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1. Monochromatic sets
1.1. Ramsey’s theorem
Notation 1.1  ℕ denotes the set of positive integers, [𝑛] = {1, …, 𝑛}, and 𝑋(𝑟) =
{𝐴 ⊆ 𝑋 : |𝐴| = 𝑟}. Elements of a set are written in ascending order, e.g. {𝑖, 𝑗} means
𝑖 < 𝑗. Write e.g. 𝑖𝑗𝑘 to mean the set {𝑖, 𝑗, 𝑘} with the ordering (unless otherwise
stated) 𝑖 < 𝑗 < 𝑘.

Definition 1.2  A 𝑘-colouring on 𝐴(𝑟) is a function 𝑐 : 𝐴(𝑟) → [𝑘].

Example 1.3
• Colour {𝑖, 𝑗} ∈ ℕ(2) red if 𝑖 + 𝑗 is even and blue if 𝑖 + 𝑗 is odd. Then 𝑀 = 2ℕ is a

monochromatic subset.
• Colour {𝑖, 𝑗} ∈ ℕ(2) red if max{𝑛 ∈ ℕ : 2𝑛 | (𝑖 + 𝑗)} is even and blue otherwise.

𝑀 = {4𝑛 : 𝑛 ∈ ℕ} is a monochromatic subset.
• Colour {𝑖, 𝑗} ∈ ℕ(2) red if 𝑖 + 𝑗 has an even number of distinct prime divisors and

blue otherwise. No explicit monochromatic subset is known.

Theorem 1.4 (Ramsey's Theorem for Pairs)  Let ℕ(2) are 2-coloured by 𝑐 : ℕ(2) →
{1, 2}. Then there exists an infinite monochromatic subset 𝑀 .

Proof .
• Let 𝑎1 ∈ 𝐴0 ≔ ℕ. There exists an infinite set 𝐴1 ⊆ 𝐴0 such that 𝑐(𝑎1, 𝑖) = 𝑐1 for

all 𝑖 ∈ 𝐴1.
• Let 𝑎2 ∈ 𝐴1. There exists infinite 𝐴2 ⊆ 𝐴1 such that 𝑐(𝑎2, 𝑖) = 𝑐2) for all 𝑖 ∈ 𝐴2.
• Repeating this inductively gives a sequence 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑘 < ⋯ and 𝐴1 ⊇ 𝐴2 ⊇

⋯ such that 𝑐(𝑎𝑖, 𝑗) = 𝑐𝑖 for all 𝑗 ∈ 𝐴𝑖.
• One colour appears infinitely many times: 𝑐𝑖1

= 𝑐𝑖2
= ⋯ = 𝑐𝑖𝑘

= ⋯ = 𝑐.
• 𝑀 = {𝑎𝑖1

, 𝑎𝑖2
, …} is a monochromatic set.

□

Remark 1.5
• The same proof works for any 𝑘 ∈ ℕ colours.
• The proof is called a “2-pass proof”.
• An alternative proof for 𝑘 colours is split the 𝑘 colours 1, …, 𝑘 into 2 colours: 1 and

“2 or … or 𝑘”, and use induction.

Note 1.6  An infinite monochromatic set is very different from an arbitrarily large
finite monochromatic set.

Example 1.7  Let 𝐴1 = {1, 2}, 𝐴2 = {3, 4, 5}, etc. Let {𝑖, 𝑗} be red if 𝑖, 𝑗 ∈ 𝐴𝑘 for
some 𝑘. There exist arbitrarily large monochromatic red sets but no infinite
monochromatic red sets.

Example 1.8  Colour {𝑖 < 𝑗 < 𝑘} red iff 𝑖 | (𝑗 + 𝑘). A monochromatic subset 𝑀 =
{2𝑛 : 𝑛 ∈ ℕ0} is a monochromatic set.

Theorem 1.9 (Ramsey’s Theorem for 𝑟-sets)  Let ℕ(𝑟) be finitely coloured. Then
there exists a monochromatic infinite set.
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Proof .
• 𝑟 = 1: use pigeonhole principle.
• 𝑟 = 2: Ramsey’s theorem for pairs.
• For general 𝑟, use induction.
• Let 𝑐 : ℕ𝑟 → [𝑘] be a 𝑘-colouring. Let 𝑎1 ∈ ℕ, and consider all 𝑟 − 1 sets of ℕ \

{𝑎1}, induce colouring 𝑐′ : (ℕ \ {𝑎1})(𝑟−1) → [𝑘] via 𝑐′(𝐹) = 𝑐(𝐹 ∪ {𝑎1}).
• By inductive hypothesis, there exists 𝐴1 ⊆ ℕ \ {𝑎1} such that 𝑐′ is constant on it

(taking value 𝑐1).
• Now pick 𝑎2 ∈ 𝐴1 and induce a colouring 𝑐′ : (𝐴1 \ {𝑎2})(𝑟−1) → [𝑘] such that

𝑐′(𝐹) = 𝑐(𝐹 ∪ {𝑎2}). By inductive hypothesis, there exists 𝐴2 ⊆ 𝐴1 \ {𝑎2}} such
that 𝑐′ is constant on it (taking value 𝑐2).

• Repeating this gives 𝑎1, 𝑎2, … and 𝐴1, 𝐴2, … such that 𝐴𝑖+1 ⊆ 𝐴𝑖 \ {𝑎𝑖+1} and
𝑐(𝐹 ∪ {𝑎𝑖}) = 𝑐𝑖 for all 𝐹 ⊆ 𝐴𝑖+1, for |𝐹 | = 𝑟 − 1.

• One colour must appear infinitely many times: 𝑐𝑖1
= 𝑐𝑖2

= ⋯ = 𝑐.
• 𝑀 = {𝑎𝑖1

, 𝑎𝑖2
, …} is a monochromatic set.

□

1.2. Applications of Ramsey’s theorem
Example 1.10  In a totally ordered set, any sequence has monotonic subsequence.

Proof .
• Let (𝑥𝑛) be a sequence, colour {𝑖, 𝑗} red if 𝑥𝑖 ≤ 𝑥𝑗 and blue otherwise.
• By Ramsey’s theorem for pairs, 𝑀 = {𝑖1 < 𝑖2 < ⋯} is monochromatic. If 𝑀  is red,

then the subsequence 𝑥𝑖1
, 𝑥𝑖2

, … is increasing, and is strictly decreasing otherwise.
• We can insist that (𝑥𝑖𝑗

) is either concave or convex: 2-colour ℕ(3) by colouring
{𝑗 < 𝑘 < ℓ} red if (𝑖, 𝑥𝑖𝑗

), (𝑗, 𝑥𝑖𝑘
), (𝑘, 𝑥𝑖ℓ

) form a convex triple, and blue if they
form a concave triple. Then by Ramsey’s theorem for 𝑟-sets, there is an infinite
convex or concave subsequence.

□

Theorem 1.11 (Finite Ramsey)  Let 𝑟, 𝑚, 𝑘 ∈ ℕ. There exists 𝑛 ∈ ℕ such that
whenever [𝑛](𝑟) is 𝑘-coloured, we can find a monochromatic set of size (at least) 𝑚.

Proof .
• Assume not, i.e. ∀𝑛 ∈ ℕ, there exists colouring 𝑐𝑛 : [𝑛](𝑟) → [𝑘] with no

monochromatic 𝑚-sets.
• There are only finitely many (𝑘) ways to 𝑘-colour [𝑟](𝑟), so there are infinitely

many of colourings 𝑐𝑟, 𝑐𝑟+1, … that agree on [𝑟](𝑟): 𝑐𝑖 |[𝑟](𝑟) = 𝑑𝑟 for all 𝑖 in some
infinite set 𝐴1, where 𝑑𝑟 is a 𝑘-colouring of [𝑟](𝑟).

• Similarly, [𝑟 + 1](𝑟) has only finitely many possible 𝑘-colourings. So there exists
infinite 𝐴2 ⊆ 𝐴1 such that for all 𝑖 ∈ 𝐴2, 𝑐𝑖 |[𝑟+1](𝑟) = 𝑑𝑟+1, where 𝑑𝑟+1 is a 𝑘-
colouring of [𝑟 + 1](𝑟).

• Continuing this process inductively, we obtain 𝐴1 ⊇ 𝐴2 ⊇ ⋯ ⊇ 𝐴𝑛. There is no
monochromatic 𝑚-set for any 𝑑𝑛 : [𝑛](𝑟) → [𝑘] (because 𝑑𝑛 = 𝑐𝑖|[𝑛](𝑟) for some 𝑖).

• These 𝑑𝑛’s are nested: 𝑑ℓ|[𝑛](𝑟) = 𝑑𝑛 for ℓ > 𝑛.
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• Finally, we colour ℕ(𝑟) by the colouring 𝑐 : ℕ(𝑟) → [𝑘], 𝑐(𝐹) = 𝑑𝑛(𝐹) where 𝑛 =
max(𝐹) (or in fact 𝑛 ≥ max(𝐹), which is well-defined by above). So 𝑐 has no
monochromatic 𝑚-set (since 𝑀  was a monochromatic 𝑚-set, then taking ℓ =
max(𝑀), 𝑑ℓ has a monochromatic 𝑚-set), which contradicts Ramsey’s Theorem
for 𝑟-sets.

□

Remark 1.12
• This proof gives no bound on 𝑛 = 𝑛(𝑘, 𝑚), there are other proofs that give a

bound.
• It is a proof by compactness (essentially, we proved that {0, 1}ℕ with the product

topology, i.e. the topology derived from the metric 𝑑(𝑓, 𝑔) = 1
min{𝑛∈ℕ:𝑓(𝑛)≠𝑔(𝑛)} , is

sequentially compact).

Remark 1.13  Now consider a colouring 𝑐 : ℕ(2) → 𝑋 with 𝑋 potentially infinite.
This does not necessarily admit an infinite monochromatic set, as we could colour
each edge a different colour. Such a colouring would be injective. We can’t guarantee
either the colouring being constant or injective though, as 𝑐(𝑖𝑗) = 𝑖 satisfies neither.

Theorem 1.14 (Canonical Ramsey)  Let 𝑐 : ℕ(2) → 𝑋 be a colouring with 𝑋 an
arbitrary set. Then there exists an infinite set 𝑀 ⊆ ℕ such that:
1. 𝑐 is constant on 𝑀 (2), or
2. 𝑐 is injective on 𝑀 (2), or
3. 𝑐(𝑖𝑗) = 𝑐(𝑘𝑙) iff 𝑖 = 𝑘 for all 𝑖 < 𝑗 and 𝑘 < 𝑙, 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑀 , or
4. 𝑐(𝑖𝑗) = 𝑐(𝑘𝑙) iff 𝑗 = 𝑙 for all 𝑖 < 𝑗 and 𝑘 < 𝑙, 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑀 .

Proof (Hints) .
• First consider the 2-colouring 𝑐1 of ℕ(4) where 𝑖𝑗𝑘𝑙 is coloured same if 𝑐(𝑖𝑗) = 𝑐(𝑘𝑙)

and diff otherwise. Show that an infinite monochromatic set 𝑀1 ⊆ ℕ (why does
this exist?) coloured same leads to case 1.

• Assume 𝑀1 is coloured diff, consider the 2-colouring of 𝑀 (4)
1 , which colours 𝑖𝑗𝑘𝑙

same if 𝑐(𝑖𝑙) = 𝑐(𝑗𝑘) and diff otherwise. Show an infinite monochromatic 𝑀2 ⊆
𝑀1 (why does this exist?) must be coloured diff by contradiction.

• Consider the 2-colouring of 𝑀 (4)
2  where 𝑖𝑗𝑘𝑙 is coloured same if 𝑐(𝑖𝑘) = 𝑐(𝑗𝑙) and

diff otherwise. Show an infinite monochromatic set 𝑀3 ⊆ 𝑀2 (why does this
exist?) must be coloured diff by contradiction.

• 2-colour 𝑀 (3)
3  by: 𝑖𝑗𝑘 is coloured same if 𝑐(𝑖𝑗) = 𝑐(𝑗𝑘) and diff otherwise. Show

an infinite monochromatic set 𝑀4 ⊆ 𝑀3 (why does this exist) must be coloured
diff by contradiction.

• 2-colour 𝑀 (3)
4  by the other two similar colourings to above, obtaining

monochromatic 𝑀6 ⊆ 𝑀5 ⊆ 𝑀4.
• Consider 4 combinations of these colourings on 𝑀6, show 3 lead to one of the cases

in the theorem, and the other leads to contradiction.

□

Proof .
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• 2-colour ℕ(4) by: 𝑖𝑗𝑘𝑙 is red if 𝑐(𝑖𝑗) = 𝑐(𝑘𝑙) and blue otherwise. By Ramsey’s
Theorem for 4-sets, there is an infinite monochromatic set 𝑀1 ⊆ ℕ for this
colouring.

• If 𝑀1 is red, then 𝑐 is constant on 𝑀 (2)
1 : for all pairs 𝑖𝑗, 𝑖′𝑗′ ∈ 𝑀 (2)

1 , pick 𝑚 < 𝑛
with 𝑗, 𝑗′ < 𝑚, then 𝑐(𝑖𝑗) = 𝑐(𝑚𝑛) = 𝑐(𝑖′𝑗′).

• So assume 𝑀1 is blue.
• Colour 𝑀 (4)

1  by giving 𝑖𝑗𝑘𝑙 colour green if 𝑐(𝑖𝑙) = 𝑐(𝑗𝑘) and purple otherwise. By
Ramsey’s theorem for 4-sets, there exists an infinite monochromatic 𝑀2 ⊆ 𝑀1 for
this colouring.

• Assume 𝑀2 is coloured green: if 𝑖 < 𝑗 < 𝑘 < 𝑙 < 𝑚 < 𝑛 ∈ 𝑀2, then 𝑐(𝑗𝑘) = 𝑐(𝑖𝑛) =
𝑐(𝑙𝑚) (consider 𝑖𝑗𝑘𝑛 and 𝑖𝑙𝑚𝑛): contradiction, since 𝑀1 is blue.

• Hence 𝑀2 is purple, i.e. for 𝑖𝑗𝑘𝑙 ∈ 𝑀 (4)
2 , 𝑐(𝑖𝑙) ≠ 𝑐(𝑗𝑘).

• Colour 𝑀2 by: 𝑖𝑗𝑘𝑙 is orange if 𝑐(𝑖𝑘) = 𝑐(𝑗𝑙), and pink otherwise.
• By Ramsey’s theorem for 4-sets, there exists infinite monochromatic 𝑀3 ⊆ 𝑀2 for

this colouring.
• Assume 𝑀3 is orange, then for 𝑖 < 𝑗 < 𝑘 < 𝑙 < 𝑚 < 𝑛 ∈ 𝑀3, we have 𝑐(𝑗𝑚) =

𝑐(𝑙𝑛) (consider 𝑗𝑙𝑚𝑛) and 𝑐(𝑗𝑚) = 𝑐(𝑖𝑘) (consider 𝑖𝑗𝑘𝑚): contradiction, since
𝑀3 ⊆ 𝑀1.

• Hence 𝑀3 is pink, i.e. for 𝑖𝑗𝑘𝑙, 𝑐(𝑖𝑘) ≠ 𝑐(𝑗𝑙).
• Colour 𝑀 (3)

3  by: 𝑖𝑗𝑘 is yellow if 𝑐(𝑖𝑗) = 𝑐(𝑗𝑘) and grey otherwise. By Ramsey’s
theorem for 3-sets, there exists infinite monochromatic 𝑀4 ⊆ 𝑀3 for this
colouring.

• Assume 𝑀4 is yellow: then (considering 𝑖𝑗𝑘𝑙 ∈ 𝑀 (4)
4 ) 𝑐(𝑖𝑗) = 𝑐(𝑗𝑘) = 𝑐(𝑘𝑙):

contradiction, since 𝑀4 ⊆ 𝑀1.
• So for any 𝑖𝑗𝑘 ∈ 𝑀 (3)

4 , 𝑐(𝑖𝑗) ≠ 𝑐(𝑗𝑘).
• Finally, colour 𝑀 (3)

4  by: 𝑖𝑗𝑘 is gold if 𝑐(𝑖𝑗) = 𝑐(𝑖𝑘) and 𝑐(𝑖𝑘) = 𝑐(𝑗𝑘), silver if
𝑐(𝑖𝑗) = 𝑐(𝑖𝑘) and 𝑐(𝑖𝑘) ≠ 𝑐(𝑗𝑘), bronze if 𝑐(𝑖𝑗) ≠ 𝑐(𝑖𝑘) and 𝑐(𝑖𝑘) = 𝑐(𝑗𝑘), and
platinum if 𝑐(𝑖𝑗) ≠ 𝑐(𝑖𝑘) and 𝑐(𝑖𝑘) ≠ 𝑐(𝑗𝑘).

