑟2 → ℂ𝑟1 such that 𝑉1 =
(𝕀𝑑′ ⊗ 𝑊)𝑉2.

Moreover, if 𝑉2 belongs to a minimal dilation, then 𝑊  is unique.

Proof (Hints) .

□

Proof .  We use the equivalence 𝑇2 ≥ 𝑇1 ⇔ 𝐶2 ≥ 𝐶1. Define the map

𝑅𝑖 = (𝕀𝑟𝑖
⊗ ⟨𝜙|)(𝑉𝑖 ⊗ 𝕀𝑑′) ∈ 𝐵(ℂ𝑑 ⊗ ℂ𝑑′ , ℂ𝑟𝑖)

Let |𝜓⟩ ∈ ℂ𝑑 ⊗ ℂ𝑑′ . We want to show ‖𝑅2|𝜓⟩‖2 ≥ ‖𝑅1|𝜓⟩‖2. Indeed,

‖𝑅2|𝜓⟩‖2 = ⟨𝜓|𝑅∗
2𝑅2 |𝜓⟩

= ⟨𝜓|(𝑉 ∗
2 ⊗ 𝕀𝑑′)(𝕀𝑟2

⊗ |𝜙⟩)(𝕀𝑟2
⊗ ⟨𝜙|)(𝑉2 ⊗ 𝕀𝑑′)|𝜓⟩

= ⟨𝜓|(𝑇2 ⊗ id)(|𝜙⟩⟨𝜙|)⟩
= ⟨𝜓|𝐶2 |𝜓⟩ ≥ ⟨𝜓|𝐶1 |𝜓⟩.

And ⟨𝜓|𝐶1 |𝜓⟩ = ‖𝑅1|𝜓⟩‖2 by the same argument. So there exists a contraction 𝑊 :
ℂ𝑟2 → ℂ𝑟1 , such that 𝑅1 = 𝑊𝑅2. So 𝑉1 = (𝕀𝑑′ ⊗ 𝑊)𝑉2. If 𝑟2 = rank(𝐶2), then 𝑅2 is
surjective, and so 𝑊  is uniquely determined. □

Theorem 2.19 (Radon-Nikodym)  Let {𝑇𝑖} be a set of CP maps such that ∑𝑖 𝑇𝑖 =
𝑇 ∈ 𝐵(ℂ𝑑′×𝑑′ , ℂ𝑑×𝑑) with Stinespring representation 𝑇 (𝐴) = 𝑉 ∗(𝐴 ⊗ 𝕀𝑟)𝑉 . Then there
exists a set of non-negative operators 𝑃𝑖 ∈ ℂ𝑟×𝑟 such that ∑𝑖 𝑃𝑖 = 𝕀𝑟 and 𝑇𝑖(𝐴) =
𝑉 ∗(𝐴 ⊗ 𝑃𝑖)𝑉 .

Remark 2.20  Since 𝑇 = ∑𝑖 𝑇𝑖, this gives 𝑇 (𝐴) = ∑𝑖 𝑉 ∗(𝐴 ⊗ 𝑃𝑖)𝑉 , where {𝑃𝑖} is
a POVM. This gives an identification between quantum channels of this form and
POVMs.

Definition 2.21  An instrument is a set of CP maps {𝑇𝑖} whose sum is trace-
preserving.
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TODO: insert diagram.

Remark 2.22  Instruments encompass the notions of quantum channels and POVMs:
• We can assing a quantum channel 𝑇 : 𝜌 ↦ ∑𝑖 𝑇𝑖(𝜌). (Measurement outcome

ignored.)
• By contrast, POVMs ignore the quantum system: 𝑝𝑖 = tr(𝑇𝑖(𝜌)) = tr(𝑇𝑖(𝜌)𝕀) =

tr(𝜌𝑇 ∗
𝑖 (𝕀)) ≕ tr(𝜌𝑀𝑖): {𝑀𝑖} is a POVM.

Remark 2.23  Instruments can viewed as a special case of quantum channels by
assigning to them the quantum channel

𝜌 ↦ ∑
𝑖

𝑇𝑖(𝜌) ⊗ |𝑖⟩⟨𝑖|,

where {|𝑖⟩} is an orthonormal basis.

Proposition 2.24 (Quantum Steering)  Let 𝜌 ∈ 𝐵(ℍ𝐴) be a density operator with
purification |𝜓⟩ ∈ ℍ𝐴 ⊗ ℍ𝐵. Let 𝜌 = ∑𝑖 𝜆𝑖𝜌𝑖 be a convex combination. Then there
is an instrument {𝑇𝑖} with each 𝑇𝑖 : 𝐵(ℍ𝐵) → 𝐵(ℍ𝐵), such that 𝜆𝑖𝜌𝑖 = tr𝐵((𝕀 ⊗
𝑇𝑖)(|𝜓⟩⟨𝜓|)).

2.4. Description of open quantum many(body systems
Assume evolution is

𝜌𝑆𝐸(𝑡) = 𝜌𝑆(𝑡) ⊗ 𝜌𝐸 ↦
d𝑡

𝜌𝑆𝐸(𝑡 + d𝑡) = 𝜌𝑆(𝑡 + d𝑡) ⊗ 𝜌𝐸(𝑡 + d𝑡) = 𝜌𝑆(𝑡 + d𝑡) ⊗ 𝜌𝐸

Definition 2.25  A quantum Markov semigroup is a 1-parameter continuous
semigroup {𝑇𝑡 : 𝑡 ≥ 0} of quantum channels (so each 𝑇𝑡 : 𝑆(ℍ) → 𝑆(ℍ)).

Note that 𝑇0 = 𝕀 and 𝑇𝑠 ∘ 𝑇𝑡 = 𝑇𝑡+𝑠. We have

d
d𝑡

𝑇𝑡 = ℒ ∘ 𝑇𝑡 = 𝑇𝑡 ∘ ℒ,

where ℒ is the infinitesimal generator of the semigroup, called the Liouvillian or
Lindbladian. This equation is called the master equation or Liouville equation.
This gives

𝑇𝑡 = 𝑒𝑡ℒ.

2.5. Separability criteria
Notation 2.26  Let 𝐴(ℍ) denote the set of bounded linear Hermitian operators on ℍ.

Definition 2.27  The covariance (or operator correlation) of 𝜌 between subsystems
𝐴 and 𝐵 is

Cor𝜌(𝐴 : 𝐵) = sup
‖𝑀𝐴‖,‖𝑀𝐵‖≤1

|tr(𝜌𝑀𝐴𝑇𝐵) − tr(𝜌𝑀𝐴) tr(𝜌𝑀𝐵)|,

where 𝑀𝐴 ∈ 𝐴(𝐻𝐴), 𝑀𝐵 ∈ 𝐴(𝐻𝐵), and ‖⋅‖ is the standard operator norm.
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Example 2.28  If 𝜌 is separable, then Cor𝜌(𝐴 : 𝐵) measures classical correlation. If
𝜌 = 𝜌𝐴 ⊗ 𝜌𝐵, then Cor𝜌(𝐴 : 𝐵) = 0.

Definition 2.29  Let |𝜓⟩ = ∑𝑑
𝑖=1

√𝑝𝑖|𝑒𝑖⟩ ⊗ |𝑓𝑖⟩ be the Schmidt decomposition of |𝜓⟩ ∈
ℍ𝐴 ⊗ ℍ𝐵. Let 𝜌 = |𝜓⟩⟨𝜓|. The entanglement entropy of 𝜌 is the Shannon entropy
of the probability distribution (𝑝1, …, 𝑝𝑑):

𝑆ENT(𝜌) ≔ − ∑
𝑑

𝑖=1
𝑝𝑖 log(𝑝𝑖).

Proposition 2.30
• 𝑆ENT(𝜌) = 0 iff the Schmidt rank of |𝜓⟩ is 1.
• The maximum value of 𝑆ENT(𝜌) is log(𝑑), and is achieved iff |𝜓⟩ is maximally

entangled, i.e. 𝜆𝑖 = 1/𝑑 for all 𝑖 ∈ [𝑑].

Proposition 2.31 (PPT Criterion)  Let 𝜌 ∈ 𝑆(ℍ𝐴 ⊗ ℍ𝐵). If 𝜌𝑇𝐴 has a negative eigen-
value, then 𝜌 is entangled.

Proof (Hints) .  Prove the contrapositive. □

Proof .  Assume 𝜌 is separable, so 𝜌 = ∑𝑗 𝑝𝑗𝜌𝐴
𝑗 ⊗ 𝜌𝐵

𝑗 . Then

𝜌𝑇𝐴 = (Θ ⊗ id)(𝜌) = ∑
𝑗

𝑝𝑗(𝜌𝐴
𝑗 )𝑇 ⊗ 𝜌𝐵

𝑗 ,

and so 𝜌𝑇𝐴 ≥ 0, as it is a sum of positive matrices. □

Definition 2.32  Write 𝑆SEP = {separable density matrices}, which is convex and
compact. By the Hahn-Banach theorem, for all 𝜌 ∉ 𝑆SEP, there exists a hyperplane
determined by a Hermitian operator 𝜔 such that tr(𝜌𝜔) < 0 and tr(𝜎𝜔) ≥ 0 for all 𝜎 ∈
𝑆SEP. 𝜔 is called an entanglement witness for 𝜌.

By the Choi-Jamiolkowski isomorphism, 𝜔 corresponds to a map Λ via the following:

𝜔 = (Λ ⊗ id𝐵)(|𝜙⟩⟨𝜙|).

Remark 2.33  The entanglement witness corresponding to the transposition map is
the flip operator 𝐹 .

Proposition 2.34  Let ℍ𝐴𝐵 = ℍ𝐴 ⊗ ℍ𝐵 and let 𝜌 ∈ 𝑆(ℍ𝐴𝐵). Then 𝜌 is separable iff
(Λ ⊗ id𝐵)(𝜌) ≥ 0 for every positive map Λ : 𝐵(ℍ𝐴) → 𝐵(ℍ𝐴).

Proof (Hints) .
• ⟹: straightforward.
• ⟸: TODO.

□

Proof .  ⟹: let 𝜌 be separable, so we can write 𝜌 = ∑𝑗 𝑝𝑗𝜌𝑗 ⊗ 𝜎𝑗. Then for every positive
Λ : 𝐵(ℍ𝐴) → 𝐵(ℍ𝐴),
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(Λ ⊗ id𝐵)(𝜌) = ∑
𝑗

𝜆𝑗Λ(𝜌𝑗) ⊗ 𝜎𝑗 ≥ 0,

since each Λ(𝜌𝑗) ≥ 0.

⟸: let 𝜌 be entangled. We want to find a positive map Λ : 𝐵(ℍ𝐴) → 𝐵(ℍ𝐴) such
that (Λ ⊗ id𝐵)(𝜌) has a negative eigenvalue. By Definition 2.32, 𝜌 has an entanglement
witness 𝜔, with tr(𝜌𝜔) < 0. By the Choi-Jamiolkowski isomorphism, this defines a map
Λ such that

𝜔 = (Λ∗ ⊗ id𝐵)(|𝜙⟩⟨𝜙|).

Since tr(𝑋𝑌 ) = tr(𝔽(𝑋 ⊗ 𝑌 )), and 𝐹 = 𝑑|𝜙⟩⟨𝜙|, we have for all 𝐴 ∈ 𝐵(ℍ𝐴), 𝐵 ∈
𝐵(ℍ𝐵),

tr(𝐵𝑇 Λ(𝐴)) = tr(𝐹(Λ(𝐴) ⊗ 𝐵𝑇 ))
= 𝑑 tr((Λ ⊗ id𝐵)(𝐴 ⊗ 𝐵)(|𝜙⟩⟨𝜙|))
= 𝑑⟨𝜙|(Λ ⊗ id𝐵)(𝐴 ⊗ 𝐵)|𝜙⟩.

TODO: finish. □

Remark 2.35
• In the above proof, we use that tr(𝜌𝜔) = 𝑑⟨𝜙|(Λ ⊗ id𝐵)(𝜌)|𝜙⟩ < 0 implies that (Λ ⊗

id𝐵) has a negative eigenvalue. However, the converse is false. Hence, the positive
map Λ corresponding to a witness 𝜔 in fact “detects more entanglement” than 𝜔.

• It can be shown that Λ constructed from 𝜔 detects an entangled state 𝜌 iff 𝜌 is
detected by a witness of the form (𝕀 ⊗ 𝕏)𝜔(𝕀 ⊗ 𝑋∗) for some 𝑋 ∈ 𝐵(ℍ𝐵).

Remark 2.36  Note that Proposition 2.34 is a theoretical result but is not imple-
mentable (in a lab) since Λ is only required to be positive (but not CP). However,
the map

𝑇 (𝜌) = 𝑝
𝑑2 𝕀𝑑 ⊗ 𝕀𝑑 + (1 − 𝑝)(Λ ⊗ id𝐵)(𝜌)

is a CP map. If 𝜌 is separable, then the minimal eigenvalue of 𝑇 (𝜌) must exceed a
certain threshold. If it doesn’t exceed this threshold, then 𝜌 is entangled.

Remark 2.37  Note that by using a change of abasis via a unitary 𝑈 , we can obtain
a different partial transpose ̃𝑇𝐴 from the “usual” partial transpose 𝑇𝐴:

𝜌 ̃𝑇𝐴 = (𝑈 ⊗ 𝕀)((𝑈 ∗ ⊗ 𝕀)𝜌(𝑈 ⊗ 𝕀))𝑇𝐴(𝑈 ∗ ⊗ 𝕀) = ((𝑈𝑈𝑇 ) ⊗ 𝕀)𝜌𝑇𝐴((𝑈𝑈𝑇 )∗ ⊗ 𝕀) ≠ 𝜌𝑇𝐴 .

Note that this non-uniqueness of the partial transpose does not affect the previous
criteria, as they only deal with the eigenvalues, which are invariant under basis changes.
Also, we have 𝜌 ̃𝑇𝐴 ⟺ 𝜌𝑇𝐴 ≥ 0 ⟺ 𝜌𝑇𝐵 ≥ 0, since 𝜌𝑇𝐴 and 𝜌𝑇𝐵 differ only by a global
transposition.
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Definition 2.38  A map Λ : 𝐵(ℍ) → 𝐵(ℍ) is called decomposable if Λ = Λ1 + Λ2 ∘
Θ, where Λ1 and Λ2 are positive maps and Θ is a partial transpose. Otherwise, it is
called non(decomposable.