• By Ramsey’s theorem for 3-sets, there exists monochromatic 𝑀5 ⊆ 𝑀4. 𝑀5 cannot
be gold, since then 𝑐(𝑖𝑗) = 𝑐(𝑗𝑘): contradiction, since 𝑀5 ⊆ 𝑀4. If silver, then we
have case 3 in the theorem. If bronze, then we have case 4 in the theorem. If
platinum, then we have case 2 in the theorem.

□

Remark 1.15
• A more general result of the above theorem states: let ℕ(𝑟) be arbitrarily coloured.

Then we can find an infinite 𝑀  and 𝐼 ⊆ [𝑟] such that for all 𝑥1…𝑥𝑟 ∈ 𝑀 (𝑟) and
𝑦1…𝑦𝑟 ∈ 𝑀 (𝑟), 𝑐(𝑥1…𝑥𝑟) = 𝑐(𝑦1…𝑦𝑟) iff 𝑥𝑖 = 𝑦𝑖 for all 𝑖 ∈ 𝐼 .

• In canonical Ramsey, 𝐼 = ∅ is case 1, 𝐼 = {1, 2} is case 2, 𝐼 = {1} is case 3 and
𝐼 = {2} is case 4.

• These 2𝑟 colourings are called the canonical colourings of ℕ(𝑟).

Exercise 1.16  Prove the general statement.
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1.3. Van der Waerden’s theorem
Remark 1.17  We want to show that for any 2-colouring of ℕ, we can find a
monochromatic arithmetic progression of length 𝑚 for any 𝑚 ∈ ℕ. By compactness,
this is equivalent to showing that for all 𝑚 ∈ ℕ, there exists 𝑛 ∈ ℕ such that for any
2-colouring of [𝑛], there exists a monochromatic arithmetic progression of length 𝑚.
(If not, then for each 𝑛 ∈ ℕ, there is a colouring 𝑐𝑛 : [𝑛] → {1, 2} with no
monochromatic arithmetic progression of length 𝑚. Infinitely many of these
colourings agree on [1], infinitely many of those agreeing in [1] agree on [2], and so on
- we obtain a 2-colouring of ℕ with no monochromatic arithmetic progression of
length 𝑚).

We will prove a slightly stronger result: whenever ℕ is 𝑘-coloured, there exists a
length 𝑚 monochromatic arithmetic progression, i.e. for any 𝑘, 𝑚 ∈ ℕ, there exists
𝑛 ∈ ℕ such that whenever [𝑛] is 𝑘-coloured, we have a length 𝑚 monochromatic
progression.

Definition 1.18  Let 𝐴1, …, 𝐴𝑘 be length 𝑚 arithmetic progressions: 𝐴𝑖 = {𝑎𝑖, 𝑎𝑖 +
𝑑𝑖, …, 𝑎𝑖 + (𝑚 − 1)𝑑𝑖}. 𝐴1, …, 𝐴𝑘 are focussed at 𝑓 if 𝑎𝑖 + 𝑚𝑑𝑖 = 𝑓 for all 𝑖.

Example 1.19  {4, 8} and {6, 9} are focussed at 12.

Definition 1.20  If length 𝑚 arithmetic progressions 𝐴1, …, 𝐴𝑘 are focused at 𝑓 and
are monochromatic, each with a different colour (for a given colouring), they are
called colour-focussed at 𝑓 .

Remark 1.21  We use the idea that if 𝐴1, …, 𝐴𝑘 are colour-focussed at 𝑓 (for a 𝑘-
colouring) and of length 𝑚 − 1, then some 𝐴𝑖 ∪ {𝑓} is a length 𝑚 monochromatic
arithmetic progression.

Theorem 1.22  Whenever ℕ is 𝑘-coloured, there exists a monochromatic arithmetic
progression of length 3, i.e. for all 𝑘 ∈ ℕ, there exists 𝑛 ∈ ℕ such that any 𝑘-colouring
of [𝑛] admits a length 3 monochromatic progression.

Proof (Hints) .
• Prove by induction the claim: ∀𝑟 ≤ 𝑘, ∃𝑛 ∈ ℕ such that for any 𝑘-colouring of [𝑛],

there exists a monochromatic arithmetic progression of length 3, or 𝑟 colour-
focussed arithmetic progressions of length 2.
‣ 𝑟 = 1 case is straightforward.
‣ Let claim be true for 𝑟 − 1 with witness 𝑛, let 𝑁 = 2𝑛(𝑘2𝑛 + 1).
‣ Partition 𝑁  into blocks of equal size, show that two of these blocks must have

the same colouring.
‣ Using the inductive hypothesis, merge the 𝑟 − 1 colour-focussed arithmetic

progressions from these two blocks into a new set of 𝑟 − 1 colour-focussed
arithmetic progressions.

‣ Find another length 2 monochromatic arithmetic progression, reason that this is
of different colour.

• Reason that this claim implies the result.
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□

Proof .
• We claim that for all 𝑟 ≤ 𝑘, there exists an 𝑛 ∈ ℕ such that if [𝑛] is 𝑘-coloured,

then either:
‣ There exists a monochromatic arithmetic progression of length 3.
‣ There exist 𝑟 colour-focussed arithmetic progressions of length 2.

• This claim implies the result by the above remark.
• We prove the claim by induction on 𝑟:

‣ 𝑟 = 1: take 𝑛 = 𝑘 + 1, then by pigeonhole, some two elements of [𝑛] have the
same colour, so form a length two arithmetic progression.

‣ Assume true for 𝑟 − 1 with witness 𝑛. We claim that 𝑁 = 2𝑛(𝑘2𝑛 + 1) works for
𝑟.

‣ Let 𝑐 : [2𝑛(𝑘2𝑛 + 1)] → [𝑘] be a colouring. We partition [𝑁] into 𝑘2𝑛 + 1 blocks
of size 2𝑛: 𝐵𝑖 = {2𝑛(𝑖 − 1) + 1, …, 2𝑛𝑖} for 𝑖 = 1, …, 𝑘2𝑛 + 1.

‣ Assume there is no length 3 monochromatic progression for 𝑐. By inductive
hypothesis, each block 𝐵𝑖 has 𝑟 − 1 colour-focussed arithmetic progressions of
length 2.

‣ Since |𝐵𝑖| = 2𝑛, each block also contains their focus. For a set 𝑀  with |𝑀| = 2𝑛,
there are 𝑘2𝑛 ways to 𝑘-colour 𝑀 . So by pigeonhole, there are blocks 𝐵𝑠 and
𝐵𝑠+𝑡 that have the same colouring.

‣ Let {𝑎𝑖, 𝑎𝑖 + 𝑑𝑖} be the 𝑟 − 1 arithmetic progressions in 𝐵𝑠 colour-focussed at 𝑓 ,
then {𝑎𝑖 + 2𝑛𝑡, 𝑎𝑖 + 𝑑𝑖 + 2𝑛𝑡} is the corresponding set of arithmetic progressions
in 𝐵𝑠+𝑡, each colour-focussed at 𝑓 + 2𝑛𝑡.

‣ Now {𝑎𝑖, 𝑎𝑖 + 𝑑𝑖 + 2𝑛𝑡}, 𝑖 ∈ [𝑟 − 1], are 𝑟 − 1 arithmetic progresions colour-
focused at 𝑓 + 4𝑛𝑡. Also, {𝑓, 𝑓 + 2𝑛𝑡} is monochromatic of a different colour to
the 𝑟 − 1 colours used (since there is no length 3 monochromatic progression for
𝑐). Hence, there are 𝑟 arithmetic progressions of length 2 colour-focussed at 𝑓 +
4𝑛𝑡.

□

Remark 1.23  The idea of looking at all possible colourings of a set is called a
product argument.

Definition 1.24  The Van der Waerden number 𝑊(𝑘, 𝑚) is the smallest 𝑛 ∈ ℕ
such that for any 𝑘-colouring of [𝑛], there exists a monochromatic arithmetic
progression in [𝑛] of length 𝑚.

Remark 1.25  The above theorem gives a tower-type upper bound 𝑊(𝑘, 3) ≤
𝑘𝑘(⋰)𝑘

4𝑘

.

Theorem 1.26 (Van der Waerden's Theorem)  For all 𝑘, 𝑚 ∈ ℕ, there exists 𝑛 ∈ ℕ
such that for any 𝑘-colouring of [𝑛], there is a length 𝑚 monochromatic arithmetic
progression.

Proof (Hints) .
• Use induction on 𝑚.
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• Given induction hypothesis on 𝑚 − 1, prove the claim: for all 𝑟 ≤ 𝑘, there exists
𝑛 ∈ ℕ such that for any 𝑘-colouring of [𝑛], we have either a monochromatic length
𝑚 arithmetic progression, or 𝑟 colour-focussed arithmetic progressions of length
𝑚 − 1. Reason that this claim implies the result.

• Use induction on 𝑟. Give an explicit 𝑛 for 𝑟 = 1.
• Let 𝑛 be the witness for 𝑟 − 1, let 𝑁 = 𝑊(𝑘2𝑛, 𝑚 − 1) ⋅ 2𝑛. Assume a 𝑘-colouring

of [𝑁], 𝑐 : [𝑁] → [𝑘], has no arithmetic progressions of length 𝑚.
• Partition [𝑁] into the obvious choice of 𝑊(𝑘2𝑛, 𝑚 − 1) blocks 𝐵𝑖, each of length

2𝑛.
• Colour the indices 1 ≤ 𝑖 ≤ 𝑊(𝑘2𝑛, 𝑚 − 1) of the blocks by

𝑐′(𝑖) = (𝑐(2𝑛(𝑖 − 1) + 1), 𝑐(2𝑛(𝑖 − 1) + 2)…., 𝑐(2𝑛𝑖))
• Reason that we can find monochromatic arithmetic progression 𝑠, 𝑠 + 𝑡, …, 𝑠 +

(𝑚 − 2)𝑡 of length 𝑚 − 1 (w.r.t 𝑐′), and that this corresponds to sequence of
blocks 𝐵𝑠, 𝐵𝑠+𝑡, …, 𝐵𝑠+(𝑚−2)𝑡, each identically coloured.

• Reason that 𝐵𝑠 contains 𝑟 − 1 colour-focussed length 𝑚 − 1 arithmetic
progressions 𝐴𝑖 together with their focus 𝑓 .

• Let 𝐴′
𝑖 be the same arithmetic progression but with common difference 2𝑛𝑡 larger

than that of 𝐴𝑖. Show the 𝐴′
𝑖 are colour-focussed at some focus in terms of 𝑓 .

• Find another length 𝑚 − 1 arithmetic progression, show this must be
monochromatic and of different colour to all 𝐴′

𝑖. Show it also has same focus as all
𝐴′

𝑖.

□

Proof .
• By induction on 𝑚. 𝑚 = 1 is trivial, 𝑚 = 2 is by pigeonhole principle. 𝑚 = 3 is the

statement of the previous theorem.
• Assume true for 𝑚 − 1 and all 𝑘 ∈ ℕ.
• For fixed 𝑘, we prove the claim: for all 𝑟 ≤ 𝑘, there exists 𝑛 ∈ ℕ such that for any

𝑘-colouring of [𝑛], either:
‣ There is a monochromatic arithmetic progression of length 𝑚, or
‣ There are 𝑟 colour-focussed arithmetic progressions of length 𝑚 − 1.

• We will then be done (by considering the focus).
• To prove the claim, we use induction on 𝑟.
• 𝑟 = 1 is the claim of the first inductive hypothesis: take 𝑛 = 𝑊(𝑘, 𝑚 − 1).
• Assume the claim holds for 𝑟 − 1 with witness 𝑛, and assume there is no

monochromatic arithmetic progression of length 𝑚. We will show that 𝑁 =
𝑊(𝑘2𝑛, 𝑚 − 1)2𝑛 is sufficient for 𝑟.

• Partition [𝑁] into 𝑊(𝑘2𝑛, 𝑚 − 1) blocks of length 2𝑛: 𝐵𝑖 = {2𝑛(𝑖 − 1) + 1, …, 2𝑛𝑖}
for 𝑖 = 1, …, 𝑊(𝑘2𝑛, 𝑚 − 1).

• Each block has 𝑘2𝑛 possible colourings. Colour the blocks as

𝑐′(𝑖) = (𝑐(2𝑛(𝑖 − 1) + 1), 𝑐(2𝑛(𝑖 − 1) + 2)…., 𝑐(2𝑛𝑖))
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By definition of 𝑊 , there exists a monochromatic arithmetic progression of length
𝑚 − 1 (w.r.t. to 𝑐′): {𝛼, 𝛼 + 𝑡, …, 𝛼 + (𝑚 − 2)𝑡}. The repsective blocks
𝐵𝛼, …, 𝐵𝛼+(𝑚−2)𝑡 are identically coloured.

• 𝐵𝛼 has length 2𝑛, so by induction 𝐵𝛼 contains 𝑟 − 1 colour-focussed arithmetic
progressions of length 𝑚 − 1, together with their focus (as length of block is 2𝑛).

• Let 𝐴1, …, 𝐴𝑟−1, 𝐴𝑖 = {𝑎𝑖, 𝑎𝑖 + 𝑑𝑖, …, 𝑎𝑖 + (𝑚 − 2)𝑑𝑖}, be colour-focussed at 𝑓 .
• Let 𝐴′

𝑖 = {𝑎𝑖, 𝑎𝑖 + (𝑑𝑖 + 2𝑛𝑡), …, 𝑎𝑖 + (𝑚 − 2)(𝑑𝑖 + 2𝑛𝑡)} for 𝑖 = 1, …, 𝑟 − 1. The 𝐴′
𝑖

are monochromatic as the blocks are identically coloured and the 𝐴𝑖 are
monochromatic. Also, 𝐴𝑖 and 𝐴′

𝑖 have the same colouring, and the 𝐴𝑖 are colour-
focussed, hence the 𝐴′

𝑖 have pairwise distinct colours.
• The 𝐴𝑖 are focussed at 𝑓 and the colour of 𝑓 of different than the colour of all 𝐴𝑖.

𝑓 = 𝑎𝑖 + (𝑚 − 1)𝑑𝑖 for all 𝑖.
• Now {𝑓, 𝑓 + 2𝑛𝑡, 𝑓 + 4𝑛𝑡, …, 𝑓 + 2𝑛(𝑚 − 2)𝑡} is an arithmetic progression of length

𝑚 − 1, is monochromatic and of a different colour to all the 𝐴′
𝑖.

• It is enough to show that 𝑎𝑖 + (𝑚 − 1)(𝑑𝑖 + 2𝑛𝑡) = 𝑓 + 2𝑛(𝑚 − 1)𝑡 for all 𝑖, but
this is equivalent to 𝑎𝑖 + (𝑚 − 1)𝑑𝑖 = 𝑓 , which is true as all 𝐴𝑖 were focussed at 𝑓 .

□

Corollary 1.27  For any 𝑘-colouring of ℕ, there exists a colour class containing
arbitrarily long arithmetic progressions.

Remark 1.28  We can’t guarantee infinitely long arithmetic progressions, e.g.
• 2-colour ℕ by 1 red, 2, 3 blue, 4, 5, 6 red, etc.
• The set of infinite arithmetic progressions in ℕ is countable (since described by

two integers: the start term and step). Enumerate them by (𝐴𝑘)𝑘∈ℕ. Pick 𝑥1 <
𝑦1 ∈ 𝐴1, colour 𝑥1 red and 𝑦1 blue. Then pick 𝑥2, 𝑦2 ∈ 𝐴2 with 𝑦1 < 𝑥2 < 𝑦2,
colour 𝑥2 red, 𝑦2 blue. Continue inductively.

Theorem 1.29 (Strengthened Van der Waerden)  Let 𝑚, 𝑘 ∈ ℕ. There exists 𝑛 ∈ ℕ
such that for any 𝑘-colouring of [𝑛], there exists a monochromatic length 𝑚
arithmetic progression whose common difference is the same colour (i.e. there exists
𝑎, 𝑎 + 𝑑, …, 𝑎 + (𝑚 − 1), 𝑑 all of the same colour).

Proof (Hints) .
• Use induction on 𝑘.
• If 𝑛 is the witness for 𝑘 − 1 colours, show that 𝑁 = 𝑊(𝑘, 𝑛(𝑚 − 1) + 1) is a

witness for 𝑘 colours, by considering 𝑛 different multiples of the step of a suitable
arithmetic progression.

□

Proof .
• Fix 𝑚 ∈ ℕ. We use induction on 𝑘. 𝑘 = 1 case is trivial.
• Let 𝑛 be witness for 𝑘 − 1 colours.
• We will show that 𝑁 = 𝑊(𝑘, 𝑛(𝑚 − 1) + 1) is suitable for 𝑘 colours.
• If [𝑁] is 𝑘-coloured, there exists a monochromatic (say red) arithemtic progression

of length 𝑛(𝑚 − 1) + 1: 𝑎, 𝑎 + 𝑑, …, 𝑎 + 𝑛(𝑚 − 1)𝑑.
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• If 𝑟𝑑 is red for any 1 ≤ 𝑟 ≤ 𝑛, then we are done (consider 𝑎, 𝑎 + 𝑟𝑑, …, 𝑎 + (𝑚 −
1)𝑟𝑑).

• If not, then {𝑑, 2𝑑, …, 𝑛𝑑} is 𝑘 − 1-coloured, which induces a 𝑘 − 1 colouring on [𝑛].
Therefore, there exists a monochromatic arithmetic progression 𝑏, 𝑏 + 𝑠, …, 𝑏 +
(𝑚 − 1)𝑠 (with 𝑠 the same colour) by induction, which translates to 𝑑𝑏, 𝑑𝑏 +
𝑑𝑠, …, 𝑑𝑏 + 𝑑(𝑚 − 1)𝑠 and 𝑑𝑠 being monochromatic.

□

Remark 1.30  The case 𝑚 = 2 of strengthened Van der Waerden is Schur’s
theorem: for any 𝑘-colouring of ℕ, there are monochromatic 𝑥, 𝑦, 𝑧 such that 𝑥 + 𝑦 =
𝑧. This can be proved directly from Ramsey’s theorem for pairs: let 𝑐 : ℕ → [𝑘] be a 𝑘
-colouring, then induce 𝑐′ : ℕ(2) → [𝑘] by 𝑐′(𝑖𝑗) = 𝑐(𝑗 − 𝑖). By Ramsey, there exist 𝑖 <
𝑗 < 𝑘 such that 𝑐′(𝑖𝑗) = 𝑐′(𝑖𝑘) = 𝑐′(𝑗𝑘), i.e. 𝑐(𝑗 − 𝑖) = 𝑐(𝑘 − 𝑖) = 𝑐(𝑘 − 𝑗). So take 𝑥 =
𝑗 − 𝑖, 𝑧 = 𝑘 − 𝑖, 𝑦 = 𝑘 − 𝑗.

1.4. The Hales-Jewett theorem
Definition 1.31  Let 𝑋 be finite set. We say 𝑋𝑛 consists of words of length 𝑛 on
alphabet 𝑋.

Definition 1.32  Let 𝑋 be finite. A (combinatorial) line in 𝑋𝑛 is a set 𝐿 ⊆ 𝑋𝑛 of
the form

𝐿 = {(𝑥1, …, 𝑥𝑛) ∈ 𝑋𝑛 : ∀𝑖 ∉ 𝐼, 𝑥𝑖 = 𝑎𝑖 and ∀𝑖, 𝑗 ∈ 𝐼, 𝑥𝑖 = 𝑥𝑗}

for some non-empty set 𝐼 ⊆ [𝑛] and 𝑎𝑖 ∈ 𝑋 (for each 𝑖 ∉ 𝐼). 𝐼 is the set of active
coordinates for 𝐿.

Note that a combinatorial line is invariant under permutations of 𝑋.

Example 1.33  Let 𝑋 = [3]. Some lines in 𝑋2 are:
• 𝐼 = {1}: {(1, 1), (2, 1), (3, 1)} (with 𝑎2 = 1), {(1, 2), (2, 2), (3, 2)} (with 𝑎2 = 2),

{(1, 3), (2, 3), (3, 3)} (with 𝑎2 = 3).
• 𝐼 = {2}: {(1, 1), (1, 2), (1, 3)} (with 𝑎1 = 1), {(2, 1), (2, 2), (2, 3)} (with 𝑎1 = 2),

{(3, 1), (3, 2), (3, 3)} (with 𝑎1 = 3).
• 𝐼 = {1, 2}: {(1, 1), (2, 2), (3, 3)}.

Note that {(1, 3), (2, 2), (3, 1)} is not a combinatorial line.

Example 1.34  Some sets of lines in [3]3 are:
• 𝐼 = {1}: {(1, 2, 3), (2, 2, 3), (3, 2, 3)} (with 𝑎2 = 2, 𝑎3 = 3).
• 𝐼 = {1, 3}: {(1, 3, 1), (2, 3, 2), (3, 3, 3)} (with 𝑎2 = 3).

Definition 1.35  In a line 𝐿, write 𝐿− and 𝐿+ for the smallest and largest points in
𝐿 (with respect to the ordering on [𝑚]𝑛 where 𝑥 ≤ 𝑦 if 𝑥𝑖 ≤ 𝑦𝑖 for all 𝑖).

Definition 1.36  Lines 𝐿1, …, 𝐿𝑘 are focussed at 𝑓 if 𝐿+
𝑖 = 𝑓 for all 𝑖 ∈ [𝑘]. They

are colour-focussed if they are focussed and 𝐿𝑖 \ {𝐿+
𝑖 } is monochromatic for all 𝑖 ∈

[𝑘], with each 𝐿𝑖 \ {𝐿+
𝑖 } a different colour.
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Theorem 1.37 (Hales-Jewett)  Let 𝑚, 𝑘 ∈ ℕ (we use alphabet 𝑋 = [𝑚]), then there
exists 𝑛 ∈ ℕ such that for any 𝑘-colouring of [𝑚]𝑛, there exists a monochromatic
combinatorial line.

Notation 1.38  Denote the smallest such 𝑛 by HJ(𝑚, 𝑘).

Proof (Hints) .
• Induction on 𝑚. Prove by induction the claim that for all 1 ≤ 𝑟 ≤ 𝑘, there exists

𝑛 ∈ ℕ such that for any 𝑘-colouring of [𝑚]𝑛, we have either a monochromatic line,
or 𝑟 colour-focussed lines (reason that this claim implies the result).

• State why claim holds for 𝑟 = 1.
• Let 𝑛 be witness for 𝑟 − 1, 𝑛′ = HJ(𝑚 − 1, 𝑘𝑚𝑛). Want to show that 𝑛 + 𝑛′ is

witness for 𝑟.
• Write [𝑚]𝑛+𝑛′ = [𝑚]𝑛 × [𝑚]𝑛′ .
• For a colouring 𝑐 : [𝑚]𝑛+𝑛′ → [𝑘], induce a suitable colouring 𝑐′ : [𝑚]𝑛′ → [𝑘]𝑚𝑛

and consider what the definition of 𝑛′ implies. Use this to induce a colouring 𝑐″ :
[𝑚]𝑛 → [𝑘].

• Using the inductive hypothesis and the previous point, construct 𝑟 − 1 lines in
[𝑚]𝑛+𝑛′ which are colour-focussed. Find another line in [𝑚]𝑛+𝑛′ (which should
have first 𝑛 coordinates constant) of different colour which has the same focus
point.

□

Proof .  By induction on 𝑚. The case 𝑚 = 1 is trivial as |[𝑚]𝑛| = 1. Assume that
HJ(𝑚 − 1, 𝑘′) exists for all 𝑘′ ∈ ℕ. We claim that for all 1 ≤ 𝑟 ≤ 𝑘, there exists 𝑛 ∈ ℕ
such that for any 𝑘-colouring of [𝑚]𝑛, we have either:
• a monochromatic line, or
• 𝑟 colour-focussed lines.

We can then take 𝑟 = 𝑘 and consider the focus.

We prove the claim by induction on 𝑟. For 𝑟 = 1, 𝑛 = HJ(𝑚 − 1, 𝑘) suffices. Let 𝑛 be
a witness for 𝑟 − 1. Let 𝑛′ = HJ(𝑚 − 1, 𝑘𝑚𝑛). We will show 𝑁 = 𝑛 + 𝑛′ is a witness
for 𝑟. Let 𝑐 : [𝑚]𝑁 → [𝑘] be a 𝑘-colouring with no monochromatic lines. Writing
[𝑚]𝑁 = [𝑚]𝑛 × [𝑚]𝑛′ , colour [𝑚]𝑛′ by 𝑐′ : [𝑚]𝑛′ → [𝑘]𝑚𝑛 , 𝑐′(𝑏) =
(𝑐(𝑎1, 𝑏), …, 𝑐(𝑎𝑚𝑛 , 𝑏)) (where [𝑚]𝑛 = {𝑎1, …, 𝑎𝑚𝑛}). By the inductive hypothesis,
there exists a line 𝐿 in [𝑚]𝑛′ with active coordinates 𝐼 such that

∀𝑎 ∈ [𝑚]𝑛, ∀𝑏, 𝑏′ ∈ 𝐿 \ {𝐿+}, 𝑐(𝑎, 𝑏) = 𝑐(𝑎, 𝑏′).

But now this induces a (well-defined) colouring 𝑐″ : [𝑚]𝑛 → [𝑘], 𝑐″(𝑎) = 𝑐(𝑎, 𝑏) for any
𝑏 ∈ 𝐿 \ {𝐿+}. By definition of 𝑛, there exist 𝑟 − 1 lines 𝐿1, …, 𝐿𝑟−1 colour-focussed
(w.r.t 𝑐″) at 𝑓 , with active coordinates 𝐼1, …, 𝐼𝑟−1.

Finally, consider the 𝑟 − 1 lines 𝐿′
𝑖, 1 ≤ 𝑖 ≤ 𝑟 − 1 in [𝑚]𝑁  that start at (𝐿−

𝑖 , 𝐿−) with
active coordinates 𝐼𝑖 ∪ 𝐼 , and the line 𝐿′ in [𝑚]𝑁  that starts at (𝑓, 𝐿−) with active
coordinates 𝐼 . By the construction of 𝑐″, the colour of each point in 𝐿′

𝑖 is determined
by the first 𝑛 coordinates which form a point lying in 𝐿𝑖. Hence, since the 𝐿𝑖 are
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colour-focussed, the 𝐿′
𝑖 are colour-focussed. As for 𝐿′, the first 𝑛 coordinates are

constant (always equal to 𝑓), and so again by the construction of 𝑐″, the colour of
each point in 𝐿′ is equal to 𝑐″(𝑓), which is a different colour to each colour of the 𝐿′

𝑖.
Hence all 𝐿′

1, …, 𝐿′
𝑟−1, 𝐿′ colour-focussed at (𝑓, 𝐿+), so we are done. □

Corollary 1.39  Hales-Jewett implies Van der Waerden’s theorem.

Proof (Hints) .  For a colouring 𝑐 : ℕ → [𝑘], consider the induced colouring
𝑐′(𝑥1, …, 𝑥𝑛) = 𝑐(𝑥1 + ⋯ + 𝑥𝑛) of [𝑚]𝑛. □

Proof .  Let 𝑐 be a 𝑘-colouring of ℕ. For sufficiently large 𝑛 (i.e. 𝑛 ≥ HJ(𝑚, 𝑘)), induce
a 𝑘-colouring 𝑐′ of [𝑚]𝑛 by 𝑐′(𝑥1, …, 𝑥𝑛) = 𝑐(𝑥1 + ⋯ + 𝑥𝑛). By Hales-Jewett, a
monochromatic (with respect to 𝑐′) combinatorial line 𝐿 exists. This gives a
monochromatic (with respect to 𝑐) length 𝑚 arithmetic progression in ℕ. The step is
equal to the number of active coordinates. The first term in the arithmetic
progression corresponds to the point in 𝐿 with all active coordinates equal to 1, the
last term corresponds to the point in 𝐿 with all active coordinates equal to 𝑚. □

Exercise 1.40  Show that the 𝑚-in-a-row noughts and crosses game cannot be a
draw in sufficiently high dimensions, and that the first player can always win.

Definition 1.41  A 𝑑-dimensional subspace (or 𝑑-point parameter set) 𝑆 ⊆
𝑋𝑛 is a set such that there exist pairwise disjoint 𝐼1, …, 𝐼𝑑 ⊆ [𝑛] and 𝑎𝑖 ∈ 𝑋 for all 𝑖 ∈
[𝑛] − (𝐼1 ∪ ⋯ ∪ 𝐼𝑑), such that

𝑆 = {𝑥 ∈ 𝑋𝑛 : 𝑥𝑖 = 𝑎𝑖 ∀𝑖 ∈ [𝑛] − (𝐼1 ∪ ⋯ ∪ 𝐼𝑑),

and 𝑥𝑖 = 𝑥𝑗 ∀𝑖, 𝑗 ∈ 𝐼𝑘 for some 𝑘 ∈ [𝑑]}.

Example 1.42  Two 2-dimensional subspaces in 𝑋3 are {(𝑥, 𝑦, 2) : 𝑥, 𝑦 ∈ 𝑋} (𝐼1 =
{1}, 𝐼2 = {2}) and {(𝑥, 𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝑋} (𝐼1 = {1, 2}, 𝐼2 = {3}).

Theorem 1.43 (Extended Hales-Jewett)  For all 𝑚, 𝑘, 𝑑 ∈ ℕ, there exists 𝑛 ∈ ℕ such
that for any colouring of [𝑚]𝑛, there exists a monochromatic 𝑑-dimensional subspace.

Proof (Hints) .  Use Hales-Jewett on 𝑚𝑑 and 𝑘. □

Proof .  We can view 𝑋𝑑𝑛′ as (𝑋𝑑)𝑛′
. A line in (𝑋𝑑)𝑛′

 (on alphabet 𝑌 = 𝑋𝑑)
corresponds to a 𝑑-dimensional subspace in 𝑋𝑑𝑛′ (on alphabet 𝑋). (Each inactive
coordinate in the line corresponds to 𝑑 adjacent inactive coordinates in the subspace,
and each active coordinate in the line corresponds to 𝑑 adjacent active coordinates in
the subspace). Hence, we can take 𝑛 = 𝑑 ⋅ HJ(𝑚𝑑, 𝑘). □

Definition 1.44  Let 𝑆 ⊆ ℕ𝑑 be finite. A homothetic copy of 𝑆 is a set of the form
𝑎 + 𝜆𝑆 where 𝑎 ∈ ℕ𝑑 and 𝜆 ∈ ℕ (𝑙 ≠ 0).

Theorem 1.45 (Gallai)  Let 𝑆 ⊆ ℕ𝑑 be finite. For every 𝑘-colouring of ℕ𝑑, there
exists a monochromatic homothetic copy of 𝑆.

Proof (Hints) .  Let 𝑆 = {𝑆1, …, 𝑆𝑚}, consider colouring 𝑐′ : [𝑚]𝑛 → [𝑘] (for suitable
𝑛) given by 𝑐′(𝑥1, …, 𝑥𝑛) = 𝑐(𝑆𝑥1

, …, 𝑆𝑥𝑚
). □
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Proof .  Let 𝑆 = {𝑆1, …, 𝑆𝑚}. Let 𝑐 : ℕ𝑑 → [𝑘] be a 𝑘-colouring. For 𝑛 large enough
(i.e. 𝑛 ≥ HJ(𝑚, 𝑘)), colour [𝑚]𝑛 by 𝑐′(𝑥1, …, 𝑥𝑛) = 𝑐(𝑆𝑥1

+ ⋯ + 𝑆𝑥𝑚
). By Hales-

Jewett, there exists a monochromatic line (with respect to 𝑐′) in [𝑚]𝑛 with active
coordinates 𝐼 . So 𝑐(∑𝑖∉𝐼 𝑆𝑖 + |𝐼|𝑆𝑗) is the same colour for all 𝑗 ∈ [𝑚]. So we are
done, as ∑𝑖∉𝐼 𝑆𝑖 + |𝐼|𝑆 is a homothetic copy of 𝑆. □

Remark 1.46
• Gallai’s theorem can also be proven with a focussing + product colouring

argument.
• For 𝑆 = {(𝑥, 𝑦) ∈ ℕ2 : 𝑥, 𝑦 ∈ {1, 2}}, Gallai’s theorem proves the existence of a

monochromatic square whereas extended Hales-Jewett only guarantees a
monochromatic rectangle.