Example 2.39  The entanglement witness corresponding to a decomposable map Λ =
Λ1 + Λ2 ∘ Θ is 𝜔 = 𝑄1 + 𝑄𝑇

2 , where 𝑄𝑖 = 𝑑(Λ𝑖 ⊗ 𝕀)(|𝜙⟩⟨𝜙|) is the entanglement witness
of Λ𝑖

Proposition 2.40 (Reduction Criterion)  Let Λred(𝐴) = tr(𝐴)𝕀 − 𝐴. Note that Λred is
positive. Proposition 2.34 gives us

(Λred ⊗ 𝕀)(𝜌) ⟹ {𝜌𝐴 ⊗ 𝕀𝐵 ≥ 𝜌𝐴𝐵
𝕀𝐴 ⊗ 𝜌𝐵 ≥ 𝜌𝐴𝐵.

The entanglement witness corresponding to Λred is (𝕀 − 𝐹)𝑇𝐴 = 2𝑃𝑇𝐴− , where 𝑃− is the
projector onto the anti-symmetric subspace (the space of anti-Hermitian operators). In
this case, we obtain

tr(𝜌𝜔) < 0 iff ⟨𝜙|𝜌|𝜙⟩ ≤ 1
𝑑
,

where |𝜙⟩ is the maximally entangled state.

Proof .  Omitted. □

Remark 2.41  If ℍ = ℂ2 ⊗ ℂ2, 𝑃𝑇𝐴−  is 1-dimensional, which gives that entanglement
being detected by 𝜔 is equivalent to the PPT criterion.

Proposition 2.42  Entangled states with positive partial transpose exist iff there
are non-decomposable maps. Specifically, there exists a non-decomposable map 𝑇 :
𝐵(ℍ𝐴) → 𝐵(ℍ𝐵) iff there exists an entangled state 𝜌 ∈ 𝐵(ℍ𝐴) ⊗ 𝐵(ℍ𝐵) with positive
partial transpose 𝜌𝑇𝐴 ≥ 0.

Proof .  Omitted. □

Proposition 2.43  Let 𝜌 ∈ 𝑆(ℂ2 ⊗ ℂ3) or 𝑆(ℂ2 ⊗ ℂ2). Then 𝜌 is separable iff 𝜌𝑇𝐴 ≥ 0.

Proof (Hints) .  Use the fact that every positive Λ on a Hilbert space of dimension 2 ⊗
2 or 2 ⊗ 3 is decomposable. □

Proof .  This follows from the PPT Criterion and Proposition 2.42 combined with the fact
that every positive Λ on a Hilbert space of dimension 2 ⊗ 2 or 2 ⊗ 3 is decomposable.
□

3. Quantum hypothesis testing
The goal of quantum hypothesis testing is to distinguish between quantum states
by using measurements. Given quantum states, the goal is to minimise the errors in
distinguishing them. There are two main frameworks:
• Binary/simple hypothesis testing: we have a null hypothesis 𝜌0 and a alternative

hypothesis 𝜌1. The focus is on minimising either the Type I error (false positive) for
a given bound on the Type II error (false negative), or vice versa.
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• Quantum state discrimination: states are given with prior probabilities, and the goal
is to maximise the probability of correct identification.

3.1. Quantum state discrimination
Given an ensemble {𝜌1, …, 𝜌𝑛} ⊆ 𝑆(ℍ) of density operators with corresponding proba-
bilities {𝑝1, …, 𝑝𝑛}, where 𝑝𝑖 ≥ 0 and ∑𝑛

𝑖=1 𝑝𝑖 = 1. This can be interpreted as a set of 𝑛
hypotheses (the 𝜌𝑖) with corresponding a priori probability 𝑝𝑖. The goal is to maximise
the average probability of correct identification of the hypothesis. To discriminate
among the hypothesis, we use a POVM 𝑀 = {𝑀1, …, 𝑀𝑛}, and we want to maximise

𝒫(𝑀) ≔ ∑
𝑛

𝑗=1
tr(𝑀𝑗𝑝𝑗𝜌𝑗) = ∑

𝑛

𝑗=1
𝑝𝑗 tr(𝑀𝑗𝜌𝑗).

Note that the interpretation is as follows: we have an unknown quantum state 𝜌 which
is distributed over 𝑆(ℍ), where 𝜌 = 𝜌𝑖 with probability 𝑝𝑖. Given that 𝜌 = 𝜌𝑖, the
probability of the measurement 𝑀  yielding the (correct) outcome 𝑖 is tr(𝑀𝑗𝜌𝑗). So
𝒫(𝑀) is the expected value of the probability of measuring the correct outcome.

Notation 3.1  Write ℳ = span{(𝑀1, …, 𝑀𝑛) ∈ 𝐵(ℍ)𝑛, 𝑀𝑖 ≥ 0, ∑𝑖 𝑀𝑖 = 𝕀} for the
span of the set of POVMs with 𝑛 operators, and write 𝒫(ℳ) = sup𝑀∈ℳ 𝒫(𝑀).

Notation 3.2  Write 𝜎𝑖 = 𝑝𝑖𝜌𝑖.

Notation 3.3  For any POVM 𝑀 , write 𝐿 = ∑𝑛
𝑖=1 𝑀𝑖𝑝𝑖𝜌𝑖, so that 𝒫(𝑀) = tr(𝐿).

Definition 3.4  A maximum likelihood measurement (or optimal measure(
ment) is a measurement (POVM) that achieves the supremum (i.e. the optimal
probability) in 𝒫(ℳ).

Proposition 3.5  The supremum in 𝒫(ℳ) is always attained, i.e. there is a measure-
ment 𝑀∗ such that 𝒫(ℳ) = 𝒫(𝑀∗).

Proof (Hints) .  Explain why 𝑀  is compact, the rest is straightforward. □

Proof .  For each 𝑀 ∈ ℳ, each 𝑀𝑖 ≥ 0, and ∑𝑖 𝑀𝑖 = 𝕀, which says that ℳ is compact.
Also, the map 𝑀 ↦ ∑𝑛

𝑖=1 tr(𝑀𝑖𝑝𝑖𝜌𝑖) is linear (and bounded), so is continuous, and so
achieves its supremum on ℳ. □

Remark 3.6  Note that since also for each 𝑀 ∈ ℳ, each 𝑀𝑖 ≥ 0, we have that ℳ is
convex.

Theorem 3.7  Let {𝜌1, …, 𝜌𝑛} be an ensemble with probabilities {𝑝1, …, 𝑝𝑛}. For 𝑀 =
{𝑀1, …, 𝑀𝑛} and 𝐿 = ∑𝑛

𝑖=1 𝑀𝑖𝑝𝑖𝜌𝑖, TFAE:
1. 𝑀  is an optimal measurement, i.e. 𝒫(𝑀) = 𝒫(ℳ).
2. For all 𝑖 ∈ [𝑛], 1

2(𝐿 + 𝐿∗) ≥ 𝑝𝑖𝜌𝑖.
3. For all 𝑖 ∈ [𝑛], 𝐿 ≥ 𝑝𝑖𝜌𝑖.
4. There exists 𝐾 ∈ 𝐵(ℍ) such that for all 𝑖 ∈ [𝑛], 𝐾 ≥ 𝑝𝑖𝜌𝑖 and (𝐾 − 𝑝𝑖𝜌𝑖)𝑀𝑖 = 0.
5. 𝒫(𝑀) = min{tr(𝐴) : 𝐴 ∈ 𝒜}, where 𝒜 = {𝐴 ∈ 𝐵(ℍ) : 𝐴 ≥ 𝑝𝑖𝜌𝑖 ∀𝑖}.

Remark 3.8
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• The inequalities in 3. and 4. of Theorem 3.7 imply that 𝐿 and 𝐾 are Hermitian.
• 𝐿 = 𝐾 and are equal to a minimiser in 5. of Theorem 3.7.
• The uniqueness of 𝐾 does not necessarily imply uniqueness of the optimal measure-

ment.