2. Partition regular systems
2.1. Rado’s theorem
Strengthened Van der Waerden says that the system 𝑥1 + 𝑥2 = 𝑦1, 𝑥1 + 2𝑥2 =
𝑦2, …, 𝑥1 + 𝑚𝑥2 = 𝑦𝑚 has a monochromatic solution in 𝑥1, 𝑥2, 𝑦1, …, 𝑦𝑚. We want to
find when a general system of equations is partition regular.

Definition 2.1  Let 𝐴 ∈ ℚ𝑚×𝑛 be a 𝑚 × 𝑛 matrix. 𝐴 is partition regular (PR) if
for any finite colouring of ℕ, there exists a monochromatic 𝒙 ∈ ℕ𝑛 such that 𝐴𝒙 = 𝟎.

Example 2.2
• Schur’s theorem says that 𝑥 + 𝑦 = 𝑧 has a monochromatic solution for any finite

colouring of ℕ, and so that (1, 1, −1) is PR.
• Strengthened Van der Waerden states that

[
[
[
[
[1

1
⋮
1

1
2
⋮
𝑚

−1
0
⋮
0

0
−1
⋮
0

…
…
⋱
…

0
0
⋮

−1]
]
]
]
]

is PR.
• (𝑎, 𝑏, −(𝑎 + 𝑏)) is PR for any 𝑎, 𝑏 (a monochromatic solution is 𝑥 = 𝑦 = 𝑧).
• (2, −1) is not PR: colour ℕ by 𝑛 is red if max{𝑚 ∈ ℕ : 2𝑚 | 𝑛} is even, and blue

otherwise. Then if 2𝑥 = 𝑦, 𝑥 and 𝑦 must have different colours.

Definition 2.3  A rational matrix 𝐴 with columns 𝒄1, …, 𝒄𝑛 ∈ ℚ𝑚 has the column
property (CP) if there exists a partition 𝐵1 ⊔ ⋯ ⊔ 𝐵𝑟 of [𝑛] such that:
1. ∑𝑖∈𝐵1

𝒄𝑖 = 𝟎.
2. For all 𝑠 ∈ {2, …, 𝑟}, ∑𝑖∈𝐵𝑠

𝒄𝑖 ∈ span{𝒄𝑗 : 𝑗 ∈ 𝐵1 ⊔ ⋯ ⊔ 𝐵𝑠−1} (note we can take
the linear span over ℝ or over ℚ here, as if a rational vector is a real linear
combination of rational vectors, then it is also a rational linear combination of
them).

Example 2.4

13



• (1, 1, −1) has CP, with 𝐵1 = {1, 3}, 𝐵2 = {2}.
• The matrix

[
[
[
[
[1

1
⋮
1

1
2
⋮
𝑚

−1
0
⋮
0

0
−1
⋮
0

…
…
⋱
…

0
0
⋮

−1]
]
]
]
]

from Strengthened Van der Waerden has CP, with 𝐵1 = {1, 3, …, 𝑛} and 𝐵2 = {2}.
• (3, 4, −7) has CP with 𝐵1 = {1, 2, 3}.
• (𝜆, −1) has CP iff 𝜆 = 1.
• (3, 4, −6) doesn’t have CP.

Example 2.5

[
[
[1

2
4

−1
−2
−4

3
𝑎
𝑏]
]
]

has CP iff (𝑎, 𝑏) = (6, 12).

Remark 2.6  𝒙 = (𝑎1, …, 𝑎𝑛) is PR iff 𝜆𝒙 is PR (for any 𝜆 ∈ ℚ×), so we can assume
that each 𝑎𝑖 ∈ ℤ. Also, 𝒙 has CP iff there exists ∅ ≠ 𝐼 ⊆ [𝑛] such that ∑𝑖∈𝐼 𝑎𝑖 = 0.
We may also assume WLOG each 𝑎𝑖 ≠ 0. We will first show that if 𝒙 is PR, then it
has CP. Even in the 1 × 𝑛 matrix case of Rado’s theorem, neither direction is easy.

Notation 2.7  For 𝑝 prime and 𝑥 = (𝑎𝑘…𝑎0)𝑝 ∈ ℕ, write 𝑒(𝑥) for the rightmost non-
zero digit in the base-𝑝 expansion of 𝑥, i.e. 𝑒(𝑥) = 𝑎𝑡(𝑥), where 𝑡(𝑥) = min{𝑖 : 𝑎𝑖 ≠ 0}.

Proposition 2.8  Let 𝑎1, …, 𝑎𝑛 ∈ ℚ∗. If (𝑎1, …, 𝑎𝑛) is PR, then it has CP.

Proof (Hints) .  For 𝑝 large enough (determine later a bound for 𝑝), colour ℕ by giving
𝑥 colour 𝑒(𝑥), and consider min{𝑡(𝑥1), …, 𝑡(𝑥𝑛)}. □

Proof .  Let 𝑝 be a large prime (𝑝 > ∑𝑛
𝑖=1|𝑎𝑖|). Define a (𝑝 − 1)-colouring of ℕ giving 𝑥

colour 𝑒(𝑥). By assumption, there are 𝑥1, …, 𝑥𝑛 of the same colour 𝑑 such that
∑𝑛

𝑖=1 𝑎𝑖𝑥𝑖 = 0. Let 𝑡 = min{𝑡(𝑥1), …, 𝑡(𝑥𝑛)}, and let 𝐼 = {𝑖 ∈ [𝑛] : 𝑡(𝑥𝑖) = 𝑡} (note 𝐼 is
non-empty). So when summing ∑𝑛

𝑖=1 𝑎𝑖𝑥𝑖 = 0 and considering the last digit in the
base 𝑝 expansion, we have ∑𝑛

𝑖=1 𝑎𝑖𝑥𝑖 = 0 mod 𝑝𝑡+1 and so obtain ∑𝑖∈𝐼 𝑎𝑖𝑑 = 0 mod 𝑝,
so ∑𝑖∈𝐼 𝑎𝑖 = 0 (since 𝑝 is prime and was chosen large enough). □

Remark 2.9  There is no other known proof of this proposition.

Lemma 2.10  Let 𝜆 ∈ ℚ. Then (1, 𝜆, −1) is partition regular, i.e. for any finite
colouring of ℕ, there exists monochromatic (𝑥, 𝑦, 𝑧) ∈ ℕ3 such that 𝑥 + 𝜆𝑦 = 𝑧.

Proof (Hints) .
• Reason that we can assume 𝜆 > 0. Write 𝜆 = 𝑟/𝑠, 𝑟, 𝑠 ∈ ℕ.
• Use induction on number of colours 𝑘: given 𝑛 such that any (𝑘 − 1)-colouring of

[𝑛] admits monochromatic solution, show that 𝑁 = 𝑊(𝑘, 𝑛𝑟 + 1)𝑛𝑠 works for 𝑘
colours, by considering the definition of 𝑊  and 𝑖𝑠𝑑 for eacah 𝑖 ∈ [𝑛].
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□

Proof .  The case 𝜆 = 0 is trivial, and if 𝜆 < 0, we may rewrite the equation as 𝑧 −
𝜆𝑦 = 𝑥, so we may assume that 𝜆 > 0, so let 𝜆 = 𝑟

𝑠  for 𝑟, 𝑠 ∈ ℕ. In fact, we show that
for any 𝑘-colouring of [𝑛] (for some 𝑛 depending on 𝑘), there is a monochromatic
solution.

We seek a monochromatic solution to 𝑥 + 𝑟
𝑠𝑦 = 𝑧 for some finite colouring 𝑐 : ℕ → [𝑘].

We use induction on the number of colours 𝑘. For 𝑘 = 1, 𝑛 = max{𝑠, 𝑟 + 1} is
sufficient, with monochromatic solution (1, 𝑠, 𝑟 + 1). Assume 𝑛 is a witness for 𝑘 − 1
colours. We will show 𝑁 = 𝑛𝑠𝑊(𝑘, 𝑛𝑟 + 1) is suitable for 𝑘 colours. By definition of
𝑊 , given a 𝑘-colouring of [𝑁], there is a monochromatic AP inside [𝑊(𝑘, 𝑛𝑟 + 1)] ⊆
[𝑁] of length 𝑛𝑟 + 1: 𝑎, 𝑎 + 𝑑, …, 𝑎 + 𝑛𝑟𝑑, coloured red.

Consider 𝑖𝑠𝑑 for each 𝑖 ∈ [𝑛]. Note that 𝑖𝑠𝑑 ≤ 𝑛𝑠𝑊(𝑘, 𝑛𝑟 + 1) so each 𝑖𝑠𝑑 does indeed
have a colour. If some 𝑖𝑠𝑑 is also red, then (𝑎, 𝑖𝑠𝑑, 𝑎 + 𝑖𝑟𝑑) is a monochromatic
solution. If no 𝑖𝑠𝑑 is red, then {𝑠𝑑, …, 𝑛𝑠𝑑} is (𝑘 − 1)-coloured, so by the inductive
hypothesis, there exists 𝑖, 𝑗, 𝑘 ∈ [𝑛] such that {𝑖𝑠𝑑, 𝑗𝑠𝑑, 𝑘𝑠𝑑} is monochromatic and
𝑖𝑠𝑑 + 𝜆𝑗𝑠𝑑 = 𝑘𝑠𝑑, so (𝑖𝑠𝑑, 𝑗𝑠𝑑, 𝑘𝑠𝑑) is a monochromatic solution. □

Remark 2.11
• Note the similarity to the proof of Strengthened Van der Waerden.
• The case 𝜆 = 1 is Schur’s theorem, which can be proven directly by Ramsey’s

theorem; however, there is no known proof using Ramsey’s theorem for general 𝜆 ∈
ℚ.

Theorem 2.12 (Rado's Theorem for Single Equations)  Let 𝑎1, …, 𝑎𝑛 ∈ ℚ \ {0}.
(𝑎1, …, 𝑎𝑛) is PR iff it has CP.

Proof (Hints) .  For ⟸: for the obvious choice of 𝐼 ⊆ [𝑛], fix 𝑖0 ∈ 𝐼 , and define 𝒙 ∈
ℕ𝑛 componentwise:

𝑥𝑖 =
{{
{
{{𝑥 if 𝑖 = 𝑖0

𝑦 if 𝑖 ∉ 𝐼
𝑧 if 𝑖 ∈ 𝐼 \ {𝑖0}

.

Show that 𝒙 is a solution to ∑𝑛
𝑖=1 𝑎𝑖𝑥𝑖 = 0. □

Proof .  ⟹ is by Proposition 2.8. For ⟸: we have that ∑𝑖∈𝐼 𝑎𝑖 = 0 for some ∅ ≠ 𝐼 ⊆
[𝑛]. Given a colouring 𝑐 : ℕ → [𝑘], we need to show that there are monochromatic
𝑥1, …, 𝑥𝑛 such that ∑𝑛

𝑖=1 𝑎𝑖𝑥𝑖 = 0.

Fix 𝑖0 ∈ 𝐼 . We construct the following vector 𝒙 ∈ ℕ𝑛 by defining its components:

𝑥𝑖 =
{{
{
{{𝑥 if 𝑖 = 𝑖0

𝑦 if 𝑖 ∉ 𝐼
𝑧 if 𝑖 ∈ 𝐼 \ {𝑖0}

for some fixed suitable 𝑥, 𝑦, 𝑧. We need 𝑥, 𝑦, 𝑧 to be monochromatic and
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𝑎𝑖0
𝑥 + ∑

𝑖∉𝐼
𝑎𝑖𝑦 + ∑

𝑖∈𝐼\{𝑖0}
𝑎𝑖𝑧 = 0

⟺ 𝑎𝑖0
𝑥 − 𝑧𝑎𝑖0

+ ∑
𝑖∉𝐼

𝑎𝑖𝑦 = 0

⟺ 𝑥 +
∑𝑖∉𝐼 𝑎𝑖

𝑎𝑖0

𝑦 − 𝑧 = 0

and this holds, since 𝑥, 𝑦, 𝑧 exist by the above lemma. □

Conjecture 2.13 (Rado's Boundedness Conjecture)  Let 𝐴 be an 𝑚 × 𝑛 matrix that
is not PR (so there exists a “bad” colouring, i.e. a 𝑘-colouring with no
monochromatic solution to 𝐴𝒙 = 𝟎 for some 𝑘 ∈ ℕ). Is 𝑘 bounded (for given 𝑚, 𝑛)?

This is known for 1 × 3 matrices: 24 colours suffice.

Proposition 2.14  Let 𝐴 ∈ ℚ𝑚×𝑛. If 𝐴 is PR, then it has CP.

Proof (Hints) .
• Let 𝒙 ∈ ℕ𝑛 be the monochromatic solution to 𝐴𝒙 = 𝟎. For fixed prime 𝑝, partition

[𝑛] into 𝐵1, …, 𝐵𝑟 by grouping 𝑖, 𝑗 ∈ [𝑛] by 𝑡(𝑥𝑖), 𝑡(𝑥𝑗) (and preserving the
ordering).

• Reason that the same partition exists for infinitely many 𝑝.
• Considering ∑𝑛

𝑖=1 𝑥𝑖𝒄𝑖 = 𝟎 mod 𝑝 for infinitely many 𝑝, show that ∑𝑖∈𝐵1
𝒄𝑖 = 0,

and

𝑝𝑡 ∑
𝑖∈𝐵𝑘

𝒄𝑖 + ∑
𝑖∈𝐵1,…,𝐵𝑘−1

𝑥𝑖𝑑−1𝒄𝑖 ≡ 𝟎 mod 𝑝𝑡+1.

• By taking the dot product with 𝒖 ∈ ℕ𝑚 for appropriate 𝑢, show by contradiction
that ∑𝑖∈𝐵𝑘

𝒄𝑖 ∈ span{𝒄𝑖 : 𝑖 ∈ 𝐵1, …, 𝐵𝑘−1}.

□

Proof .  Let 𝒄1, …, 𝒄𝑛 ∈ ℚ𝑚 be the columns of 𝐴. For fixed prime 𝑝, colour ℕ as before
by 𝑐(𝑥) = 𝑒(𝑥). By assumption, there exists a monochromatic 𝒙 ∈ ℕ𝑛 such that
∑𝑛

𝑖=1 𝑥𝑖𝒄𝑖 = 𝟎. We partition the columns (by partitioning [𝑛] = 𝐵1 ⊔ ⋯ ⊔ 𝐵𝑟) as
follows:
• 𝑖, 𝑗 ∈ 𝐵𝑘 iff 𝑡(𝑥𝑖) = 𝑡(𝑥𝑗).
• 𝑖 ∈ 𝐵𝑘, 𝑗 ∈ 𝐵ℓ for 𝑘 < ℓ iff 𝑡(𝑥𝑖) < 𝑡(𝑥𝑗).

We do this for infinitely many primes 𝑝. Since there are finitely many partitions of
[𝑛], for infinitely many 𝑝, we will have the same blocks 𝐵1, …, 𝐵𝑟.

Consider ∑𝑛
𝑖=1 𝑥𝑖𝒄𝑖 = 𝟎 performed in base 𝑝. Each 𝑖 ∈ [𝑛] has the same colour 𝑑 =

𝑒(𝑥𝑖) ∈ [1, 𝑝 − 1]. So ∑𝑖∈𝐵1
𝑑𝒄𝑖 = 0 mod 𝑝 (by collecting the rightmost terms in base

𝑝), hence ∑𝑖∈𝐵1
𝑐𝑖 = 0 mod 𝑝. But this holds for infinitely many 𝑝, hence

∑
𝑖∈𝐵1

𝒄𝑖 = 0.
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Now ∑𝑖∈𝐵𝑘
𝑝𝑡𝑑𝒄𝑖 + ∑𝑖∈𝐵1,…,𝐵𝑘−1

𝑥𝑖𝒄𝑖 = 𝟎 mod 𝑝𝑡+1 for some 𝑡. So

𝑝𝑡 ∑
𝑖∈𝐵𝑘

𝒄𝑖 + ∑
𝑖∈𝐵1,…,𝐵𝑘−1

𝑥𝑖𝑑−1𝒄𝑖 ≡ 𝟎 mod 𝑝𝑡+1.

We claim that ∑𝑖∈𝐵𝑘
𝒄𝑖 ∈ span{𝒄𝑖 : 𝑖 ∈ 𝐵1, …, 𝐵𝑘−1}. Suppose not, then there exists

𝒖 ∈ ℕ𝑚 such that 𝒖.𝒄𝑖 = 0 for all 𝑖 ∈ 𝐵1, …, 𝐵𝑘−1, but 𝒖.(∑𝑖∈𝐵𝑘
𝒄𝑖) ≠ 0. Then

dotting with 𝒖, we obtain 𝑝𝑡𝒖.(∑𝑖∈𝐵𝑘
𝒄𝑖) ≡ 0 mod 𝑝𝑡+1, so 𝒖. ∑𝑖∈𝐵𝑘

𝒄𝑖 ≡ 0 mod 𝑝.
But this holds for infinitely many 𝑝, so 𝒖. ∑𝑖∈𝐵𝑘

𝒄𝑖 = 0: contradiction. □

Definition 2.15  For 𝑚, 𝑝, 𝑐 ∈ ℕ, an (𝑚, 𝑝, 𝑐)-set 𝑆 ⊆ ℕ with generators
𝑥1, …, 𝑥𝑚 ∈ ℕ is of the form

𝑆 = {∑
𝑚

𝑖=1
𝜆𝑖𝑥𝑖 : ∃𝑗 ∈ [𝑚] : 𝜆𝑗 = 𝑐, 𝜆𝑖 = 0 ∀𝑖 < 𝑗, and 𝜆𝑘 ∈ [−𝑝, 𝑝] ∀𝑘 > 𝑗}

where [−𝑝, 𝑝] = {−𝑝, −(𝑝 − 1), …, 𝑝}. So 𝑆 consists of

𝑐𝑥1 + 𝜆2𝑥2 + 𝜆3𝑥3 + ⋯ + 𝜆𝑚𝑥𝑚, 𝜆𝑖 ∈ [−𝑝, 𝑝],
𝑐𝑥2 + 𝜆3𝑥3 + ⋯ + 𝜆𝑚𝑥𝑚, 𝜆𝑖 ∈ [−𝑝, 𝑝],

⋮
𝑐𝑥𝑚.

These are the rows of 𝑆. We can think of 𝑆 as a “progression of progressions”.

Example 2.16
• A (2, 𝑝, 1)-set with generators 𝑥1, 𝑥2 is of the form {𝑥1 − 𝑝𝑥2, 𝑥1 − (𝑝 −

1)𝑥2, …, 𝑥1 + 𝑝𝑥2, 𝑥2}, so is an AP of length 2𝑝 + 1 together with its step.
• A (2, 𝑝, 3)-set with generators 𝑥1, 𝑥2 is of the form {3𝑥1 − 𝑝𝑥2, 3𝑥1 − (𝑝 −

1)𝑥2, …, 3𝑥1, …, 3𝑥1 + 𝑝𝑥2, 3𝑥2}, so is an AP of length 2𝑝 + 1, whose middle term is
divisible by 3, together with three times its step.

Theorem 2.17  Let 𝑚, 𝑝, 𝑐 ∈ ℕ. For any finite colouring of ℕ, there exists a
monochromatic (𝑚, 𝑝, 𝑐)-set.

Proof (Hints) .
• Reason that an (𝑚′, 𝑝, 𝑐)-set contains an (𝑚, 𝑝, 𝑐)-set for 𝑚′ ≥ 𝑚. With 𝑀 =

𝑘(𝑚 − 1) + 1, reason that if we can find an (𝑀, 𝑝, 𝑐)-set with each row
monochromatic, then we can find an monochromatic (𝑚, 𝑝, 𝑐)-set.

• Let 𝐴1 = {𝑐, 2𝑐, …, ⌊𝑛/𝑐⌋𝑐}, reason that 𝐴1 contains a set of the form 𝑅1 = {𝑐𝑥1 −
𝑛1𝑑1, 𝑐𝑥1 − (𝑛1 − 1)𝑑1, …, 𝑐𝑥1 + 𝑛1𝑑1} for some large 𝑛1.

• Let 𝐵1 = {𝑑1, 2𝑑1, …, ⌊ 𝑛1
(𝑀−1)𝑝⌋𝑑1}. We have 𝑐𝑥1 + 𝜆1𝑏1 + ⋯ + 𝜆𝑀−1𝑏𝑀−1 ∈ 𝑅1,

explain why these are monochromatic.
• Inside 𝐵1, define

𝐴2 = {𝑐𝑑1, 2𝑐𝑑1, …, ⌊ 𝑛1
(𝑀 − 1)𝑝𝑐

⌋𝑐𝑑1}.
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and apply the argument as before, where the divisor in the ⌊⋅⌋ expression in the
new 𝐵2 is (𝑀 − 2)𝑝.

• Argue that after a certain number of steps, we have formed an (𝑀, 𝑝, 𝑐)-set with
each row monochromatic.

□

Proof .  Let 𝑐 : ℕ → [𝑘] be the colouring of ℕ with 𝑘 colours. Note that an (𝑚′, 𝑝, 𝑐)-
set with 𝑚′ ≥ 𝑚 contains an (𝑚, 𝑝, 𝑐)-set (by taking any 𝑚 rows, and setting some
suitable 𝜆𝑖 to 0). Let 𝑀 = 𝑘(𝑚 − 1) + 1. It is enough to find a (𝑀, 𝑝, 𝑐)-set such that
each row is monochromatic.

Let 𝑛 be large (large enough to apply the argument that follows). Let 𝐴1 =
{𝑐, 2𝑐, …, ⌊𝑛/𝑐⌋𝑐}. By Van der Waerden, 𝐴1 contains a monochromatic AP 𝑅1 of
length 2𝑛1 + 1 where 𝑛1 is large enough:

𝑅1 = {𝑐𝑥1 − 𝑛1𝑑1, 𝑐𝑥1 − (𝑛1 − 1)𝑑1, …, 𝑐𝑥1 + 𝑛1𝑑1}.

has colour 𝑘1. Now we restrict our attention to

𝐵1 = {𝑑1, 2𝑑1, …, ⌊ 𝑛1
(𝑀 − 1)𝑝

⌋𝑑1}.

Observe that

𝑐𝑥1 + 𝜆1𝑏1 + ⋯ + 𝜆𝑀−1𝑏𝑀−1 ∈ 𝑅1

for all 𝜆𝑖 ∈ [−𝑝, 𝑝] and 𝑏𝑖 ∈ 𝐵1, so all these sums have colour 𝑘1. Inside 𝐵1, look at

𝐴2 = {𝑐𝑑1, 2𝑐𝑑1, …, ⌊ 𝑛1
(𝑀 − 1)𝑝𝑐

⌋𝑐𝑑1}.

By Van der Waerden, 𝐴2 contains a monochromatic AP 𝑅2 of length 2𝑛2 + 1 with
colour 𝑘2:

𝑅2 = {𝑐𝑥2 − 𝑛2𝑑2, 𝑐𝑥2 − (𝑛2 − 1)𝑑2, …, 𝑐𝑥2 + 𝑛2𝑑2}.

Note that 𝑥2 ⊆ 𝐵1. Now we restrict our attention to

𝐵2 = {𝑑2, 2𝑑2, …, ⌊ 𝑛2
(𝑀 − 2)𝑝

⌋𝑑2}.

Again, note that for all 𝜆𝑖 ∈ [−𝑝, 𝑝] and 𝑏𝑖 ∈ 𝐵2, we have

𝑐𝑥2 + 𝜆1𝑏1 + ⋯ + 𝜆𝑀−2𝑏𝑀−2 ∈ 𝑅2

so has colour 𝑘2.

We iterate this process 𝑀  times, and obtain 𝑀  generators 𝑥1, …, 𝑥𝑀  such that each
row of the (𝑀, 𝑝, 𝑐)-set generated by 𝑥1, …, 𝑥𝑀  is monochromatic. But now 𝑀 =
𝑘(𝑚 − 1) + 1, so 𝑚 of the rows have the same colour. □
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Remark 2.18  Being extremely precise in this proofs (such as considering ⌊⋅⌋) is
much less important than the ideas in the proof. (Won’t be penalised in the exam for
small details like this).

Corollary 2.19 (Folkman's Theorem)  Let 𝑚 ∈ ℕ be fixed. For every finite colouring
of ℕ, there exists 𝑥1, …, 𝑥𝑚 ∈ ℕ such that

FS(𝑥1, …, 𝑥𝑚) ≔ {∑
𝑖∈𝐼

𝑥𝑖 : ∅ ≠ 𝐼 ⊆ [𝑚]}

is monochromatic.

Proof (Hints) .  A specific case of Theorem 2.17. □

Proof .  By the (𝑚, 1, 1) case of Theorem 2.17. □

Remark 2.20
• The case 𝑛 = 2 of Folkman’s theorem is Schur’s theorem.
• For a colouring 𝑐 : ℕ → [𝑘], we induce a colouring 𝑐′ : ℕ → [𝑘] by 𝑐′(𝑛) = 𝑐(2𝑛).

Then by Folkman’s theorem for 𝑐′, there exists 𝑥1, …, 𝑥𝑚 such that

FP(𝑥1, …, 𝑥𝑚) = {∏
𝑖∈𝐼

𝑥𝑖 : ∅ ≠ 𝐼 ⊆ [𝑚]}.

• It is not known whether the same result holds for FS(𝑥1, …, 𝑥𝑚) ∪ FP(𝑥1, …, 𝑥𝑚).
However, it does not hold for infinite sets {𝑥𝑛 : 𝑛 ∈ ℕ}, and does hold for
colourings of ℚ.

Proposition 2.21  Let 𝐴 have CP. Then there exist 𝑚, 𝑝, 𝑐 ∈ ℕ such that every
(𝑚, 𝑝, 𝑐)-set contains a solution 𝒚 to 𝐴𝒚 = 𝟎, i.e. all 𝑦𝑖 belong to the (𝑚, 𝑝, 𝑐)-set.

Proof .  Let 𝒄1, …, 𝒄𝑛 be the columns of 𝐴. By assumption, there is a partition 𝐵1 ⊔
⋯ ⊔ 𝐵𝑟 of [𝑛] such that ∀𝑘 ∈ [𝑟],

∑
𝑖∈𝐵𝑘

𝒄𝑖 ∈ span{𝒄𝑖 :∈ 𝐵1 ∪ ⋯ ∪ 𝐵𝑘−1}

⟹ ∑
𝑖∈𝐵𝑘

𝒄𝑖 = ∑
𝑖∈𝐵1∪⋯∪𝐵𝑘−1

𝑞𝑖𝑘𝒄𝑖 for some 𝑞𝑖𝑘 ∈ ℚ

⟹ ∑
𝑛

𝑖=1
𝑑𝑖𝑘𝒄𝑖 = 𝟎

where

𝑑𝑖𝑘 =
{{
{
{{0 if 𝑖 ∉ 𝐵1 ∪ ⋯ ∪ 𝐵𝑘−1

1 if 𝑖 ∈ 𝐵𝑘
−𝑞𝑖𝑘 if 𝑖 ∈ 𝐵1 ∪ ⋯ ∪ 𝐵𝑘−1

.

Take 𝑚 = 𝑟. Let 𝑥1, …, 𝑥𝑟 ∈ ℕ, and let 𝑦𝑖 = ∑𝑟
𝑘=1 𝑑𝑖𝑘𝑥𝑘 for each 𝑖 ∈ [𝑛]. Now 𝒚 =

(𝑦1, …, 𝑦𝑛) is a solution to 𝐴𝒚 = 𝟎: we have
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∑
𝑛

𝑖=1
𝑦𝑖𝒄𝑖 = ∑

𝑛

𝑖=1
∑

𝑟

𝑘=1
𝑑𝑖𝑘𝑥𝑘𝒄𝑖

= ∑
𝑟

𝑘=1
𝑥𝑘 ∑

𝑛

𝑖=1
𝑑𝑖𝑘𝒄𝑖 = 𝟎.

Let 𝑐 be the LCD of all the 𝑞𝑖𝑘. Now 𝑐𝑦𝑖 = ∑𝑛
𝑘=1 𝑐𝑑𝑖𝑘𝑥𝑘 is an integral linear

combination of the 𝑥𝑘, and 𝑐𝒚 is a solution since 𝒚 is. Let 𝑝 be 𝑐 times maximum of
the absolute values of the numberators of the 𝑞𝑖𝑘. By definition of the 𝑑𝑖𝑘, 𝑐𝒚 is in the
(𝑚, 𝑝, 𝑐)-set generated by 𝑥1, …., 𝑥𝑟. □

Theorem 2.22 (Rado)  𝐴 ∈ ℚ𝑚×𝑛 is PR iff it has CP.

Proof .  ⟹ is by Proposition 2.14. For ⟸, let 𝑐′ : ℕ → [𝑘] be a finite colouring of ℕ.
Also, by the above proposition, since 𝐴 has CP, there exists 𝑚, 𝑝, 𝑐 ∈ ℕ such that
𝐴𝒙 = 𝟎 has a solution 𝒙 in any (𝑚, 𝑝, 𝑐)-set by the above theorem. By Theorem 2.17,
there is a monochromatic (𝑚, 𝑝, 𝑐)-set with respect to 𝑐′. This gives a monochromatic
solution 𝒙 to 𝐴𝒙 = 𝟎. □

Remark 2.23  From the proof of Rado's Theorem, we obtain that if 𝐴 is PR for the
“mod 𝑝” colourings, then it is PR for any colouring. There is no proof of this fact that
is more direct than using Rado’s theorem.

Theorem 2.24 (Consistency)  Let 𝐴 and 𝐵 be rational PR matrices. Then the
matrix

[𝐴
0

0
𝐵]

is PR.

Proof (Hints) .  Rado's Theorem. □

Proof .  This is a trivial check of the CP given the CP of 𝐴 and 𝐵, then we are done
by Rado's Theorem. □

Remark 2.25  The Consistency Theorem says that if we can find monochromatic
solutions 𝒙 and 𝒙′ to 𝐴𝒙 = 𝟎 and 𝐵𝒚 = 𝟎, then we can find monochromatic solutions
𝒙′ and 𝒚′, of the same colour, to 𝐴𝒙′ = 𝟎 and 𝐵𝒚′ = 𝟎.

Theorem 2.26  For any finite colouring of ℕ, some colour class contains solutions to
all PR equations.

Proof (Hints) .  Use the Consistency Theorem. □

Proof .  For a given 𝑘-colouring of ℕ, let ℕ = 𝐶1 ⊔ ⋯ ⊔ 𝐶𝑘 be the colour classes.
Assume the contrary, so for each 1 ≤ 𝑖 ≤ 𝑘, there exists a PR matrix 𝐴𝑖 such that
𝐴𝑖𝒙 = 𝟎 has no monochromatic solution of the same colour as 𝐶𝑖. But then by
inductively applying the consistency theorem, the matrix
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[
[
[𝐴1

0
⋱

0

𝐴𝑘]
]
]

has a monochromatic solution of the same colour as some 𝐶𝑗. But then 𝐶𝑗𝒙 = 𝟎 has
a solution 𝒙 of the same colour as 𝐶𝑗: contradiction. □

2.2. Ultrafilters
Definition 2.27  A filter on ℕ is a non-empty collection ℱ of subsets of ℕ such
that:
• ∅ ∉ ℱ,
• If 𝐴 ∈ ℱ and 𝐴 ⊆ 𝐵, then 𝐵 ∈ ℱ, i.e. ℱ is an up-set.
• If 𝐴, 𝐵 ∈ ℱ then 𝐴 ∩ 𝐵 ∈ ℱ, i.e. ℱ is closed under finite intersections.