Proof (Hints) .
• 1 ⇒ 2: assume the opposite, let 𝑃  be the orthogonal projector onto the negative

eigenspace of 𝐿 + 𝐿∗ − 2𝑝𝑖𝜌𝑖. For fixed 𝜀 > 0, define 𝑀 ′
𝑗 = (𝕀 − 𝜀𝑃)𝑀𝑗(𝕀 − 𝜀𝑃) +

𝜀(2 − 𝜀)𝑃𝛿𝑖𝑗. Verify that 𝑀 ′ is a POVM and that

𝒫(𝑀 ′) = 𝒫(𝑀) + 𝜀 tr(𝑃 (2𝑝𝑖𝜌𝑖 − 𝐿 − 𝐿∗)) − 𝜀2 tr(𝑝𝑖𝜌𝑖𝑃) + 𝜀2 ∑
𝑛

𝑗=1
tr(𝑃𝑀𝑗𝑃𝑝𝑗𝜌𝑗).

• 3 ⇒ 1: for any POVM 𝑀 ′ = {𝑀 ′
1, …, 𝑀 ′

𝑛}, show that 𝒫(𝑀) − 𝒫(𝑀 ′) ≥ 0 (recall the
properties of a POVM).

• 2 ⇒ 1: use simple modification of the 3 ⇒ 1 proof.
• 2 ⇒ 3: use that

∑
𝑛

𝑗=1
tr((1

2
(𝐿 + 𝐿∗) − 𝑝𝑗𝜌𝑗)𝑀𝑗) = tr(1

2
(𝐿 + 𝐿∗) − 𝐿) = 0

• 3 ⇒ 4: straightforward.
• 4 ⇒ 1: show that tr(𝐿) = 𝒫(𝑀), show that 𝒫(𝑀) − 𝒫(𝑀 ′) ≥ 0 for any POVM

𝑀 ′ = {𝑀 ′
1, …, 𝑀 ′

𝑛}.
• 4 ⇒ 5: show that 𝒫(𝑀) = tr(𝐾).
• 5 ⇒ 4: should be straightforward by now.

□

Proof .
• 1. ⇒ 2.: assume the opposite, i.e. that there exists 𝑖 ∈ [𝑛] such that 12(𝐿 + 𝐿∗) ≱ 𝑝𝑖𝜌𝑖,

i.e. 𝐿 + 𝐿∗ − 2𝑝𝑖𝜌𝑖 is not positive semi-definite. Let 𝑃  be the orthogonal projector
onto the negative eigenspace of 𝐿 + 𝐿∗ − 2𝑝𝑖𝜌𝑖. In particular, 𝑃  is non-zero. Fix 𝜀 ∈
[0, 2] and define

𝑀 ′
𝑗 = (𝕀 − 𝜀𝑃)𝑀𝑗(𝕀 − 𝜀𝑃) + 𝜀(2 − 𝜀)𝑃𝛿𝑖𝑗.

It is straightforward to check that 𝑀 ′ is a POVM and that

𝒫(𝑀 ′) = 𝒫(𝑀) + 𝜀 tr(𝑃 (2𝑝𝑖𝜌𝑖 − 𝐿 − 𝐿∗)) − 𝜀2 tr(𝑝𝑖𝜌𝑖𝑃) + 𝜀2 ∑
𝑛

𝑗=1
tr(𝑃𝑀𝑗𝑃𝑝𝑗𝜌𝑗)

By construction, tr(𝑃 (2𝑝𝑖𝜌𝑖 − 𝐿 − 𝐿∗)) ≥ 0. Since the last two terms are 𝑂(𝜀2), for
𝜀 small enough, 𝒫(𝑀 ′) > 𝒫(𝑀), which contradicts our assumption that 𝒫(𝑀) =
𝒫(ℳ).

• 3 ⇒ 1 and 2 ⇒ 1: let 𝑀 ′ be another POVM. Since 𝒫(𝑀) = tr(𝐿), we have

𝒫(𝑀) − 𝒫(𝑀 ′) = tr(𝐿) − ∑
𝑛

𝑗=1
tr(𝑀 ′

𝑗𝑝𝑗𝜌𝑗)
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= tr(𝐿 ∑
𝑛

𝑗=1
𝑀 ′

𝑗) − ∑
𝑛

𝑗=1
tr(𝑀 ′

𝑗𝑝𝑗𝜌𝑗)

= ∑
𝑛

𝑗=1
tr(𝑀 ′

𝑗(𝐿 − 𝑝𝑗𝜌𝑗))

By 3, 𝐿 ≥ 𝑝𝑗𝜌𝑗, hence 𝒫(𝑀) − 𝒫(𝑀 ′) ≥ 0. For 2 ⇒ 1, since tr(𝐿) = tr(𝐿∗), we can
replace 𝐿 in the above proof by 1

2(𝐿 + 𝐿∗).
• 2 ⇒ 3: using that tr(𝐿) = tr(𝐿∗), we have

∑
𝑛

𝑗=1
tr((1

2
(𝐿 + 𝐿∗) − 𝑝𝑗𝜌𝑗)𝑀𝑗) = tr(1

2
(𝐿 + 𝐿∗) − 𝐿) = 0

Since 1
2(𝐿 + 𝐿∗) ≥ 𝑝𝑗𝜌𝑗, all the terms 1

2(𝐿 + 𝐿∗) − 𝑝𝑗𝜌𝑗 are positive, so (1
2(𝐿 + 𝐿∗) −

𝑝𝑗𝜌𝑗)𝑀𝑗 = 0 since the sums of the traces are 0. Summing over 𝑗 gives 1
2(𝐿 + 𝐿∗) =

𝐿, so 𝐿 is Hermitian.
• 3 ⇒ 4: choosing 𝐾 = 𝐿, it is straightforward to check the conditions are satisfied.
• 4 ⇒ 1: since 𝐾𝑀𝑗 = 𝑝𝑗𝜌𝑗𝑀𝑗 for all 𝑗, it is straightforward to show that 𝒫(𝑀) =

tr(𝐿) = tr(𝐾) by summing over 𝑗 and taking the trace. Letting 𝑀 ′ be another
POVM, we have

𝒫(𝑀) − 𝒫(𝑀 ′) = ∑
𝑛

𝑗=1
tr(𝐾𝑀 ′

𝑗) − tr(𝑝𝑗𝜌𝑗𝑀 ′
𝑗)

= ∑
𝑛

𝑗=1
tr((𝐾 − 𝑝𝑗𝜌𝑗)𝑀 ′

𝑗) ≥ 0

since 𝐾 − 𝑝𝑗𝜌𝑗 ≥ 0.
• 4 ⇒ 5: it is straightforward to show that

𝒫(𝑀) = tr(𝐾).

We have 𝐾 ∈ 𝒜 and for all 𝐴 ∈ 𝒜,

tr(𝐾) = ∑
𝑛

𝑗=1
tr(𝐾𝑀𝑗) = ∑

𝑛

𝑗=1
tr(𝑝𝑗𝜌𝑗𝑀𝑗) ≤ ∑

𝑛

𝑗=1
tr(𝐴𝑀𝑗) = tr(𝐴)

So 𝒫(𝑀) = tr(𝐾) = min{tr(𝐴) : 𝐴 ∈ 𝒜}. The argument in reverse shows the con-
verse.