A filter is a notion of “large” subsets of ℕ.

Example 2.28
• ℱ1 = {𝐴 ⊆ ℕ : 1 ∈ 𝐴} is a filter.
• ℱ2 = {𝐴 ⊆ ℕ : 1, 2 ∈ 𝐴} is a filter.
• ℱ3 = {𝐴 ⊆ ℕ : 𝐴𝑐 finite} is a filter, called the cofinite filter.
• ℱ4 = {𝐴 ⊆ ℕ : 𝐴 infinite} is not a filter, since it contains 2ℕ and 2ℕ + 1 but not

∅ = (2ℕ) ∩ (2ℕ + 1).
• ℱ5 = {𝐴 ⊆ ℕ : 2ℕ \ 𝐴 finite} is a filter.

Definition 2.29  An ultrafilter is a maximal filter.

Definition 2.30  For 𝑥 ∈ ℕ, the principal ultrafilter at 𝑥 is

𝒰𝑥 ≔ {𝐴 ⊆ ℕ : 𝑥 ∈ 𝐴}.

Proposition 2.31  The principal ultrafilter at 𝑥 is indeed an ultrafilter.

Proof (Hints) .  Straightforward. □

Proof .  If 𝐵 ∉ 𝒰𝑥, then 𝑥 ∈ 𝐵𝑐 so 𝐵𝑐 ∈ 𝒰𝑥, but 𝐵𝑐 ∩ 𝐵 = ∅, so 𝒰𝑥 ∪ {𝐵} is not a
filter. □

Example 2.32
• ℱ1 = {𝐴 ⊆ ℕ : 1 ∈ 𝐴} is an ultrafilter.
• ℱ2 = {𝐴 ⊆ ℕ : 1, 2 ∈ 𝐴} is not an ultrafilter as ℱ1 extends it.
• ℱ3 = {𝐴 ⊆ ℕ : 𝐴𝑐 finite} is not an ultra filter, as ℱ5 extends it.
• ℱ5 = {𝐴 ⊆ ℕ : 2ℕ \ 𝐴 finite} is not an ultrafilter, as {𝐴 ⊆ ℕ : 4ℕ \ 𝐴 finite}

extends it.

Proposition 2.33  A filter ℱ is an ultrafilter iff for all 𝐴 ⊆ ℕ, either 𝐴 ∈ ℱ or 𝐴𝑐 ∈
ℱ.

Proof (Hints) .  ⟸: straightforward. ⟹: show if 𝐴 ∉ ℱ, then ∃𝐵 ∈ ℱ such that 𝐴 ∩
𝐵 = ∅. □

Proof .  ⟸: since 𝐴 ∩ 𝐴𝑐 = ∅ ∉ ℱ.
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⟹: let ℱ is an ultrafilter. We cannot have 𝐴, 𝐴𝑐 ∈ ℱ as 𝐴 ∩ 𝐴𝑐 = ∅ ∉ ℱ. Suppose
there is 𝐴 ⊆ ℕ such that 𝐴, 𝐴𝑐 ∉ ℱ. By maximality of ℱ, since 𝐴 ∉ ℱ, then ∃𝐵 ∈ ℱ
such that 𝐴 ∩ 𝐵 = ∅ (suppose not, then ℱ′ = {𝑆 ⊆ ℕ : 𝑆 ⊇ 𝐴 ∩ 𝐵 for some 𝐵 ∈ ℱ}
extends ℱ). Similarly, ∃𝐶 ∈ ℱ such that 𝐴𝑐 ∩ 𝐶 = ∅. So we have 𝐶 ⊆ 𝐴, so 𝐵 ∩ 𝐶 =
∅ ∉ ℱ: contradiction (or also 𝐶 ⊆ 𝐴 ⟹ 𝐴 ∈ ℱ: contradiction). □

Corollary 2.34  Let 𝒰 be an ultrafilter and 𝐴 = 𝐵 ∪ 𝐶 ∈ 𝒰. Then 𝐵 ∈ 𝑈  or 𝐶 ∈ 𝑈 .

Proof (Hints) .  Straightforward. □

Proof .  If not, then 𝐵𝑐, 𝐶𝑐 ∈ 𝒰 by Proposition 2.33, hence 𝐵𝑐 ∩ 𝐶𝑐 = (𝐵 ∪ 𝐶)𝑐 =
𝐴𝑐 ∈ 𝒰: contradiction. □

Proposition 2.35  Every filter is contained in an ultrafilter.

Proof (Hints) .  Use Zorn’s Lemma. □

Proof .  Let ℱ0 be a filter. By Zorn’s Lemma, it is enough to show that every non-
empty chain of filters has an upper bound. Let {ℱ𝑖 : 𝑖 ∈ 𝐼} be a chain of filters in the
poset of filters containing ℱ0, partially ordered by inclusion, and set ℱ = ⋃𝑖∈𝐼 ℱ𝑖.
• ∅ ∉ ℱ since ∅ ∉ ℱ𝑖 for each 𝑖 ∈ 𝐼 .
• If 𝐴 ∈ ℱ and 𝐴 ⊆ 𝐵, then 𝐴 ∈ ℱ𝑖 for some 𝑖 ∈ 𝐼 , so 𝐵 ∈ ℱ𝑖, so 𝐵 ∈ ℱ.
• Let 𝐴, 𝐵 ∈ ℱ, so 𝐴 ∈ ℱ𝑖 and 𝐵 ∈ ℱ𝑗 for some 𝑖, 𝑗. WLOG, ℱ𝑖 ⊆ ℱ𝑗, so 𝐴 ∩ 𝐵 ∈

ℱ𝑗, so 𝐴 ∩ 𝐵 ∈ ℱ.

ℱ is an upper bound for the chain, so we are done. □

Proposition 2.36  Let 𝒰 be an ultrafilter. Then 𝒰 is non-principal iff 𝒰 extends the
cofinite filter ℱ𝐶 .

Proof (Hints) .  ⟸: straightforward. ⟹: use Corollary 2.34. □

Proof .  ⟸: if 𝒰 = 𝒰𝑥 is principal, then we have {𝑥} ∈ 𝒰 so {𝑥}𝑐 ∉ 𝒰 by
Proposition 2.33, but also {𝑥}𝑐 ∈ ℱ𝐶 : contradiction.

⟹: let 𝐴 ∈ ℱ𝐶 , so 𝐴𝑐 = {𝑎1, …, 𝑎𝑘} is finite. Assume 𝐴 ∉ 𝒰, then 𝐴𝑐 ∈ 𝒰, so by
Corollary 2.34, some 𝑎𝑖 ∈ 𝒰. But then by definition of a filter, each set containing 𝑎𝑖
is in 𝒰, so 𝒰 is principal: contradiction. □

Notation 2.37  Let 𝛽ℕ denote the set of all ultrafilters on ℕ.

Definition 2.38  Define a topology on 𝛽ℕ by its base (basis), which consists of

𝐶𝐴 ≔ {𝒰 ∈ 𝛽ℕ : 𝐴 ∈ 𝒰}

for each 𝐴 ⊆ ℕ. The sets above indeed form a base: we have ⋃𝐴⊆ℕ 𝐶𝐴 = 𝛽ℕ, and
𝐶𝐴 ∩ 𝐶𝐵 = 𝐶𝐴∩𝐵, since 𝐴 ∩ 𝐵 ∈ 𝒰 iff 𝐴, 𝐵 ∈ 𝒰. The open sets are of the form
⋃𝑖∈𝐼 𝐶𝐴𝑖

 and the closed sets are of the form ⋂𝑖∈𝐼 𝐶𝐴𝑖
.

Remark 2.39  𝛽ℕ \ 𝐶𝐴 = 𝐶𝐴𝑐 , since 𝐴 ∉ 𝒰 iff 𝐴𝑐 ∈ 𝒰. We can view ℕ as being
embedded in 𝛽ℕ by identifying 𝑛 ∈ ℕ with �̃� ≔ 𝒰𝑛, the principal ultrafilter at 𝑛.
Each point in ℕ under this correspondence is isolated in 𝛽ℕ, since 𝐶{𝑛} = {�̃�} is an
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open neighbourhood of �̃�. Also, ℕ is dense in 𝛽ℕ, since for every 𝑛 ∈ 𝐴, �̃� ∈ 𝐶𝐴, so
every non-empty open set in 𝛽ℕ intersects ℕ.

Theorem 2.40  𝛽ℕ is a compact Hausdorff topological space.

Proof .  Hausdorff: let 𝒰 ≠ 𝒱 be ultrafilters, so there is 𝐴 ∈ 𝒰 such that 𝐴 ∉ 𝒱. But
then 𝐴𝑐 ∈ 𝒱, so 𝒰 ∈ 𝐶𝐴, 𝒱 ∈ 𝐶𝐴𝑐 , and 𝐶𝐴 ∩ 𝐶𝐴𝑐 is open.

Compact: it is compact iff every open admits a finite subcover iff a collection of open
sets such that no finite subcollection covers 𝛽ℕ, they don’t cover 𝛽ℕ iff for every
collection of closed sets such that they have finite intersection property ((𝐹𝑖)𝑖∈𝐼 , ∩𝑖∈𝐽
𝐹𝑖 ≠ ∅ for all 𝐽  finite), then their intersection is non-empty. We can assume each 𝐹𝑖 is
a basis set, i.e. 𝐹𝑖 = 𝐶𝐴𝑖

 for some 𝐴𝑖 ∈ ℕ. Suppose {𝐶𝐴𝑖
: 𝑖 ∈ 𝐼} have teh finite

intersection property. First, 𝐶𝐴𝑖1
∩ ⋯ ∩ 𝐶𝐴𝑖𝑘

= 𝐶𝐴𝑖1∩⋯∩𝐴𝑖𝑘
≠ ∅, hence ⋂𝑘

𝑗=1 𝐴𝑖𝑗
≠ ∅.

So let ℱ = {𝐴 : 𝐴 ⊇ 𝐴𝑖1
∩ ⋯ ∩ 𝐴𝑖𝑘

for some 𝐴𝑖1
, …, 𝐴𝑖𝑛

}. We have ∅ ∉ ℱ, if 𝐵 ⊇ 𝐴 ∈
ℱ then 𝐵 ∈ ℱ, and if 𝐴, 𝐵 ∈ ℱ, then 𝐴 ∩ 𝐵 ∈ ℱ. Hence ℱ is a filter. ℱ extends to
an ultrafilter 𝒰. Note that (∀𝑖, 𝐴𝑖 ∈ 𝒰) ⟺ (𝒰 ∈ 𝐶𝐴𝑖

∀𝑖). So 𝑈 ∈ ∩ 𝐶𝐴𝑖
, so ∩ 𝐶𝐴𝑖

≠
∅. □

Remark 2.41
• 𝛽ℕ can be viewed as a subset of {0, 1}ℙ(ℕ) (so each ultrafilter is viewed as a

function ℙ(ℕ) → {0, 1}). The topology on 𝛽ℕ is the restriction of the product
topology on {0, 1}ℙ(ℕ). Also, 𝛽ℕ is a closed subset of {0, 1}ℙ(ℕ), so is compact by
Tychonov’s theorem (TODO: look up statement of this theorem).

• 𝛽ℕ is the largest compact Hausdorff topological space in which (the embedding of)
ℕ is dense. In other words, if 𝑋 is compact and Hausdorff, and 𝑓 : ℕ → 𝑋, there
exists a unique continuous ̃𝑓 : 𝛽ℕ → 𝑋 extending 𝑓 . TODO: insert diagram.

• 𝛽ℕ is called the Stone-Čech compactification of ℕ.

Definition 2.42  Let 𝑝 be a statement and 𝒰 be an ultrafilter. ∀𝒰𝑥 𝑝(𝑥) to mean
{𝑥 ∈ ℕ : 𝑝(𝑥)} ∈ 𝒰 and say 𝑝(𝑥) “for most 𝑥” or “for 𝒰-most 𝑥”.

Example 2.43
• For 𝒰 = �̃�, we have ∀𝒰𝑥 𝑝(𝑥) iff 𝑝(𝑛).
• For non-principal 𝒰, we have ∀𝒰𝑥 (𝑥 > 4) (if not, then {1, 2, 3} =

{𝑥 ∈ ℕ : 𝑥 > 4}𝑐 ∈ 𝒰, so {𝑖} ∈ 𝒰 for some 𝑖 = 1, 2, 3, so 𝒰 is principal:
contradiction).

Proposition 2.44  Let 𝒰 be an ultrafilter and 𝑝, 𝑞 be statements. Then
1. ∀𝒰𝑥 (𝑝(𝑥) ∧ 𝑞(𝑥)) iff (∀𝒰𝑥 𝑝(𝑥)) ∧ (∀𝒰𝑥 𝑞(𝑥)).
2. ∀𝒰𝑥 (𝑝(𝑥) ∨ 𝑞(𝑥)) iff (∀𝒰𝑥 𝑝(𝑥)) ∨ (∀𝒰𝑥 𝑞(𝑥)).
3. ¬(∀𝒰𝑥 𝑝(𝑥)) iff ∀𝒰𝑥 (¬𝑝(𝑥)).

Proof .  Let 𝐴 = {𝑥 ∈ ℕ : 𝑝(𝑥)} and 𝐵 = {𝑥 ∈ ℕ : 𝑞(𝑥)}. We have
1. 𝐴 ∩ 𝐵 ∈ 𝒰 iff 𝐴 ∈ 𝒰 and 𝐵 ∈ 𝒰 by definition.
2. 𝐴 ∪ 𝐵 ∈ 𝒰 iff 𝐴 ∈ 𝒰 and 𝐵 ∈ 𝒰 by (find result).
3. 𝐴 ∉ 𝒰 iff 𝐴𝑐 ∈ 𝒰 by (find result).

□
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Note 2.45  ∀𝒰𝑥∀𝒱𝑦 𝑝(𝑥, 𝑦) is not necessarily the same as ∀𝒱𝑦∀𝒰𝑥 𝑝(𝑥, 𝑦), even when
𝒰 = 𝒱. For example, let 𝒰 be non-principal, and 𝑝(𝑥, 𝑦) = (𝑥 < 𝑦). Then
∀𝒰𝑥(∀𝒰𝑦 (𝑥 < 𝑦)) is true, as every 𝑥 satisfies ∀𝒰𝑦 (𝑥 < 𝑦). But ∀𝒰𝑦∀𝒰𝑥 (𝑥 < 𝑦) is
false, as no 𝑦 has ∀𝒰𝑥 (𝑥 < 𝑦). So don’t swap quantifiers!.

Definition 2.46  Given ultrafilters 𝒰, 𝒱, define their sum to be

𝒰 + 𝒱 ≔ {𝐴 ⊆ ℕ : ∀𝒰𝑥∀𝒱𝑦 (𝑥 + 𝑦 ∈ 𝐴)}.

Example 2.47  We have �̃� + �̃� = 𝑚 + 𝑛.

Proposition 2.48  For any ultrafilters 𝒰 and 𝒱, 𝒰 + 𝒱 is an ultrafilter.

Proof .  We have ∅ ∉ 𝒰 + 𝒱. If 𝐴 ∈ 𝒰 + 𝒱 and 𝐴 ⊆ 𝐵, then 𝐵 ∈ 𝒰 + 𝒱. If 𝐴, 𝐵 ∈ 𝒰 +
𝒱, then (∀𝒰𝑥∀𝒱𝑦 (𝑥 + 𝑦 ∈ 𝐴)) ∧ (∀𝒰𝑥∀𝒱𝑦 (𝑥 + 𝑦 ∈ 𝐵)), so by above proposition, we
have ∀𝒰𝑥∀𝒱𝑦(𝑥 + 𝑦 ∈ 𝐴 ∧ 𝑥 + 𝑦 ∈ 𝐵), i.e. ∀𝒰𝑥∀𝒱𝑦 (𝑥 + 𝑦 ∈ 𝐴 ∩ 𝐵), i.e. 𝐴 ∩ 𝐵 ∈ 𝒰 +
𝒱. Hence 𝒰 + 𝒱 is a filter.

Suppose that 𝐴 ∉ 𝒰 + 𝒱, i.e. ¬(∀𝒰𝑥∀𝒱𝑦 (𝑥 + 𝑦 ∈ 𝐴)). Then by above proposition
twice, we have ∀𝒰𝑥∀𝒱𝑦 ¬(𝑥 + 𝑦 ∈ 𝐴). So ∀𝒰𝑥∀𝒱𝑦 (𝑥 + 𝑦 ∈ 𝐴𝑐), i.e. 𝐴𝑐 ∈ 𝒰 + 𝒱. □

Proposition 2.49  Ultrafilter addition is associative.

Proof .  Let 𝐴 ⊆ 𝒰 + (𝒱 + 𝒲), so ∀𝒰𝑥∀𝒱+𝒲 (𝑥 + 𝑦 ∈ 𝐴). So 𝐵 ≔ {𝑦 : 𝑥 + 𝑦 ∈ 𝐴} ∈
𝒱 + 𝒲, i.e. ∀𝒱𝑦1∀𝒲𝑦2 (𝑦1 + 𝑦2 ∈ 𝐵). So we have ∀𝒰𝑥∀𝒱𝑦1∀𝒲𝑦2 (𝑥 + 𝑦1 + 𝑦2 ∈ 𝐴).
So

𝒰 + (𝒱 + 𝒲) = {𝐴 ⊆ ℕ : ∀𝒰𝑥∀𝒱𝑦∀𝒲𝑧 (𝑥 + 𝑦 + 𝑧 ∈ 𝐴)} = (𝒰 + 𝒱) + 𝒲.

□

Proposition 2.50  Ultrafilter addition is left-continuous: for fixed 𝒱, 𝒰 ↦ 𝒰 + 𝒱 is
continuous.

Proof .  For 𝐴 ⊆ ℕ, we have

𝒰 + 𝒱 ∈ 𝐶𝐴 ⟺ 𝐴 ∈ 𝒰 + 𝒱
⟺ ∀𝒰𝑥∀𝒱𝑦 (𝑥 + 𝑦 ∈ 𝐴)
⟺ 𝐵 ≔ {𝑥 ∈ ℕ : ∀𝒱𝑦 (𝑥 + 𝑦 ∈ 𝐴)} ∈ 𝒰
⟺ 𝒰 ∈ 𝐶𝐵

hence the preimage of 𝐶𝐴, which is 𝐶𝐵, is open. □

Proposition 2.51 (Idempotent Lemma)  There exists an idempotent ultrafilter 𝒰 ∈
𝛽ℕ (i.e. 𝒰 = 𝒰 + 𝒰).

Proof .  For 𝑀 ⊆ 𝛽ℕ, define 𝑀 + 𝑀 ≔ {𝑥 + 𝑦 : 𝑥, 𝑦 ∈ 𝑀}. We seek a non-empty,
compact 𝑀 ⊆ 𝛽ℕ which is minimal such that 𝑀 + 𝑀 ⊆ 𝑀 , and hope to show that
𝑀  is a singleton.

Such an 𝑀  exists (𝛽ℕ is one such), so the set of all such 𝑀  is non-empty. By Zorn’s
Lemma, it suffices to show that if {𝑀𝑖 : 𝑖 ∈ 𝐼} is a chain of such sets, then 𝑀 =
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⋂𝑖∈𝐼 𝑀𝑖 (an upper bound with respect to the partial ordering ⊇) is another such set.
This 𝑀  will be compact as an intersection of closed sets, since 𝛽ℕ is compact and
Hausdorff, so any subspace is closed iff it is compact. Also, 𝑀 + 𝑀 ⊆ 𝑀 : for 𝑥, 𝑦 ∈
𝑀 , we have 𝑥, 𝑦 ∈ 𝑀𝑖 so 𝑥 + 𝑦 ∈ 𝑀𝑖 + 𝑀𝑖 ⊆ 𝑀𝑖 for all 𝑖 ∈ 𝐼 , so 𝑥 + 𝑦 ∈ 𝑀 . Finally,
𝑀  is non-empty: {𝑀𝑖 : 𝑖 ∈ 𝐼} have the finite intersection property, as they are a
chain, and are closed, so their intersection is non-empty.

So by Zorn’s lemma, there exists such a minimal 𝑀 . Given 𝑥 ∈ 𝑀 , we have 𝑀 + 𝑥 =
𝑀 , since 𝑀 + 𝑥 ≠ ∅, 𝑀 + 𝑥 is compact (as the continuous image of a compact set)
and (𝑀 + 𝑥) + (𝑀 + 𝑥) = (𝑀 + 𝑥 + 𝑀) + 𝑥 ⊆ (𝑀 + 𝑀 + 𝑀) + 𝑥 ⊆ 𝑀 + 𝑥, so by
minimality of 𝑀 , 𝑀 + 𝑥 = 𝑀 .

In particular, there exists 𝑦 ∈ 𝑀  such that 𝑦 + 𝑥 = 𝑥. Let 𝑇 = {𝑦 ∈ 𝑀 : 𝑦 + 𝑥 = 𝑥}.
We claim that 𝑇 = 𝑀 , and since 𝑇 ⊆ 𝑀 , it is enough to show that 𝑇  is compact,
non-empty and 𝑇 + 𝑇 ⊆ 𝑇 , by minimality of 𝑀 . Indeed, 𝑦 ∈ 𝑇 , so 𝑇 ≠ ∅, 𝑇  is the
pre-image of a singleton which is compact, hence closed, so 𝑇  is closed, so compact.
Finally, for 𝑦, 𝑧 ∈ 𝑇 , we have 𝑦 + 𝑥 = 𝑥 = 𝑧 + 𝑥 so 𝑦 + 𝑧 + 𝑥 = 𝑦 + 𝑥 = 𝑥, so 𝑦 + 𝑧 ∈
𝑇 , so 𝑇 + 𝑇 ⊆ 𝑇 .

Hence, 𝑦 + 𝑥 = 𝑥 for all 𝑦 ∈ 𝑀 , hence 𝑥 + 𝑥 = 𝑀 . In fact, 𝑀 = {𝑥}. □

Remark 2.52  The finite subgroup problem asks whether we can find a non-trivial
subgroup of 𝛽ℕ (e.g. find 𝒰 with 𝒰 + 𝒰 ≠ 𝒰 but 𝒰 + 𝒰 + 𝒰 = 𝒰). This was recently
proven to be negative.

Remark 2.53  It has been recently shown that there exist 𝒰 ≠ 𝒱 such that 𝒰 + 𝒰 =
𝒰 + 𝒱 = 𝒱 + 𝒰 = 𝒱 + 𝒱 = 𝒱.

Theorem 2.54 (Hindman)  For any finite colouring of ℕ, there exists a sequence
(𝑥𝑛)𝑛∈ℕ such that

FS({𝑥𝑛 : 𝑛 ∈ ℕ}) = {∑
𝑖∈𝐼

𝑥𝑖 : 𝐼 ⊆ ℕ finite, 𝐼 ≠ ∅}.

Proof .  Let 𝒰 be an idempotent ultrafilter, and partition ℕ into its colour classes: ℕ =
𝐴1 ⊔ ⋯ ⊔ 𝐴𝑘. Since ∅ ∉ 𝒰 by definition, we have 𝐴1 ∪ ⋯ ∪ 𝐴𝑘 ∈ ℕ ∈ 𝒰 by
Proposition 2.33. So by Corollary 2.34, 𝐴 ≔ 𝐴𝑖 ∈ 𝒰 for some 𝑖 ∈ [𝑘]. We have
∀𝒰𝑦 (𝑦 ∈ 𝐴) by definition. Thus:
1. ∀𝒰𝑥∀𝒰𝑦 (𝑦 ∈ 𝐴).
2. ∀𝒰𝑥∀𝒰𝑦 (𝑥 ∈ 𝐴).
3. ∀𝒰𝑥∀𝒰𝑦 (𝑥 + 𝑦 ∈ 𝐴) since 𝐴 ∈ 𝒰 + 𝒰 = 𝒰.

Proposition 2.44 then gives that ∀𝒰𝑥∀𝒱𝑦 (FS(𝑥, 𝑦) ⊆ 𝐴). Fix 𝑥1 ∈ 𝐴 such that
∀𝒰𝑦 (FS(𝑥1, 𝑦) ⊆ 𝐴).

Now assume we have found 𝑥1, …, 𝑥𝑛 such that ∀𝒰𝑦 (FS(𝑥1, …, 𝑥𝑛, 𝑦) ⊆ 𝐴), i.e. 𝐵 ≔
{𝑦 ∈ ℕ : FS(𝑥1, …, 𝑥𝑛, 𝑦) ⊆ 𝐴} ∈ 𝒰 = 𝒰 + 𝒰, i.e. ∀𝒰𝑥∀𝒰𝑦 (𝑥 + 𝑦 ∈ 𝐵) by definition.
We have:
1. ∀𝒰𝑥∀𝒰𝑦 (FS(𝑥1, …, 𝑥𝑛, 𝑦) ⊆ 𝐴).
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2. ∀𝒰𝑥∀𝒰𝑦 (FS(𝑥1, …, 𝑥𝑛, 𝑥) ⊆ 𝐴).
3. For each 𝑧 ∈ FS(𝑥1, …, 𝑥𝑛, 𝑦), we have ∀𝒰𝑦 (𝑧 + 𝑦 ∈ 𝐴), so ∀𝒰𝑥∀𝒰𝑦 (𝑧 + 𝑥 + 𝑦 ∈

𝐴).

Proposition 2.44 then gives that

∀𝒰𝑥∀𝒰𝑦 (FS(𝑥1, …, 𝑥𝑛, 𝑥, 𝑦) ⊆ 𝐴).

The result follows by induction. □

3. Euclidean Ramsey theory
If we 2-colour ℝ2, there are 2 points of distance at most 1 of the same colour
(consider equilateral triangel).

If we 3-colour ℝ3, there are 2 points of distance at most 1 of the same colour
(consider regular tetrahedron)

If we 𝑘-colour ℝ𝑘, then by considering the regular simplex with 𝑘 + 1 vertices such
that any 2 points have distance 1 between them, 2 points have the same colour.

Definition 3.1  𝑋′ is an isometric copy of 𝑋 if there exists a bijection 𝜑 : 𝑋 → 𝑋′

which prserves distances:

∀𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑦) = 𝑑(𝜑(𝑥), 𝜑(𝑦)).

Definition 3.2  A finite set 𝑋 ⊆ ℝ𝑚 is (Euclidean) Ramsey if for all 𝑘 ∈ ℕ, there
exists a finite set 𝑆 ⊆ ℝ𝑛 (𝑛 could be very large) such that for any 𝑘-colouring of 𝑆,
there exists a monochromatic isometric copy of 𝑋.

Example 3.3
• {0, 1} is Ramsey, by the above simplex argument.
• The equilateral triangle of side length 1 is Ramsey, by considering the 2𝑘-

dimensional unit simplex.
• Any {0, 𝑎} is Ramsey.
• By the same argument, any regular simplex is Ramsey.

Remark 3.4
• If 𝑋 is infinite, then (exercise) we can construct a 2-colouring of ℝ𝑛 with no

monochromatic isometric copy of 𝑋.
• Above, we took 𝑆 to be in ℝ𝑘 for 𝑘 colours. Can we do better? We can’t do it for

{0, 1} in ℝ: consider the colouring 𝑥 ↦ ⌊𝑥⌋ mod 2. For {0, 1} with 3 colours, can do
this in ℝ2: look at diagram. Actually this shows 𝜒(ℝ2) ≥ 4. Can show 𝜒(ℝ2) ≤ 7
by hexagonal argument. We know 𝜒(ℝ2) ≥ 5. In general, 1.2𝑛 ≤ 𝜒(ℝ𝑛) ≤ 3𝑛. The
upper bound easily follows from a hexagonal colouring.

Proposition 3.5  𝑋 is Euclidean Ramsey iff ∀𝑘 ∈ ℕ, ∃𝑛 ∈ ℕ such that for any 𝑘-
colouring of ℝ𝑛, there exists a monochromatic isometric copy of 𝑋.

Proof .  If 𝑋 is Euclidean Ramsey then take 𝑆 finite in ℝ𝑛 (for 𝑘 colours).
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⟸: we use a compactness proof. Suppose not, therefore for any finite 𝑆 ⊆ ℝ𝑛, there
is a bad 𝑘-colouring (i.e. no monochromatic isometric copy of 𝑋). The space of all 𝑘-
colourings is [𝑘](ℝ𝑛), which is compact by Tychonov (TODO: add this statement).
Consider the set 𝐶𝑋′ of colourings under which 𝑋′ is not monochromatic. 𝐶𝑋′ is
closed. Look at {𝐶𝑋′ : 𝑋′ isometric copy of 𝑋}. It has the finite intersection
property, because any finite 𝑆 has a bad 𝑘-colouring. Therefore, ⋂ 𝐶𝑋′ ≠ ∅, so there
exists a 𝑘-colouring of ℝ𝑛 with no monochromatic isometric copy of 𝑋 in 𝑆. □

Lemma 3.6  If 𝑋 ⊆ ℝ𝑛 and 𝑌 ⊆ ℝ𝑚 are both Ramsey, then 𝑋 × 𝑌 ⊆ ℝ𝑛+𝑚 is also
Ramsey.

Proof .  Let 𝑐 be a colouring of 𝑆 × 𝑇 , where 𝑆 is 𝑘-Ramsey for 𝑋 and 𝑇  is 𝑘|𝑆|-
Ramsey for 𝑌 . 𝑘|𝑆|-colour 𝑇  as follows: 𝑐′(𝑡) = (𝑐(𝑠1, 𝑡), …, 𝑐(𝑠|𝑆|, 𝑡)). By choice of 𝑇 ,
there is a monochromatic (with respect to 𝑐′) isometric copy 𝑌 ′ of 𝑌 . So 𝑐(𝑠, 𝑦) =
𝑐(𝑠, 𝑦′) for all 𝑦, 𝑦′ ∈ 𝑌  and 𝑠 ∈ 𝑆. Now 𝑘-colour 𝑆 by 𝑐″(𝑠) = 𝑐(𝑠, 𝑦) for any 𝑦 ∈ 𝑌
(note this is well-defined). By choice of 𝑆, there is a monochromatic (with respect to
𝑐″) isometric copy 𝑋′ of 𝑋, so 𝑋′ × 𝑌 ′ is monochromatic with respect to 𝑐.

TODO: convince yourself that this is a very standard product argument. □

Remark 3.7  Since any {0, 𝑎} and {0, 𝑏} are Ramsey, any rectangle is Ramsey, so
any right-angle triangle is Ramsey (since it is embedded in a rectangle). Similarly,
any cuboid is Ramsey, and so any acute triangle (which is embedded in a cuboid) is
Ramsey.

Remark 3.8  In general, to prove sets are Ramsey, we will first embed them in
“nicer” sets (with useful symmetry groups) and show instead that those sets are
Ramsey. We will show:
• any triangle is Ramsey
• any regular 𝑛-gon is Ramsey
• any Platonic solid is Ramsey

Proposition 3.9  𝑋 = {0, 1, 2} is not Ramsey.

Proof .  Recall in ℝ𝑛 we have ‖𝑥 + 𝑦‖2
2 + ‖𝑥 − 𝑦‖2

2 = 2‖𝑥‖2
2 + 2‖𝑥‖2

2. Every isometric
copy of {0, 1, 2} in any ℝ𝑛 is of the form {𝑥 − 𝑦, 𝑥, 𝑥 + 𝑦} with ‖𝑦‖2 = 1. So

‖𝑥 + 𝑦‖2
2 + ‖𝑥 − 𝑦‖2

2 = 2‖𝑥‖2
2 + 2.