• 5 ⇒ 4: let 𝐴 ∈ 𝒜 be such that tr(𝐴) = 𝒫(𝑀) = tr(𝐿). Then

0 = tr(𝐴 − 𝐿) = tr(𝐴 ∑
𝑛

𝑖=1
𝑀𝑖 − 𝐿) = ∑

𝑛

𝑖=1
tr((𝐴 − 𝑝𝑖𝜌𝑖)𝑀𝑖)

Since 𝐴 ≥ 𝑝𝑖𝜌𝑖 for all 𝑖, each term on the RHS is ≥ 0, and so tr((𝐴 − 𝑝𝑖𝜌𝑖)𝑀𝑖) = 0,
but (𝐴 − 𝑝𝑖𝜌𝑖)𝑀𝑖 ≥ 0, so we can take 𝐾 = 𝐴.

□
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Example 3.9  Let 𝜌1, …, 𝜌𝑛 be pairwise commuting states, so there exists an ortho-
normal basis {|𝑖⟩ : 𝑖 ∈ [𝑛]} in which they can be simultaneously diagonalised. Let 𝐾 be
the diagonal operator with diagonal entries ⟨𝑗|𝐾 |𝑗⟩ = max𝑖⟨𝑗|𝑝𝑖𝜌𝑖 |𝑗⟩. By construction,
𝐾 has minimal trace among all operators 𝐴 such that 𝐴 ≥ 𝑝𝑖𝜌𝑖 for all 𝑖 (and 𝐾 is such
an operator). Thus, by point 5 of Theorem 3.7,

𝒫(ℳ) = min{tr(𝐴) : 𝐴 ≥ 𝑝𝑖𝜌𝑖∀𝑖} = tr(𝐾) = ∑
𝑛

𝑗=1
⟨𝑗|𝐾 |𝑗⟩ = ∑

𝑗
max

𝑖
⟨𝑗|𝑝𝑖𝜌𝑖 |𝑗⟩.

Example 3.10  Let 𝜌1, …, 𝜌𝑛 be pure states, each with associated a priori probability
1/𝑛. For simplicity, assume that

∑
𝑛

𝑖=1
𝑝𝑖𝜌𝑖 = 𝕀𝑑

𝑑

(with 𝑑 ≤ 𝑛). Define 𝑀𝑖 = 𝑑
𝑛𝜌𝑖 for each 𝑖 ∈ [𝑛]. {𝑀𝑖}

𝑛
𝑖=1 is a POVM which describes

a maximum likelihood measurement. Since the 𝜌𝑖 are pure states, 𝜌2
𝑖 = 𝜌𝑖, so for 𝐿 =

∑𝑛
𝑖=1 𝑀𝑖𝑝𝑖𝜌𝑖, we have

𝐿 = ∑
𝑛

𝑖=1
𝑀𝑖𝑝𝑖𝜌𝑖 = 𝑑

𝑛
∑

𝑛

𝑖=1
𝑝𝑖𝜌2

𝑖 = 𝑑
𝑛

∑
𝑛

𝑖=1
𝑝𝑖𝜌𝑖 = 𝕀

𝑛
≥ 𝑝𝑖𝜌𝑖

for all 𝑖. Hence, 𝑀  is an optimal measurement by point 3 of Theorem 3.7.

3.2. Binary hypothesis testing
Let 𝜌1 and 𝜌2 be density matrices with a priori probability 𝑝 and 1 − 𝑝. Consider the
POVM 𝑀 = (𝑀1, 𝑀2) = (𝕀, 𝕀 − 𝑃) with 𝑃  an orthogonal projection. Assigning 𝑃  to 𝜌1
and 𝕀 − 𝑃  to 𝜌2, the probability of error is

ℰ(𝑀) ≔ 𝑝 tr(𝜌1(𝕀 − 𝑃)) + (1 − 𝑝) tr(𝜌2𝑃).

Also,

𝒫(𝑀) = 𝑝 tr(𝜌1𝑃) + (1 − 𝑝) tr(𝜌2(𝕀 − 𝑃))

Note that 𝒫(𝑀) + ℰ(𝑀) = 1.

Definition 3.11  Let ℍ be a finite dimensional Hilbert space. For 𝑝 ∈ [1, ∞), the
Schatten 𝑝(norm is defined as

‖⋅‖𝑝 : 𝐵(ℍ) → [0, ∞),

‖𝐴‖ = tr(|𝐴|𝑝)1/𝑝.

We can also define ‖𝐴‖∞ = lim𝑝→∞ ‖𝐴‖𝑝 = max𝑖{|𝜆𝑖|}, where 𝜆𝑖 are the eigenvalues of
𝐴.

Theorem 3.12 (Quantum Neyman-Pearson)  We have

ℰ(𝑀) ≥ 1
2
(1 − ‖𝑝𝜌1 − (1 − 𝑝)𝜌2‖1)
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with equality iff 𝑃  is a projection onto (𝑝1𝜌1 − (1 − 𝑝)𝜌2)+, the positive eigensubspace
of 𝑝1𝜌1 − (1 − 𝑝)𝜌2.

Proof (Hints) .
• Let 𝐴 = 𝑝𝜌1 − (1 − 𝑝)𝜌2. By considering the positive and negative parts 𝐴+ and 𝐴−

of 𝐴, show that tr(𝐴+) = 1
2(‖𝐴‖1 + tr(𝐴)).

• Also show that ℰ(𝑀) = 𝑝 − tr(𝑃𝐴), and explain why the minimum (over 𝑃 ) of this
is attained iff 𝑃𝐴+ = 𝐴+ and 𝑃𝐴− = 0.

□

Proof .  For every Hermitian 𝐴, we can write 𝐴 = 𝐴+ + 𝐴−, where 𝐴+ is the positive
part and 𝐴− is the negative part. We have

tr(𝐴+) = 1
2
(‖𝐴‖1 + tr(𝐴))

since ‖𝐴‖1 = tr(|𝐴|) = tr(𝐴+ − 𝐴−) and tr(𝐴) = tr(𝐴+ + 𝐴−). Now

ℰ(𝑀) = 𝑝 tr(𝜌1(𝕀 − 𝑃)) + (1 − 𝑝) tr(𝑝2𝑃)
= 𝑝 − 𝑝 tr(𝜌1𝑃) + (1 − 𝑝) tr(𝑝2𝑃)
= 𝑝 − tr(𝑃 (𝑝𝜌1 − (1 − 𝑝)𝜌2)) ≕ 𝑝 − tr(𝑃𝐴)

So maximum of above is attained iff 𝑃𝐴+ = 𝐴+ and 𝑃𝐴− = 0, i.e. 𝑃  is an orthonormal
projection onto 𝐴+. Hence,

min
𝑀

ℰ(𝑀) = 𝑝 − tr((𝑝𝜌1 − (1 − 𝑝)𝜌2)+)

= 𝑝 − 1
2
(‖𝑝𝜌1 − (1 − 𝑝)𝜌2‖1 + tr(𝑝𝜌1 − (1 − 𝑝)𝜌2)

= 1
2
(1 − ‖𝑝𝜌1 − (1 − 𝑝)𝜌2‖1)

Alternatively, we could define 𝐿 = 𝑃𝑝𝜌1 + (𝕀 − 𝑃)(1 − 𝑝)𝜌2 which satisfies 𝐿 ≥ 𝑝𝜌1 and
𝐿 ≥ (1 − 𝑝)𝜌2, hence is an optimal measurement, hence 1 = 𝒫(𝑀) + ℰ(𝑀) ≤ tr(𝐿) +
ℰ(𝑀). □

Now assume we have 𝑚 copies of 𝜌1 and 𝜌2, and we can treat them as single density
matrices: 𝜌⊗𝑚

1  and 𝜌⊗𝑚
2 . For the optimal measurement, the error rate is

ℰopt
𝑚 = 1

2
(1 − ‖𝑝𝜌⊗𝑚

1 − (1 − 𝑝)𝜌⊗𝑚
2 ‖

1
)

It can be shown that ℰopt
𝑚  decays exponentially with 𝑚, i.e. ℰopt

𝑚 ≤ 𝐾𝑒−𝜉𝑚, 𝐾, 𝜉 > 0.
Note that this upper bound is independent of 𝑝.

Lemma 3.13  If 𝐴, 𝐵 ∈ 𝐵(ℍ) are positive, then ∀𝑠 ∈ [0, 1], tr((𝐴𝑠 − 𝐵𝑠)𝐴1−𝑠) ≤
tr((𝐴 − 𝐵)+).

Proof .  Consequence of operator monotonicity of 𝑧 ↦ 𝑧𝑠 for all 𝑠 ∈ [0, 1] (details
omitted). □
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Theorem 3.14 (Quantum Chernoff Bound)  Let 𝑝 ≠ 0, 1. Then

𝜉 ≔ lim
𝑚→∞

(− 1
𝑚

log(ℰopt
𝑚 )) = − log( inf

𝑠∈[0,1]
tr(𝜌1−𝑠

1 𝜌𝑠
2))

Proof (Hints) .
• Show that 1

2(tr(𝐴 + 𝐵) − ‖𝐴 − 𝐵‖1) ≤ tr(𝐵𝑠𝐴1−𝑠) for positive 𝐴, 𝐵 ∈ 𝐵(ℍ) and 𝑠 ∈
[0, 1].

• Now take 𝐴 = 𝑝𝜌⊗𝑚
1  and 𝐵 = (1 − 𝑝)𝜌⊗𝑚

2  to show inequality in the theorem state-
ment.

• To show equality, consider

̂𝜌1 = ∑
𝑗,𝑘

𝜆(1)
𝑗 |⟨𝜓(1)

𝑗 |𝜓(2)
𝑘 ⟩||𝑗𝑘⟩⟨𝑗𝑘|

̂𝜌2 = ∑
𝑗,𝑘

𝜆(2)
𝑗 |⟨𝜓(1)

𝑗 |𝜓(2)
𝑘 ⟩||𝑗𝑘⟩⟨𝑗𝑘|,

where 𝜌𝑖 = ∑𝑗 𝜆(𝑖)
𝑗 |𝜓(𝑖)

𝑗 ⟩⟨𝜓(𝑖)
𝑗 |, and use that equality is achieved when applied to

commuting operators.

□

Proof .  By Lemma 3.13,

1
2
(tr(𝐴 + 𝐵) − ‖𝐴 − 𝐵‖1) = 1

2
(2 tr(𝐴) − tr(𝐴 − 𝐵) − tr((𝐴 − 𝐵)+) + tr((𝐴 − 𝐵)−)

= tr(𝐴) − tr((𝐴 − 𝐵)+)

≤ tr(𝐴) − tr((𝐴𝑠 − 𝐵𝑠)𝐴1−𝑠) = tr(𝐵𝑠𝐴1−𝑠)

Let 𝐴 = 𝑝𝜌⊗𝑚
1  and 𝐵 = (1 − 𝑝)𝜌⊗𝑚

2 . Then by above and Quantum Neyman-Pearson,

ℰopt
𝑚 = 1

2
(1 − ‖𝑝𝜌⊗𝑚

1 − (1 − 𝑝)𝜌⊗𝑚
2 ‖

1
) ≤ (1 − 𝑝)𝑠𝑝1−𝑠tr(𝜌1−𝑠

1 𝜌𝑠
2)

𝑚

Hence

ℰopt
𝑚 ≤ inf

𝑠∈[0,1]
𝑝1−𝑠(1 − 𝑝)𝑠tr(𝜌1−𝑠

1 𝜌𝑠
2)

𝑚 ≤ inf
𝑠∈[0,1]

tr(𝜌1−𝑠
1 𝜌𝑠

2)
𝑚

so

− 1
𝑚

log ℰopt
𝑚 ≥ − log inf

𝑠∈[0,1]
tr(𝜌1−𝑠

1 𝜌𝑠
2)

And we can take the limit 𝑚 → ∞.

To show equality: given 𝜌1, 𝜌2 we can construct ̂𝜌1, ̂𝜌2 such that [ ̂𝜌1, ̂𝜌2] = 0 and
tr( ̂𝜌1−𝑠

1 ̂𝜌𝑠
2) = tr(𝜌1−𝑠

1 𝜌𝑠
2): explicitly, let 𝜌𝑖 = ∑𝑗 𝜆(𝑖)

𝑗 |𝜓(𝑖)
𝑗 ⟩⟨𝜓(𝑖)

𝑗 |, then we define

̂𝜌1 = ∑
𝑗,𝑘

𝜆1
𝑗 |⟨𝜓

(1)
𝑗 |𝜓(2)

𝑘 ⟩||𝑗𝑘⟩⟨𝑗𝑘|
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̂𝜌2 = ∑
𝑗,𝑘

𝜆2
𝑗 |⟨𝜓

(1)
𝑗 |𝜓(2)

𝑘 ⟩||𝑗𝑘⟩⟨𝑗𝑘|,

where {|𝑖𝑗⟩} is an orthonormal basis of ℍ ⊗ ℍ. ̂𝜌1, ̂𝜌2 achieve equality in the above
inequality. □

3.3. The pretty good measurement
Definition 3.15  Given a collection of states {𝜌𝑖}

𝑛
𝑖=1 with associated prior probability

{𝑝𝑖}
𝑛
𝑖=1, the pretty good measurement is 𝑀𝑃 = {𝑀𝑃

𝑖 }𝑛
𝑖=1

, where

𝑀𝑃
𝑖 = 𝑅−1/2𝑝𝑖𝜌𝑖𝑅−1/2 + 1

𝑛
(𝕀 − 𝑅−1/2𝑅𝑅−1/2) = 𝑅−1/2𝑝𝑖𝜌𝑖𝑅−1/2 + 1

𝑛
𝕀{ker 𝑅}

𝑅 = ∑
𝑛

𝑖=1
𝑝𝑖𝜌𝑖,

where 𝑅−1 is the Moore-Penrose pseudo-inverse.

Definition 3.16  Given a collection of states {𝜌𝑖}
𝑛
𝑖=1 with associated prior probability

{𝑝𝑖}
𝑛
𝑖=1, the square measurement is 𝑀𝑆 = {𝑀𝑆

𝑖 }𝑛
𝑖=1

, where

𝑀𝑆
𝑖 = 𝑆−1/2𝑝2

𝑖 𝜌2
𝑖 𝑆−1/2 + 1

𝑛
(𝕀 − 𝑆−1/2𝑆𝑆−1/2),

𝑆 = ∑
𝑛

𝑖=1
𝑝2

𝑖 𝜌2
𝑖 .

Theorem 3.17 (Holder's Inequality)  For 𝑝, 𝑞 ∈ [1, ∞] and 1
𝑝 + 1

𝑞 = 1, we have

‖𝐴𝐵‖1 = tr(|𝐴𝐵|) ≤ ‖𝐴‖𝑝‖𝐵‖𝑞.