If we can find a colouring 𝜑 of ℝ≥0 such that there is no monochromatic solutions to
𝑎 + 𝑏 = 2𝑐 + 2. Colouring ℝ𝑛 by 𝑐(𝑥) = 𝜑(‖𝑥‖2

2). We 4-colour ℝ≥0 by 𝜑(𝑥) =
⌊𝑥⌋ mod 4. Suppose 𝑎, 𝑏, 𝑐 all have colour 𝑛 ∈ {0, 1, 2, 3}. Then if 𝑎 + 𝑏 = 2𝑐 + 2,
writing 𝑎 = ⌊𝑎⌋ + {𝑎}, 𝑏 = ⌊𝑏⌋ + {𝑏}, 𝑐 = ⌊𝑐⌋ + {𝑐}, we have 2 = 𝑎 + 𝑏 − 2𝑐 = 4𝑘 +
{𝑎} + {𝑏} − 2{𝑐} for some 𝑘 ∈ ℤ, which is impossible as −2 < {𝑎} + {𝑏} − 2{𝑐} < 2. □

Remark 3.10
• The proof shows that for all 𝑛, there is a 4-colouring of ℝ𝑛 which stops every

isometric copy of 𝑋 = {0, 1, 2} from being monochromatic.
• It is very important that in 𝑎 + 𝑏 = 2𝑐 + 2, the 2 in the equation is not 0.
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• It will turn out that the property that made {0, 1, 2} not Ramsey is “it does not
lie on a sphere”.

Definition 3.11  A finite set 𝑋 ⊆ ℝ𝑛 is called spherical if it lies on the surface of a
sphere.

Example 3.12  Any triangle, rectangle, and non-degenerate simplex is spherical.

Definition 3.13  𝑥1, …, 𝑥𝑑 ∈ ℝ𝑛 form a simplex if {𝑥1 − 𝑥𝑑, 𝑥2 − 𝑥𝑑, …, 𝑥𝑑−1 − 𝑥𝑑}
are linearly independent, i.e. if 𝑥1, …, 𝑥𝑑 do not lie in a (𝑑 − 2)-dimensional affine
subspace.

Remark 3.14  We want to show that if 𝑋 is Ramsey, then it is spherical.

Lemma 3.15  {𝑥1, …, 𝑥𝑑} ∈ ℝ𝑛 is not spherical iff there exist 𝑐𝑖 ∈ ℝ, not all zero,
such that:
1. ∑𝑑

𝑖=1 𝑐𝑖 = 0.
2. ∑𝑖 𝑐𝑖𝑥𝑖 = 0.
3. ∑𝑖 𝑐𝑖‖𝑥𝑖‖

2
2 ≠ 0.

Proof .  ⟹: let {𝑥1, …, 𝑥𝑑} be not spherical. Since {𝑥1, …, 𝑥𝑑} are not the vertices of a
simplex, there exist 𝑐1, …, 𝑐𝑑 ∈ ℝ such that ∑𝑖 𝑐𝑖(𝑥𝑖 − 𝑥𝑑) = 0 since ∑𝑑−1

𝑖=1 𝑐𝑖𝑥𝑖 +
(−𝑐1 − ⋯ − 𝑐𝑑−1)𝑥𝑑 = 0. This gives the first two conditions. Note that all three
conditions are invariant under translation by 𝑣 ∈ ℝ𝑛: ∑𝑖 𝑐𝑖(𝑥𝑖 + 𝑣) = 0,
∑𝑖 𝑐𝑖‖𝑥𝑖 + 𝑣‖2

2 = ∑𝑖 𝑐𝑖‖𝑥𝑖‖
2 + 2𝑐𝑖𝑥𝑖 ⋅ 𝑣+𝑐𝑖‖𝑣‖2

2 = ∑𝑖 𝑐𝑖‖𝑥𝑖‖
2.

Look at a minimal subset of {𝑥1, …, 𝑥𝑑} that is not spherical. If we can show the
result for WLOG {𝑥1, …, 𝑥𝑘}, 𝑘 ≤ 𝑑, then we can take 𝑐𝑖 = 0 for all 𝑖 ∈ [𝑘 + 1, 𝑑].
Now {𝑥2, …, 𝑥𝑘} is spherical by minimality. Say it lies on the sphere of radius 𝑟,
centred at 𝑣. By translation invariance, then we can translate the set such that
{𝑥2, …, 𝑥𝑘} is centred at 0. {𝑥1, …, 𝑥𝑑} is not spherical so does not form a (𝑑 − 1)-
simplex, so there exist 𝑐𝑖 such that ∑𝑖 𝑐𝑖(𝑥𝑖 − 𝑥𝑘) = 0 so 𝑐1𝑥1 + ⋯ + 𝑐𝑘−1𝑥𝑘−1 +
(−𝑐1 − ⋯ − 𝑐𝑘−1)𝑥𝑘 = 0. WLOG, we have 𝑐1 ≠ 0 (can assume this since the same 𝑐𝑖
work after translation). Now

∑
𝑘

𝑖=1
𝑐𝑖‖𝑥𝑖‖

2 = 𝑐1‖𝑥1‖
2 + 𝑟2 ∑

𝑘

𝑖=2
𝑐𝑖 ≠ 0

as ‖𝑥1‖ ≠ 𝑟, since {𝑥1, …, 𝑥𝑘} is not spherical.

⟸: assume for a contradiction that {𝑥1, …, 𝑥𝑑} are spherical, and lie on the sphere of
radius 𝑟 centred at 𝑣. By the above argument, we can translate the set so that they
are centred at the origin: this prserves all conditions and does not change the value of
∑𝑖 𝑐𝑖‖𝑥𝑖‖

2. We have ‖𝑥𝑖‖
2 = 𝑟2 for all 𝑖, so ∑𝑖 𝑐𝑖‖𝑥𝑖‖

2 = 𝑟2 ∑𝑖 𝑐𝑖 = 0: contradiction. □

Remark 3.16  In the previous proof, we had 𝑐 = (1, 1, −2) and ∑𝑖 𝑐𝑖‖𝑥𝑖‖
2
2 = 2.

Corollary 3.17  Let 𝑋 = {𝑥1, …, 𝑥𝑛} be non-spherical. Then there exist 𝑐1, …, 𝑐𝑛 not
all 0 with ∑𝑖 𝑐𝑖 = 0 and a 𝑏 ≠ 0 such that ∑𝑖 𝑐𝑖‖𝑥𝑖‖

2 = 𝑏.
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Remark 3.18  The above corollary is true for every isometric copy 𝑋′ of 𝑋 with the
same witnesses 𝑐𝑖 and 𝑏: if 𝜑(𝑋) is a copy of 𝑋 (for distance-preserving bijection 𝜑),
we can translate (as in proof of above lemma) and the 𝑐𝑖 and 𝑏 are unaffected, in such
a way that 𝜑(0) = 0. After that, applying a matrix 𝐴 that corresponds to rotation/
reflection.

Theorem 3.19  If 𝑋 = {𝑥1, …, 𝑥𝑛} is Ramsey, then 𝑋 is spherical.

Proof .  Suppose 𝑋 is not spherical. Then by above lemma, there exist 𝑐𝑖 not all zero
such that ∑𝑖 𝑐𝑖‖𝑥𝑖‖

2 = 𝑏 ≠ 0 and ∑𝑖 𝑐𝑖 = 0. This is also true for any isometric copy
of 𝑋′. We will split [0, 1) into [0, 𝛿), [𝛿, 2𝛿), … for small 𝛿 and colour depending on
where 𝑐𝑖‖𝑥‖2 lies. It is enough to construct a colouring 𝑐 : ℝ+ → [𝑘] such that
∑𝑖 𝑐𝑖𝑦𝑖 = 𝑏 does not have a monochromatic solution, where ∑𝑖 𝑐𝑖 = 0. If we show
this, then we define a colouring 𝑐′ : ℝ𝑛 → [𝑘] by 𝑐′(𝑥) = 𝑐(‖𝑥‖2).

We have ∑𝑛−1
𝑖=1 𝑐𝑖(𝑦𝑖 − 𝑦𝑛) = 𝑏. By rescaling the 𝑐𝑖, we may assume that 𝑏 = 1/2. Now

we split [0, 1) into intervals [0, 𝛿), [𝛿, 2𝛿), … where 𝛿 is very small. Define the colouring
𝑐(𝑦) = (interval where {𝑐𝑖𝑦} is, interval where {𝑐2𝑦} is, …). This is a a ⌊1

𝛿⌋𝑛−1-
colouring. Assume 𝑦1, …, 𝑦𝑛−1 are monochromatic under 𝑐 such that ∑𝑖 𝑐𝑖(𝑦𝑖 − 𝑦𝑛) =
1/2. The sum is within (𝑛 − 1)𝛿 of an integer, which is ≠ 1

2  for 𝛿 small enough. □

What about spherical ⇒ Ramsey? This is open.

It is known that triangles, simplices, and any 𝑛-gon is Ramsey.

We want to show that any regular 𝑚-gon 𝑋 = {𝑣1, …, 𝑣𝑚} (with side length 1) is
Ramsey. Idea: first find a copy of 𝑋 such that 𝑣1 and 𝑣2 are monochromatic, then use
a product argument to get an isometric copy of 𝑋𝑁 , where 𝑁  is very large, such that
the colouring is invariant under swapping around 𝑣1 and 𝑣2. Use this to find copy of
𝑋 on for which 𝑣1, 𝑣2, 𝑣3 are monochromatic.

Definition 3.20  For a finite 𝐴 ⊆ 𝑋, a colouring 𝑐 of 𝑋𝑛 is 𝐴-invariant if it is
invariant under permuting the coordinates within 𝐴, i.e. for 𝒙 = (𝑥1, …, 𝑥𝑛) and 𝒙′ =
(𝑥′

1, …, 𝑥′
𝑛), if for all 𝑖 ∈ [𝑛], either 𝑥𝑖 = 𝑥′

𝑖 or 𝑥𝑖, 𝑥′
𝑖 ∈ 𝐴, then 𝑐(𝑥′) = 𝑐(𝑥).

Note if 𝑐 is 𝑋 invariant, then 𝑋 is monochromatic under 𝑐.

Proposition 3.21  Let 𝑋 ⊆ ℝ𝑑 be finite and 𝐴 ⊆ 𝑋. Suppose ∀𝑘 ∈ ℕ, there exists a
finite 𝑆 ⊆ ℝ𝑐 such that whenever 𝑆 is 𝑘-coloured, there exists an isometric copy of 𝑋
that is constant on 𝐴. Then ∀𝑛, 𝑘 ∈ ℕ, there exists finite 𝑆′ such that whenever 𝑆′ is
𝑘-coloured, there exists a copy of 𝑋𝑛 that is 𝐴-invariant.

So we are “boosting the colouring from 𝐴-constant to 𝐴-invariant”.

Proof .  We use induction on 𝑛 (and all 𝑘 at once). 𝑛 = 1 is by assumption. Suppose it
is true for 𝑛 − 1. Fix 𝑘 ∈ ℕ. Let 𝑆 be a finite set such that whenever 𝑆 is 𝑘|𝑋|-
coloured, there exists an 𝐴-invariant copy of 𝑋𝑛−1, and let 𝑇  be a finite set such that
whenever 𝑇  is 𝑘|𝑆|-coloured, there exists an isometric copy of 𝑋 with 𝐴
monochromatic. We claim that 𝑆 × 𝑇  works for 𝑋𝑛.
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Let 𝑐 be a 𝑘-colouring of 𝑆 × 𝑇 . By definition of 𝑇 , if we look at the 𝑘|𝑆|-colouring
𝑐′(𝑡) = (𝑐(𝑠1, 𝑡), 𝑐(𝑠2, 𝑡), …, 𝑐(𝑠|𝑆|, 𝑡)), we have an isometric copy of 𝑋 with 𝐴
monochromatic. This induces a colouring of 𝑆 as follows: 𝑐″(𝑠) =
(𝑐(𝑠, 𝑎), 𝑐(𝑠, 𝑥1), …, 𝑐(𝑠, 𝑥|𝑋|−|𝐴|)) for any 𝑎 ∈ 𝐴 (this is well-defined as 𝐴 is
monochromatic). This is a 𝑘|𝑋|−|𝐴|+1-colouring. So by the choice of 𝑆, there exists an
isometric copy of 𝑋𝑛−1 that is 𝐴-invariant. Thus we are done, since the Cartesian
product of this copy with the copy of 𝑋 in 𝑇  is 𝐴-invariant. □

Theorem 3.22 (Křiž)  Every regular 𝑚-gon is Ramsey.

Proof .  Let 𝑋 = {𝑣1, …, 𝑣𝑚} be a regular 𝑚-gon. We will find an isometric copy of√
𝑚𝑋 of the form (𝑣1, …, 𝑣𝑚), (𝑣2, …, 𝑣𝑚, 𝑣1), (𝑣3, …, 𝑣𝑚, 𝑣1, 𝑣2), …, (𝑣𝑚, 𝑣1, …, 𝑣𝑚−1).

We will show by induction on 𝑟 and all 𝑘 ∈ ℕ at once that we can find an isometric
copy of 𝑋 with {𝑣1, …, 𝑣𝑟} monochromatic.

Fix a 𝑘-colouring. 𝑟 = 1 is trivial, as just a point. 𝑟 = 2 is true as it is two points at a
fixed distance which we showed is Ramsey. Assume true for 𝑟 and all 𝑘. {𝑣1, …, 𝑣𝑟} is
Ramsey, so for all 𝑘, exists 𝑆 such that whenever 𝑆 is 𝑘-coloured, there is a
monochromatic isometric copy of {𝑣1, …, 𝑣𝑟}. Fix a 𝑘-colouring 𝑐. By our product
argument, there exists 𝑆 and 𝑁  such that we have an isometric copy of 𝑋𝑁  (we will
choose 𝑁  to be as big as we want) on which the colouring {𝑣1, …, 𝑣𝑟}-invariant.

The clever part: view 𝑋 as an alphabet with symbols {𝑣1, …, 𝑣𝑚}. We will colour
(𝑚 − 1)-sets, {𝑎1 < ⋯ < 𝑎𝑚−1}, in [𝑁] as follows:

𝑤1 : 1…12
𝑎1

1…13
𝑎2

1…1…1…1 𝑚
𝑎𝑚−1

𝑤2 : 1…13
𝑎1

1…14
𝑎2

1…1…1…1 1
𝑎𝑚−1

⋮
𝑤𝑟 : 1…1 𝑟 + 1

𝑎1

1…1 𝑟 + 2
𝑎2

1…1…1…1 𝑟 − 1
𝑎𝑚−1

Colour by 𝑐′({𝑎1, …, 𝑎𝑚−1}) = (𝑐(𝑤1), …, 𝑐(𝑤𝑟−1)), this is a 𝑘𝑟-colouring of [𝑁](𝑚−1).
As 𝑁  can be taken to be as big as needed, by Ramsey, there exists a monochromatic
size 𝑚 set. By relabelling, we may assume that this set is {𝑣1, …, 𝑣𝑚}.

1 2… 𝑚11…1

Now look at the following:

𝑥1 : 𝑣1𝑣2…𝑣𝑚11…1
𝑦2 : 𝑣1𝑣2𝑣3…𝑣𝑚𝑣111…1
𝑥2 : 𝑣1𝑣3…𝑣𝑚𝑣1𝑣211…1
𝑦2 : 𝑣3𝑣4…𝑣𝑚𝑣2𝑣111…1

⋮
𝑥𝑟 : 𝑣1𝑣𝑟+1𝑣𝑟+2…𝑣𝑚𝑣1…𝑣𝑟−1

𝑦𝑟 : 𝑣𝑟+1𝑣𝑟+2…𝑣𝑟−1𝑣1
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With this construction, we note that the colour of 𝑦𝑖 is the same as the colouring of
𝑥𝑖+1, since under 𝑐(𝑤𝑖), they must be the same. Now look at (𝑣1, …, 𝑣𝑚),
(𝑣2, …, 𝑣𝑚, 𝑣1), …, (𝑣𝑟+1, …, 𝑣𝑟, 𝑣𝑟−1). They all have the same colour (ignoring the 1′s).
They thus form a monochromatic copy of {𝑣1, …, 𝑣𝑟+1}. □

Remark 3.23
• Same proof works for any cyclic set, i.e. a set 𝑋 = {𝑣1, …, 𝑣𝑛} such that 𝑥 ↦

𝑥𝑖+1 mod 𝑛 is a symmetry of the set, or equivalently, there exists a cyclic transitive
symmetry group on 𝑋.

Example 3.24  Triangular prism is cyclic set, as symmetry group is given by the
group generated by the rotatino by 120𝑜 and reflection. So triangular prism is
Ramsey.
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