Definition 3.18  Let 𝐼 be an interval. 𝑓 : 𝐼 → ℝ is operator convex on 𝐼 if

𝑓(𝜆𝐴 + (1 − 𝜆)𝐵) ≤ 𝜆𝑓(𝐴) + (1 − 𝜆)𝑓(𝐵),

for all 𝐴, 𝐵 Hermitian with spectra in 𝐼 and all 𝜆 ∈ [0, 1].

Theorem 3.19 (Jensen's Inequality)  Let 𝑓 be continuous on an interval 𝐼 . TFAE:
• 𝑓 is operator convex on 𝐼 .
• For each 𝑛 ∈ ℕ,

𝑓(∑
𝑛

𝑖=1
𝐴∗

𝑖𝑋𝑖𝐴𝑖) ≤ ∑
𝑛

𝑖=1
𝐴∗

𝑖𝑓(𝑋𝑖)𝐴𝑖,

for all 𝑋1, …, 𝑋𝑛 which are bounded self-adjoint operators whose spectra are con-
tained in 𝐼 and all operators 𝐴1, …, 𝐴𝑛 are operators which satisfy ∑𝑛

𝑖=1 𝐴∗
𝑖𝐴𝑖 = 𝕀.

• 𝑓(𝑉 ∗𝑋𝑉 ) ≤ 𝑉 ∗𝑓(𝑋)𝑉  for all Hermitian 𝑋 with spectrum in 𝐼 and all isometries 𝑉 .

Proposition 3.20  We have

tr(𝑆1/2)2 ≤ 𝒫(𝑀𝑆) ≤ 𝒫opt ≤ tr(𝑆1/2).
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Proof (Hints) .
• For simplicity, assume 𝑆 is invertible. For first inequality, write 𝑆1/2 = 𝑆𝑆−1/2, use

cyclicity to introduce 𝜎1/2
𝑖  where appropriate, then use Jensen's Inequality.

• For third inequality, explain why 𝜎𝑖 ≤ 𝑆1/2 for each 𝑖, and use that for any POVM
𝑀 , 𝐴 ↦ tr(𝑀𝑖𝐴) is an operator monotone.

□

Proof .  For simplicity, assume 𝑆 is invertible. The second inequality follows by definition.
For the first, we have (letting 𝜎𝑖 = 𝑝𝑖𝜌𝑖)

tr(𝑆1/2)2 = tr(𝑆𝑆−1/2)2 = tr(∑
𝑛

𝑖=1
𝑝2

𝑖 𝜌2
𝑖 𝑆−1/2)

2

= (∑
𝑛

𝑖=1
tr(𝜎𝑖(𝜎

1/2
𝑖 𝑆−1/2𝜎1/2

𝑖 )))
2

by cyclicity

≤ ∑
𝑛

𝑖=1
tr(𝜎𝑖(𝜎

1/2
𝑖 𝑆−1/2𝜎1/2

𝑖 )2) by Jensen's Inequality

= ∑
𝑛

𝑖=1
tr(𝜎2

𝑖 𝑆−1/2𝜎𝑖𝑆−1/2) by cyclicity

= ∑
𝑛

𝑖=1
tr(𝜎𝑖𝑀𝑆

𝑖 ) by cyclicity

= 𝒫(𝑀𝑆).

For the third inequality, note that 𝜎2
𝑖 ≤ ∑𝑗 𝜎2

𝑗 = 𝑆 for each 𝑖, since the 𝜎𝑖 are positive
semi-definite. Since 𝑧 ↦ 𝑧1/2 is operator monotone, we have 𝜎𝑖 ≤ 𝑆1/2 for each 𝑖 ∈ [𝑛].
Also, for any POVM 𝑀 = {𝑀𝑖}, 𝐴 ↦ tr(𝑀𝑖𝐴) is operator monotone, hence tr(𝑀𝑖𝜎𝑖) ≤
tr(𝑀𝑖𝑆1/2). Summing over 𝑖, we obtain

∑
𝑖

tr(𝑀𝑖𝜎𝑖) ≤ ∑
𝑖

tr(𝑀𝑖𝑆1/2) = tr((∑
𝑖

𝑀𝑖)𝑆1/2) = tr(𝕀 ⋅ 𝑆1/2) = tr(𝑆1/2).

□

Proposition 3.21  We have

(𝒫opt)
2 ≤ 𝒫(𝑀𝑃 ) ≤ 𝒫opt.

Proof (Hints) .  For simplicity, assume 𝑅 is invertible. For the first inequality, show that
for any POVM 𝑀 , (∑𝑛

𝑖=1 tr(𝑀𝑖𝜎𝑖))
2

≤ 𝒫(𝑀𝑃 ), using cyclicity to introduce 𝑅1/4 and
𝑅−1/4 where appropriate, Holder's Inequality, Cauchy-Schwarz, the fact that ‖𝑀𝑖‖∞ ≤
1. Use the fact that 𝐴𝐵𝐴 ≥ 0 if 𝐴, 𝐵 ≥ 0. □

Proof .  For simplicity, assume 𝑅 is invertible. The second inequality follows from the
definition. For the first, let 𝑀 = {𝑀𝑖}

𝑛
𝑖=1 be a POVM. Then
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(∑
𝑛

𝑖=1
tr(𝑀𝑖𝜎𝑖))

2

= (∑
𝑛

𝑖=1
tr((𝑅1/4𝑀𝑖𝑅1/4) ⋅ (𝑅−1/4𝜎𝑖𝑅−1/4)))

2

≤ (∑
𝑛

𝑖=1
‖𝑅1/4𝑀𝑖𝑅1/4‖

2
‖𝑅−1/4𝜎𝑖𝑅−1/4‖)

2

by Holder

≤ ∑
𝑛

𝑖=1
‖𝑅1/4𝑀𝑖𝑅1/4‖2

2
⋅ ∑

𝑛

𝑖=1
‖𝑅−1/4𝜎𝑖𝑅−1/4‖2

2
by Cauchy-Schwarz

The first term in the final product is

∑
𝑛

𝑖=1
‖𝑅1/4𝑀𝑖𝑅1/4‖2

2
= ∑

𝑛

𝑖=1
tr((𝑅1/4𝑀𝑖𝑅1/4)2) = ∑

𝑛

𝑖=1
tr(𝑅1/2𝑀𝑖𝑅1/2𝑀𝑖)

≤ ∑
𝑛

𝑖=1
tr(𝑅1/2𝑀𝑖𝑅1/2) = tr(𝑅) = 1,

where the inequality follows from Holder's Inequality, since ‖𝑀𝑖‖∞ ≤ 1. (Note that
𝑅1/4𝑀𝑖𝑅1/4 is PSD since 𝑀𝑖 and 𝑅1/4 are, so can ignore absolute values.) The second
term is

∑
𝑛

𝑖=1
‖𝑅−1/4𝜎𝑖𝑅−1/4‖2

2
= ∑

𝑛

𝑖=1
tr(𝑀𝑃

𝑖 𝜎𝑖) = 𝒫(𝑀𝑃 ).

□

Corollary 3.22  Since ℰ(𝑀) = 1 − 𝒫(𝑀) and ℰopt = 1 − 𝒫opt, we have

(𝑃opt)
2 ≤ 𝒫(𝑀𝑃 ), 𝒫(𝑀𝑆) ≤ 𝒫opt, and ℰopt ≤ ℰ(𝑀𝑃 ), ℰ(𝑀𝑆) ≤ 2ℰopt.

3.4. Asymmetric hypothesis testing
Definition 3.23  Given 𝑚 copies of states 𝜌 and 𝜎 that we want to classify with a
POVM (𝑃𝑚, 𝕀 − 𝑃𝑚), the Type I error is 𝛼𝑚(𝑃𝑚) = tr(𝜌⊗𝑚(𝕀 − 𝑃𝑚)), and the Type
II error is 𝛽𝑚(𝑃𝑚) = tr(𝜎⊗𝑚𝑃𝑚).

Note by the Quantum Chernoff Bound, we have

lim inf
𝑚→∞

− 1
𝑚

log 𝛼𝑚(𝑃𝑚) ≥ 𝜉, lim inf
𝑚→∞

− 1
𝑚

log 𝛽𝑚(𝑃𝑚) ≥ 𝜉.

Theorem 3.24 (Quantum Stein's Lemma)  Let 𝜌, 𝜎 ∈ 𝑆(ℍ), 𝜀 ∈ (0, 1), let 𝛽𝑚 be
minimised over all POVMs (𝑃𝑚, 𝕀 − 𝑃𝑚) subject to 𝛼𝑚(𝑃𝑚) ≤ 𝜀. Then

lim
𝑚→∞

− 1
𝑚

log 𝛽𝑚 = 𝐷(𝜌 ‖ 𝜎),

where 𝐷(𝜌 ‖ 𝜎) = tr(𝜌(log 𝜌 − log 𝜎)) is the relative entropy between 𝜌 and 𝜎.

Proof .  First we show that lim𝑚→∞ − 1
𝑚 log 𝛽𝑚 ≤ 𝐷(𝜌 ‖ 𝜎).
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It can be shown that for 𝐴, 𝐵 positive semi-definite, tr((𝐴 − 𝐵)+) ≤ tr(𝐴1+𝑠𝐵−𝑠) for all
𝑠 ∈ [0, 1]. Let 𝐴 − 𝐵 = ∑𝑖 𝜇𝑖𝑄𝑖 be the spectral decomposition of 𝐴 − 𝐵, and let 𝐽(𝑋) =
∑𝑖 𝑄𝑖𝑋𝑄𝑖 be the pinching on the eigenbasis of 𝐴 − 𝐵. This satisfies [𝐽(𝐴), 𝐽(𝐵)] =
0; also, tr(𝐴1+𝑠𝐵−𝑠) is non-increasing under CPTP maps (i.e. tr(Φ(𝐴)1+𝑠Φ(𝐵)−𝑠) ≤
tr(𝐴1+𝑠𝐵−𝑠) for all 𝐴, 𝐵 positive semi-definite and quantum channels Φ). We also have
tr((𝐴 − 𝐵)+) = tr((𝑇 (𝐴) − 𝑇(𝐵))+). Combining these facts, we can assume WLOG
that 𝐴 and 𝐵 are diagonal matrices. In this case, the inequality tr((𝐴 − 𝐵)+) ≤
tr(𝐴1+𝑠𝐵−𝑠) is simply due to the the fact that 𝑎 − 𝑏 ≤ 𝑎(𝑎/𝑏)𝑠 for all 𝑎, 𝑏 > 0.

Take 𝐴 = 𝜌⊗𝑚 and 𝐵 = 𝑒𝜆𝑚𝜎⊗𝑚, with 𝜆 a constant to be specified later. Then

tr((𝜌⊗𝑚 − 𝑒𝜆𝑚𝜎⊗𝑚)𝑃𝑚) ≤ tr((𝜌⊗𝑚)1+𝑠𝑒−𝜆𝑚𝑠(𝜎⊗𝑚)−𝑠)

= 𝑒−𝜆𝑚𝑠tr(𝜌1+𝑠𝜎−𝑠)𝑚

Note that 𝛼𝑚(𝑃𝑚) ≤ 𝜀 by assumption, i.e. 1 − 𝜀 ≤ tr(𝜌⊗𝑚𝑃𝑚). So by the above
inequality,

(1 − 𝜀) − 𝑒𝜆𝑚𝛽𝑚(𝑃𝑚) ≤ tr(𝜌⊗𝑚𝑃𝑚) − 𝑒𝜆𝑚 tr(𝜎⊗𝑚𝑃𝑚) ≤ 𝑒−𝜆𝑚𝑠tr(𝜌1+𝑠𝜎−𝑠)𝑚

= 𝑒−𝜆𝑚𝑠𝑒𝑚𝑓(𝑠) = 𝑒𝑚(−𝜆𝑠+𝑓(𝑠))

where 𝑓(𝑠) = log tr(𝜌1+𝑠𝜎−𝑠). So we have

1 − 𝜀 − 𝑒𝑚(−𝜆𝑠+𝑓(𝑠)) ≤ 𝑒𝜆𝑚𝛽𝑚(𝑃𝑚)

i.e. 𝛽𝑚(𝑃𝑚) ≥ 𝑒−𝜆𝑚((1 − 𝜀) − 𝑒𝑚(𝑓(𝑠)−𝜆𝑠))

Clearly 𝑓(0) = 0 and it can be shown that 𝑓 ′(0) = 𝐷(𝜌 ‖ 𝜎). So take 𝜆 = 𝐷(𝜌 ‖ 𝜎) + 𝛿
for any 𝛿 > 0. Then ∃𝑠 ∈ (0, 1] such that 𝜆𝑠 > 𝑓(𝑠), hence 𝑒𝑚(𝑓(𝑠)−𝜆𝑠) < 1 for all 𝑚 ∈
ℕ. This gives

lim sup
𝑚→∞

− 1
𝑚

log 𝛽𝑚(𝑃𝑚) ≤ lim sup
𝑚→∞

− 1
𝑚

log(𝑒−𝜆𝑚((1 − 𝜀) − 𝑒𝑚(𝑓(𝑠)−𝜆𝑠)))

= lim sup
𝑚→∞

(𝜆 − 1
𝑚

log((1 − 𝜀) − 𝑒𝑚(𝑓(𝑠)−𝜆𝑠)))

≤ 𝜆 ≤ 𝐷(𝜌 ‖ 𝜎) + 𝛿.

Since 𝛿 > 0 was arbitrary, this shows inequality.

For equality: let 𝜎⊗𝑚 = ∑𝑘
𝑖=1 𝜆𝑖𝑃𝑖 be the spectral decomposition of 𝜎⊗𝑚. Define the

completely positive linear map 𝑇 : 𝐵(ℍ⊗𝑚) → 𝐵(ℍ⊗𝑚) by 𝑇 (𝑋) = ∑𝑘
𝑖=1 𝑃𝑖𝑋𝑃𝑖 (this

is called a pinching on the eigenbasis of 𝜎⊗𝑚). Now

𝐷(𝑇 (𝜌⊗𝑚) ‖ 𝜎⊗𝑚) = 𝐷(𝑇 (𝜌⊗𝑚) ‖ 𝑇 (𝜎⊗𝑚)) ≤ 𝐷(𝜌⊗𝑚 ‖ 𝜎⊗𝑚) by data-processing
= 𝑚𝐷(𝜌 ‖ 𝜎) by addivity
≤ 𝐷(𝑇 (𝜌⊗𝑚) ‖ 𝜎⊗𝑚) + 𝑑 log(𝑚 + 1).
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By the inequality, have 𝐷(𝜌 ‖ 𝜎) = lim𝑚→∞
1
𝑚𝐷(𝑇 (𝜌⊗𝑚) ‖ 𝜎⊗𝑚). Also, since the pinch-

ing 𝑇  satisfies [𝑇 (𝜌⊗𝑚), 𝜎⊗𝑚] = 0, the RHS is interpretable as a classical relative entropy,
and classical Stein’s lemma has equality. □
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